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Abstract. A new procedure is proposed for implicit dynamic analysis using the finite element method. The main 
aim is to give stable solutions with large time-steps in the presence of significant rigid body motions, in particular 
rotations. In contrast to most conventional approaches, the time integration strategy is closely linked to the "element 
technology" with the latter involving a form of co-rotational procedure. For the undamped situation, the solution 
procedure leads to an algorithm that exactly conserves energy when constant external forces are applied (i.e. with 
gravity loading). 
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1. Introduction 

Stewart [1] has highlighted the potential dangers of false solution from time-integration 
procedures with non-linear dynamics. For the finite element method, conventional procedures 
can be divided into two main types: explicit and implicit. The former is traditionally used for 
wave-propagation and high-velocity impact problems while the latter is more appropriate for 
structural applications dominated by the low frequency response although Downer et al. [2] 
have recently described an energy conserving explicit algorithm that gives excellent results 
for the latter problems. The present paper is devoted to implicit methods. 

Conventional techniques adopt very similar predictor/corrector procedures to those used 
for non-linear statics. However, the out-of-balance force vector is now augmented by the mass- 
times-acceleration terms while the conventional static tangent stiffness matrix is augmented 
by a factor times the mass matrix if, as here, no damping is considered. Dynamic equilibrium 
is usually enforced at the end of the step. 

Various time-integration strategies can be used for up-dating the velocities and accelera- 
tions with the Newmark methods [3-5] often being used. In the present paper, the average 
acceleration method (or trapezoidal rule with/~ = 1/4 and "T = 1/2) will be used to represent 
the "conventional procedure". The latter technique is "unconditionally stable" (irrespective 
of the time step) for linear problems. However, this stability does not extend to non-linear 
systems and consequently, ~ as will be shown in the paper, the "conventional method" often 
requires absurdly small time steps if the solution is not to "lock" onto a higher energy state 
(see later). Attempts to overcome these difficulties have been made by both Haug et al. [7] 
and Hughes et al. [8] who used Lagrangian multipliers to enforce an energy constraint 

In a standard algorithm, the time-integration procedure is totally divorced from the "element 
technology" (with the exception of the provision of the mass matrix). Most implicit dynamic 
procedures satisfy the dynamic equilibrium at the end of the step. More recently, Simo and 
co-workers have explored the idea of a "mid-point equilibrium" [9, 10] which follows on 
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Fig. 1. Bathe's pendulum. 

from the work of Hilber et al. [11] and Zienkiewicz et al. [12]. These concepts will be taken 
further in the present paper. 

A key feature relates to the precise definition of the stresses and strains that are associated 
with the "mid-point" configuration. The present method relies heavily on co-rotational con- 
cepts [6, 13]. The latter have usually been used for statics with the key aim being to divorce the 
straining from the rigid body motions, in particular the rigid-body rotation. The authors have 
extended the ideas to dynamics [14, 15] and, to this end, have used both a mid-point config- 
uration and "averaged strains". Similar ideas (although without the co-rotational framework) 
have recently been described by Simo and Tarnow [16, 17] in order to develop algorithms that 
conserve energy when constant external forces are applied. 

In the first part of the paper, the theory is developed for simple two-dimensional truss 
elements and this is followed by a set of examples involving such elements. In the final part of 
the paper, the theory is described for the extension to two-dimensional beams and, in addition, 
ideas are outlined for the extension to three-dimensional beams and shells. 

2. Motivation 

The work was triggered by the authors' first attempts to apply dynamics to the simple pendulum 
shown in Figure 1 (with E A  = 101° N). This problem has been discussed in detail by Bathe 
in his book [4] and study guide [18]. In both cases, the pendulum was dropped from the 
horizontal position, while in the present analysis, it is "fired" with an initial horizontal velocity 
of 772.5 cm/sec from the vertical position. The basic behaviour is similar. 

From the response in Figure 2, one can see that although the period is of the order of 
4.0 seconds "conventional procedures" (as previously defined) require a time step of the order 
of 0.025 seconds to give a satisfactory solution. 

Figure 2 shows that if a time step of 0.1 seconds is adopted, the solution "locks" at a 
position close to the initial position after one and a quarter periods. Figure 3 shows that, prior 
to this "locking", there has been a build-up of energy with an increasing percentage going 
into strain energy associated with an oscillating axial strain (Figure 4). This phenomenon was 
earlier noted by Bathe [18]. The term "locking" is used because, although the bar still moves, 
the overall (lower mode) motions are now fairly small while the local axial stretching (higher 
mode) dominates. 

It would be possible to overcome these difficulties for this simple pendulum by switching 
variables to use the rotation and stretch. However, the procedure could not then be easily 
extended to other configurations within a conventional finite element framework. Before 
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Fig. 2. Relationships between rotation and time for Bathe's pendulum. 
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Fig. 3. Relationships between energy and time for Bathe's pendulum. 

detailing the theory for the new method, we note that, for this problem, it leads to a very 
satisfactory solution with a time step of 0.1 (Figures 2 and 3) and that even with a time step 
of 0.5, no locking is encountered (Figures 2 and 3). 
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Fig. 4. Relationships between axial strain and time for Bathe's pendulum. 
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3. Theory 

Before describing the new method, a brief description is given of the "conventional" trape- 
zoidal rule (or average acceleration method). The displacements, d, are chosen as the "driving 
variables" so that the velocity at the end of the step, vn+l, can be obtained via 

2 2 
Vn+l = ~ (dn+l  - d n )  - V n  = ~ ~  A d - V n  (1) 

while the acceleration is then obtained from 

2 2 
an+l = ~ (vn+l -v,~) - a , ,  = ~ A v -  a,~. (2) 

Without damping, the equilibrium equations at the end of the step are given by 

gn+l = qi,n+l q- M a n + l  - qe,n+l = 0, (3) 

where qi are the (static) internal forces, M is the mass matrix and qe are the external forces. 
Equations (3) may be solved using the Newton-Raphson method in which the linearisation of 
(3) is used to obtain the effective tangent stiffness matrix. 

In the following, we will concentrate on the equations for a simple two noded truss element 
as shown in Figure 5. The external forces and the masses will be assumed fixed and related to 
the element thereby allowing us to concentrate on the latter. In these circumstances, with the 
co-rotational approach [6], equations (3) become 

g,,+x = Nn+l - e n + l  + A-t m2Av2  - 
en+l \ m2a2 n qe2 

(4) 

where N,~+l is the axial force (tensile positive) in the bar at the end of the step and e,~+l is 
the unit vector lying along the bar (Figure 5). 
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In [9], Simo and co-workers have proposed a "mid-point procedure" in which, for the 
up-dating, equation (1) is retained but equation (2), which can be re-expressed as 

1 
aav = ~-~ Av ,  (5) 

is replaced by 

1 
am = ~-~ Av (6) 

with the end-point equilibrium of (3) being replaced by the mid-point equilibrium of 

gr~ = qi,r. + Mare - q~,m = 0. (7) 

With the previous assumptions, for the bar element of Figure 5, this leads, in place of (4) to 

The key factor involves the definition of Nm via its associated strain. In [9], Simo and co- 
workers obtained the mid-point strain directly from the mid-point configuration. However, 
as illustrated in Figure 6, for the previous pendulum problem, this leads to high artificial 
straining. In order to remove the artificial straining, in [14, 15], the authors simply redefined 
Nm as a factor/3 (which will be defined later) times the average of the axial forces at the 
beginning and ends of the step, i.e., 

Arm =/3(N,~ + Nn+l )/2 =/3Nav. (9) 

Simo and Tarnow [16, 17] have adopted a similar approach (although without the factor/3 for 
reasons that will be discussed later). 

To complete the definition of the terms in (8), the force in the bar at the current configuration 
is obtained via 

EA 
Nn+l = Ninit "+" T o  (£n+l - go), (10) 
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with go as the initial length of the bar. The current length is simply obtained using 

g2+l T (X21 + d21)T(x21 + d21), (11) = X21,n+lX21,n+l = 

where, for example d21 = d2 - d l  and X1 and X2 are the initial position vectors of nodes 1 
and 2. In addition, the mid-point unit vector, era in (8) is obtained as 

( 1 ) 
era = X21,n + ~ Ad21 /gmt, (12) 

where the true mid-point length, gmt (between points A and B in Figure 5) is given by 

X21,n  1 I gmt = + ~ Ad21 • (13) 

(The procedure breaks down if the incremental rotation is 180 ° when gmt becomes zero if 
there is no stretching. Such enormous increments are unlikely to be used.) The factor/3 in (9) 
is provided to ensure energy conservation. 

Using (1) the change in kinetic energy at a node can be obtained as 

1 T v 1 A K  = ~ m(vn+ 1 n+l - vTvn) = mVffvAv = ~-~ mAvTAd,  (14) 

while with the previous assumptions, the change in external potential energy at a node is 

Ap __- --qTAd. (15) 

For an element, the change in strain energy is given by 

go N 2 £o A~o = 2E---~ ( ,~+1 - N 2 )  = ~ Nav A N ,  (16) 

where 

(eL1 E A  (gn+l - -  g n )  = E A  - £~) 
AN----- -~o  eo (£n+1 + gn) ' (17) 

while 

£2n+ ' - g2 n 2xT,nAd2, + Ad~I Ad21 T = = 2gmtemAd21 , (18) 
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with lint having been previously defined in (13). From (16)-(18), we obtain 

A~ T = 3Nave.~Ad21, (19) 

with 

lint 2emt 
/3 = lma~ - (in + in+l) " (20) 

Hence, with the mid-point axial force being given by (9) with/3 from (20), the total energy 
chance, can be expressed as 

A ¢ = A ~ + A K + A p = g T (  Adi)Ad2 ' (21) 

with g from (8). At equilibrium g is zero and hence, at equilibrium, energy is exactly preserved. 
It is worth noting that the factor/3 tends to unity as the step-size tends to zero and is also unity 
when there is no rotation. 

Equations (7)-(9) can be linearised to give 

1 ( m l 6 V l ) = I ( t / ~ d ,  (22) 
6g~. = 6qi,m + ~ m25v 2 

where, via (1), 

,I0 ] 
I(t = Kt + ~ m2I (23) 

and 

= + Nm = Kt6d. (24) em ~em 

Full details are given in [14]. It should be noted that Kt is non-symmetric although an artificial 
symmetrisation can be applied if the time steps are not too large [14]. 

3.1. AN ALTERNATIVE FORMULATION 

Following on from the work in [16], Simo and Tarnow [17] have very recently proposed an 
energy preserving procedure for shells. We will now attempt to establish links with the present 
formulation. 

If a total Lagrangian formulation is adopted, equation (4) becomes [6] 

1 
gn+l - -Nn+lbn+l  +~-~ m2Av2 - m2a2 ,~ kqe2 

where 

~n+1 ( - - e n + l )  
b n + l -  to e,~+l (26) 
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and in place of (10): 

EA 
Nn+l = Ninit + ~ o  (/2n+1 - g°2)" (27) 

Applying the approach of Simo and Tarnow [17], in place of (8), the mid-point equilibrium 
would take the form 

gm : Nav~ (bn q- bn+l) q- ~ m2Av2 ] - qe2 

where Nay is simply the mean of the N's  at configurations n and n + 1 (as before but with 
(27) now defining the N's). Following the lines adopted previously, it is easy to show that 
this approach leads to an energy conserving algorithm. It can also be shown that, provided 
the strains (but not the deformations or rotations) are small, we can adopt equation (28) for 
the present co-rotational formulation with the N's  being given by (10) and that this leads to a 
procedure that is very close to that given previously. By comparing (28) with (8) and (9), it is 
clear that we merely need to establish that 

1 1 ( ( - e n )  + ( - e , ~ + l ) )  g m t ( - e m ) = / 3 ( - e m )  (29) 
(bn + bn+l) = ~ en en+l -~ emav em em ' 

where we are now using the co-rotational form for the b vector (see (4) and [6]). With small 
strains, it is easy to establish that this relationship does indeed hold because 

1 (en + e n + l ) -  ~'n'+'~n+l( ~,n Ad21) 
"2 2gngn+! X21,n '~ g,z ..~ gnq-1 

1 ( 1 ) £mt 
" emav x21,, + ~ Ad2, = ~ em=/3era. (30) 

4. Numerical Examples 

The following examples have been computed using the original formulation [14, 15] rather 
than the previous "alternative formulation". For the first set of examples which involve small 
strains, we would expect almost identical solutions via the "alternative formulation". 

The numerical results for Bathe's pendulum have already been described. In the first set of 
following examples, Young's modulus times the area had been chosen to be 101° N so that the 
bars or chain-links are nearly rigid. In all cases, fixed time increments have been employed. 
The terminology "Newmark" refers to the Newmark scheme with/3 = 0.25 and 3' = 0.5. 

4,1. FOUR-CHAIN SYSTEM 

Figure 7 shows the computed response for a four-bar chain of the same EA value as the 
previous pendulum and of total length 400 which is free to fly (in the absence of gravity). 
The chain was given an initial linearly varying downward velocity which was zero at the 
right-hand end and was equivalent to a rotation about the right-hand end of 1 rad/sec. The 
density was taken as 1 Kg/m. 

The response for the present method involves the chain remaining straight as it should. In 
contrast the Newmark method (with/3 = 1/4, "7 = 1/2) starts by giving a sensible solution but 
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Fig. 7. Deformed configurations for free-flying four-bar chain. 
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50 .0  

suddenly jumps to a false energy configuration (Figure 8) associated with axial oscillation of 
the bar and no overall rotation (Figure 7)! The solutions in Figure 7 are related to a fixed time 
increment of 0.1 seconds. They are compared with the exact solution for the horizontal tip- 
displacement at the left-hand end in Figure 9. The "exact" solution is computed by assuming 
that the bars are rigid. It can be seen that the present method leads to an effectively exact 
solution with At = 0.1 while even with At = 2.0, although there is some period elongation, 
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no "locking" occurs. The present method not only conserves energy (Figure 8) but also angular 
momentum [ 14]. 

4.2.  SIMPLE MODEL WITH TWO DEGREES-OF-FREEDOM 

The first author and co-worker have described [19, 20] an energy framework for the simple 
model problem shown in Figure 10. The bar OA is modelled with one of the truss elements 
discussed previously while in the z-direction a linear spring of stiffness K is provided (AB 
being forced to remain horizontal). The point mass, m, was set to unity, the initial length, ~o, 
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to 100 and Young's modulus times the area of the bar OA was set to 500 so that the stiffness 
of the bar was 5.0 which is five times larger than the stiffness provided for the linear spring, 
BA, for which K = 1. No gravity effects were considered. 

The energy framework can be used to show that if the initial non-dimensional kinetic 
energy, T = 2T/(K£~), is greater than the critical value 7~cr = 0.833, the system may, within 
a certain time period, "escape" from a response associated with a low amplitude so as to 
respond with a "large amplitude". However, if T < Tcr, such "escaping motion" should be 
impossible. For the present study, 2r has been set to 0.8 with the angle a in Figure 10 being 
135 ° . 

Figure 11 shows the computed relationships between the vertical displacement (y-direc- 
tion - Figure 10) and time. As anticipated, with the present method, the motion does not 
"escape" (Figures 11 and 12a). In contrast, with the "Newmark method", escape occurs after 
about 30 seconds (Figures 11 and 12b). The latter, false response, is very similar to the true 
response which might have been obtained with an initial kinetic energy, T > 7~cr (see [19, 
20]). 

5. Extensions to Other Types of  Element 

The extension of the previous formulation to cover three-dimensional truss elements is trivial. 
Indeed the basic equations remain unaltered. In the following, we will initially outline a 
possible extension to cover two-dimensional beams. 

The equivalent static formulation is detailed by the author in [6] and is closely related to 
the work of Oran [21 ]. It is based on a Kirchhoff beam formulation without shear deformation 
although an equivalent formulation based on Timoshenko theory can easily be derived [6]. In 
relation to Figure 5, we again have two nodes but now with a rotational variable, 0, added to 
the two translational variables, d at each node. Collectively the structural "displacements" are 
then 

p T  = (all T ,  01 ' 02  , 02) .  ( 3 1 )  
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Fig. 12. Traces of motion of point A for simple model. (a) Present solution and (b) solution via "Newmark". 

For the bending deformations, we require two local rotations, 

Oel = O1 - -  Ol, Og2 = 0 2 - -  Ol, (32) 

where o~ is the rigid body rotation which at configuration n + 1 can be computed from 

1 
sin oe = l~ ~ao~n+ ~ x21,o x x21,n+l, (33) 

where the lengths go (initial) and gn+l (current) follow the same equations as used for the 
truss element (see (11)). It should be noted that the curved length component is neglected in 
this basic formulation. It is perfectly possible to add additional terms to allow for these effects 
[6] via rotating "shallow arch terms". 

The local bending moments, 3,7/1 and 3)2 are computed from the local 0's via 

( 3)I E1  ] (34) 
0e2/" 

In relation to the following dynamic formulation, we require a good approximation to (33) 
that is valid for the change of rigid body rotation between configurations n and n + 1. Such 
an approximation follows from Figure 13 and is given by 

1 
Ao~ = ~ ~n fn + ~ fn+l Adz1. (35) 

Equation (35) effectively replaces Aa  with sin A a  if the axial strains are small. 
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Fig. 13. computation of the rigid-body rotation. 

The axial energy for the beam element follows identically that given previously for the 
truss and hence we will concentrate on the bending energy. For the latter, the static internal 
force vector is given by [6]: 

qi,n+l=B,~+l M2 ' 

where the "B matrix" is given by 

(36) 

T 1 £n+l 1 0 (37) 
Bn+l = -fn+l  'gn+----l" - fn+l  ' 

0 ~n+l 

and the unit vector f~+l is orthogonal to en+l in the same manner that fm is orthogonal to 
em (see Figure 5). If we now adopt the average B matrix approach of Simo and Tamow, we 
arrive at the following mid-point dynamic equilibrium equations: 

1 ( b n + b n + l ) + l  (Bn+Bn+I)T(~av'l) gm = 

1 r~l zX~)l 
+ m2zXv.2 - = o,  (38)  

~2A02 

where we have also adopted the average B matrix approach for the axial part (see Section 3.1) 
so that the b vectors would be as given in (29). The ~ terms in (38) involve the "lumped" 
rotational mass while the term 2f/av,1 is simply the average of the .~/values from configurations 
n and n + 1 (following Nay - see (16)). 

The time integration of the rotational variables follows the same form as that adopted for 
the translations, i.e., 

2 
0,~+1 = ~ A0 - 0~ (39) 
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1 

To consider the energy conservation, we firstly supplement the axial strain energy of (19) 
with the bending strain energy 

A~b ----- AS]'av,lA0el q- AS]av,2A0e2 

= Mav,  ( X0x - +  rav,2( X02 -  Xa), (41)  

where (purely for this energy calculation) the rigid rotation A a  is given by (35). In addition, 
for any node, we have a contribution to the kinetic energy of 

rh AOA0, (42) 1 rh(bn + 0n+l)A0 = ~-~  

where we have used (39). Combining (41), (42) and (35) with (14), (15) and (19) leads to the 
relationship 

A¢ = A~ + AT + A P  = gTmAp, (43) 

where gm is the residual term given by (38) and Ap contains the incremental nodal "displace- 
ments". As with the truss formulation the change of energy in (43) will therefore be zero once 
we have iterated to the state where the residual in (38) is zero. 

In contrast to the truss element formulation, this observation is only valid for the beam 
with moderate sized rotation increments for which (35) is a reasonable approximation. (Note 
that we use (33) - in incremental form - rather than (35) in computing the bending moments 
from (34).) Since the original draft of this paper, we have shown numerically that the proposed 
formulation for beams gives significantly better solutions than does the standard Newmark 
algorithm. Work is in hand to modify the procedure with a view to obtaining full energy 
conservation irrespective of the size of the rigid rotation increment. In our current formulation, 
in which the main features are essentially the same as those just described, we have adopted 
a slightly different form for the co-rotational approach in which the co-rotational aspects are 
kept totally separate from the conventional linear formulation which is applied at the local 
level [23]. Hence, with a conventional end-point equilibrium, the static part of the internal 
force vector would be written as 

q i , n + l  = Tn+lqgi,n+l, (44) 

where qei,n+l is the local internal force vector computed by using a standard linear element 
stiffness matrix in relation to the local system [6, 23] and Tn+l is the transformation matrix 
at step n + 1 whereby 

6pc = T6p, (45) 

with 3pc as the small change in local nodal "displacements" and ~p as the small change 
in global nodal "displacements" (all at configuration n + 1). For the present "mid-point" 
formulation, we compute the static part of the mid-point internal force vector via 

[Tn+-2T-n+l]T(qie'n+-2-qie'n+l ) (46) 
q i , m  . . . . .  " 
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In relation to static analysis, the author has extended the two-dimensional co-rotational 
formulation to three-dimensional beams [22] and, in future work, it is intended to apply a 
similar approach to the dynamic case. The extension to dynamics will also be applied to a 
simple co-rotational triangular shell element [13]. If the formulation is restricted to small 
strains (although with large deformations and rotations), the simplest approach would be 
to adopt the method based on the average B matrix (or transformation matrix T as indicated 
above). For the shell element of [13], which has only one rotational variable per each mid-side, 
the resulting formulation should be very simple. 

6. Conclusions 

An energy conserving time-integration procedure has been devised that is based on the 
co-rotational approach and involves a mid-point configuration in conjunction with averaged 
strains. Examples have been presented showing the application of the technique to simple two- 
dimensional truss elements. It has been shown that "conventional techniques" lead to solutions 
that may suddenly jump to higher energy states that are associated with high frequency axial 
oscillations. Alternatively, they may exhibit false "escaping motion" that should be associated 
with a structure subject to a higher initial kinetic energy. In contrast, the current solutions 
remain stable with large time-steps. 

A disadvantage of the method is that it involves a non-symmetric effective tangent stiffness 
matrix. However, this disadvantage should be more than compensated by the stability of the 
method. In addition, it is possible to artificially symmetrise the matrix although convergence 
difficulties sometimes result. 

Although the method has so far only been applied to simple elements, the paper has 
indicated possible techniques for extending the procedure to other elements such as three- 
dimensional beams and shells that can be formulated using the co-rotational method. 

Acknowledgements 

The authors would like to thank Dr. Ugo Galvanetto for his contributions to the work with the 
beam element. 

References 

1. Stewart, I., 'Warning - Handle with care[', Nature 355, 1992, 16-17. 
2. Downer, J. D., Park, K. C., and Chiou, J, C., 'Dynamics of flexible beams for multibody systems: A 

computational procedure', Computer Methods in Applied Mechanics and Engineering 96, 1992, 373-408. 
3. Belytschko, T., 'An overview of semidiscretisation and time integration procedures', in Computational 

Methods for Transient Analysis, T. Belytschko and T. J. R. Hughes (eds.), Elsevier Science, 1983, pp. 1-65. 
4. Bathe, K.-J., Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, 1982. 
5. Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, Vol. 2, fourth edition, McGraw-Hill, 

London, England, 1991. 
6. Crisfield, M. A., Non-Linear Finite Element Analysis of Solids and Structures, Vol. 1, Wiley, Chichester, 

England, 1991. 
7. Hang, E., Nguyen, O. S., and De Rouvray, A. L., 'An improved energy conserving implicit time integration 

algorithm for nonlinear dynamic structural analysis', in Proceedings of the Fourth Conference on Structural 
Mechanics in Reactor Technology, San Francisco, August 1977. 

8. Hughes, T. J. R., Liu, W. K., and Caughy, P., 'Transient finite element formulations that preserve energy', 
Journal of Applied Mechanics 45, 1978, 366-370. 

9. Simo, J. C. and Wong, K. K., 'Unconditionally stable algorithms for rigid body dynamics that exactly preserve 
energy and momentum', International Journal for Numerical Methods in Engineering 31, 1991, 19-52. 



52 M . A .  Cris f ie ldandJ.  Shi 

10. Simo, J. C., Rifai, M. S., and Fox, D. D., 'On a stress resultant geometrically exact shell model, Part IV: Con- 
serving algorithms for non-linear dynamics', International Journal for Numerical Methods in Engineering 
34, 1992, 1117-1164. 

1 I. Hilber, H. M., Hughes, T. J. R., and Taylor, R. L., 'Improved numerical dissipation for time integration 
algorithms', Earthquake Engineering and Structural Dynamics 5, 1977, 283-292. 

12. Zienkiewicz, O. C., Wood, W. L., and Taylor, R. L., 'An alternative single-step algorithm for dynamic 
problems', Earthquake Engineering and Structural Dynamics 8, 1980, 31-40. 

13. Peng, X. and Crisfield, M. A., 'A consistent co-rotational formulation for shells using triangular elements 
with constant strain and constant curvature', International Journal for Numerical Methods in Engineering 
35, 1992, 1829-1847. 

14. Crisfield, M. A. and Shi, J., 'A co-rotational element/time integration strategy for non-linear dynamics', 
International Journal for Numerical Methods in Engineering 37, 1994, 1897-1913. 

15. Crisfield, M. A., Shi, J., and Lim, K. L., 'Finite elements and non-linear dynamics', in Modern Practice in 
Stress and Vibration Analysis, The Stress Analysis Group of the Institute of Physics, Sheffield, April 1993, 
pp. 3-13. 

16. Simo, J. C. and Tamow, N., 'The discrete energy-momentum method. Conserving algorithms for nonlinear 
elastodynamics', Zeitschrift fiir angewandte Mathematik und Physik 43, 1992, 757-792. 

17. Simo, J. C. and Tarnow, N., 'A new energy conserving algorithm for the nonlinear dynamics of shells', 
International Journal for Numerical Methods in Engineering 37, 1994, 2527-2549. 

18. Bathe, K.-J., Finite Element Procedures for Solids and Structures - Nonlinear Analysis, MIT Centre for 
Advanced Engineering Studies, 1986. 

19. Lim, K. L. and Crisfield, M. A., 'Dynamic finite element analysis applied to a simple model exhibiting 
dynamic instability', Engineering Computations 11, 1994, 483-494. 

20. Lira, K. L., 'Dynamic stability of suddenly loaded structures', M.Sc. Thesis, Department of Aeronautics, 
Imperial College, London, 1992. 

21. Oran, C., 'Tangent stiffness in plane frames', in Proceedings of the American Society of Civil Engineers, 
Structural Division, Vol. 99, 1973, pp. 973-985. 

22. Crisfield, M. A., 'A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements', 
Computational Methods in Applied Mechanics and Engineering 81, 1990, 131-150. 

23. Rankin, C. C. and Brogan, E A., 'An element independent corotational procedure for the treatment of large 
rotations', ASME, Journal of Pressure Vessel Technology 108, 1969, 165-174. 


