
46 

S o m e  Re la t ions  Between  Addit ive  Funct ions  - H 

PL. KANNAPPAN and S. K!:R~PA (Waterloo, Ontario, Canada and 
Zagreb, Yugoslavia) 

The question raised in our paper 'Some relations between additive functions - I' 
(see [1]) regarding additive functions, can be formulated as follows: 

Let 9A be the set of all additive functions f :  R ~ R (where R is the reals), that is, 
f ' s  satisfying 

(c) f ( x  + y) = f ( x )  + f ( y ) ,  for all x, y e R .  

Then 9.I is a vector space over R. A function f : R --, R satisfying (c) and 

(d) f ( x y )  = x f (y )  + f ( x )  y ,  x, y ~ R 

is called a derivative on R. Let ~3 be the subspace of  9.[ spanned by x ~ f ( x )  = f  (1) x, 
continuous functions, and by all derivations on R. 

PROBLEM. Let the ut's be rational functions in x, t hep : s  be continuous functions 
on R except at the singular points of ul and t h e f : s  be additive functions. When does 
a condition of the form 

p,(x)  : , (u , (x ) )  = 0 

imply that f i~ !~ (i = l, 2,. . . ,  n) or that the f t  are linearly dependent relative to ~ .  
In the sequel we shall often use, w h e n f i s  additive, that 

(c') f ( r x )  = r f (x) ,  where r is any rational,  

which is a consequence of (c), and, when f is a derivative, that 

(d') f(x 2) = 2xf (x ) ,  

which is easily obtainable from (d). It is well known that the general continuous 
solutions of (c) a r e f ( x ) = c x ,  where c is an arbitrary constant, and t h a t f - O  is the 
only common, continuous solution of (c) and (d). 

Here we prove the following theorem. 

THEOREM.  I f  f ,  ge9~ and i f  there exist a number o~, two continuous functions 
Pt ( ~ 0), P2 ( ~ 0), two constants A, B such that 
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for all x ~ ~, then f and g are linearly dependent modulo the subspaee ~3, that is, there 
are constants a, b, e such that f (x) = ag (x) + bH(x)  + cx, where H is a derivative on R. 

Further, (a) i f  A #0,  B=O, then either f and g are eontinuous or f and g are 
derivatives or f ,  ge~3 and pl (x)=(~x +6)/(x-~), where e, 6 are constants or f =O and 
g=0.  

(b) / f  A=0,  B¢O,  then either f=O, g e ~  or both l a n d  g e ~  and p l ( x ) = c l  + 
e2p2 ( x ) / ( x - o  O, where the ci's are constants. (c) i f  A #0,  B #0,  then either f and g are 
continuous or f is continuous, g e ~  or f is a derivative and g e ~  or both f and g e ~  
and Pl (x) =d t + d 2 / ( x -  ~) + da P2 ( x ) / ( x -  a), where the d~' s are constants, 

or f =  O, g e ~ ,  pa (x) = a / ( x -  ~), P2 (x) = b 
or f ,  ge  ~3, Pl (x) = a / ( x -  e), P2 (x) =e  I +e2 (x - a), where the e /s  are constants, 
or f ,  ge~3, Pl (x)=el  +e2 / ( x - e ) ,  p2(x)=b,  where the ei's are constants 
or f (x) =ag(x),  p, (x) =a, P2 (x)=b.  
Proof. In (1), replacing x by (1/x)+e,  we have 

f ( x )  + f ( A x 2 ) =  pl ( !  + ot)g(x)  + p2 (~  + ~ )g (Bx2 ) .  (2) 

Replacing x by rx in (2), where r is a rational, using (c') and then letting r ~  1/x, we 
obtain x f ( x )  + f ( A x  2) = axg(x) + bg(Bx2), (3) 

where a =Pl (1 +c¢) and b =Pz (1 +e). 
Putting x + r  for x in (3), where r is a rational, and using (3) and then letting r ~ x, 

we get 
x f ( x )  + x2f(1) + 2xf (Ax)  = axg(x)  + ax2g(l) + 2bxg(Bx) .  (4) 

Setting 
k (x) = f ( A x )  - bg (Bx), (5) 

we obtain from (3), (4), and (5) that 

k(x 2) = 2xk(x)  + ~,x 2, where ? = f(1)  - ag(1). (6) 

Now, define H (x) = k (x) + ?x. (7) 

Then H (x 2) = k (x z) + ~,x 2 = 2xk (x) + 27x 2 = 2xH(x).  Thus H is a derivative. Now, 

(3), (5), and (7) yield 

f ( x )  - ag(x) = - 2n(x)  + ?x, 

and 
f ( A x )  - bg(Bx) = H(x )  -- ?x. 

From (8) we see that f and g are linearly dependent relative to ~3. 

(8) 

(9) 
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We consider the following cases and subcases: 
Case 1. A~0,  B=0.  Subcases a = 0 ;  a # 0 .  
Case 2. A =0, B#0 .  Subcases a=0 ,  b =0;  a # 0 ,  b =0;  b#0 .  
Case 3. A#O, B#O. Subcases a=0 ,  b=0 ;  a=0 ,  b # 0 ;  a#0 ,  b#0.  

Case I. Let A #0 and B =0. 
Subcase. Let a=0 .  
From (8) and (9) we get 

f [ (1  + A) x] = -- n(x). (10) 

If  A = -  1 we see from (10) that H = 0 ,  and from (8) we getf(x)=yx, that is, f is 
continuous. This in (2) gives 

yx(1-- x)= p, ( !  + ~)g(x). (11) 

From (11) it is clear that g is continuous in some points and hence we can conclude 
that g is continuous everywhere. Thus from (11) we have 

c(1 xl) 
~x+/5 
X - - 0 ( '  

Now suppose that A # - 1. Then from (10), we have 

1 
- n ( x )  + - -  

I + A  

From (13) and (8) (with a =0) we get 

where c is a constant 

where e, 3 are constants. 

( 1 2 )  

I 

x ] (13) 
(1 + A) 2 H(A). 

2H(A) 
(2A + 1)f(x)  = - -  x -- rx.  

I + A  
( 1 4 )  

If  further A # -½ we see from (14) t h a t f i s  continuous. 
As before, from (2) we can conclude that g is also continuous and that 

pl(x)=cl(1  x-A ) _  , whe rec l i s acons t an t  

ex +6 
- where e, 5 are constants, 

X - - 0 ~ '  

and that is (12). If  A = - ½  (with A # - 1 ) ,  we have from (13) that f ( x ) = - 2 H ( x ) .  
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Hence f is a derivative. Now (2) and (3) give 

(1- x)f(x)= pl (! + o~)g(x). (15) 

In (15), replacing x by rx, where r is a rational, and then letting 

1 
r ~ x (Xo - e) '  where x o is an arbitrary point, 

weget  ( 1 ) 
1 - f(x) = Pl (Xo) g (x), 

X 0 - -  

which implies that g(x)=kf(x), where k is a constant, ¢0 .  If k =0, there is nothing 
to prove. Thus g is also a derivative. Now (15) and g(x)=kf(x) imply that 

x - - ~ - i  ex+6 
- -  , wheree, 6 are constants. (12) pl (x) - k(x - x - 

Thus we have in this subcase e i ther fand  g are continuous o r f a n d  g are derivatives 
and p~ is given by (12). 

Subcase. Let a 50. Then (8) and (9) yield 

1 H ( x )  + f ( 1 )  x ,  f(x) = ] 
(16) 

(! 1)  H(x)+g(1)x" g ( x )  = + 

Now (2) and (3) imply 

(1-- x)f(x) = (p1(; + ct) - ax) g(x). (17) 

From (16) and (17), we get 

[1H(x)+f(1)x](1-x)= [Pl (!+ c~)-ax]I(:+ ~)H(x )+  g(1) x 1. (18) 

In (18), putting x =r, where r is a rational, using the fact that H is a derivative and 
then allowing r ~ x, we obtain 

- - - +  1 -  Pl (X) = x - ~ g ~  x 
ex + 6 

- where e, 6 are constants, 

provided g(1) 50 .  
If  g (1)=0,  then from (16) we see that g is a derivative. Choose Xo such that 

g(xo)#O. [g=0 in (2) gives f =  0.] Then H(xo)#0. Replacing x by rxo, where r is 
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a rational, using H(xo)#0, g(1)=0  and then taking the limit 

we have from (18), 

1 
r -~ (x any real), 

[i H(xo)+ f(1)  Xo] 
a 

- -  + 1 - - -  

+ H (xo) 

ex + 6 

X--0~ 
where 8, t~ are constants, 

(19) 

which is (12), provided that A # -½. But A = -½ in (16) gives g=0 .  Then from (2), 
we get f =  0. Thus in this subcase we have, f ,  g e ~ ,  or f e  ~B, g is a derivative and Pl 
is given by (12) or f =  0, g=0 .  

Case 2. Let A =0, B#0.  
Subcase. Let a=0 ,  b =0. 
From (3), we ge t f (x )  =0. Since P2 (x)~0,  let x0 be such that P2 (Xo) #0.  
Now in (2), replacing x by rx, where r is a rational and then taking the limit as 

we get 

and 

ir-..~ 

g(Bx 2) = kxg (x), 

X(Xo - 

where k is a constant, # 0,  (20) 

k 
p,(x)=----P2(X). (21) 

In (20), replacing x by x+r,  where r is a rational, we obtain 

2g(Bx) = kg(1)x + kg(x). (22) 
Hence (20) and (22) yield 

g(x 2) = 2xg(x) - g(1) x . (23/ 

Now set 
D(x) = g(x) - g(1) x.  (24) 

Now from (23) and (24) we see that D is a derivative. Of course g can be obtained 
from (24). Hence we have in this subcasef=  0, g ~  and Pl and p= are given by (21) 

Subcase. Let b=O, a#O. 
Then (3) ~vesf (x)=ag(x) .  
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Now (2) becomes 

g(x) [a - pl ( !  + a)l  = p2 ( !  + a) g(Bx2 ). (25) 

Replacing x by rx in (25), where r is a rational, and letting 

1 
r ~ x (Xo - a) '  where Xo is an arbitrary point ,  

g (Bx 2) = kxg (x), where k is a constant, # 0 .  (20) 

I f  k =0  there is nothing to prove. 
As before g can be obtained from (24) and f from f (x) = ag (x). From (20) and (25) 

we get k 
Pl (x) = a - - -  P2 (x). (26) 

So we have f,  g e ~3 and Pl and P2 are given by (26). 
Sttbcase. Let b # 0 .  
Now (8) and (9) give 

f(x) = alH(x) + f (1)  x ,  "[ 
(27) 

g(x) = a2H (x) + g ( 1 ) x ,  J 
where a2 = - (1/bB) #0, al =aa2 - 2. 

From (2) and (27), using H as a derivative, we have 

alH(x) + f(1) x = Pl ( !  + ~) [a2H(x) + g(l) x] 
(28) 

+ p2 ( !  + ot) [a2x2H (B) + 2a2BxH (x) + g(1) BxZ'l . 

In (28), put x =r ,  where r is a rational, make use of the fact that H is a derivative and 
then allow r~x ,  where x is any real number; we have 

p l ( x  ) f (1 )  [a2H(B ) + g(1) B'] p2(x) 
= g ( 1 ) - -  g ( 1 )  x - -  

C2 
= c l  + - P2 (x), where c l, c2 are constants, 

X - - 0 ~  

provided g (1 )#0 .  If  g ( 1 ) = 0  (27) gives that g is a derivative. Choose Y0 such that 

g(Yo) #0 ( g=0  in (2) gives f =  0). Hence H(yo) #0. 
Replacing x by rye, r a rational, using H(yo)¢:O, g (1 )=0  and then taking the 

limit as 
1 

r ~ where x is any real number,  
x (Yo - a ) '  
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we have f rom (28) 

pt (x) = a a n  (yo) + f ( 1 )  Yo _ [af t - / (n)  Yo + 2 a 2 B H  (yo)] P2 (x)  

a2H (Yo) a 2 H  (Yo) x - 

C2 
= Cl -[- - - - -  P2 (X), where  ca, c2 a r e  c o n s t a n t s .  

x - - t ~  

(29) 

N o w  (30) and (31) yield 

similar to (23). Defining 
f ( x  2) = 2 x f ( x )  -- f ( 1 )  x 2 

Thus  we have 

L ( x )  = f ( x )  - f ( 1 )  x ,  

we see that  L is a derivative. N o w  f can be obtained f rom (33). 
F rom (30) and (33) we have 

L ( A x  2) = --  x f ( x )  - f ( a )  a x  2 

also = x 2 I f ( A )  - f ( 1 )  A] + 2 A x f ( x )  - 2Af(1)  x 2 . 

(2A + 1 ) f ( x )  = [2Af(1)  - f ( A ) ]  x .  (34) 

F r o m  (34) we have two complementary  sub-subcases, that  is, either A = - ½  or f is 
continuous.  

First  let us consider the sub-subcase that  . 4 = - ½ .  Now (30) shows t h a t f  is a 
derivative. 

Choose  Yo such that  g ( y o ) ~ O .  Replacing x by ry  o in (2), where r is a rational,  
and  then allowing 

1 
r ~ x (Y0 - ct)' where x is a real number ,  

we obtain 

Pl (x) = g(Yo) \ x - ~ g (Yo) Yo x - ~ (35) 

d2 da / 
= dl + + P2 (x) ,  where d l ,  d2, d 3 are constants .  

(31) 

(32) 

(33) 

Hence we have either f ,  g e  ~3 o r f e  ~3, g is a derivative and Pl  and P2 are given by (29). 
Case 3. Let A ~ 0, B ~ 0. 
Subcase.  Let a = 0 ,  b =0.  
F r o m  (3), we get 

f ( A x  2) = - x f ( x ) .  (30) 

Replacing x by x + r  in (30), where r is a rational, and using (30), we have 

2 f ( A x )  = - f ( 1 )  x - f ( x ) .  
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Using (2) and (35) we get 

( 1 - x ) f ( x ) = p 2 ( ~ + c t ) g ( B x 2 ) + [ d l  +d2x +d3xp2 ( !+~) ]g (x ) .  (36) 

Replacing x by rx in (36), where r is a rational, and allowing 

1 

(where P2 (Xo) ~0), we get 

klxf(x ) = kzxg (x) + g (Bx2), where kl, k2 are constants. (37) 

Now k 2 =0 gives 
g(Bx 2) = ktxf(x), (38) 

which in turn gives, using the fact that f is a derivative, that 

2g (Bx) = klf(x).  
Hence 

ki kl /1 \ 
g(x) = 2~f(x) + ~ f[xB) x. (39) 

If  k2 ¢0, replacing x by x+r in (37), where r is a rational, using the fact t h a t f  
is a derivative and (37), we get 

k,f(x)  = k2g(1 ) x + k2g(x ) + 2g(Bx). (40) 

From (37), (40) and using the fact that f is a derivative, we have 

g (x z) = 2xg (x) - g (1) x 2 . (23) 

Hence g can be obtained from (24). Thus we h a v e f a s  a derivative ge~3 and Pl and 
Pz are given by (35). 

Now we take up the other sub-subcase, t h a t f i s  continuous, s a y f ( x ) = c x ,  where 
c is a constant. Using (30), (2) can be rewritten as 

( 1 -  x) cx = pl (1-q- ot) g(x) q- p2 ( !  -t- ~) g(Bx2). (41) 

Replacing x by rx in (41), where r is a rational, and allowing 

1 
r - - *  

X (X o - -  

(where P2 (Xo) 50), we get 

klx 2 = k2xg(x ) + g(Bx2), where k 1, kz are constants. (42) 
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Now k2 = 0  implies that g is continuous, say g(x)=dx, where d is a constant. 
From (41), we now obtain 

Pt(X) = d (1 - - -  

= d  I + 

I f  k 2 #0 ,  from (42) 

1 6 ) _ _ _ B  
X ~ X --0~ 

d2 da 
+ - -  p2 ( x ) ,  

X--(X X--(X 
where the d,'s are constants. 

2k,x = k2xg(1 ) + k2g(x ) + 2g (Bx) 

can be obtained, which with (42) gives 

g(x 2) = 2xg(x) - g(1) x.  (23) 

Hence g can be obtained from (24). 
Now (2) can be rewritten using (24) as 

( 1 - x ) c x = p l ( ! + o t ) [ D ( x ) + g ( 1 ) x ]  

Putting x=r  in (43), where r is a rational, using D as a derivative and then taking 
the limit as r ~ x, for any real number x, we get 

c [ 1 ] D(B)+g(1)Bp2(x )  
(x) = 1 . . . . . .  

x -- ~ g(1) x -- o~ 

d2 ' da 
= dl + + - -  P2 (x), where the d/s are constants, 

X--~X X--0~ 

provided g (1 )#0 .  If  g (1 )=0 ,  choose Yo such that g(yo)#O. Now from (24) g is a 
derivative and D (Yo) #0 .  

Replacing x by ry o in (43), where r is a rational, and making 

1 
r --} where x is a real number,  

x (Yo --  ct) 
we get 

cyo ( 1 - -  
Px (x) = O (yo-----) \ 

d2 
= d r +  

1 ~ D(B) yo + 2BD(Yo) p2(x) | 

x - ~) - D(Yo) x - o: ] (35) 

d3 
+ P2 (x), where the d~'s are constants. 

X--0~ 

Thus we have in the subcase a =0,  b =0  e i therfand g are continuous o r f i s  continuous 
a n d  g e ~  a n d p l  andp2 am given by (35). 
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Subcase. Let a =0, b #0.  
From (8) and (9) we have 

f (x )  = -- 2H(x) + Vx 
1 + 2 A  

g(x) = vH(x) + / i x ,  where v = b~ff--' # = g(1). 

Using (44) and the fact that H is a derivative, (2) can be rewritten as 

(44)  

we get 
d2 d3 Pl (x) = dl + - + - - P2 (x), where the dl's are constants. (35) 

So, we have either f, g~ ~3 orfE ~ and g is a derivative and Pt and Pz are given by (3 5). 
The subcase a # 0 ,  b = 0  can be discussed similarly. To finish the proof  let us 

consider the subcase a #0,  b #0.  
Subcase. Let a # 0, b # 0. 
Now (2) and (3) imply 

( I - x )  f ( x ) =  [p ,  ( ! +  0~)- -ax]  g(x)+ [P2 ( 1 +  0 t ) - b ]  g(Bx2). (46) 

Changing x into rx in (46), where r is a rational, and then allowing 

1 
r -~ x (y - 0t) 

In (45), taking x=r, where r is a rational, using the fact that H is a derivative and 
then taking the limit as r ~ x (for any real number x), we get 

2H (A) - ~A liB + vH (B) P2 (x) 
p l  (x)  

(x  - x - (35)  

d2 d3 = dl + - + - -  P2 ( x ) ,  where the di's are constants, 
X - - C t  X - - 0 ~  

provided g (1) # 0. 
If  g (1)=0 ,  from (44) we have g as a derivative. Choose Yo such that g(yo)#O. 

Then H(yo)#O. [g=0  in (2) gives f = 0 . ]  In (45) replacing x by rye, where r is a 
rational, using H ( y o ) ~ 0 ,  g ( 1 ) = 0  and then letting 

1 
r --+ - -  where x is any real number, 

x (Yo - ~)' 
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where y is any real number, we have 

( 1 ) I a l [P2(y)-b]g(Bx2)  1 - - - f ( x ) =  Pl (Y) ~ g(x) + 
y ~z y x (y -- oc) 

With the equation (47), we discuss the following cases: 

(47) 

a 
(i) p~(x) x - ~ '  p 2 ( x ) = b  for a l lx .  

a 
(ii) Pt (x) - for all x ,  there is an x such that P2 (x) ~ b. 

a 
(iii) there is an x for which Pl (x) ~ - -  and 

(iv) neither of(i) nor (ii) nor (iii) holds. 

Let us consider (i), that is 
a 

Pl (x) - and P2 (x) = b 
X--O~ 

Then from (47) results f =  0, and from (8) results 

g (x) = _2 H (x) ---~ x. 
a a 

(ii) Let us take up case (Ji). From (47) we obtain 

g(Bx 2) = kxf(x),  where k ~ 0 is a constant 

(k = 0 gives g = 0, f = 0). From (48) results 

2g(Bx) = kf(1) x + kf(x). 
Thus (48) and (49) give 

f ( x  2) = 2xf(x) -- f(1)  x 2 . 

Hence f can be determined from (33) and g from (49), 

P2 (X) = b for all x .  

for all x. 

k L(x) + g(1) x 
g (x) = 2B 

(48) 

(49) 

(32) 

(50) 

Utilizing (2), (33), (48), (50), and (ii) we get 

L (x) + f (1)  x + xZL (A) + 2AxL (x) + f(1) Ax z | 

. / =ax 2B (x )+g(1)x  + pz +o: [kxL(x)+ f (1 )kx  z] 
(51) 

Putting x = r  in (51), where r is a rational, using the fact that L is a derivative and 
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allowing r--* x,  we have 

P2( x ) = L ( A ) + f ( 1 ) A - a g ( 1 ) +  ( x - - a )  
k f (1 )  k (52) 

= el + e2 (x - a),  where the e~'s are constants ,  

provided f (1) ~: 0. 
I f  f ( 1 ) = 0 ,  then f rom (33) it follows that f is a derivative. Choose Zo such that  

f (zo) ¢ 0 .  Then H ( z o ) 5 0 .  
In (51), using f ( 1 ) = 0 ,  putting x = r z o ,  where r is a rational and allowing 

1 
r ~ - -  where x is any real number ,  

x ( z o  - 

we get 

L ( A )  Zo + 2AL(zo )  - 2B L(zo)  - g(1) az o 1 
. . . . . .  + ~ (x - c~) (52) p2(x  . . . . . . . .  _ 

= el + ez (x - ~), where the e, s are constants.  

(iii) Let  us now consider case (iii)P2 (x )=b ,  for  all x. Then (47) g ives f  (x) = k g  (x), 
where k is a constant  ( ¢  0). Hence f and g can be determined f rom (8), unless k =a .  

Further ,  f rom (46) a n d f ( x ) = k g ( x ) ,  we get 
a - k  

pl (x) = k + x - ~ "  (53) 

For  k = a, f ( x ) = a g  (x) in (46) gives Pl ( x )=a .  
(iv) The last case to be considered is (iv). F rom (47), we have 

k l x f ( x )  = k2xg (x  ) q- g(Bx2),  where the k~'s are constants (k 1 ¢ 0, k2 ¢ 0). (54) 

F rom (54) results 

2g(Bx)  = k l f ( 1 ) x  + k l f ( x )  - kzg(1 )x  - k2g(x  ) .  (55) 

F r o m  (55) and (54), we have 

k 1 [ f ( x  z) - 2x f ( x )  + f ( 1 )  x 2] = k2 [g(x  2) - 2xg(x)  + g(1) xZ].  (56) 

Now set 
R (x) = k , f ( x ) -  kzg(x)  (57) 

Then,  f rom (56) and (57) we have 

R (x 2) = 2 x n  (x) - R (1) x 2 . (58) 

N o w  define 
S (x) = R (x) + R (1) x .  (59) 

Then  S is a derivative. 
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From (55), (57) and (59) result 

1 
g (x) = ~ S (x) + g (1) 

f(x) = clS(x ) + f (1)  x ,  where cl -- 1 -- . 
( 6 0 )  

From (2) and (60), we get 

cls(~) + f(1) x + c,x~s(A) + 2c,Axs(x) + f ( 0  Ax ~ 

= Pl ( l  + ~) [S2(~ + g(1) x] (61) 

+ p2 ( 1 + a) [xS(x) + x2S(B)2~ + g(1) Bx2]. 

Putting x=r in (61), where r is a rational, using the fact that S is a derivative and 
then taking the limit as r-~ x (for any real number x), we get 

d2 d3 
p ,  ( ~ )  = d ,  + - + - -  p~ (~), where the di's are constants, 

that is (35), provided g ( l )  #0.  I f  on the other hand g(1) =0, (60) shows g is a deriva- 
tive. Choose Yo such that g(Yo)#0. Then S (Yo)#0. 

In (61), replacing x by ryo, r, a rational, using g (1)=0 ,  H(yo)v~O and allowing 

1 /.._.~ 
x (Yo - ct)' 

where x is any real number,  

- -  P2 (x), where the d~'s are constants, 

we get 

d2 d3 
Pl (x) = dl + + 

x - 0 t  x - ~  

that is (35). Thus the proof  of  the theorem is complete. 
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