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Some Relations Between Additive Functions - I1

PL. KANNAPPAN and S. Kurepa (Waterloo, Ontario, Canada and
Zagreb, Yugoslavia)

The question raised in our paper ‘Some relations between additive functions — I’
(see [1]) regarding additive functions, can be formulated as follows:

Let U be the set of all additive functions f: R — R (where R is the reals), that is,
[f’s satisfying

© fx+y)=fx)+ f(y), forall x,yeR.
Then U is a vector space over R. A function f : R — R satisfying (¢) and
@ f)=xf()+f(x)y, x,yeR

is called a derivative on R. Let B be the subspace of U spanned by x —f(x) =1 (1) x,
continuous functions, and by all derivations on R.

PROBLEM. Letthe u;’s be rational functions in x, the p;’s be continuous functions
on R except at the singular points of u; and the f;’s be additive functions. When does
a condition of the form

_ZL pi(x) fi(u: (%)) =0
imply that f;e B (i=1, 2,..., n) or that the f; are linearly dependent relative to B.
In the sequel we shall often use, when fis additive, that
) f(rx) =rf(x), whererisany rational,
which is a consequence of (c), and, when fis a derivative, that
@) F(x?) = 2xf(x),
which is easily obtainable from (d). It is well known that the general continuous
solutions of (c) are f(x)=cx, where ¢ is an arbitrary constant, and that f=0 is the

only common, continuous solution of (¢) and (d).
Here we prove the following theorem.

THEOREM. If f, g€W and if there exist a number «, two continuous functions
P1(# 0), p, (£ 0), two constants A, B such that

(L)oo emonliy) o
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for all x#a, then f and g are linearly dependent modulo the subspace B, that is, there
are constants a, b, ¢ such that f (x)=ag(x)-+bH (x)+cx, where H is a derivative on R.
Further, (a) if A#0, B=0, then either f and g are continuous or f and g are

derivatives or f, geB and p, (x)=(ex+0)/(x—a), where ¢, & are constants or f=0 and
g=0.

(b) if A=0, B#0, then either f=0, geB or both f and geB and p,(x)=c, +
e, P2 (X)/(x—0a), where the ¢;'s are constants. (c) if A#0, B0, then either f and g are
continuous or f is continuous, geB or f is a derivative and geB or both f and geB
and p, (x)=d, +d,[(x—a)+d; p,(x)/(x—0a), where the d;'s are constants,

or f=0, geB, p; (x)=a/(x—a), p,(x)=b

or f, geB, p, (x)=a/(x—a), p,(x)=e, +e,(x—a), where the e;’s are constants,

or f, geB, pi (x)=e; +e,/(x—0a), p, (x)=b, where the e;'s are constants

or f (x)=ag(x), py(x)=a, p,(x)=b.

Proof. In (1), replacing x by (1/x)+a, we have

16+ 1) = (5 +2) 8+ 2 () 6056, ®

Replacing x by rx in (2), where r is a rational, using (c’) and then letting r — 1/x, we
cotain xf(x) + f (Ax%) = axg(x) + bg (Bx?), ©)
where a=p, (1 +a) and b=p, (1 +a).

Putting x +r for x in (3), where r is a rational, and using (3) and then letting r - x,
we get

xf (x) + x3f (1) + 2xf(Ax) = axg(x) + ax’g(1) + 2bxg (Bx). (€]
Setting
k(x) = f(4x) — bg(Bx), )
we obtain from (3), (4), and (5) that
k(x?) = 2xk(x) + yx*, where y=f(1)—ag(1). (6)
Now, define H(x) = k(x) + 7x. %)

Then H(x?)=k(x*)+yx*=2xk(x)+2yx>=2xH(x). Thus H is a derivative. Now,
(3), (5), and (7) yield

f(x)— ag(x) = —2H (x) + yx, (8
and
f(4x) — bg(Bx) = H(x) — yx. )]

From (8) we see that f and g are linearly dependent relative to B.
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We consider the following cases and subcases:
Case 1. A+#0, B=0. Subcases a=0; a #0.
Case 2. A=0, B#0. Subcases a=0, b=0; a#0, b=0; b#0.
Case 3. A#0, B#0. Subcases a=0, 5=0;a=0, b#0; a #0, b #0.

Case 1. Let A+#0 and B=0.
Subcase. Let a=0.
From (8) and (9) we get
fIA+4)x]=-H(x). (10)
If A=—1 we see from (10) that H=0, and from (8) we get f (x)=yx, that is, f is
continuous. This in (2) gives

%wl—x»=m(§+a)guy (1

From (11) it is clear that g is continuous in some points and hence we can conclude
that g is continuous everywhere. Thus from (11) we have

p(x)=c (1 - ), where ¢ is a constant
X—a
12
ex + 6 (12
= R where ¢, § are constants.
x—a
Now suppose that 4# — 1. Then from (10), we have
X
1= (; )
1+4
. (13)
X
=—— H(x)+-— H(4).
T A A+ g @
From (13) and (8) (with a=0) we get
2H (A) A
24 + 1 = —9x. 14
QA+ D))= —rx—x (14

If further 4 # —3 we see from (14) that f is continuous.
As before, from (2) we can conclude that g is also continuous and that

A
p1(x)=¢c, (1 - —~——), where ¢, is a constant

ex+ 0
T x—a

where &, § are constants,

b

and that is (12). If 4=—1 (with 4# —1), we have from (13) that f (x)=—2H (x).
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Hence f is a derivative. Now (2) and (3) give

(1= %) ()= s (i + a) £(4). as)

In (15), replacing x by rx, where r is a rational, and then letting
1

r —_—
qx(xo -a)’

where X, is an arbitrary point,

we get

Q— 1)ﬂ@=m@ad@,

Xo — o

which implies that g(x)=kf (x), where k is a constant, #0. If k =0, there is nothing
to prove. Thus g is also a derivative. Now (15) and g(x) =k f (x) imply that
x—a—1 e+
k(x—a) x-o
Thus we have in this subcase either fand g are continuous or f and g are derivatives
and p, is given by (12).

pi(x) = where ¢, 6 are constants. (12)

Subcase. Let a#0. Then (8) and (9) yield

F6) = L)+ 1) 5,
(16)
g(x) = <—2 + %)H(x) +g()x.
Now (2) and (3) imply 4 a
(1—-x)f(x)= (pl ()—lc + oc) - ax) g(x). an
From (16) and (17), we get

B H() + £(1) x:I (1-x)= [pl G + a) - ax] [(z + a%)H(x) + g(l)x], 1s)

In (18), putting x =r, where r is a rational, using the fact that H is a derivative and
then allowing » — x, we obtain
a F16)) 1
= 4D -
pi(x) x—a+g(1)< X —
e+ S
Cx-—a

, whereeg, é are constants,

provided g(1)0.
If g(1)=0, then from (16) we see that g is a derivative. Choose x, such that
g(xo) #0. [g=0 in (2) gives f=0.] Then H(x,)#0. Replacing x by rx,, where r is
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a rational, using H(x,)#0, g(1)=0 and then taking the limit

L (vanyrea)
r—-————  (xanyreal),
x(xq — o) y

1
[ 60+ 7005 -t

X =0

we have from (18),

pi(x)= +
x—a 2 1
-+ —|H 19
(a +- A) (x0) 19
é
== * , Where g, 6 are constants,
X —o

which is (12), provided that 4 # —3%. But 4 =—1 in (16) gives g=0. Then from (2),
we get £=0. Thus in this subcase we have, f, geB, or feB, g is a derivative and p,
is given by (12) or f=0, g=0.

Case 2. Let A=0, B#0.

Subcase. Let a=0, b=0.

From (3), we get f (x)=0. Since p, (x)#0, let x, be such that p, (x,) #0.

Now in (2), replacing x by rx, where r is a rational and then taking the limit as

1
"Tx (xo— )’
we get
g(Bx?) = kxg(x), where kis a constant, # 0, (20)
and
Pl(x)’:_x_apz(x)- (21)

In (20), replacing x by x+r, where r is a rational, we obtain

2g(Bx) = kg(1) x + kg(x). (22)
Hence (20) and (22) yield
g(x?) =2xg(x) — g(1) x . (23)
Now set
D(x)=g(x) - g(1) x. )

Now from (23) and (24) we see that D is a derivative. Of course g can be obtained
from (24). Hence we have in this subcase f=0, geB and p, and p, are given by (21)
Subcase. Let b=0, a#0.
Then (3) gives f(x)=ag(x).
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Now (2) becomes

g(x) [a - <)—1C + oz)] =p, G + a) g(Bx?%). (25)

Replacing x by rx in (25), where # is a rational, and letting
1
x(xo =)’
g(Bx?*)=kxg(x), wherek is a constant, #0 . (20)

If £ =0 there is nothing to prove.
As before g can be obtained from (24) and f from f (x) =ag (x). From (20) and (25)
we get

r— where x, is an arbitrary point,

pi(x)=a- p2(%). (26)

X—a
So we have f, geB and p, and p, are given by (26).
Subcase. Let b#0.
Now (8) and (9) give

169 = aH () + (1), [
g(x) =aH(x) +g(1) x,
where @, =—(1/bB)#0, a, =aa, —2.
From (2) and (27), using H as a derivative, we have
(1) = ps () G+ 50 o
(28)

+ p, G; + oz> [a,x*H (B) + 2a,BxH (x) + g (1) Bx*].

In (28), put x =r, where 7 is a rational, make use of the fact that H is a derivative and
then allow r — x, where x is any real number; we have

_ @ _ [a,H(B) + g(1) B] p2(x)
g() g(1) X—a

p1(x)

=c; + p2(x), where cy, ¢, are constants,

X —a
provided g (1) #0. If g(1)=0 (27) gives that g is a derivative. Choose y, such that
g(30)#0 (2=0 in (2) gives f=0). Hence H(y,)#0.

Replacing x by ry,, r a rational, using H(,)#0, g(1)=0 and then taking the
limit as {

r—-————, where x is any real number,
x(yo — a)
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we have from (28)

_ aH(yo)+ (1) yo _ [a,H (B) yo + 2a,BH (y,)] p, (x)
a,H (yo) a,H (yo) X =

pi(x)
(29)

€2
= ¢, + —— p,(x), where ¢y, ¢, are constants.
x—a

Hence we have cither f, geB or fe B, g is a derivative and p; and p, are given by (29).
Case 3. lLet A#0, B#0.
Subcase. Let a=0, b=0.
From (3), we get

f(4x?) = = xf(x). (30)
Replacing x by x +r in (30), where r is a rational, and using (30), we have
A (Ax)=—f(D)x — f(x). (31)
Now (30) and (31) yield
f(x?) =2xf(x) — f(1) x? (32)
similar to (23). Defining
Lex)=/()=f()x, (33)

we see that L is a derivative. Now f can be obtained from (33).
From (30) and (33) we have

L(Ax?*) = —xf(x) — f(1) Ax?
also  =x2[f(4) — f(1) A] + 24xf(x) — 241 (1) x2.
Thus we have
@A+ 1) f(x)=[24f(1) - f(A)] x. (34)
From (34) we have two complementary sub-subcases, that is, either 4=—1 or f'is

continuous.
First let us consider the sub-subcase that 4= —3. Now (30) shows that f is a

derivative.
Choose y, such that g(y,)#0. Replacing x by ry, in (2), where r is a rational,
and then allowing

1
r—————, where xis a real number,
x(yo —a)
we obtain
f (o) 1 g(By3) p2(x)
pi(x)=" 1- -
g(yo) x—a/ gyo)yox—a (35)
d d
=d, +—> +—>p,(x), whered,,d,, d, are constants.

X—=a X—0a
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Using (2) and (35) we get

(1-=x)f(x)=p, (—}1; + oc) g(Bx*) + Iid1 + dyx + d3xp, (% + a>] g(x). (36

Replacing x by rx in (36), where r is a rational, and allowing

1
"X (%o — @)
(where p, (x,) #0), we get
kxf(x) = k,xg(x) + g(Bx?), where k,, k, are constants. @37
Now k,=0 gives
g(Bx*) = kxf(x), (38)

which in turn gives, using the fact that f is a derivative, that

2g(Bx) = k. f(x).
Hence

k, k, (1
g(x)=5]§f(x)+?f<ﬁ)x. (39

If k, #0, replacing x by x +r in (37), where r is a rational, using the fact that f
is a derivative and (37), we get

kif(x) =k,g(1) x + kg (x) + 2g(Bx). (40)
From (37), (40) and using the fact that fis a derivative, we have
g(x?) = 2xg(x) — g(1) x*. 23)

Hence g can be obtained from (24). Thus we have f as a derivative geB and p, and
p, are given by (35).

Now we take up the other sub-subcase, that f is continuous, say f (x)=cx, where
¢ is a constant. Using (30), (2) can be rewritten as

1 1
(1 =x)ex=p, (; + a) g(x) + p, (; + a) g(Bx?). 4D
Replacing x by rx in (41), where r is a rational, and allowing
1
-
g x(xp — @)

(where p, (x,) #0), we get
k,x? = kyxg(x) + g(Bx*), where k,, k, are constants. 42)
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Now k,=0 implies that g is continuous, say g(x)=dx, where d is a constant.
From (41), we now obtain

ne=5(1- 1) - 2,0

X — 0o X — o

;4
X —0 x—a

=d, + p2(x), where the d;’s are constants.

If k, #0, from (42)

2kyx = koxg (1) + k2g(x) + 29 (Bx)
can be obtained, which with (42) gives
g(x*) =2xg(x) — g (1) x. (23)

Hence g can be obtained from (24).
Now (2) can be rewritten using (24) as

(1-x)ex=p, (% + oc) [D(x)+ g (1) x]
(43)

+p; G + a) [x*D(B) + 2BxD(x) + g (1) Bx*].

Putting x=r in (43), where r is a rational, using D as a derivative and then taking
the limit as » > x, for any real number x, we get

c 1 D(B)+g(1)Bp,(x
PRSI PR BTG EFIOLTAC
g(1) xX—a g(1) X—a
=d; + 4 + 4 p2(x), where the d;s are constants,

X —0a X — 0o
provided g(1)#0. If g(1)=0, choose y, such that g(y,)#0. Now from (24) g is a

derivative and D (y,)#0.
Replacing x by ry, in (43), where r is a rational, and making

1

r—- ————
x(yo — a)

Yo (1 _ 1 ) _ D(B) yo + 2BD(yo) p2(x)
D(yo) x D(yo) xX—o (35)

=d1+

where x is a real number,

we get

pi(x)=

bl 4
4+ 5
X—a xX—a
Thus we have in the subcase a=0, b =0 either fand g are continuous or f'is continuous
and geB and p, and p, are given by (35).

p2(x),  where the d;’s are constants.
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Subcase. Let a=0, b #0.
From (8) and (9) we have
fx)=—2H(x) +yx
1424
g(x)=vH(x)+ pux, wherev= ZT’ u=g(1). “44)
Using (44) and the fact that H is a derivative, (2) can be rewritten as

~ 2H (x) + yx — 44xH (x) — 25H (4) + y4x” = p, (1 + )
45)

1
x [ux + vH (x)] + p, (A + cx) [uBx* + vH (B) x* + 2vBxH (x)].
x
In (45), taking x=r, where r is a rational, using the fact that H is a derivative and
then taking the limit as r — x (for any real number x), we get

__z_ZH(A)—yA_uB+vH(B)p2(x)
pl(x)—ﬂ (x—-oz)

U X —o (35)

ds

+
X -0 X —a

=d, + p2(x), where the d;’s are constants,

provided g (1) #0.

If g(1)=0, from (44) we have g as a derivative. Choose y, such that g(y,)#0.
Then H(y,)#0. [g=0 in (2) gives f=0.] In (45) replacing x by ry,, where 7 is a
rational, using H(y,)#0, g(1)=0 and then letting

1

— ————,  where x is any real number,
x(yo — @)

r

we get

d d
pi(x)=d; + 2_+ -2 p,(x), wherethed/sareconstants. (35)
X—0 x—a

So, we have either £, g B or fe B and g is a derivative and p, and p, are given by (35).
The subcase a#0, b=0 can be discussed similarly. To finish the proof let us

consider the subcase a#0, b #0.
Subcase. Let a#0, b#0.
Now (2) and (3) imply

(1-x)f(x)= [p1 G + cx) - ax]g(x) + [pz (}—lc + oz) - b] g(Bx?).  (46)

Changing x into rx in (46), where r is a rational, and then allowing

1

r—-—,
x(y — o)
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where y is any real number, we have

(1 - »1—~) fx)= [m ) - ;%;] g0+ PO =01EB)

y—a x(y—a)

With the equation (47), we discuss the following cases:
] a
@ p(x)=—— py(x)=0> forallx.
X—a
) p(x)= % for all x, there is an x such that p,(x) # b.
x—o

(iif) thereis an x for which p, (x) # % and p,(x)=0b forallx.
X —a

(iv) neither of (i) nor (ii) nor (iii) holds.

Let us consider (i), that is

pi(x)= and p,(x)=b forallx.
x_

Then from (47) results £ =0, and from (8) results
2 Y
g(x)=-H(x)—=-x.
a a

(ii) Let us take up case (ii). From (47) we obtain

g(Bx?) = kxf(x), where k # 0is a constant (48)
(k=0gives g =0, f = 0). From (48) results
2g(Bx) = kf (1) x + kf (x). 49

Thus (48) and (49) give
f(®) =2xf(x) — f(1) x*. (32)

Hence f can be determined from (33) and g from (49),
k
8() =52 L) +g (D). (50

Utilizing (2), (33), (48), (50), and (ii) we get
L(x) + f(1) x + x*L(4) + 24xL(x) + f(1) Ax*
—ax [2_"}33- L) + g(1) x] + 12 G + oz) L)+ f k] [ OP

Putting x=r in (51), where r is a rational, using the fact that L is a derivative and



Vol. 6, 1971 Some Relations Between Additive Functions — II 57

allowing r — x, we have
LA)+f(1)A—ag(l) 1

=e, +e,(x —a), where the ¢’s are constants,

provided f (1) 0.

If £(1)=0, then from (33) it follows that f is a derivative. Choose z, such that
£ (20) #0. Then H(z,)#0.

In (51), using £ (1)=0, putting x =rz,, where r is a rational and allowing

1

r— ——————, where x is any real number,
x(zo — )
we get

L(A) zg + 24L(z,) — ;—Z L(zp) — g(1) azy

p2(x) = + o (x=2) (52)

kL{(z,)
=e, +e,(x —a), where the ¢s are constants.

(iii) Let us now consider case (iii) p, (x)=b, for all x. Then (47) gives f (x) =kg (x),
where k is a constant (#0). Hence f and g can be determined from (8), unless k=a.
Further, from (46) and f (x)=kg(x), we get

a—k

pi(x)=k+ . (53)
X — o

For k=a, f (x)=ag(x) in (46) gives p, (x)=a.
(iv) The last case to be considered is (iv). From (47), we have

kyxf (%) = kpxg(x) + g(Bx?), where the k;'s are constants (k, # 0, ky #£0).  (54)
From (54) results
28(Bx) = ki f(1) x + k1 f(x) — k2g(1) x — kag(x). (55)
From (55) and (54), we have
ki [f(x?) = 2xf (x) + £ (1) x*] = k; [g (=) — 2xg (x) + g (1) x*]. (56)

Now set
R(x) = ki f(x) — kg (x) (57
Then, from (56) and (57) we have
R(x*)=2xR(x) — R(1) x*. (58)
Now define
S(x)=R(x)+R()x. (59)

Then S is a derivative.
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From (55), (57) and (59) result

1
8() = 55 5G9 +(1)
1 k, (60)
fx)=¢SE)+ f(1)x, wherec, = k (1 - 573)
From (2) and (60), we get
¢;S(x) + f(1) x + ¢;x%S (4) + 2¢,AxS (x) + f(1) Ax*
_ 1 S(x) 1
—P1<;+“)|:27+8()x:| (61)
+p, G + oc) [xS(x) +7 ;;B) +g(1) sz].

Putting x=r in (61), where r is a rational, using the fact that S is a derivative and
then taking the limit as » - x (for any real number x), we get

dy

+ P2(x),  where the d;’s are constants,

pi(x)=d; +
xX—a x-—ua

that is (35), provided g (1) #0. If on the other hand g(1)=0, (60) shows g is a deriva-
tive. Choose y, such that g(y,)#0. Then S (y,)#O0.
In (61), replacing x by ry,, 7, a rational, using g(1)=0, H(y,)#0 and allowing

1

——————,  where x is any real number,
x(yo—a)

r

we get

d d
2 %
X—a x-—a

p2(x), where the d;’s are constants

pi(x)=d; +
that is (35). Thus the proof of the theorem is complete.
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