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Summary. A set-valued function F from a cone C with a cone-basis of a topological vector space X into 
the family of all non-empty compact convex subsets of a locally convex space Y is called superadditive 
provided that F(x)+ F(y)= F(x +y), for all x, y ~ C. We show that every superadditive set-valued 
function admits an additive selection. 

Let (C, + )  and (Y, + )  be two semigroups. A set-valued function F from C into 

the family of  all non-empty subsets of  Y is said to be superadditive provided that 

F(x) + F(y )  c F(x  + y) 

for all x, y e C. Properties of superadditive set-valued functions were investigated 
by W. Smajdor in [13]. In this paper the existence of their additive selections is 

considered, i.e. homomorphisms f :  C -~ Y such that f ( x )  e F(x) for all x e C. Such 
a problem for additive set-valued functions was studied by H. Rhdstr6m [11], K. 

Nikodem [7], [8] and K. Przes/rawski [10]. Some existence theorems for additive 

selections of subadditive set-valued functions are given by P. Kranz [5], Z. Gajda 

and R. Ger [3] and by W. Smajdor [12]. 

EXAMPLE. Consider C = Y = (0, ~ )  and a function g: C -~ Y. The set-valued 
function F ( x ) =  [g(x), ~ )  is superadditive if and only if g is subadditive, i.e. 

g(x + y) <~ g(x) + g(y),  x, y e C. Assume that F admits an additive selection f. The 

theorem of Bernstein and Doetsch implies the continuity of f and the equality 

f ( x )  = cx holds for x e (0, oo) with a certain c e R. Thus the function x - l g ( x )  is 
bounded above by c. Conversely, if the function x-~g(x)  is bounded above by a 

constant c > 0, then the function x ~ cx is an additive selection of  F. The 
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superadditive set-valued function F(x)=[x/~ ,  oo) does not admit any additive 
selection. 

Now, let X and Y be two topological vector spaces and let C be a convex cone 
in X. Throughout  this paper we shall assume that topological vector spaces satisfy 
the To separation axiom, and that vector spaces are over the real numbers R. In this 
paper cc(Y) denotes the family of  all non-empty compact and convex subsets of  Y. 

A set-valued function F: C --+ cc(Y) such that F(tx) = tF(x) for every x e C and 
for every positive rational (positive) t is said to be Q+-homogeneous (positively 
homogeneous). 

A function f :  C--, R is said to be Jensen-convex or Jensen or Jensen-concave 
if 

f I ~ ( x + y ) l < ~ [ f ( x ) + f ( y ) ]  or f I ~ ( x + y ) l = l  [ f (x )+f (y)]  

o, ,x + , ,  + , , , , ,  for a,1 

respectively. 
First we shall prove the following theorem. 

THEOREM 1. Let X be a vector space and Y be a real topological vector space and 
let C be a convex cone in X. I f  F: C--*cc(Y) is a superadditive set-valued function, 
then there exists a minimal superadditive set-valued function Fo: C--+ cc( Y) contained 
in F. It is Q+-homogeneous. 

Proof. Let ~" denote the family of  all superadditive set-valued functions 
G: C--, cc(Y) contained in F. The family ~ is partially ordered by the relation 
F c G  iff F(x) cG(x)  for all x e C .  Let 3 r be a chain in ~-. Sets G(x) 
(x e C, G e J-)  are non-empty, compact and convex. Consequently the sets 
Go(x)=c~{G(x):G e J ' }  ( x e C )  are non-empty, compact and convex. Since 
Go(x) + Go(y) ~ G(x) + G(y) c G(x +y) for x, y E C and G ~ 3-, therefore the 
function Go is superadditive. In virtue of  the Kura towski -Zorn  lemma there exists 
a minimal element F0 of the family 3 r .  We have nFo(n-ix) c Fo(x) for every x e C 
and for every positive integer n since F0 is superadditive. The function 
x~ ,nFo(n - t x )  belongs to ~- and by the minimality of  F0 we have 
nFo(n ~x) = Fo(x) for every x E C and for every positive integer n. This forces F0 to 
be Q +-homogeneous. This concludes the proof. 
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Observe that the set-valued function Fo appearing in Theorem 1 is a Jensen- 

convex  map, i.e. 

1 +y,] 
[Fo (x) + Fo(y)] = Fo 

The following three theorems will be needed. 

THEOREM A (Ger-Kominek [4]). Let  D be a non-empty open and convex subset 

o f  a topological vector space and let f :  D --* R be a Jensen-convex functional. Then, for  

every x ~ D, there exists a Jensen function gx: D ~ ~ such that gx(x) = f ( x )  and 

gx(Y) <~f(y) fo r  all y e D. 

THEOREM B (Ger -Kominek  [4]). Let  D be a non-empty open and convex subset 

o f  a topological vector space X. I f  g: D --* • is a Jensen functional, then there exists 

an additive functional a: X--* ~ and a constant c ~ R such that g(x) = a(x) + c f o r  all 

x e D .  

THEOREM C (Nikodem [9]). Let  D be an open convex subset o f  R". I f  g: D ~ R 

is a Jensen-convex function and h: D--* R is a Jensen-concave function and the 

inequality g(x) <~ h(x) holds f o r  x e D, then there exist an additive function a: R" ~ R, 

a continuous and convex function gl: D ~ ~ and a continuous and concave function 

hl : D -* R such that g(x) = gl (x) + a(x), h(x) = hi (x) + a(x) for  x e O. 

LEMMA 1. Let  X be a topological vector space and let C c X be a cone with finite 

cone-basis E. I f  F: C ~ cc([0, oo)) is a superadditive and Q+-homogeneous set-valued 

function, then it is continuous and positively homogeneous in the set intLC, where L 

is a subspace o f  X spanned by E. 

P r o o f  There exist a Jensen-convex function g: C --* [0, oo) and a Jensen-concave 
function h: C ~ [0, oo) such that F(x)  = [g(x), h(x)] for all x e C. 

Let E = {el, e2 . . . . .  en }. The set 

C = { x l e  I d.-" • • +x.e.: xi >i 0, i = 1 . . . . .  n }  

has non-empty interior in L, namely, 

intLC = {xlel +" • " + x ,  en:xi  > 0 ,  i = 1 . . . . .  n} 

(cf. [2] Ch. 1, §2). In virtue of Theorem C, there exist an additive function a: L --* R 
and a continuous convex function g,: intL C--, R and a continuous concave 
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function h~ : intL C --} R such that 

gi (x )<,h l (x ) ,  g ( x ) = a ( x ) + g l ( x ) ,  h ( x ) = a ( x ) + h , ( x ) .  (1) 

Let x0 e intL C. In a neighbourhood of  Xo the function - a is bounded above, thus, 
by the theorem of  Mehdi [6], it is continuous. Consequently g and h are continuous 
in intLC. Since g and h are Q+-homogeneous, they have to be positively homo- 
geneous in intz C. This completes the proof. 

LEMMA 2. Assume that X is a topological vector space and C is a convex cone in 

X such that 0 ~ C. I f  F: C ~cc([0,  oo)) is a superadditive and Q+-homogeneous 
set-valued function, then it is positively homogeneous. 

Proof  Since F(0) is a bounded set, then F ( 0 ) =  {0} (see [13], Remark 1). 
Consequently 

F(tx) = iF(x) (2) 

for x = 0 and t > 0. Suppose that x ~ C\{0). Applying Lemma 1 to the set E = {x} 
we get (2) for t > 0. 

LEMMA 3. Assume that X is a topological vector space, C c X is a cone with a 

cone-basis E and L = l i n E .  I f  y ~C ,  xo~in tL  C and / , e ( 0 , 1 ] ,  then 

( 1 - 2)y + 2Xo ~ intL C. 

The easy proof  is omitted. 
Now, we shall show a selection theorem for superadditive set-valued functions 

with values contained in R. 

THEOREM 2. Let X be a topological vector space and let C c X be a cone with a 

finite cone-basis. I f  F: C ~ co(R) is a superadditive set-valued function, then there 
exists an additive selection o f  F. 

Proof  By Theorem 1 there exists a minimal superadditive set-valued function 
Fo:C-- ,  co(R) contained in F. It is Q+-homogeneous. There exist a Jensen-convex 
function g: C ~ • and a Jensen-concave function h: C ~ R such that 

Fo(x) = [gCx), h(x)] 

for all x e C. Take Xo ~ intL C, where L ..=lin E, where E = {et . . . . .  en} is a basis 
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for the cone C. According to Theorems A and B there exist an additive function 
a: L ~ R and a constant c E R such that g(x)>1 a ( x ) +  c for all x e intLC and 
g(Xo) = a(xo)  + c. Let ,~ E(0, 1) n Q. For  every y e C we have 

( 1 --  2 )g (y )  + Agtxo) t> g(( 1 -- 2)y + 2Xo). (3) 

Applying Lemma 3 we have ( l - A)y + AXe e intL C. Consequently 

g((1 - 2 ) y  + ,~Xo)/> a((1 - 2 ) y  + 2Xo) + c = ( l  - 2 ) a ( y )  + 2a(xo) + c 

= ( 1 - 2)[a(y) + c] + 2gtxo). (4) 

Hence, by (3) and (4) we get 

g( y )  >! a( y )  + c (5) 

for every y e C. Since the functions g and a are Q +-homogeneous, we have, in view 
of  (5), for every x e C and for every positive integer n 

g(x)  >t a(x)  + n - lc. 

The last relation yields 

g(x )  >t a(x)  (6) 

for every x E C. 
Let us consider the set-valued function 

Fa (x) .'= Vo (x)  - a(x)  

for x ~ C. The function Fa is superadditive, Q+-homogeneous and its values are 
convex and compact  subsets of  [0, ~ ) .  By Lemma 2, Fa is positively homogeneous. 

For  x = x l e l  + • • ' + x . e .  ~ C we define 

r l ( x  ) . .=x, Va(e , )  + . . .  + x ,V , , ( e , ) .  

This set-valued function has compact  and convex values. Since Fa is superadditive 
and positively homogeneous the inclusion 

F1 (x)  = V~(x)  
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holds for all x e C. Taking x = xle~ + • " • + x , e ,  ~ C and y = yle~ + • • "+y~e~ ~ C 

we get FI ( x ) +  F~ ( y ) =  F~(x + y). F~ + a is an additive set-valued function con- 
tained in Fo with compact convex values. By the minimality o f  Fo we have 

Fo= F, + a. 

Thus Fo(xlel  + " "  + xne~) = x lFo(e l )  + ' ' ' +  xnFo(e~). Each function xlel  + " "  

+ x,e~ ~-~ x~c~ + . " +  x~c,, with ci~  Fo(ei), i = 1 . . . . .  n, is additive and contained 
in F0. Consequently Fo has to be single-valued and the proof  is complete. 

Now, we shall give the main results. 

THEOREM 3. Assume that X is a topological vector space and C ~ X is a cone 

with a finite cone-basis. I f  Y is a locally convex space, then every superadditive 

set-valued function F: C--+cc(Y) has an additive selection. 

Proof. According to Theorem 1 there exists a minimal superadditive set-valued 
function Fo: C ~ c c ( Y )  contained in F. Suppose that there exist Xoe C and 
u, v ~ Fo(xo) with u ~ v. By the Hahn-Banach  theorem there exists an I e Y* such 
that l(u) ~ l(v). The set-valued function 

(to Fo)(X) ~= l i f o  (x)] 

from C into • fulfils the hypotheses of  Theorem 2. Therefore l o F 0 admits an 

additive selection f :  C ~ R. Write 

Fl(x )  .'= {y e Fo(x): l (y)  =f (x )}  

for x e C. If Yl e F1 (xl), Y2 ~ Fl (x2), then Yl + Y2 e Fo(xl + x2) as Fo is super- 
additive. Moreover, since f is additive we have l(yl  -4-y2) = l ( y l )  + l(y2) = 
f ( x l )  + f ( x 2 )  = f ( x l  +x2) .  Consequently F! is superadditive. The set Fl(x), for all 
x E C, is a closed subset of the compact set Fo(x). The sets Fl(x)  are also convex in 
virtue of  the linearity of  1. It has been shown that the set-valued function FI c Fo is 
superadditive with compact and convex values. FI is also not equal to Fo, since 
{u, v} ¢F~(xo) .  But Fo is a minimal set-valued function, a contradiction. Conse- 
quently the function Fo is single-valued and the function a such that {a(x)} = Fo(x) 

is an additive selection of  F. The proof  is finished. 

The assumption that a cone-basis of  a cone C is finite may be omitted. 
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THEOREM 4. Assume that X is a topological vector space, C c X is a cone with 
a cone-basis. I f  Y is a locally convex space, then every superadditive set-valued 
function F: C--,  cc(Y) admits an additive selection. 

Proof. Let E be a cone-basis for C. In virtue of  Theorem 1 there exists a 
minimal superadditive set-valued function Fo: C --, cc(Y) contained in F. Fix an x in 

C. We have x = ~ ' =  i ~iei, for some ai I> 0, ei ~ E, i = 1, 2 . . . . .  n. Put 

Co ..= {filet + " "  + fl, en : fll . . . . .  fin >1 0}. 

According to Theorem 3 there exists an additive selection f:  Co- ,  Y of the restric- 

tion Folco of  function Fo. Write 

Fl(y)  ~'{f(y)} f o r y  e Co 

'=  [Fo(y )  for y e C\Co. 

In the case y, z ~ Co, we have 

F l (y)  + F~(z) = {f (y)}  + {f(z)} = ( f ( y  + z)} = FI(y + z). 

On the other hand, for y ~ C, z ~ C\Co, we get 

y =  ~ fl,e,, z =  ~ ,ie,, 
i = 1  i = l  

where m > n, fl;, Ye t> 0. Moreover  there exists i0 > n such that ~o > 0. Consequently 

y + z = ~ (fli + yi)ei 6 C \ C  0 since flio + Yio > O. 
i = 1  

In this case 

F,(y) + Fl(z ) = Fo(y) + Fo(z) c Fo(y + z) = F , (y  + z). 

Thus F~ is a superadditive set-valued function such that Fl c Fo. By the minimality 

of  Fo we obtain 

FI = F0 

and Fo(x) is a singleton. But x was fixed arbitrarily. Let a(x) be the only element of  
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the set Fo(x ). Since Fo(x) is superadditive this function has to be additive. The proof 
has been finished. 
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