A Probabilistic Interpretation of Complete Monotonicity

CLARK H. KIMBERLING (Evansville, Indiana, U.S.A.)

1. Introduction

If $\{X_n\}$ is a sequence of *independent* random variables, then the joint distribution function $F_{i_1...i_m}$ of the *m*-element subset $\{X_{i_1}, ..., X_{i_m}\}$ of the sequence $\{X_n\}$ is given by the expression

$$F_{i_1...i_m}(x_1,...,x_m) = F_{i_1}(x_1)...F_{i_m}(x_m),$$
(1)

where F_{i_1} is the distribution function of X_{i_1} , etc. Now (1) can be immediately rewritten in the form:

$$F_{i_1...i_m}(x_1,...,x_m) = \exp\left(-\left[-\log F_{i_1}(x_1) - \dots - \log F_{i_m}(x_m)\right]\right).$$
(2)

It is the purpose of this paper to investigate the extent to which the well-known and essentially trivial result (2) can be extended in a non-trivial manner to sequences of *dependent* random variables.

To this end, let f be a function defined, continuous, and strictly decreasing on the extended half-line $[0, \infty]$, with f(0)=1 and $f(\infty) \ge 0$. Denote the inverse of f by f^{-1} . Then, if $\{X_n\}$ is a sequence of (not necessarily independent) random variables, with corresponding respective distribution functions $\{F_n\}$, we shall call $\{X_n\}$ admissible (or exchangeable) under f if the joint distribution function $F_{i_1...i_m}$ of any m-element subset $\{X_{i_1}, ..., X_{i_m}\}$ of the sequence is given by the expression

$$F_{i_1...i_m}(x_1,...,x_m) = f(f^{-1}[F_{i_1}(x_1)] + \dots + f^{-1}[F_{i_m}(x_m)]).$$
(3)

In the other direction, let $\{F_n\}$ be a sequence of 1-dimensional distribution functions. Then we shall call *f* admissible over $\{F_n\}$ if there exists a probability space (Ω, \mathcal{A}, P) and a sequence $\{X_n\}$ of random variables defined on that space such that: (a) F_n is the distribution function of X_n for each $n \ge 1$; (b) $\{X_n\}$ is exchangeable under *f*.

The principal results of this paper are the following:

THEOREM 1. Suppose f is a strictly decreasing function from $[0, \infty]$ into [0, 1], that f(0)=1 and $f(\infty) \ge 0$, and that $\{F_n\}$ is a sequence of continuous distribution functions over which f is admissible. Then f is completely monotone on $[0,\infty)$. (That is, f is

The results in this paper grew from a seminar at Illinois Institute of Technology conducted by A. Sklar during the summer of 1969. They comprise a portion of the author's Ph.D. thesis. Supported by the University of Evansville and NSF grant GY5595.

continuous on $[0, \infty)$ and has derivatives of all orders on $(0, \infty)$ which alternate successively in sign: $(-1)^n f^{(n)} \ge 0, n = 0, 1, 2, \dots$ See [14, p. 145].)

THEOREM 2. Suppose $\{F_n\}$ is a sequence of distribution functions, Suppose f is a function from $[0, \infty]$ onto [0, 1] which is completely monotone on $[0, \infty)$. Then f is admissible over $\{F_n\}$.

THEOREM 3. Suppose f is a completely monotone function from $[0, \infty)$ into (0, 1]. Then

$$f(x) f(y) \leq f(x+y) \leq [f(x+my)]^{1/m} [f(x)]^{1/n}$$

for all x, $y \ge 0$ and all positive real m and n satisfying 1/m + 1/n = 1.

THEOREM 4. Suppose $\{X_n\}$ is a sequence of random variables with corresponding continuous distribution functions $\{F_n\}$. Suppose f is a strictly decreasing function from $[0, \infty]$ into [0, 1] under which $\{X_n\}$ is exchangeable. Then there exists g, strictly decreasing from $[0, \infty]$ into [0, 1], under which $\{-X_n\}$ is exchangeable, if and only if $f(x) = r^{-x}$ for some r > 0 and all x in $[0, \infty]$.

THEOREM 5. Suppose $\{X_n\}$ is a sequence of random variables and that f is a strictly decreasing function from $[0, \infty]$ into [0, 1] under which $\{X_n\}$ is admissible. Let $\{F_n\}$ be the sequence of distribution functions corresponding to $\{X_n\}$. Then

i) if $\sum_{n=1}^{\infty} [1 - F_n(x_n)] < \infty$, then $\sum_{n=1}^{\infty} f^{-1}[F_n(x_n)] < \infty$;

ii) $P[X_n > x_n \text{ inf. oft.}] > 0$ if and only if $\sum_{n=1}^{\infty} f^{-1}[F_n(x_n)] = \infty$;

iii) if $f(x) \ge e^{-nx}$ for some *n* and all *x* in $(0, \infty)$ and $\sum_{n=1}^{\infty} [1 - F_n(x_n)] = \infty$, then $\sum_{n=1}^{\infty} f^{-1}[F_n(x_n)] = \infty$.

There is a counterpart of Theorems 1 and 2 for events rather than random variables, as follows: Given a sequence $\{r_n\}$ of real numbers with $r_0 = 1$ and $0 \le r_1 \le 1$, there exists a probability space (Ω, \mathcal{A}, P) and events $\{E_m\}$ over that space satisfying

$$P\left(\bigcap_{j=0}^{n} E_{m_j}\right) = r_n$$

for all n and $m_1 < m_2 < \cdots < m_n$, if and only if $\{r_n\}$ is a completely monotone sequence.

The 'if' part of the above statement is a corollary of Theorem 2 in virtue of the following connection between completely monotone functions and completely monotone sequences [14, p. 164]: For completely monotone f on $[0, \infty)$, the sequence $\{f(n)\}$ is completely monotone; for given $\{r_n\}$ with r_0 the least number for which $\{r_n\}$ is completely monotone, the sequence $\{r_n\}$ has an extension to a completely monotone function f on $[0, \infty)$ which satisfies $f(n)=r_n$ for n=0, 1, 2, ...

The 'only if' part of the statement is not a corollary of Theorem 1 because the

distribution functions involved are discontinuous. It is, instead, a restatement of a result of de Finetti [5]; for an exposition of the proof, see [4, p. 225].

By a strict t-norm T, we shall mean a function defined on the unit square $[0, 1] \times [0, 1]$ which can be represented there by

$$T(x_1, x_2) = f[f^{-1}(x_1) + f^{-1}(x_2)]$$
(4)

for some function f which is strictly decreasing from $[0, \infty]$ onto [0, 1]. We shall call fa generator of T and note that f_1 and f_2 generate the same T if and only if $f_2(x) = f_1(ux)$ for some positive constant u (see [10], p. 171).

Suppose T is a strict t-norm. For any positive integer m and m numbers $x_1, x_2, ..., x_m$ in [0, 1], we define

$$T(x_{1}) = T(x_{1}, 1) = x_{1},$$

$$T(x_{1}, x_{2}, x_{3}) = T[T(x_{1}, x_{2}), x_{3}]$$

$$= f[f^{-1}(x_{1}) + f^{-1}(x_{2}) + f^{-1}(x_{3})],$$

$$\vdots$$

$$T(x_{1}, ..., x_{m}) = T[T(x_{1}, ..., x_{m-1}), x_{m}]$$

$$= f[f^{-1}(x_{1}) + \dots + f^{-1}(x_{m})].$$

Now we shall be able, in the sequel, to denote the right side of (3) more simply $T[F_1(x_1), \ldots, F_m(x_m)]$.

Suppose $\{F_n\}$ is a sequence of distribution functions and T is a strict t-norm with generator f. We shall call T admissible over $\{F_n\}$ if f is admissible over $\{F_n\}$.

A historical note on *t*-norms may be in order. The name is an abbreviation of *triangle norm*, as introduced by Menger [8] in connection with statistical metric spaces. Literature on *t*-norms and related semigroups includes [6], [7], [9], [10], [11], and [12].

2. Proofs

First, let us adopt the notations E^m and I^m to denote, respectively, *m*-dimensional Euclidean space, and the *m*-dimensional closed unit cube in E^m .

To prove Theorem 1, we shall use the following lemma adapted from Widder ([14], p. 147): f is completely monotone over $[0, \infty)$ if and only if

$$\sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} f(y-kh) \ge 0$$

for all $n \ge 0$ and all y and h satisfying

$$0 \leq y - nh < \cdots < y - h < y < \infty$$

To start the proof, let such *n*, *y*, and *h* be given. Determine α and β by $y=nf^{-1}(\beta)$ and $h=f^{-1}(\beta)-f^{-1}(\alpha)$. For $1 \le j \le n$, determine a_j and b_j by $F_j(a_j)=\alpha$ and $F_j(b_j)=\beta$, and write A_j for $f^{-1}[F_j(a_j)]$ and B_j for $f^{-1}[F_j(b_j)]$. Now we have $f(y-kh)=(n-k)B_j+kA_j$ for j=1,...,n. Consequently,

$$\sum_{k=0}^{n} (-1)^{k} {n \choose k} f(y-kh) = \sum_{k=0}^{n} (-1)^{k} \sum_{\delta' \in \varDelta'_{K,n}} f[\sigma(\delta')],$$
(5)

where δ' ranges through the set $\Delta'_{k,n}$ of $\binom{n}{k}$ vertices of the cell

 $((A_1,...,A_n), (B_1,...,B_n)]$

which consist of $k A_j$'s and $n-k B_j$'s, and $\sigma(\delta')$ is the sum of the components of δ' . Since $(n-k)B_j + kA_j = (n-k)f^{-1}(\alpha) + f^{-1}(\beta)$ for j=1,...,n, the right side of (5) becomes

$$\sum_{k=0}^{n} (-1)^{k} \sum_{\delta \in \Delta_{k,n}} F_{1,\ldots,n}(\delta), \qquad (6)$$

where δ ranges through the set $\Delta_{k,n}$ of $\binom{n}{k}$ vertices of the cell

$$(a, b] = ((a_1, ..., a_n), (b_1, ..., b_n)]$$

which consist of $k a_i$'s and $n-k b_i$'s. As the Stieltjes measure of (a, b] with respect to the joint distribution function $F_{1,\ldots,n}$, (6) is nonnegative. Now the lemma applies, and we conclude that f is completely monotone on $[0, \infty)$.

DEFINITION 1. A strict *t*-norm *T* is *m*-monotone if for every cell $(a, b] = ((a_1, ..., a_m), (b_1, ..., b_m)]$ in I^m ,

$$\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \mathcal{A}_{k,m}} T(\delta) \ge 0, \qquad (7)$$

where δ ranges through the set $\Delta_{k,m}$ of those $\binom{m}{k}$ vertices of (a, b] which consist of k a_i 's and m-k b_i 's. If T is *m*-monotone for every $m \ge 1$, then we shall call T completely monotone.

COROLLARY TO THEOREM 1. If a strict t-norm T is admissible over a sequence $\{F_n\}$ of continuous distribution functions, then T and its generator(s) are completely monotone.

LEMMA 2a. Let T be a completely monotone t-norm and let $\{G_n\}$ be a sequence of distribution functions. Then T is admissible over $\{G_n\}$.

Proof. Given a completely monotone t-norm T and sequence $\{G_n\}$, define, for

m=1, 2, ... and each *m*-element set $\{n_1, ..., n_m\}$ of positive integers, a function $F_{n_1, ..., n_m}$ on E^m by

$$F_{n_1,...,n_m}(x_1,...,x_m) = T[G_1(x_1),...,G_m(x_m)].$$

Then the collection

$$\Gamma = \{F_{n_1, \dots, n_m} : n_1, \dots, n_m \text{ are distinct positive integers}\}$$

clearly satisfies items a, b, c, e, and f of the hypothesis of the Kolmogorov Theorem as found in Tucker [13], p. 30. It remains to be seen that item d is also satisfied.

Let *m* be any positive integer and let

$$(a, b] = ((a_1, ..., a_m), (b_1, ..., b_m)]$$

be an arbitrary *m*-dimensional cell in E^m . Then for given $n_1 < \cdots < n_m$,

$$((F_{n_1}(a_1),...,F_{n_m}(a_m)),(F_{n_1}(b_1),...,F_{n_m}(b_m))]$$

is a cell in I^m and, by (7),

$$\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \Delta_{k,m}} T(\delta) \ge 0,$$

where δ ranges through the set $\Delta_{k,m}$ of those $\binom{m}{k}$ vertices of the cell

$$((F_{n_1}(a_1), ..., F_{n_m}(a_m)), (F_{n_1}(b_1), ..., F_{n_m}(b_m))]$$

which consist of k $F_{n_i}(a_i)$'s and m-k $F_{n_i}(b_i)$'s. But this means

$$\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \mathcal{A}_{k,m}} F_{n_{1},\ldots,n_{m}}(\delta) \geq 0,$$

where, in this expression, δ ranges through the set $\Delta_{k,m}$ of those $\binom{m}{k}$ vertices of the cell (a, b] which consist of k a_i 's and m-k b_i 's.

Thus, the Kolmogorov Theorem applies to the collection Γ and there exist a probability space (Ω, \mathcal{A}, P) and random variables X_n over Ω whose distribution functions and joint distribution functions are, with corresponding indices, those in Γ . Therefore T is admissible over $\{G_n\}$.

DEFINITION 2. Suppose $0 \le a \le b \le 1$. In the class of functions $T(x_1, ..., x_m)$, define

$$\Delta_{k}(a, b) T(x_{1}, ..., x_{m}) = T(x_{1}, ..., x_{k-1}, b, x_{k+1}, ..., x_{m}) - T(x_{1}, ..., x_{k-1}, a, x_{k+1}, ..., x_{m}).$$

We shall write $\Delta a_k b_k$ for $\Delta_k(a_k, b_k)$ and note that these operators commute:

$$\Delta a_k b_k \Delta a_j b_j T(x_1, \dots, x_m) = \Delta a_j b_j \Delta a_k b_k T(x_1, \dots, x_m).$$

LEMMA 2b. Let $m \ge 1$. Suppose T is any function which carries I^m into E^1 and suppose the cell $((a_1, \ldots, a_m), (b_1, \ldots, b_m)]$ lies in I^m . Then

$$\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \Delta_{k,m}} T(\delta) = \Delta a_{m} b_{m} \Delta a_{m-1} b_{m-1} \dots \Delta a_{1} b_{1} T(x_{1}, \dots, x_{m}), \qquad (8)$$

where δ ranges as in (7).

Proof. If m=1, clearly (8) holds. Assume for arbitrary q that (8) holds for all functions carrying I^{q-1} into E^1 . Let T be any function from I^q into E^1 and let $((a_1, \ldots, a_q), (b_1, \ldots, b_q)]$ be a cell in I^q . Then T_b and T_a , given respectively by

$$T(x_1, ..., x_{q-1}, b_q)$$
 and $T(x_1, ..., x_{q-1}, a_q)$,

are q-1 place functions to which the induction hypothesis applies:

$$\begin{split} \sum_{k=0}^{q} (-1)^{k} \sum_{\delta \in \Delta_{k,q}} T(\delta) &= \sum_{k=0}^{q-1} (-1)^{k} \sum_{\delta \in \Delta_{k,q-1}} T_{b}(\delta) - \sum_{k=0}^{q-1} (-1)^{k} \sum_{\delta \in \Delta_{k,q-1}} T_{a}(\delta) \\ &= \Delta a_{q-1} b_{q-1} \dots \Delta a_{1} b_{1} T_{b}(x_{1}, \dots, x_{q-1}) - \Delta a_{q-1} b_{q-1} \dots \Delta a_{1} b_{1} T_{a}(x_{1}, \dots, x_{q-1}) \\ &= \Delta a_{q-1} b_{q-1} \dots \Delta a_{1} b_{1} T(x_{1}, \dots, x_{q-1}, b_{q}) - \Delta a_{q-1} b_{q-1} \dots \Delta a_{1} b_{1} T(x_{1}, \dots, x_{q-1}, a_{q}) \\ &= \Delta a_{q} b_{q} \Delta a_{q-1} b_{q-1} \dots \Delta a_{1} b_{1} T(x_{1}, \dots, x_{q-1}, x_{q}). \end{split}$$

LEMMA 2c. Let $m \ge 1$. If f is completely monotone from $[0, \infty]$ onto [0, 1], then

$$\frac{\partial}{\partial x_k} \dots \frac{\partial}{\partial x_1} f\left[\sum_{j=1}^m f^{-1}(x_j)\right] = \frac{f^{(k)}\left[\sum_{j=1}^m f^{-1}(x_j)\right]}{f'[f^{-1}(x_1)]\dots f'[f^{-1}(x_k)]} \qquad (9)$$
$$\ge 0$$

for all $(x_1, \ldots, x_m) \in I^m$ and $1 \leq k \leq m$. Moreover, if

$$((a_1, ..., a_m), (b_1, ..., b_m)]$$
 is a cell in I^m , then

$$\Delta a_m b_m ... \Delta a_1 b_1 f\left[\sum_{j=1}^m f^{-1}(x_j)\right] \ge 0.$$

Proof. We shall write simply Ξ for $\sum_{j=1}^{m} f^{-1}(x_j)$. The first assertion obviously holds for k = 1. Suppose $1 \le q \le m-1$ and (9) holds for k = q-1. Then

$$\frac{\partial}{\partial x_q} \left(\frac{\partial}{\partial x_{q-1}} \cdots \frac{\partial}{\partial x_1} f(\Xi) \right) = \frac{\partial}{\partial x_q} \frac{f^{(q-1)}(\Xi)}{f'[f^{-1}(x_1)] \cdots f'[f^{-1}(x_{q-1})]},$$

which by the chain rule is the desired

$$\frac{f^{(q)}(\Xi)}{f'[f^{-1}(x_1)]\dots f'[f^{-1}(x_q)]}.$$

Clark H. Kimberling

To prove the second assertion, first note

$$\frac{\partial}{\partial x_{m-1}}\cdots\frac{\partial}{\partial x_1}\Delta a_m b_m f(\Xi) \ge 0,$$

since by (9), the function

$$\frac{\partial}{\partial x_{m-1}}\cdots\frac{\partial}{\partial x_1}f(\Xi)$$

is nondecreasing in x_m . Suppose now for $2 \le k \le m$ that

$$\frac{\partial}{\partial x_{k-1}}\cdots\frac{\partial}{\partial x_1}\Delta a_m b_m\cdots\Delta a_k b_k f(\Xi) \ge 0.$$

Then the function

$$\frac{\partial}{\partial x_{k-2}}\cdots\frac{\partial}{\partial x_1}\Delta a_m b_m\dots\Delta a_k b_k f(\Xi)$$

is nondecreasing in x_{k-1} , so

$$\frac{\partial}{\partial x_{k-2}}\cdots\frac{\partial}{\partial x_1}\Delta a_{k-1}b_{k-1}\Delta a_mb_m\ldots\Delta a_kb_kf(\Xi)\geq 0,$$

whence

$$\frac{\partial}{\partial x_{k-2}} \cdots \frac{\partial}{\partial x_1} \Delta a_m b_m \dots \Delta a_k b_k \Delta a_{k-1} b_{k-1} f(\Xi) \ge 0.$$

Interpreting $\partial/\partial x_0$ as the identity operator, we have $\Delta a_m b_m \dots \Delta a_1 b_1 f(\Xi) \ge 0$.

We now rephrase Theorem 2 as follows:

THEOREM 2'. Suppose $\{F_n\}$ is a sequence of distribution functions. If T is a strict t-norm with completely monotone generator f, then T is admissible over $\{F_n\}$ and f is admissible over $\{F_n\}$.

Proof. We intend to show that T is completely monotone. Then, by Lemma 2a, T is admissible over $\{F_n\}$. Consequently, f is admissible over $\{F_n\}$.

Let $(a, b] = ((a_1, ..., a_m), (b_1, ..., b_m)]$ be a cell in I^m . By Lemma 2b,

$$\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \Delta_{k,m}} T(\delta) = \Delta a_{m} b_{m} \Delta a_{m-1} b_{m-1} \dots \Delta a_{1} b_{1} T(x_{1}, \dots, x_{m}).$$

By Lemma 2c, the right side is nonnegative, since

$$T(x_1, ..., x_m) = f\left[\sum_{j=1}^m f^{-1}(x_j)\right]$$

for all (x_1, \ldots, x_m) in I^m .

LEMMA 3a. ([2, p. 245]) Let $-\infty \le a \le b \le \infty$. Suppose f, g, and α are nonnegative over [a, b] and $\alpha(b) - \alpha(a) \le 1$. If α is nondecreasing on [a, b] and both f and g are non-increasing on [a, b], then

$$\int_{a}^{b} f(t) g(t) d\alpha(t) \ge \int_{a}^{b} f(t) d\alpha(t) \int_{a}^{b} g(t) d\alpha(t).$$

LEMMA 3b. ([14], p. 160) A function f is completely monotone on $[0, \infty)$ if and only if

$$f(x) = \int_{0}^{\infty} e^{-xt} d\alpha(t), \qquad (10)$$

where $\alpha(t)$ is bounded and nondecreasing and the integral converges for $0 \le x < \infty$.

THEOREM 3a. Suppose f is a completely monotone function from $[0, \infty)$ into (0, 1]. Then $f(x+y) \ge f(x) f(y)$. If T is a strict t-norm generated by f, then $T \ge Product$.

Proof. For such a function f, we have $f(0) \leq 1$, so that in Lemma 3b, we have $\alpha(\infty) - \alpha(0) \leq 1$. Thus Lemma 3a applies with $f(t) = e^{-xt}$ and $g(t) = e^{-yt}$ and we conclude that $f(x+y) \geq f(x)f(y)$.

Then, for a, $b \in I$, we set $x = f^{-1}(a)$ and $y = f^{-1}(b)$ to get

$$T(a, b) = f[f^{-1}(a) + f^{-1}(b)] \ge ab.$$

THEOREM 3b. Suppose f is a completely monotone function from $[0, \infty)$ into $[0, \infty)$. Then

$$f(x + y) \leq [f(x + my)]^{1/m} [f(x)]^{1/n}$$

for all x, $y \ge 0$ and positive real m and n satisfying 1/m + 1/n = 1.

Proof. For fixed $x \ge 0$ and variable $y \ge 0$, the function f(x+y) is completely monotone and therefore can be represented

$$f(x+y)=\int_{0}^{1}t^{y}d\alpha_{x}(t),$$

where α_x is bounded and nondecreasing on [0, 1]. (This integral arises from (10) by a simple change of variable.)

We shall apply the following form of Hölder's Inequality:

$$\int_{0}^{1} |f(t) g(t)| \, d\alpha_{x}(t) \leq \left[\int_{0}^{1} |f(t)|^{m} \, d\alpha_{x}(t)\right]^{1/m} \left[\int_{0}^{1} |g(t)|^{n} \, d\alpha_{x}(t)\right]^{1/n},$$

where $f \in L^{n}$, $g \in L^{m}$, and 1/m + 1/n = 1. For $f(t) = t^{y}$ and g(t) = 1, $\int_{0}^{1} \frac{1}{(1 + 1)^{n}} \int_{0}^{1} \frac{1}{(1 + 1)^{n}} \int_{0}^{1} \frac{1}{(1 + 1)^{n}} \int_{0}^{1/m} \frac{1}{(1 + 1)^{n}} \int_{0}^{1/m}$

$$\int_{0}^{\infty} t^{y} d\alpha_{x}(t) \leq \left[\int_{0}^{\infty} t^{my} d\alpha_{x}(t)\right]^{1/m} \left[\int_{0}^{\infty} d\alpha_{x}(t)\right]^{1/n},$$

i.e.,

$$f(x + y) \leq [f(x + my)]^{1/m} [f(x)]^{1/n}.$$

Taking Theorems 3a and 3b together, we now have Theorem 3.

DEFINITION 3. Let $\{r_n\}$ be a moment sequence which satisfies $r_n = \int_0^1 t^n d\alpha(t)$, n=0, 1, 2, ..., for some integrator $\alpha(t)$ of bounded variation on [0, 1] with $\alpha(0) = \alpha(0+) = 0$ (as in [14, p. 100]). We shall call $\{r_n\}$ a strict moment sequence if the function

$$f(x) = \int_{0}^{1} t^{x} d\alpha(t)$$

is strictly decreasing from f(0)=1 to $f(\infty)=0$. We define the *t*-norm generated by $\{r_n\}$ to be the strict *t*-norm generated by f.

DEFINITION 4. ([3]) A strict generalized moment sequence is a collection $\{r(n, y)\}_{y \in I}$ of sequences such that $\{r(n, y)\}$ is a strict moment sequence for each fixed y in (0, 1).

LEMMA 4a. Suppose $\{r(n, y)\}_{y \in I}$ is a strict generalized moment sequence. Let α_y be an integrator which corresponds to $\{r(n, y)\}$ in the sense of Definition 3. Then the sequences $\{r(n, y)\}_{y \in I}$, for 0 < y < 1, all generate the same t-norm T if and only if for each such y there is a number u(y) in $(0, \infty)$ satisfying $\alpha_y(t) = \alpha_{1/2}(t^{u(y)})$ for all t in [0, 1].

Proof. For 0 < y < 1, extend $r(n, y) = \int_0^1 t^n d\alpha_y(t)$ to

$$r(x, y) = \int_{0}^{1} t^{x} d\alpha_{y}(t).$$

Then r(x, y) generates the same T as $r(x, \frac{1}{2})$ if and only if there exists v(y) in $(0, \infty)$ satisfying $r(x, y) = r(v(y)x, \frac{1}{2})$, since, as is easily established by Cauchy's functional equation, if f and g generate the same T, then g(x) = f(vx) for some positive constant v. Hence,

$$\int_{0}^{1} t^{x} d\alpha_{y}(t) = \int_{0}^{1} t^{v(y)x} d\alpha_{1/2}(t)$$

$$= \int_{0}^{1} t^{x} d\alpha_{1/2} (t^{1/\nu(y)}),$$

so that $\alpha_y(t) = \alpha_{1/2}(t^{1/\nu(y)})$. (See, for example, [14], p. 63.)

LEMMA 4b. Suppose T is a strict t-norm generated by each of the strict moment sequences of a strict generalized moment sequence $\{r(n, y)\}_{y \in I}$. Then the mapping $y \rightarrow u(y)$ defined in the proof of Lemma 4a by $r(x, y) = r(u(y) x, \frac{1}{2})$ carries (0, 1) onto $(0, \infty)$.

Proof. Let $u \in (0, \infty)$ and set $y = r(u, \frac{1}{2})$. Then $T(1, y) = r(u, \frac{1}{2})$ and u must be the only solution to the equation $T(1, y) = r(x, \frac{1}{2})$ since the right side is strictly decreasing in x. But r(x, y) must equal $r(sx, \frac{1}{2})$ for some s and all x in $[0, \infty]$, so we conclude that $r(x, y) = r(ux, \frac{1}{2})$ for all x in $[0, \infty)$.

LEMMA 4c. Suppose α is a nonconstant nondecreasing function on [0, 1]. Suppose g and h are strictly increasing continuous functions from [0, 1] onto [0, 1] and that g(t)=h(t) at only one point $t=t_0$ in (0, 1). Finally, suppose $\alpha[g(t)]=\alpha[h(t)]$ for every t in (0, 1). Then α has only one point of increase in (0, 1).

Proof. Writing $k(t) = g[h^{-1}(t)]$, we have $\alpha[k(t)] = \alpha(t)$ for every t in (0, 1). Moreover,

$$\text{case i} \begin{cases} k(t) < t & \text{for } 0 < t < t_0 \\ k(t) = t & \text{for } t = t_0 \\ k(t) > t & \text{for } t_0 < t < 1 \end{cases} \begin{cases} k(t) > t & \text{for } 0 < t < t_0 \\ k(t) = t & \text{for } t = t_0 \\ k(t) < t & \text{for } t_0 < t < 1. \end{cases}$$

Let $k^{2}(t)$ denote the function k[k(t)] and for $n=3, 4, ..., let k^{n}(t)$ denote the *n*th iterate $k[k^{n-1}(t)]$ of k(t). Consider the equations

$$\alpha(t) = \alpha[k(t)] = \alpha[k^{2}(t)] = \dots = \alpha[k^{n}(t)].$$
(11)

In case i) we have $\lim_{n\to\infty} k^n(t) = 0$ for $0 \le t < t_0$ and $\lim_{n\to\infty} k^n(t) = 1$ for $t_0 < t \le 1$. Therefore, by (11),

$$\alpha(t_0 -) = \alpha(0 +)$$
 and $\alpha(t_0 +) = \alpha(1 -)$,

which is to say that α has only one point of increase in (0, 1), namely t_0 . We obtain the same conclusion in case ii), wherein $\lim_{n\to\infty} k^n(t) = k(t_0) = t_0$ for $0 < t \le t_0$ and for $t_0 \le t < 1$.

We now rephrase Theorem 4 as follows:

THEOREM 4. Suppose a strict t-norm T is admissible over a sequence $\{X_n\}$ of

Clark H. Kimberling

random variables whose distribution functions are continuous. Then there exists a strict t-norm T^* which is admissible over $\{-X_n\}$ if and only if $T^*=T=$ Product. In other words, if the sets $[X_n \leq x_n] = \{\omega \in \Omega : X_n(\omega) \leq x_n\}$ are jointly distributed by $T \neq$ Product, then their complements $[X_n > x_n]$ are jointly distributed by no t-norm. (In fact, the proof will show that not even a collection of such sets all having the same probability need be so jointly distributed.)

Proof. Let T be a strict t-norm. Given any generator of T we can easily construct, via Lemma 4a, a strict generalized moment sequence $\{r(n, y)\}_{y \in I}$ each of whose strict moment sequences, for 0 < y < 1, generates T. Let α_y be an integrator which corresponds to $\{r(n, y)\}$ as in Definition 3. That is, for all (c, d) in I^2 ,

$$T(c, d) = f_{y}[f_{y}^{-1}(c) + f_{y}^{-1}(d)],$$

where

$$f_y(x) = r(x, y) = \int_0^1 t^x d\alpha_y(t), \quad 0 < y < 1.$$

We already have $\alpha_y(0+) = \alpha_y(0)$ by Definition 3. Let us note also that $\alpha_y(1-) = \alpha_y(1)$ since $0 = f_y(\infty) = \alpha_y(1) - \alpha_y(1-)$. Thus neither 0 nor 1 is a point of increase of α_y .

Suppose $\{X_n\}$ is a sequence of random variables whose distribution functions are continuous and that T is admissible over $\{X_n\}$. Now suppose y in (0, 1) is arbitrary (but we reserve the right to fix its value later). Choose x_1, x_2, \ldots satisfying

$$P[X_n \leq x_n] = y, \quad n = 1, 2, \dots$$

Let Δ^n denote the usual *n*th order difference operator ([14], p. 101). Then the events $\{[X_n > x_n]\}$ are admissible under the sequence

$$\{\varrho(n, y)\} = \{(-1)^n \varDelta^n r(0, y)\}, \qquad (12)$$

in the sense that the probability of any *n*-fold intersection of these events is given by the *n*th term of (12). An integrator for (12) is

$$\beta_{y}(t) = 1 - \alpha_{y}(1-t).$$

By Lemma 4a, the sequence $\{\varrho(n, y)\}$ generates the same T^* as $\{\varrho(n, \frac{1}{2})\}$ if and only if there is a number u in $(0, \infty)$ satisfying

$$\beta_{\mathbf{y}}(t) = \beta_{1/2}(t^{\mathbf{u}}),$$

or equivalently,

$$\alpha_{y}(1-t) = \alpha_{1/2}(1-t^{u})$$
 for all $t \in I$.

Also by Lemma 4a,

$$\alpha_{y}(t) = \alpha_{1/2}(t^{v})$$

for some number v in $(0, \infty)$ so that

$$\alpha_{1/2}(1-t^{u}) = \alpha_{1/2}(1-t)^{v} \text{ for all } t \in I.$$
(13)

We shall use (13) to show that $\alpha_{1/2}$ has only one point of increase in (0, 1). Suppose t_0 and t_1 are points with $1 - t^a = (1 - t)^v$ for $t = t_0$ and $t = t_1$. Then the function

$$g_{y}(t) = \log_{1-t}(1-t^{u}) = \frac{\log(1-t^{u})}{\log(1-t)}$$

assumes the value v for $t=t_0$ and $t=t_1$. In accord with Lemma 4b, we now choose y to satisfy u(y)=2. Then

$$g_y(t) = \frac{\log(1-t) + \log(1+t)}{\log(1-t)}.$$

Clearly the one-to-oneness of the function

$$\frac{\log\left(1+t\right)}{\log\left(1-t\right)}$$

is equivalent to that of g_y . Thus the hypothesis of Lemma 4c holds with $\alpha = \alpha_{1/2}$, $g(t) = 1 - t^u$ and $h(t) = (1-t)^v$. Therefore $\alpha_{1/2}$ has only one point of increase on (0, 1). We noted early in the proof that $\alpha_{1/2}$ has no point of increase at the endpoints 0 and 1. Therefore, as an integrator, $\alpha_{1/2}$ determines a geometric sequence, which makes T=Product.

Proof of Theorem 5. Part (i). Beginning with the Borel-Cantelli Lemma, if $\sum_{i=1}^{\infty} [1 - F_i(x_i)] < \infty$, then

$$0 = P[X_i > x_i \text{ inf. oft.}]$$

= 1 - $\lim_{m \to \infty} \lim_{n \to \infty} P[X_m \leq x_m, ..., X_n \leq x_n]$
= 1 - $\lim_{m \to \infty} \lim_{n \to \infty} f\left(\sum_{i=m}^n f^{-1}[F_i(x_i)]\right)$
= $\lim_{m \to \infty} \lim_{n \to \infty} \sum_{i=m}^n f^{-1}[F_i(x_i)],$

which implies

$$\sum_{i=1}^{\infty} f^{-1} \left[F_i(x_i) \right] < \infty \,.$$

Part (ii). $P[X_i > x_i \text{ inf. oft.}] > 0$ is equivalent to

$$\lim_{m\to\infty}\lim_{n\to\infty}\sum_{i=m}^n f^{-1}\left[F_i(x_i)\right]\neq 0,$$

which is equivalent to

$$\sum_{i=1}^{\infty} f^{-1} \left[F_i(x_i) \right] = \infty \, .$$

Part (iii). Supposing $\sum_{i=1}^{\infty} [1 - F_i(x_i)] = \infty$, we have

$$\infty = \sum_{i=1}^{\infty} -\log F_i(x_i)$$
$$= \sum_{i=1}^{\infty} \frac{-\log F_i(x_i)}{n}$$
$$\leq \sum_{i=1}^{\infty} f^{-1} [F_i(x_i)]$$

The author is very grateful to the referees for their helpful suggestions during the preparation of this paper.

REFERENCES

- [1] Aczél, J., Lectures on Functional Equations and Their Applications (Academic Press, New York London 1966).
- [2] APOSTOL, TOM M., Mathematical Analysis (Addison Wesley, Reading, Massachusetts 1957).
- [3] EISENBERG, S. M., Moment Sequences and the Bernstein Polynomials, Canad. Math. Bull. 12, 401-411 (1969).
- [4] FELLER, W., An Introduction to Probability Theory and Its Applications, Vol. II. (John Wiley and Sons, New York 1968).
- [5] DE FINETTI, B., Funzione caratteristica di un fenomeno aleatorio, Mem. Reale Academia Naz. Lincei, Ser. 6 4, 251–299 (1931).
- [6] KIMBERLING, C. H., On a Class of Associative Functions, Publ. Math. Debrecen (to appear).
- [7] LING, CHO-HSIN, Representation of Associative Functions, Publ. Math. Debrecen 12, 189–212 (1965).
- [8] MENGER, K., Statistical Metrics, Proc. Nat. Acad. Sci. U.S.A. 28, 535-537 (1942).
- [9] MOSTERT, P. S. and SHIELDS, A. L., On the Structure of Semigroups on a Compact Manifold with Boundary, Ann. of Math. 65, 117–143 (1957).
- [10] SCHWEIZER, B. and SKLAR, A., Associative Functions and Statistical Triangle Inequalities, Publ. Math. Debrecen 8, 169–186 (1961).
- [11] SCHWEIZER, B. and SKLAR, A., Associative Functions and Abstract Semigroups. Publ. Math. Debrecen 10, 69-81 (1963).
- [12] STOREY, C. R., The Structure of Threads, Pacific J. Math. 10, 1429-1445 (1960).
- [13] TUCKER, H. G., A Graduate Course in Probability (Academic Press, New York 1967).
- [14] WIDDER, D. V., The Laplace Transform (Princeton University Press, Princeton 1946).

University of Evansville