A Probabilistie Interpretation of Complete Monotonicity

CLARK H. KIMBERLING (Evansville, Indiana, U.S.A.)

1. Introduction

If $\{X_n\}$ is a sequence of *independent* random variables, then the joint distribution function $F_{i_1...i_m}$ of the *m*-element subset $\{X_{i_1},..., X_{i_m}\}$ of the sequence $\{X_n\}$ is given by the expression

$$
F_{i_1...i_m}(x_1,...,x_m) = F_{i_1}(x_1)...F_{i_m}(x_m),
$$
\n(1)

where F_{i_1} is the distribution function of X_{i_1} , etc. Now (1) can be immediately rewritten in the form:

$$
F_{i_1...i_m}(x_1,...,x_m) = \exp(-\left[-\log F_{i_1}(x_1) - \cdots - \log F_{i_m}(x_m)\right].\tag{2}
$$

It is the purpose of this paper to investigate the extent to which the well-known and essentially trivial result (2) can be extended in a non-trivial manner to sequences of *dependent* random variables.

To this end, let f be a function defined, continuous, and strictly decreasing on the extended half-line [0, ∞], with $f(0)=1$ and $f(\infty) \ge 0$. Denote the inverse of f by f^{-1} . Then, if $\{X_n\}$ is a sequence of (not necessarily independent) random variables, with corresponding respective distribution functions $\{F_n\}$, we shall call $\{X_n\}$ *admissible* (or *exchangeable) under f* if the joint distribution function $F_{i_1...i_m}$ of any m-element subset $\{X_{i_1},\ldots,X_{i_m}\}\$ of the sequence is given by the expression

$$
F_{i_1...i_m}(x_1,...,x_m) = f(f^{-1}[F_{i_1}(x_1)] + \dots + f^{-1}[F_{i_m}(x_m)]).
$$
 (3)

In the other direction, let ${F_n}$ be a sequence of 1-dimensional distribution functions. Then we shall call *f admissible over* ${F_n}$ if there exists a probability space (Ω, \mathcal{A}, P) and a sequence $\{X_n\}$ of random variables defined on that space such that: (a) F_n is the distribution function of X_n for each $n \ge 1$; (b) $\{X_n\}$ is exchangeable under f.

The principal results of this paper are the following:

THEOREM 1. *Suppose f is a strictly decreasing function from* $[0, \infty]$ *into* $[0, 1]$ *, that* $f(0) = 1$ and $f(\infty) \ge 0$, and that $\{F_n\}$ is a sequence of continuous distribution func*tions over which f is admissible. Then f is completely monotone on* $[0, \infty)$. *(That is, f is*

The **results in** this paper grew from a seminar at Illinois Institute of Technology conducted by A. Sklar during the summer of 1969. They comprise a portion of the author's Ph.D. **thesis.** Supported by the University of Evansville and NSF grant GY5595.

continuous on [0, ∞) *and has derivatives of all orders on* (0, ∞) *which alternate successively in sign:* $(-1)^n f^{(n)} \ge 0$, $n = 0, 1, 2, \dots$. See [14, p. 145].)

THEOREM 2. *Suppose* ${F_n}$ *is a sequence of distribution functions*, *Suppose f is a function from* [0, ∞] *onto* [0, 1] *which is completely monotone on* [0, ∞). *Then f is admissible over* ${F_n}$.

THEOREM 3. Suppose f is a completely monotone function from $[0, \infty)$ into (0, 1]. *Then*

$$
f(x) f(y) \le f(x + y) \le [f(x + my)]^{1/m} [f(x)]^{1/n}
$$

for all x, y \geq 0 *and all positive real m and n satisfying* $1/m + 1/n = 1$.

THEOREM 4. *Suppose* $\{X_n\}$ *is a sequence of random variables with corresponding continuous distribution functions* ${F_n}$. *Suppose f is a strictly decreasing function from* $[0, \infty]$ *into* $[0, 1]$ *under which* $\{X_n\}$ *is exchangeable. Then there exists g, strictly decreasing from* [0, ∞] *into* [0, 1], *under which* { $-X_n$ } *is exchangeable, if and only iff* $(x) = r^{-x}$ *for some r* > 0 *and all x in* [0, ∞].

THEOREM 5. Suppose $\{X_n\}$ is a sequence of random variables and that f is a *strictly decreasing function from* [0, ∞] *into* [0, 1] *under which* $\{X_n\}$ *is admissible. Let* ${F_n}$ *be the sequence of distribution functions corresponding to* ${X_n}$ *. Then*

i) *if* $\sum_{n=1}^{\infty} [1 - F_n(x_n)] < \infty$, *then* $\sum_{n=1}^{\infty} f^{-1}[F_n(x_n)] < \infty$;

ii) $P[X_n > x_n \text{ inf. of } 1 > 0 \text{ if and only if } \sum_{n=1}^{\infty} f^{-1}[F_n(x_n)] = \infty;$

iii) *if* $f(x) \ge e^{-nx}$ for some n and all \overline{x} *in* $(0, \infty)$ and $\sum_{n=1}^{\infty} [1-F_n(x_n)] = \infty$, then $\sum_{n=1}^{\infty} f^{-1} [F_n(x_n)] = \infty.$

There is a counterpart of Theorems 1 and 2 for *events* rather than random variables, as follows: *Given a sequence* $\{r_n\}$ *of real numbers with* $r_0 = 1$ *and* $0 \le r_1 \le 1$ *, there exists a probability space* (Ω, \mathcal{A}, P) *and events* ${E_m}$ *over that space satisfying*

$$
P\left(\bigcap_{j=0}^n E_{m_j}\right)=r_n
$$

for all n and $m_1 < m_2 < \cdots < m_n$ *, if and only if* $\{r_n\}$ *is a completely monotone sequence.*

The 'if' part of the above statement is a corollary of Theorem 2 in virtue of the following connection between completely monotone functions and completely monotone sequences [14, p. 164]: For completely monotone f on [0, ∞), the sequence ${f(n)}$ is completely monotone; for given ${r_n}$ with r_0 the least number for which ${r_n}$ is completely monotone, the sequence ${r_n}$ has an extension to a completely monotone function f on [0, ∞) which satisfies $f(n) = r_n$ for $n = 0, 1, 2, ...$.

The 'only if' part of the statement is not a corollary of Theorem 1 because the

distribution functions involved are discontinuous. It is, instead, a restatement of a result of de Finetti [5]; for an exposition of the proof, see [4, p. 225].

By a *strict t-norm T*, we shall mean a function defined on the unit square $[0, 1] \times$ [0, 1] which can be represented there by

$$
T(x_1, x_2) = f[f^{-1}(x_1) + f^{-1}(x_2)]
$$
\n(4)

for some function f which is strictly decreasing from [0, ∞] onto [0, 1]. We shall call *f* a generator of T and note that f_1 and f_2 generate the same T if and only if $f_2(x) = f_1(ux)$ for some positive constant u (see [10], p. 171).

Suppose T is a strict *t*-norm. For any positive integer m and m numbers x_1, x_2, \ldots , x_m in [0, 1], we define

$$
T(x_1) = T(x_1, 1) = x_1,
$$

\n
$$
T(x_1, x_2, x_3) = T[T(x_1, x_2), x_3]
$$

\n
$$
= f[f^{-1}(x_1) + f^{-1}(x_2) + f^{-1}(x_3)],
$$

\n
$$
\vdots
$$

\n
$$
T(x_1, ..., x_m) = T[T(x_1, ..., x_{m-1}), x_m]
$$

\n
$$
= f[f^{-1}(x_1) + ... + f^{-1}(x_m)].
$$

Now we shall be able, in the sequel, to denote the right side of (3) more simply $T[F_1(x_1),...,F_m(x_m)].$

Suppose ${F_n}$ is a sequence of distribution functions and T is a strict t-norm with generator f. We shall call *T* admissible over ${F_n}$ if f is admissible over ${F_n}$.

A historical note on t-norms may be in order. The name is an abbreviation of *triangle norm,* as introduced by Menger [8] in connection with statistical metric spaces. Literature on t-norms and related semigroups includes [6], [7], [9], [10], [11], and [12].

2. Proofs

First, let us adopt the notations E^m and I^m to denote, respectively, *m*-dimensional Euclidean space, and the *m*-dimensional closed unit cube in E^m .

To prove Theorem 1, we shall use the following lemma adapted from Widder ([14], p. 147): f is completely monotone over $[0, \infty)$ if and only if

$$
\sum_{k=0}^{n} (-1)^{n-k} {n \choose k} f(y - kh) \geq 0
$$

for all $n \geq 0$ and all y and h satisfying

$$
0\leqslant y-nh<\cdots
$$

To start the proof, let such *n*, *y*, and *h* be given. Determine α and β by $y=nf^{-1}(\beta)$ and $h=f^{-1}(\beta)-f^{-1}(\alpha)$. For $1\leq j\leq n$, determine a_j and b_j by $F_j(a_j)=\alpha$ and $F_j(b_j)=\beta$, and write A_j for $f^{-1}[F_j(a_j)]$ and B_j for $f^{-1}[F_j(b_j)]$. Now we have $f(y-kh) = (n-k)B_j + kA_j$ for $j = 1, ..., n$. Consequently,

$$
\sum_{k=0}^{n} \left(-1\right)^{k} {n \choose k} f(y-kh) = \sum_{k=0}^{n} \left(-1\right)^{k} \sum_{\delta' \in \Delta'_{k,n}} f\big[\sigma\big(\delta'\big)\big],\tag{5}
$$

where δ' ranges through the set $A'_{k,n}$ of $\binom{n}{k}$ vertices of the cell

 $((A_1, ..., A_n), (B_1, ..., B_n)]$

which consist of k A_i 's and $n-k$ B_i 's, and $\sigma(\delta')$ is the sum of the components of δ' . Since $(n-k)B_j + kA_j = (n-k)f^{-1}(\alpha) + f^{-1}(\beta)$ for $j = 1, ..., n$, the right side of (5) becomes

$$
\sum_{k=0}^{n} (-1)^{k} \sum_{\delta \in \Lambda_{k,n}} F_{1,\dots,n}(\delta), \tag{6}
$$

where δ ranges through the set $A_{k,n}$ of $\binom{n}{k}$ vertices of the cell

$$
(a, b] = ((a_1, ..., a_n), (b_1, ..., b_n)]
$$

which consist of k a_i 's and $n-k$ b_i's. As the Stieltjes measure of $(a, b]$ with respect to the joint distribution function $F_{1,\ldots,n}$, (6) is nonnegative. Now the lemma applies, and we conclude that f is completely monotone on [0, ∞).

DEFINITION 1. A strict *t*-norm T is m-monotone if for every cell $(a, b) = ((a_1, \ldots, a_n)$ a_m , $(b_1, ..., b_m)$ in I^m ,

$$
\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \Delta_{k,m}} T(\delta) \geqslant 0, \qquad (7)
$$

where δ ranges through the set $\Delta_{k,m}$ of those $\binom{m}{k}$ vertices of $(a, b]$ which consist of k a_i 's and $m-k$ b_i's. If T is m-monotone for every $m \ge 1$, then we shall call T com*pletely monotone.*

COROLLARY TO THEOREM 1. *If a strict t-norm T is admissible over a se*quence ${F_n}$ of continuous distribution functions, then T and its generator(s) are com*pletely monotone.*

LEMMA 2a. Let T be a completely monotone t-norm and let ${G_n}$ be a sequence of *distribution functions. Then T is admissible over* $\{G_n\}$.

Proof. Given a completely monotone *t*-norm T and sequence $\{G_n\}$, define, for

 $m=1, 2,...$ and each *m*-element set $\{n_1,..., n_m\}$ of positive integers, a function $F_{n_1,...,n_m}$ on E^m by

$$
F_{n_1,\ldots,n_m}(x_1,\ldots,x_m)=T\left[G_1(x_1),\ldots,G_m(x_m)\right].
$$

Then the collection

$$
\Gamma = \{F_{n_1, \dots, n_m}: n_1, \dots, n_m \text{ are distinct positive integers}\}
$$

clearly satisfies items a, b, c, e , and f of the hypothesis of the Kolmogorov Theorem as found in Tucker [13], p. 30. It remains to be seen that item d is also satisfied.

Let m be any positive integer and let

$$
(a, b] = ((a_1, ..., a_m), (b_1, ..., b_m)]
$$

be an arbitrary *m*-dimensional cell in E^m . Then for given $n_1 < \cdots < n_m$,

$$
((F_{n_1}(a_1),...,F_{n_m}(a_m)), (F_{n_1}(b_1),...,F_{n_m}(b_m))]
$$

is a cell in I^m and, by (7),

$$
\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \Delta_{k, m}} T(\delta) \geqslant 0,
$$

where δ ranges through the set $\Lambda_{k,m}$ of those $\binom{m}{k}$ vertices of the cell

$$
((F_{n_1}(a_1),...,F_{n_m}(a_m)),(F_{n_1}(b_1),...,F_{n_m}(b_m))]
$$

which consist of $k F_{n_i}(a_i)$'s and $m - k F_{n_i}(b_i)$'s. But this means

$$
\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \Delta_{k,m}} F_{n_{1},...,n_{m}}(\delta) \geq 0,
$$

where, *in this expression*, δ ranges through the set $A_{k,m}$ of those $\binom{m}{k}$ vertices of the cell $(a, b]$ which consist of k a_i 's and $m-k$ b_i 's.

Thus, the Kolmogorov Theorem applies to the collection Γ and there exist a probability space (Ω, \mathcal{A}, P) and random variables X_n over Ω whose distribution functions and joint distribution functions are, with corresponding indices, those in Γ . Therefore T is admissible over $\{G_n\}.$

DEFINITION 2. Suppose $0 \le a \le b \le 1$. In the class of functions $T(x_1, \ldots, x_m)$, define

$$
\Delta_{k}(a, b) T(x_{1},..., x_{m}) = T(x_{1},..., x_{k-1}, b, x_{k+1},..., x_{m}) - T(x_{1},..., x_{k-1}, a, x_{k+1},..., x_{m}).
$$

We shall write Aa_kb_k for $A_k(a_k, b_k)$ and note that these operators commute:

$$
\Delta a_k b_k \Delta a_j b_j T(x_1, ..., x_m) = \Delta a_j b_j \Delta a_k b_k T(x_1, ..., x_m).
$$

LEMMA 2b. Let $m \ge 1$. Suppose T is any function which carries I^m into $E¹$ and *suppose the cell* $((a_1, \ldots, a_m), (b_1, \ldots, b_m)]$ *lies in I^m. Then*

$$
\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \Delta_{k,m}} T(\delta) = \Delta a_{m} b_{m} \Delta a_{m-1} b_{m-1} \ldots \Delta a_{1} b_{1} T(x_{1}, ..., x_{m}), \qquad (8)
$$

where δ *ranges as in (7).*

Proof. If $m=1$, clearly (8) holds. Assume for arbitrary q that (8) holds for all functions carrying I^{q-1} into E^1 . Let T be any function from I^q into E^1 and let $((a_1,\ldots,a_n)$ a_a , (b_1, \ldots, b_q) be a cell in I^q . Then T_b and T_a , given respectively by

$$
T(x_1, ..., x_{q-1}, b_q)
$$
 and $T(x_1, ..., x_{q-1}, a_q)$,

are $q-1$ place functions to which the induction hypothesis applies:

$$
\sum_{k=0}^{q} (-1)^{k} \sum_{\delta \in \Delta_{k, q}} T(\delta) = \sum_{k=0}^{q-1} (-1)^{k} \sum_{\delta \in \Delta_{k, q-1}} T_{b}(\delta) - \sum_{k=0}^{q-1} (-1)^{k} \sum_{\delta \in \Delta_{k, q-1}} T_{a}(\delta)
$$

= $Aa_{q-1}b_{q-1}...Aa_{1}b_{1}T_{b}(x_{1},...,x_{q-1}) - Aa_{q-1}b_{q-1}...Aa_{1}b_{1}T_{a}(x_{1},...,x_{q-1})$
= $Aa_{q-1}b_{q-1}...Aa_{1}b_{1}T(x_{1},...,x_{q-1},b_{q}) - Aa_{q-1}b_{q-1}...Aa_{1}b_{1}T(x_{1},...,x_{q-1},a_{q})$
= $Aa_{q}b_{q}Aa_{q-1}b_{q-1}...Aa_{1}b_{1}T(x_{1},...,x_{q-1},x_{q}).$

LEMMA 2c. Let $m \geq 1$. If f is completely monotone from $[0, \infty]$ onto $[0, 1]$, then

$$
\frac{\partial}{\partial x_k} \cdots \frac{\partial}{\partial x_1} f\left[\sum_{j=1}^m f^{-1}(x_j)\right] = \frac{f^{(k)}\left[\sum_{j=1}^m f^{-1}(x_j)\right]}{f'\left[f^{-1}(x_1)\right] \cdots f'\left[f^{-1}(x_k)\right]} \tag{9}
$$
\n
$$
\geq 0
$$

for all $(x_1, ..., x_m) \in I^m$ and $1 \le k \le m$. Moreover, if

$$
((a_1, ..., a_m), (b_1, ..., b_m)]
$$
 is a cell in I^m , then

$$
\Delta a_m b_m ... \Delta a_1 b_1 f\left[\sum_{j=1}^m f^{-1}(x_j)\right] \ge 0.
$$

Proof. We shall write simply \mathbb{E} for $\sum_{j=1}^{m} f^{-1}(x_j)$. The first assertion obviously holds for $k = 1$. Suppose $1 \leq q \leq m - 1$ and (9) holds for $k = q - 1$. Then

$$
\frac{\partial}{\partial x_q} \left(\frac{\partial}{\partial x_{q-1}} \cdots \frac{\partial}{\partial x_1} f(\Xi) \right) = \frac{\partial}{\partial x_q} \frac{f^{(q-1)}(\Xi)}{f' \left[f^{-1}(x_1) \right] \cdots f' \left[f^{-1}(x_{q-1}) \right]},
$$

which by the chain rule is the desired

$$
\frac{f^{(q)}(\Xi)}{f'[f^{-1}(x_1)]\dots f'[f^{-1}(x_q)]}.
$$

158 Clark H. Kimberling AEQ. MATH.

It follows for odd q that both numerator and denominator are nonpositive, and for even q , both nonnegative. Thus (9) holds.

To prove the second assertion, first note

$$
\frac{\partial}{\partial x_{m-1}}\cdots\frac{\partial}{\partial x_1}\Delta a_m b_m f(\Xi)\geqslant 0\,,
$$

since by (9), the function

$$
\frac{\partial}{\partial x_{m-1}} \cdots \frac{\partial}{\partial x_1} f(\Xi)
$$

is nondecreasing in x_m . Suppose now for $2 \le k \le m$ that

$$
\frac{\partial}{\partial x_{k-1}} \cdots \frac{\partial}{\partial x_1} \Delta a_m b_m \ldots \Delta a_k b_k f(\Xi) \geq 0.
$$

Then the function

$$
\frac{\partial}{\partial x_{k-2}} \cdots \frac{\partial}{\partial x_1} \Delta a_m b_m \ldots \Delta a_k b_k f(\Xi)
$$

is nondecreasing in x_{k-1} , so

$$
\frac{\partial}{\partial x_{k-2}} \cdots \frac{\partial}{\partial x_1} \Delta a_{k-1} b_{k-1} \Delta a_m b_m \ldots \Delta a_k b_k f(\Xi) \geq 0,
$$

whence

$$
\frac{\partial}{\partial x_{k-2}} \cdots \frac{\partial}{\partial x_1} \Delta a_m b_m \ldots \Delta a_k b_k \Delta a_{k-1} b_{k-1} f(\Xi) \geq 0.
$$

Interpreting $\partial/\partial x_0$ as the identity operator, we have $\Delta a_m b_m \dots \Delta a_1 b_1 f(\Xi) \ge 0$.

We now rephrase Theorem 2 as follows:

THEOREM 2'. Suppose ${F_n}$ is a sequence of distribution functions. If T is a *strict t-norm with completely monotone generator f, then T is admissible over* ${F_n}$ *and f is admissible over* ${F_n}$.

Proof. We intend to show that T is completely monotone. Then, by Lemma 2a, T is admissible over $\{F_n\}$. Consequently, f is admissible over $\{F_n\}$.

Let $(a, b] = ((a_1, \ldots, a_m), (b_1, \ldots, b_m)]$ be a cell in I^m . By Lemma 2b,

$$
\sum_{k=0}^{m} (-1)^{k} \sum_{\delta \in \Delta_{k,m}} T(\delta) = \Delta a_{m} b_{m} \Delta a_{m-1} b_{m-1} \ldots \Delta a_{1} b_{1} T(x_{1}, ..., x_{m}).
$$

By Lemma 2c, the right side is nonnegative, since

$$
T(x_1, ..., x_m) = f\left[\sum_{j=1}^m f^{-1}(x_j)\right]
$$

for all (x_1, \ldots, x_m) in I^m .

LEMMA 3a. $(2, p. 245)$ *Let* $-\infty \le a \le b \le \infty$. *Suppose f, g, and* α *are nonnegative over* [a, b] and $\alpha(b) - \alpha(a) \leq 1$. If α is nondecreasing on [a, b] and both f and g are non*increasing on [a, b], then*

$$
\int_a^b f(t) g(t) d\alpha(t) \geq \int_a^b f(t) d\alpha(t) \int_a^b g(t) d\alpha(t).
$$

LEMMA 3b. ([14], p. 160) *A function f is completely monotone on* [0, ∞) *if and only if*

$$
f(x) = \int_{0}^{\infty} e^{-xt} \, d\alpha(t), \tag{10}
$$

where $\alpha(t)$ *is bounded and nondecreasing and the integral converges for* $0 \leq x < \infty$.

THEOREM 3a. Suppose f is a completely monotone function from $[0, \infty)$ into $(0, 1]$. Then $f(x+y) \geq f(x) f(y)$. If T is a strict t-norm generated by f, then $T \geq P \cdot \text{raduct.}$

Proof. For such a function f, we have $f(0) \le 1$, so that in Lemma 3b, we have $\alpha(\infty) - \alpha(0) \leq 1$. Thus Lemma 3a applies with $f(t) = e^{-xt}$ and $g(t) = e^{-yt}$ and we conclude that $f(x+y) \geq f(x) f(y)$.

Then, for a, $b \in I$, we set $x = f^{-1}(a)$ and $y = f^{-1}(b)$ to get

$$
T(a, b) = f[f^{-1}(a) + f^{-1}(b)] \ge ab.
$$

THEOREM 3b. Suppose f is a completely monotone function from $[0, \infty)$ into $[0, \infty)$. *Then*

$$
f(x + y) \le [f(x + my)]^{1/m} [f(x)]^{1/n}
$$

for all x, $y \ge 0$ *and positive real m and n satisfying* $1/m + 1/n = 1$ *.*

Proof. For fixed $x \ge 0$ and variable $y \ge 0$, the function $f(x + y)$ is completely monotone and therefore can be represented

$$
f(x + y) = \int_{0}^{1} t^{y} d\alpha_{x}(t),
$$

where α_x is bounded and nondecreasing on [0, 1]. (This integral arises from (10) by a simple change of variable.)

We shall apply the following form of Hölder's Inequality:

$$
\int_{0}^{1} |f(t) g(t)| \, d\alpha_{x}(t) \leqslant \bigg[\int_{0}^{1} |f(t)|^{m} \, d\alpha_{x}(t) \bigg]^{1/m} \, \bigg[\int_{0}^{1} |g(t)|^{n} \, d\alpha_{x}(t) \bigg]^{1/n},
$$

where $f \in L^n$, $g \in L^m$, and $1/m + 1/n = 1$. For $f(t) = t^y$ and $g(t) = 1$, 1 1 1

$$
\int_{0}^{t^{\gamma}} d\alpha_{x}(t) \leqslant \left[\int_{0}^{t^{m\gamma}} d\alpha_{x}(t) \right]^{1/m} \left[\int_{0}^{t} d\alpha_{x}(t) \right]^{1/n},
$$

i.e.,

$$
f(x + y) \le [f(x + my)]^{1/m} [f(x)]^{1/n}.
$$

Taking Theorems 3a and 3b together, we now have Theorem 3.

DEFINITION 3. Let $\{r_n\}$ be a moment sequence which satisfies $r_n = \int_0^1 t^n$ $d\alpha(t)$, $n=0, 1, 2,...$, for some integrator $\alpha(t)$ of bounded variation on [0, 1] with $\alpha(0) = \alpha(0+) = 0$ (as in [14, p. 100]). We shall call $\{r_n\}$ a *strict moment sequence* if the function

$$
f(x) = \int_{0}^{1} t^{x} d\alpha(t)
$$

is strictly decreasing from $f(0)=1$ to $f(\infty)=0$. We define the *t*-norm generated by ${r_n}$ to be the strict *t*-norm generated by *f*.

DEFINITION 4. ([3]) A *strict generalized moment sequence* is a collection ${r(n, y)}_{y \in I}$ of sequences such that ${r(n, y)}$ is a strict moment sequence for each fixed y in $(0, 1)$.

LEMMA 4a. *Suppose* $\{r(n, y)\}_{y \in I}$ *is a strict generalized moment sequence. Let* α_y *be an integrator which corresponds to* $\{r(n, y)\}$ *in the sense of Definition 3. Then the sequences* $\{r(n, y)\}_{y \in I}$, *for* $0 < y < 1$, *all generate the same t-norm T if and only if for each such y there is a number u(y) in* (0, ∞) *satisfying* $\alpha_v(t) = \alpha_{1/2} (t^{u(y)})$ *for all t in* [0, 1].

Proof. For $0 < y < 1$, extend $r(n, y) = \int_0^1 t^n dx_y(t)$ to

$$
r(x, y) = \int_{0}^{1} t^{x} d\alpha_{y}(t).
$$

Then $r(x, y)$ generates the same T as $r(x, \frac{1}{2})$ if and only if there exists $v(y)$ in $(0, \infty)$ satisfying $r(x, y)=r(v(y)x, \frac{1}{2})$, since, as is easily established by Cauchy's functional equation, if f and g generate the same T, then $g(x)=f(vx)$ for some positive constant v. Hence,

$$
\int_{0}^{1} t^{x} d\alpha_{y}(t) = \int_{0}^{1} t^{v(y)x} d\alpha_{1/2}(t)
$$

$$
=\int\limits_{0}^{1}t^{x}\,d\alpha_{1/2}\left(t^{1/v(y)}\right),
$$

so that $\alpha_y(t) = \alpha_{1/2}(t^{1/v(y)})$. (See, for example, [14], p. 63.)

LEMMA 4b. *Suppose T is a strict t-norm'generated by each of the strict moment sequences of a strict generalized moment sequence* $\{r(n, y)\}_{y \in I}$. Then the mapping $y \rightarrow u(y)$ defined in the proof of Lemma 4a by $r(x, y)=r(u(y) x, \frac{1}{2})$ carries (0, 1) onto $(0, \infty)$.

Proof. Let $u \in (0, \infty)$ and set $y = r(u, \frac{1}{2})$. Then $T(1, y) = r(u, \frac{1}{2})$ and u must be the only solution to the equation $T(1, y) = r(x, \frac{1}{2})$ since the right side is strictly decreasing in x. But $r(x, y)$ must equal $r(sx, \frac{1}{2})$ for some s and all x in $[0, \infty]$, so we conclude that $r(x, y) = r(ux, \frac{1}{2})$ for all x in $[0, \infty)$.

LEMMA 4c. Suppose α is a nonconstant nondecreasing function on [0, 1]. Suppose *g and h are strictly increasing continuous functions from* [0, 1] *onto* [0, 1] *and that* $g(t)=h(t)$ at only one *point* $t=t_0$ in (0, 1). *Finally, suppose* $\alpha[g(t)]=\alpha[h(t)]$ for every t in $(0, 1)$. *Then* α *has only one point of increase in* $(0, 1)$.

Proof. Writing $k(t)=g[h^{-1}(t)]$, we have $\alpha[k(t)]=\alpha(t)$ for every t in (0, 1). Moreover,

case i)
$$
\begin{cases} k(t) < t \quad \text{for} \quad 0 < t < t_0 \\ k(t) = t \quad \text{for} \quad t = t_0 \quad \text{or} \quad \text{case ii} \end{cases} \text{ or } \begin{cases} k(t) > t \quad \text{for} \quad 0 < t < t_0 \\ k(t) = t \quad \text{for} \quad t = t_0 \\ k(t) < t \quad \text{for} \quad t_0 < t < 1. \end{cases}
$$

Let $k^2(t)$ denote the function $k[k(t)]$ and for $n=3, 4, \ldots$, let $k^n(t)$ denote the nth iterate $k[k^{n-1}(t)]$ of $k(t)$. Consider the equations

$$
\alpha(t) = \alpha [k(t)] = \alpha [k^2(t)] = \dots = \alpha [k^n(t)]. \qquad (11)
$$

In case i) we have $\lim_{n\to\infty} k^n(t)=0$ for $0\leq t < t_0$ and $\lim_{n\to\infty} k^n(t)=1$ for $t_0 < t \leq 1$. Therefore, by (11) ,

$$
\alpha(t_0 -)=\alpha(0+)
$$
 and $\alpha(t_0 +)=\alpha(1-)$,

which is to say that α has only one point of increase in (0, 1), namely t_0 . We obtain the same conclusion in case ii), wherein $\lim_{n\to\infty} k^n(t)=k(t_0)=t_0$ for $0 < t \le t_0$ and for $t_0 \leq t < 1$.

We now rephrase Theorem 4 as follows:

THEOREM 4. Suppose a strict t-norm T is admissible over a sequence $\{X_n\}$ of

162 Clark H. Kimberling AEQ. MATH.

random variables whose distribution functions are continuous. Then there exists a strict t-norm T^* which is admissible over $\{-X_n\}$ if and only if $T^* = T =$ Product. In other *words, if the sets* $[X_n \le x_n] = {\omega \in \Omega : X_n(\omega) \le x_n}$ *are jointly distributed by T* \neq Product, *then their complements* $[X_n > x_n]$ *are jointly distributed by no t-norm.* (In fact, the proof will show that not even a collection of such sets all having the same probability need be so jointly distributed.)

Proof. Let T be a strict t-norm. Given any generator of T we can easily construct, via Lemma 4a, a strict generalized moment sequence $\{r(n, y)\}_{y \in I}$ each of whose strict moment sequences, for $0 < y < 1$, generates T. Let α_y be an integrator which corresponds to $\{r(n, y)\}\$ as in Definition 3. That is, for all (c, d) in I^2 ,

$$
T(c, d) = f_{y}[f_{y}^{-1}(c) + f_{y}^{-1}(d)],
$$

where

$$
f_{y}(x) = r(x, y) = \int_{0}^{1} t^{x} d\alpha_{y}(t), \quad 0 < y < 1.
$$

We already have $\alpha_y(0+) = \alpha_y(0)$ by Definition 3. Let us note also that $\alpha_y(1-) =$ $=\alpha_{\nu}(1)$ since $0=f_{\nu}(\infty)=\alpha_{\nu}(1)-\alpha_{\nu}(1 -)$. Thus neither 0 nor 1 is a point of increase of α_{ν} .

Suppose $\{X_n\}$ is a sequence of random variables whose distribution functions are continuous and that T is admissible over ${X_n}$. Now suppose y in (0, 1) is arbitrary (but we reserve the right to fix its value later). Choose x_1, x_2, \ldots satisfying

$$
P[X_n \leq x_n] = y, \quad n = 1, 2, \ldots.
$$

Let Δ^n denote the usual nth order difference operator ([14], p. 101). Then the events ${[X_n > x_n]}$ are admissible under the sequence

$$
\{\varrho(n, y)\} = \{(-1)^{n} \Delta^{n} r(0, y)\},\tag{12}
$$

in the sense that the probability of any n -fold intersection of these events is given by the *n*th term of (12) . An integrator for (12) is

$$
\beta_{\nu}(t)=1-\alpha_{\nu}(1-t).
$$

By Lemma 4a, the sequence $\{ \varrho(n, y) \}$ generates the same T^* as $\{ \varrho(n, \frac{1}{2}) \}$ if and only if there is a number u in $(0, \infty)$ satisfying

$$
\beta_{y}(t)=\beta_{1/2}(t^{u}),
$$

or equivalently,

$$
\alpha_{y}(1-t) = \alpha_{1/2}(1-t^{y}) \quad \text{for all} \quad t \in I.
$$

Also by Lemma 4a,

$$
\alpha_{\mathbf{y}}(t)=\alpha_{1/2}(t^{\nu})
$$

for some number v in $(0, \infty)$ so that

$$
\alpha_{1/2}(1-t^u) = \alpha_{1/2}(1-t)^v \quad \text{for all} \quad t \in I. \tag{13}
$$

We shall use (13) to show that $\alpha_{1/2}$ has only one point of increase in (0, 1). Suppose t_0 and t_1 are points with $1-t^u=(1-t)^v$ for $t=t_0$ and $t=t_1$. Then the function

$$
g_{y}(t) = \log_{1-t}(1-t^{u}) = \frac{\log(1-t^{u})}{\log(1-t)}
$$

assumes the value v for $t = t_0$ and $t = t_1$. In accord with Lemma 4b, we now choose y to satisfy $u(y)=2$. Then

$$
g_{y}(t) = \frac{\log(1-t) + \log(1+t)}{\log(1-t)}.
$$

Clearly the one-to-oneness of the function

$$
\frac{\log\left(1+t\right)}{\log\left(1-t\right)}
$$

is equivalent to that of g_y . Thus the hypothesis of Lemma 4c holds with $\alpha = \alpha_{1/2}$, $g(t)=1-t^u$ and $h(t)=(1-t)^v$. Therefore $\alpha_{1/2}$ has only one point of increase on (0, 1). We noted early in the proof that $\alpha_{1/2}$ has no point of increase at the endpoints 0 and 1. Therefore, as an integrator, $\alpha_{1/2}$ determines a geometric sequence, which makes $T =$ Product.

Proof of Theorem 5. Part (i). Beginning with the Borel-Cantelli Lemma, if $\sum_{i=1}^{\infty} [1 - F_i(x_i)] < \infty$, then

$$
0 = P[X_i > x_i \text{ inf. oft.}]
$$

= 1 - lim lim P[X_m $\leq x_m$, ..., $X_n \leq x_n$]
= 1 - lim lim_{m \to \infty} f\left(\sum_{i=m}^{n} f^{-1}[F_i(x_i)]\right)
= lim lim_{m \to \infty} \sum_{i=m}^{n} f^{-1}[F_i(x_i)],
 $m \to \infty$

which implies

$$
\sum_{i=1}^{\infty} f^{-1}\big[F_i(x_i)\big] < \infty \, .
$$

Part (ii). $P[X_i > x_i \text{ inf. of } t] > 0$ is equivalent to

$$
\lim_{m\to\infty}\lim_{n\to\infty}\sum_{i=m}^n f^{-1}\left[F_i(x_i)\right]\neq 0,
$$

which is equivalent to

$$
\sum_{i=1}^{\infty} f^{-1} [F_i(x_i)] = \infty.
$$

Part (iii). Supposing $\sum_{i=1}^{\infty} [1-F_i(x_i)] = \infty$, we have

$$
\infty = \sum_{i=1}^{\infty} -\log F_i(x_i)
$$

=
$$
\sum_{i=1}^{\infty} \frac{-\log F_i(x_i)}{n}
$$

$$
\leqslant \sum_{i=1}^{\infty} f^{-1} [F_i(x_i)].
$$

The author is very grateful to the referees for their helpful suggestions during the preparation of this paper.

REFERENCES

- [1] Acztu, J., Lectures on Functional Equations and Their Applications (Academic Press, New York - London 1966).
- [2] APOSTOL, TOM M., *Mathematical Analysis* (Addison Wesley, Reading, Massachusetts 1957).
- [3] ELS~ERG, S. M., *Moment Sequences and the Bernstein Polynomials,* Canad. Math. Bull. *12,* 401-411 (1969).
- [4] FELLER, W., An Introduction to Probability Theory and Its Applications, Vol. II. (John Wiley and Sons, New York 1968).
- [5] DE FINETrI, B., *Funzione caratteristica di un fenomeno aleatorio,* Mem. Reale Academia Naz. Lincei, Ser. 6 4, 251-299 (1931).
- [6] KIMBERLING, C. H., *On a Class of Associative Functions*, Publ. Math. Debrecen (to appear).
- [7] LING, Cno-HsIN, *Representation of Associative Functions,* Publ. Math. Debrecen *12,* 189-212 (1965).
- [8] MENGER, K., *Statistical Metrics,* Proc. Nat. Acad. Sci. U.S.A. *28,* 535-537 (1942).
- [9] MOSTERT, P. S. and SmELDS, A. L., *On the Structure of Semigroups on a Compact ManifoM with Boundary,* Ann. of Math. *65,* 117-143 (1957).
- [10] SCnW~IZER, B. and SKLAR, A., *Associative Functions and Statistical Triangle Inequalities,* Publ. Math. Debrecen 8, 169-186 (1961).
- [11] SCnWEIZER, B. and SKLAR, A., *Associative Functions and Abstract Semigroups.* Publ. Math. Debrecen *10,* 69-81 (1963).
- [12] STOREY, C. R., *The Structure of Threads,* Pacific J. Math. *10,* 1429-1445 (1960).
- [13] TUCKER, *H. G., A Graduate Course in Probability* (Academic Press, New York 1967).
- [14] WINDER, D. V., *The Laplace Transform* (Princeton University Press, Princeton 1946).

University of Evansville