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A Probabilistic Interpretation of Complete Monotonicity

CrLAark H. KIMBERLING (Evansville, Indiana, U.S.A.)

1. Introduction

If {X,} is a sequence of independent random variables, then the joint distribution
function F; of the m-element subset {X; ,..., X; } of the sequence {X,} is given by

ifeiim

the expression
Fil...im(xly--wxm):Fil (xl)"'Fim(xm), (1)

where F;, is the distribution function of X, , etc. Now (1) can be immediately rewritten
in the form:

Fiy i (X150 Xp) = exp(— [— log F;, () =+~ IOgFim(xm)])' (2)

It is the purpose of this paper to investigate the extent to which the well-known and
essentially trivial result (2) can be extended in a non-trivial manner to sequences of
dependent random variables.

To this end, let f be a function defined, continuous, and strictly decreasing on the
extended half-line [0, o0], with £ (0)=1 and f (00)>0. Denote the inverse of f by f ~*.
Then, if {X,} is a sequence of (not necessarily independent) random variables, with
corresponding respective distribution functions {F,}, we shall call {X,} admissible (or
exchangeable) under f if the joint distribution function F;, ; of any m-element subset
{X;,..., X, } of the sequence is given by the expression

Fipoi (%1000, X)) = f(f*1 [Fi, (x)] +---+ 1 [F.,, (xm)])- 3

In the other direction, let {F,} be a sequence of 1-dimensional distribution func-
tions. Then we shall call f admissible over {F,} if there exists a probability space
(Q, o, P) and a sequence {X,} of random variables defined on that space such that:
(a) F, is the distribution function of X, for each n>1; (b) {X,} is exchangeable under f.

The principal results of this paper are the following:

THEOREM 1. Suppose f is a strictly decreasing function from [0, «o] into [0, 1],
that £ (0)=1 and f () >0, and that {F,} is a sequence of continuous distribution func-
tions over which f is admissible. Then f is completely monotone on [0,00). (That is, f is
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continuous on [0, o) and has derivatives of all orders on (0, o) which alternate success-
ively insign: (—1)"f™>0,n-20,1,2,.... See [14, p. 145].)

THEOREM 2. Suppose {F,} is a sequence of distribution functions, Suppose f is a
function from [0, o] onto [0, 1] which is completely monotone on [0, ). Then f is ad-
missible over {F,}.

THEOREM 3. Suppose f is a completely monotone function from [0, o) into
(0, 1. Then

f(x) f(y) < f(x + y) < [f(x + my)]llm [f(x)]”"

for all x, y 20 and all positive real m and n satisfying 1/m+1/n=1.

THEOREM 4. Suppose {X,} is a sequence of random variables with corresponding
continuous distribution functions {F,}. Suppose f is a strictly decreasing function from
[0, 0] into [0, 1] under which { X} is exchangeable. Then there exists g, strictly decreas-
ing from [0, o] into [0, 1], under which { — X} is exchangeable, if and only if f (x)=r "%
for some r>0and all x in [0, oo].

THEOREM 5. Suppose {X,} is a sequence of random variables and that f is a
strictly decreasing function from [0, oo] into [0, 1] under which {X,} is admissible. Let
{F,} be the sequence of distribution functions corresponding to {X,}. Then

i) I Y[~ Fu()] < 0, then 2, £ [P, (x,)] < 0;
ii) P[X,>x,inf. oft.]>0ifand only if Y ooy f " [Fn(x,)]=0;
iii) if f(x)=e™ "™ for some n and all x in (0, 0) and Y ;- [1—F,(x,)]= o0, then
=1 S T HF(x,)]= 0.

There is a counterpart of Theorems 1 and 2 for eventsrather than random variables,
as follows: Given a sequence {r,} of real numbers with ro=1 and 0<r; <1, there exists
a probability space (Q, 7, P) and events {E,,} over that space satisfying

P(N E,,,j) -,
j=0

Sfor all n and my <m,<--- <m,, if and only if {r,} is a completely monotone sequence.

The ‘if” part of the above statement is a corollary of Theorem 2 in virtue of the
following connection between completely monotone functions and completely mono-
tone sequences [14, p. 164]: For completely monotone f on [0, o), the sequence
{ f(n)} is completely monotone; for given {r,} with r, the least number for which
{r,} is completely monotone, the sequence {r,} has an extension to a completely
monotone function fon [0, o0 ) which satisfies f (n)=r, forn=0,1,2,....

The ‘only if” part of the statement is not a corollary of Theorem 1 because the
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distribution functions involved are discontinuous. It is, instead, a restatement of a
result of de Finetti [5]; for an exposition of the proof, see [4, p. 225].

By a strict t-norm T, we shall mean a function defined on the unit square [0, 1] x
[0, 1] which can be represented there by

T (x4, x3) = SIS (x0) + 71 (x2)] 4

for some function f which is strictly decreasing from [0, co] onto [0, 1]. We shall call
Jfagenerator of T and note that f; and f, generate the same T'if and only if f, (x) = f;(ux)
for some positive constant u (see [10], p. 171).

Suppose T 'is a strict -norm. For any positive integer m and m numbers x;, x,,...,
X, in [0, 1], we define

T(xy)=T(xy,1)=x,
T(xl’ X2, x3) =T [T (xl, xz), X3:|
=L )+ ST ) + (5]

T (Xqy.eer Xp) .= TIT (X155 Xme1)s Xm)
=fLf )+t ST )]

Now we shall be able, in the sequel, to denote the right side of (3) more simply

T[Fi(x1)s- s Fr(xm)]-

Suppose {F,} is a sequence of distribution functions and T is a strict -norm with
generator f. We shall call T admissible over {F,} if fis admissible over {F,}.

A historical note on #-norms may be in order. The name is an abbreviation of
triangle norm, as introduced by Menger [8] in connection with statistical metric spaces.
Literature on f-norms and related semigroups includes [6], [7], [9], [10], [11], and [12].

2, Proofs
First, let us adopt the notations E™ and I™ to denote, respectively, m-dimensional
Euclidean space, and the m-dimensional closed unit cube in E™.

To prove Theorem 1, we shall use the following lemma adapted from Widder
([14], p. 147): fis completely monotone over [0, o) if and only if

T 1y (1) - k) >0

for all n>0 and all y and 4 satisfying .

OL<y—nh<--<y—h<y<ow.
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To start the proof, let such n, y, and 4 be given. Determine « and g by y=nf ~*(B)
and h=f "' (B)—f "'(x). For 1< j <n, determine a; and b; by F;(a;)=a and
F;(b;)=B, and write 4; for f ~'[F;(a;)] and B, for f~'[F;(b;)]. Now we have
f(y—kh)=(n—k)B;+kA;forj=1,..., n. Consequently,

) 4
n n n ,
S0 () ro—mm= 3 0 T fe@, )
k=0 k=0 ¥ edi n
where &’ ranges through the set 4, , of () vertices of the cell

(44, ..., 4,), (By, ..., B)]

which consist of k 4;’s and n—k B’s, and ¢ (6’) is the sum of the components of &'.
Since (n—k)B;+kA;=(n—k)f " (a)+f "1(B) for j=1,..., n, the right side of (5)
becomes

T 1T Fia®), ©

Jedk,,.

where & ranges through the set 4, , of (}) vertices of the cell

(a, 8] =((ay, ..., an), (by, ..., b,)]

which consist of k a;’s and n—k b;’s. As the Stieltjes measure of (a, b] with respect to
the joint distribution function F; _ ,, (6) is nonnegative. Now the lemma applies, and
we conclude that fis completely monotone on [0, ).

DEFINITION 1. A strict #-norm T is m-monotone if for every cell (a, b]=((a, ...,
an), (bys..., by)]inI™,

(=D Y T@)=0, (M
k=0 dedi, m

where & ranges through the set 4, , of those (}) vertices of (a, b] which consist of
k a’s and m—k b;s. If T is m-monotone for every m> 1, then we shall call T com-
pletely monotone.

COROLLARY TO THEOREM 1. If a strict t-norm T is admissible over a se-
quence {F,} of continuous distribution functions, then T and its generator(s) are com-
pletely monotone.

LEMMA 2a. Let T be a completely monotone t-norm and let {G,} be a sequence of
distribution functions. Then T is admissible over {G,}.
Proof. Given a completely monotone t-norm T and sequence {G,}, define, for
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m=1, 2,... and each m-element set {n,, ..., n,,} of positive integers, a function F,,,
on E™ by

«sfm

Fopposnn (1500 Xm) = T[G (%), .., G ()]

Then the collection
r={F,, . ., :nq..,n,are distinct positive integers}

clearly satisfies items a, b, ¢, e, and f of the hypothesis of the Kolmogorov Theorem as
found in Tucker [13], p. 30. It remains to be seen that item d'is also satisfied.
Let m be any positive integer and let

(a, 5] =((ay, ..., a,), (bys ...y by)]

be an arbitrary m-dimensional cell in £™. Then for givenn, <--- <n,,

((Fm (al)’ cery an (am))a (Fm (b1)9 RS} an (bm))]
isacell in I™ and, by (7),
Y (-1 T T@>0,
k=0 dedk, m

where 6 ranges through the set 4, ,, of those () vertices of the cell

((Fnl (al)’ sy an(am))9 (Fru (bl)’ very an (bm))]
which consist of k F, (a;)’sand m—k F, (b;)’s. But this means

T T Fan®20,

JEAk_m

where, in this expression, é ranges through the set 4, ,, of those () vertices of the cell
(a, b] which consist of k a’sandm—k b;’s.

Thus, the Kolmogorov Theorem applies to the collection I' and there exist a
probability space (2, &7, P) and random variables X, over 2 whose distribution func-
tions and joint distribution functions are, with corresponding indices, those in I'.
Therefore T'is admissible over {G,}.

DEFINITION 2. Suppose 0<a<b<]. In the class of functions T'(x,,..., x,,)
define

Ak(as b) T(xb crry xm)
= T(xl,..., xk_l, b, xk+1, caey xm) - T(xl, veey xk_l, a, xk+1, ooy xm).

3

We shall write 4a,b, for 4, (a,, b,) and note that these operdtors commute:

AakbkAajbjT (xl, ceey xm) = Aajbjdakka (xl, reey xm) .
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LEMMA 2b. Let m>1. Suppose T is any function which carries I"™ into E' and
suppose the cell ((ay, ..., a,), (by, ..., b,)] liesin I"™. Then

Z (— 1)k Z T(5)=AambmAam_1bm_1...AalblT(xl,..., xm), (8)
k=0 dedyx, m
where S ranges as in (7). ‘
Proof. If m=1, clearly (8) holds. Assume for arbitrary ¢ that (8) holds for all
functions carrying I ! into E!. Let T be any function from I? into E* and let ((a;, .
a,), (by,..., b,)] be acellin I. Then T, and T, given respectively by

(XY

T(Xy,..0s Xg—1, b)) and T (xy,...,%,-4, a,),

are ¢— 1 place functions to which the induction hypothesis applies:

ST TE=3 1) 5 Re-% 0 T L)

dedy, g k=0 Sedr, g-1 Sedx, g1
=Ada,_1by_y...4a,bTy(xy,..., %, 1) — Ada,_1by_y ... dayb T, (%4, ..., X4-1)
=Aa,_1by_y...4a,b,T(xy,..., %54, b)) — Aa,_1by_y ... 46T (x4,..., X4_1, ay)
= Adab,da, b, ...4a.b T(xl,

:qlaq)

LEMMA 2c. Letm=1. Iffis completely monotone from [0, co] onto [0, 1], then

e/ [Ew)]- fmhr%ﬂ o)

%, FU )] LU )]

ox,
=0
forall (x,,..., x,)eI™and 1 <k <m. Moreover, if
((ay, ..., an), (by, ..., by)] is a cell in I, then

da,b,, ...dab f [,i f“(x,.)] >0

Proof. We shall write simply Z for )7, f~'(x;). The first asseftion obviously
holds for k= 1. Suppose 1 <g<m—1 and (9) holds for k=g —1. Then

o [ o @ [ (&)
674<axq 0x, f( )) g f L D] U (=Y

which by the chain rule is the desired
)
FUT ] U )Y
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It follows for odd ¢ that both numerator and denominator are nonpositive, and for
even ¢, both nonnegative. Thus (9) holds.
To prove the second assertion, first note
0

6xm— 1

2 dayb,f(2) 20,
axl

since by (9), the function
0 0

ax,_, 0x,

G
is nondecreasing in x,,. Suppose now for 2 < k <m that

0 0
oo — Aab,, ... Adayb f(E) = 0.
6xk_1 axl a0y ay kf( )

Then the function

0 0
o —da,b,, ... da,b, f(E
axk—z axl AnOm a kf( )

is nondecreasing in x; 4, sO

5, 0 =
6xk—2 . 5;1' Aak_lbk_lAambm Aakbkf(':r) P Oa

whence

0 0

— 5?1— dayb, ... Aaybda, b, f(E) 2 0.

Interpreting 8/0x, as the identity operator, we have 4a,b,,... 4a;b, f (Z)=0.
We now rephrase Theorem 2 as follows:

THEOREM 2'. Suppose {F,} is a Sequence of distribution functions. If T is a
strict t-norm with completely monotone generator f, then T is admissible over {F,} and f
is admissible over {F,}.

Proof. We intend to show that T'is completely monotone. Then, by Lemma 2a, T'is
admissible over {F,}. Consequently, fis admissible over {F,}.

Let (a, b]=((ay, ..., an), (by, ..., b,)] be acellin I™. By Lemma 2b,

kzo (=1 Y T(6)=Ada,b,4a,_1bp_y...4a;b,T (X, ..., X,).

Sedr, m

By Lemma 2¢, the right side is nonnegative, since

T (%4 %) = f L}Z;l f-l(x,.)]

forall (xy,..., x,)in I"™.
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LEMMA 3a. ([2, p. 245]) Let — o <a<b< . Suppose f, g, and o are nonnegative
over [a, b] and «(b) — a(a)< 1. If o is nondecreasing on [a, b] and both f and g are non-
increasing on [a, b), then

j £(0) g (0) du(r) > j £(r) da (1) f 2 (1) da(r).

LEMMA 3b. ([14], p. 160) A function f is completely monotone on [0, o) if and
only if

1) = [ e a0, (10)

where o (t) is bounded and nondecreasing and the integral converges for 0 < x < co.

THEOREM 3a. Suppose f is a completely monotone function from [0, o) into
(0, 11. Then f (x+y)=f(x) f (¥). If T is a strict t-norm generated by f, then T = Product.

Proof. For such a function f, we have f(0)<1, so that in Lemma 3b, we have
a(0)—a(0)< 1. Thus Lemma 3a applies with £ (1)=e™" and g(t)=e""* and we con-
clude that f (x+y) =1 (x) f ().

Then, fora, bel, weset x= f “!(a)and y= f ~1(b) to get

T(a,b)=fLf"" (@) + f7' (b)] > ab.

THEOREM 3b. Suppose f is a completely monotone function from [0, ) into
[0, o). Then

G+ p) <G+ my)] LGOI
Jfor all x, y >0 and positive real m and n satisfying | m+1/n=1.

Proof. For fixed x>0 and variable y >0, the function f(x +y) is completely mono-
tone and therefore can be represented

f(x+y) =f ¥ da (1),

where «, is bounded and nondecreasing on [0, 1]. (This integral arises from (10) by a
simple change of variable.)

We shall apply the following form of Hélder’s Inequality:

i/n

jflf (1) g (0)] do (1) < [j ()™ doy (t)]”m [f Ol dax(f)] ,
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where feL”, geL™ and 1/m+1/n=1. For f(¢t)=¢" and g(¢)=1,

1 1

f £ da, (1) < [ f o docx(t)]”m [ fl de, (r)]”",

Fx+ )< [f(x+ mp) L)

Taking Theorems 3a and 3b together, we now have Theorem 3.

i.e.,

DEFINITION 3. Let {r,} be a moment sequence which satisfies r,= j'(l, I
da(t), n=0,1, 2,..., for some integrator a(¢) of bounded variation on [0, 1] with
2(0)=a(0+)=0 (as in [14, p. 100]). We shall call {r,} a strict moment sequence if

the function
1

£(x) = f £ da (1)

[}

is strictly decreasing from f(0)=1 to f(c0)=0. We define the #-norm generated by
{r,} to be the strict #-norm generated by f.

DEFINITION 4. ([3]) A strict generalized moment sequence is a collection
{r(n, ¥)},er of sequences such that {r(n, y)} is a strict moment sequence for each
fixed y in (0, 1).

LEMMA 4a. Suppose {r(n, y)},; is a strict generalized moment sequence. Let a,
be an integrator which corresponds to {r(n, y)} in the sense of Definition 3. Then the
sequences {r(n, y)},. . for 0<y <1, all generate the same t-norm T if and only if for
each such y there is a number u(y) in (0, ) satisfying o, (t)=0, () for all t in
0, 1].

Proof. For 0<y<]1, extend r(n, y)= {5 t" da,(¢) to

r(x, ) = f £ da (1).

Then r(x, y) generates the same T as r(x, %) if and only if there exists v(y) in (0, )
satisfying r(x, y)=r(v(y)x, 1), since, as is easily established by Cauchy’s functional
equation, if f and g generate the same 7, then g (x)=/ (vx) for some positive constant

v. Hence,
1

!
f t¥ da,(t) = f "% doy 1 (1)
0

0
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1

- f £ day 5 (11407,

0

so that a, () =a,,, (£1/*?). (See, for example, [14], p. 63.)

LEMMA 4b. Suppose T is a strict t-normlgenerated by each of the strict moment
sequences of a strict generalized moment sequence {r(n,y)},.;. Then the mapping
y—u(y) defined in the proof of Lemma 4a by r(x, y)=r(u(y) x, 1) carries (0, 1) onto
(0, 0).

Proof. Let ue(0, o) and set y=r(u, ¥). Then T(1, y)=r(u, 1) and u must be the
only solution to the equation T'(1, y)=r(x, ) since the right side is strictly decreasing
in x. But r(x, y) must equal r(sx, }) for some s and all x in [0, o], so we conclude
that #(x, y)=r(ux, %) for all x in [0, o).

LEMMA 4c. Suppose a is a nonconstant nondecreasing function on [0, 1]. Suppose
g and h are strictly increasing continuous functions from [0, 1] onto [0, 1] and that
g(t)=h(t) at only one point t=t, in (0, 1). Finally, suppose a[g(t)}=a[h(t)] for
every t in (0, 1). Then o has only one point of increase in (0, 1).

Proof. Writing k(t)=g[h~'(¢)], we have a[k(z)]=a(t) for every ¢ in (0, 1).
Moreover,

k(t)<t for O0<it<y, k(t)>t for O<t<t,
casei)s k(1)=1t for r=t, or caseii)y k(t)=1t for t=1¢,
k(t)>t for ty<t<l1 k(t)<t for fo<t<l1.

Let k?(z) denote the function k[k(¢)] and for n=3,4,..., let k"(¢) denote the
nth iterate k[k" "' (¢)] of k(). Consider the equations

a(t) = a[k ()] = a[k* ()] == «[K" (1)]. (1n

In case i) we have lim,, ,k"(#)=0 for 0<t<t, and lim,.  k"(¢)=1 for t,<t<]1.
Therefore, by (11),

alto—)=0(0+) and a(to+)=a(l-),

which is to say that « has only one point of increase in (0, 1), namely ¢,. We obtain
the same conclusion in case ii), wherein lim,., k" (t)=k(z,)=¢, for 0<¢<1, and
for 7, <t <.

We now rephrase Theorem 4 as follows:

THEOREM 4. Suppose a strict t-norm T is admissible over a sequence {X,} of
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random variables whose distribution functions are continuous. Then there exists a strict
t-norm T* which is admissible over {—X,} if and only if T*=T=Product. In other
words, if the sets [X,<x,]={weQ:X,(w)<x,} are jointly distributed by T# Product,
then their complements [X,>x,] are jointly distributed by no t-norm. (In fact, the
proof will show that not even a collection of such sets all having the same probability
need be so jointly distributed.)

Proof. Let T be a strict #-norm. Given any generator of T we can easily construct,
via Lemma 4a, a strict generalized moment sequence {r(n, ¥)},., each of whose strict
moment sequences, for 0<y<1, generates 7. Let a, be an integrator which cor-
responds to {r(n, ¥)} as in Definition 3. That is, for all (¢, d) in I?,

T(c,d)= 1" @+ £ ()],

where
1
fy(x)=r(x,y)=ft"da,(t), O<y<l.
/]

We already have a,(0+ )=«,(0) by Definition 3. Let us note also that a,(1—)=
=a,(1) since 0=f, (c0)=a,(1)—a,(1—). Thus neither 0 nor 1 is a point of increase
of a,.

Suppose {X,} is a sequence of random variables whose distribution functions are
continuous and that 7 is admissible over {X,}. Now suppose y in (0, 1) is arbitrary
(but we reserve the right to fix its value later). Choose x;, x5, ... satisfying

P[X,<x,]=y, n=12,...

Let 4" denote the usual nth order difference operator ([14], p. 101). Then the events
{[X,>x,]} are admissible under the sequence

{e(n )} = {(- 14" (0, )}, (12)

in the sense that the probability of any n-fold intersection of these events is given
by the nth term of (12). An integrator for (12) is

ﬁy(t) =1- “y(l —1).

By Lemma 4a, the sequence {g(n, )} generates the same T* as {¢(n, 1)} if and only
if there is a number u in (0, o) satisfying

By (1) = B1j2 (1),
or equivalently, ‘
a,(1 =) =ay,(1—1") forall tel.
Also by Lemma 4a,
o, (1) = ay;5 (%)
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for some number v in (0, o) so that
ay (1 —1t") =0y, (1 —t)° forall tel. (13)

We shall use (13) to show that «,,, has only one point of increase in (0, 1). Suppose
t, and ¢, are points with 1 —¢*=(1—1)" for t=t, and t=¢,. Then the function
log(l — )
log(1 —1)

assumes the value v for =1, and ¢=¢,. In accord with Lemma 4b, we now choose y
to satisfy u(y)=2. Then

gy (t) =log, (1 —1") =

log(1—1t)+log(l+1)
log (1 —¢t)

Clearly the one-to-oneness of the function

gy (t) =

log(1 + ?)
log(1—1¢)

is equivalent to that of g,. Thus the hypothesis of Lemma 4c holds with a=a,,,,
g(t)=1—1¢" and h(t)=(1—1)". Therefore a;,, has only one point of increase on
(0, 1). We noted early in the proof that a,,, has no point of increase at the endpoints
0 and 1. Therefore, as an integrator, a,,, determines a geometric sequence, which
makes T'=Product.

Proof of Theorem 5. Part (i). Beginning with the Borel-Cantelli Lemma, if
i=1[1—F;(x;)] <o, then

0 - P [Xi > xi inf. Oft.]
=1— lim lim P[X,, < Xp, ..., Xy < X,]

m-o n-owo

1= m im (5, )

m-—co n-*o0

= lim lim Z FTHF(x)],
which implies

¥ S <o,

Part (ii). P[X;> x; inf. oft.]>0 is equivalent to

lim lim 3 £ [Fi(x)] %0,

m-re B0 i=m
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which is equivalent to
_Zlf_l [Fi(x;)] =.

Part (iii). Supposing Y&, [1—F;(x;)]= o0, we have

0 = Z — log F; (x;)
i=1
* —logF;(x;)

=L

< iilf—l[Fi(xi)]-

The author is very grateful to the referees for their helpful suggestions during
the preparation of this paper.
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