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A Probabilistie Interpretation of Complete Monotonicity 

CLARK H. KIMBERLING (Evansville, Indiana, U.S.A.) 

1. Introduction 

If  {An} is a sequence of independent random variables, then the joint  distribution 
function F~l...i m of  the m-element subset {Xil . . . . .  Xi,,} of the sequence {An} is given by 
the expression 

Fi,...ira (Xl, ..., Xm) = Fi, (Xl). . .  Fire ('~m), (1) 

where F~, is the distribution function of X i,, etc. Now (1) can be immediately rewritten 
in the form:  

F, , . . a , , ( x l , . . . ,Xm)=exp ( - [ - l ogF , , ( x l )  . . . . .  log F,,, (x,.)]). (2) 

It is the purpose of  this paper to investigate the extent to which the well-known and 
essentially trivial result (2) can be extended in a non-trivial manner  to sequences of  
dependent r andom variables. 

To this end, l e t f b e  a function defined, continuous,  and strictly decreasing on the 
extended half-line [0, ~) ], with f (0) = 1 and f ( ~ )  ~> 0. Denote the inverse o f f  by f - 1. 
Then, if (X,} is a sequence of (not necessarily independent)  r andom variables, with 
corresponding respective distribution functions (F,}, we shall call {X,} admissible (or 
exchangeable) underfi f  the joint  distribution function F~,... i,. of  any m-element subset 
{Xil , . . . ,  Xim } of  the sequence is given by the expression 

F,,...,m(xl,...,x,n)= f ( f - l [ F , , ( x l )  ] +. . .+ f-*[F,m(Xm)]). (3) 

In the other direction, let {F,} be a sequence of  1-dimensional distribution func- 
tions. Then we shall call f admissible over {F,} if there exists a probability space 
(f2, ~¢, P )  and a sequence {X,} of  r andom variables defined on that  space such that:  
(a) F ,  is the distribution function of  X, for each n I> 1 ; (b) {X,} is exchangeable under f .  

The principal results of this paper are the following: 

T H E O R E M  1. Suppose f is a strictly decreasing function from [0, oo ] into [0, 1 ], 
that f (0) = 1 and f ( ~ )  >1 O, and that {F,) is a sequence of  continuous distribution func- 
tions over which f is admissible. Then f is completely monotone on [0, oo). (That is, f is 
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continuous on [0, oo) and has derivatives o f  aH orders on (0, oo) which alternate success- 
ively in sign: ( -  1)"f(")~>0, n-=0, 1, 2,. . . .  See [14, p. 145].) 

THEOREM 2. Suppose {F.} is a sequence o f  distribution functionsj Suppose f is a 
function f rom [0, ~ ]  onto [0, 1] which is completely monotone on [0, oo). Then f is ad- 
missible over {F,}. 

THEOREM 3. Suppose f is a completely monotone function f rom [0, oo) into 
(0, 1]. Then 

f ( x )  f ( y )  <~ f ( x  + y) <~ [ f ( x  + my)] 11'' I f ( x ) ]  *1" 

for all x, y >>, 0 and all positive real m and n satisfying 1/m + 1/n = 1. 

THEOREM 4. Suppose {X,} is a sequence o f  random variables with corresponding 
continuous distribution functions {F.}. Suppose f is a strictly decreasing function f rom 
[0, oo] into [0, 1] under which {Xn} is exchangeable. Then there exists g, strictly decreas- 
ingfrom [0, ~ ]  into [0, 1], under which { -  X.}  is exchangeable, i f  and only i f f  (x)=r-X 
for  some r > 0 and all x in [0, oo ]. 

THEOREM 5. Suppose {X,} is a sequence o f  random variables and that f is a 
strictly decreasing function f rom [0, oo] into [0, 1] under which {X.} is admissible. Let  
{Fn} be the sequence o f  distribution functions corresponding to {X,}. Then 

i) i f  ~ L 1  [1 - F, (x,)] < ~ ,  then ~,~=1 f - 1  [F, (x,)] < oo; 
ii) P [X, > x, inf. oft.] > 0 i f  and only i f ~ L 1  f -1 IF. (x.)] = ~ ;  

iii) i f  f(x)>>,e-"X for  some n and all x in (0, oo) and Y2=,[1-F.(x.)] = ~ ,  then 

Z~°=l f - l [ F . ( x , , ) ] =  ~ .  
There is a counterpart of Theorems 1 and 2 for events rather than random variables, 

as follows: Given a sequence { r.} o f  real numbers with ro = 1 and 0 <<. r I <~ 1, there exists 
a probability space ( f2, ~ ,  P)  and events {Era} over that space satisfying 

for  all n and ml < m2 <""  < ran, i f  and only i f  { r.} is a completely monotone sequence. 
The 'if '  part of the above statement is a corollary of Theorem 2 in virtue of the 

following connection between completely monotone functions and completely mono- 
tone sequences [14, p. 164]: For completely monotone f on [0, oo), the sequence 
{f(n)}  is completely monotone;  for given {r.} with ro the least number for which 
{r.} is completely monotone, the sequence {r.} has an extension to a completely 
monotone func t ionfon  [0, oo) which satisfiesf (n) = r. for n = 0, 1, 2,. . . .  

The 'only if' part of the statement is not a corollary of Theorem 1 because the 
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distribution functions involved are discontinuous. It is, instead, a restatement of a 
result of  de Finetti  [5]; for an exposition of  the proof,  see [4, p. 225]. 

By a strict t-norm T, we shall mean a function defined on the unit  square [0, 1 ] x 
[0, 1 ] which car~ be represented there by 

T (x, ,  x2) = f [ f - '  (xl)  + f - '  (x2)] (4) 

for some f u n c t i o n f w h i c h  is strictly decreasing from [0, ~ ]  onto [0, 1]. We shall call 
f a  generator of T a n d  note tha t f l  and f2 generate the same T i f a n d  only iffz (x) = fl(ux) 
for some positive constant  u (see [10], p. 171). 

Suppose T is  a strict t-norm. For  any positive integer m and m numbers  xa, x2 .... , 
x., in [0, 1 ], we define 

T(xa )  = T ( x , ,  1) = x l ,  

W(xi, x2, x3)= r [ W ( x l ,  x2),x3] 

= f [ f - 1  (x1) ..t_ f - ,  (x2) + f - ,  (x3)] , 

T(xi,...,x,)= T [ T ( x I  .... ,Xm-1),X,] 

= f [ f - ~ ( X ~ )  +"" + f - ~  (Xm)] • 

Now we shall be able, in the sequel, to denote the right side of  (3) more simply 
T[F 1 (x,) .... , Fm(xra)]. 

Suppose {F,} is a sequence of  distribution functions and T is a strict t -norm with 
gene ra to r f  We shall call Tadmissible over {F.} i f f i s  admissible over {F,}. 

A historical note on t-norms may be in order. The name is an abbreviation of  
triangle norm, as introduced by Menger [8] in connection with statistical metric spaces. 
Literature on t-norms and related semigroups includes [6], [7], [9], [10], [11 ], and [12]. 

2. Proofs 

First, let us adopt  the notations E m and I m to denote, respectively, m-dimensional 
Euclidean space, and the m-dimensional c loseduni t  cube in Em. 

To prove Theorem 1, we shall use the following lemma adapted f rom Widder 
([14], p. 147) : f is  completely mono tone  over [0, oo) if and only if 

(0 E (-- 1) " 'k  f ( y - -  kh) >i 0 
k = O  

for all n i> 0 and all y and h satisfying 

O ~ y - n h < . . . < y - h < y < ~ .  
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To start the proof, let such n, y, and h be given. Determine a and fl by y = n f  - t  (fl) 
and h = f - x ( f l ) - f - l ( ~ ) .  For l~<j  ~<n, determine aj  and b~ by F j ( a j )=c t  and 
Fi(b j )=f l ,  and write Aj for f - l [ F j ( a j ) ]  and Bj for f - l [ F j ( b j ) ] .  Now we have 
f ( y - kh ) = (n - k )B j + k A j fo r j  = 1, ..., n. Consequently, 

(-l)k(;)f(y-kh) = L ( - I )  k ~ f [ a ( 6 ' ) ] ,  (5' 
k = 0  k = O  6 ' c A ' k , .  

where 6' ranges through the set A'k, .  of(~) vertices of the cell 

( ( A 1 , . . . , A , ) , ( B , , . . . , B , ) ]  

which consist o f k  A / s  and n - k  Bfs,  and a(6')  is the sum of the components of 6'. 
Since ( n - k ) B j + k A j = ( n - k ) f - t ( a ) + f - t ( f l )  for j =  1,. . . ,  n, the right side of (5) 
becomes 

i ( -  1) k Y', F~ ..... , (6 ) ,  (6) 
k = O  ~ e d k ,  n 

where 6 ranges through the set A k,, of (~) vertices of the cell 

(a, b] = ((a~, ..., a,), (bt, ..., b,)] 

which consist of k ai's and n -  k b~'s. As the Stieltjes measure of (a, b] with respect to 
the joint distribution function F1 ..... ,, (6) is nonnegative. Now the lemma applies, and 
we conclude tha t f i s  completely monotone on [0, ~ ) .  

D E F I N I T I O N  1. A strict t-norm T is m-monotone if for every cell (a, b] = ((al, . . . ,  
am) , (b, ,  . . . ,  bin) ] in I m, 

m 

( - 1 )  k E T ( 6 ) > ~ 0 ,  (7) 
k = O  ~ , d k .  ra 

where 6 ranges through the set rig, m of those (~) vertices of (a, b] which consist of  
k ai's and m - k  bi's. If  T is m-monotone for every m>~ l, then we shall call T com- 
pletely monotone. 

COROLLARY TO T H E O R E M  1. I f  a strict t-norm T is admissible over a se- 
quence {F.} o f  continuous distribution functions, then T and its generator(s) are com- 
pletely monotone. 

L E M M A  2a. Let  T be a completely monotone t-norm and let {G,} be a sequence o f  
distribution functions. Then T is admissible over {G,}. 

Proof. Given a completely monotone t-norm T and sequence {G,}, define, for 
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m =  1, 2,... and each m-element set {nl,. . . ,  nm} of positive integers, a function Fn, ..... nm 
o n E m b y  

Fni . . . . .  nat ( X l ,  " " ,  X m )  : ZIG1 (xl)  . . . . .  Gm(xm)]. 

Then the collection 

F = {F,j ..... n,~ :nl  . . . .  , nm are distinct positive integers} 

clearly satisfies items a, b, c, e, a n d f o f  the hypothesis of  the Kolmogorov Theorem as 
found in Tucker [13], p. 30. It remains to be seen that item dis also satisfied. 

Let m be any positive integer and let 

(a, b] = ((a I . . . .  , am) , (b 1 . . . .  , bin) ] 

be an arbitrary m-dimensional cell in Em. Then for given nl < ' "  < nm, 

((F,, (a~),..., F,at (am)), (F,~ (b~), ..., F,.. (bm))] 

is a cell in I m and, by (7), 

(-1¢ E 
k=O ~ A k ,  rn 

where 3 ranges through the set Ak, m of those (~') vertices of  the cell 

((Fnl (al), ..., Fn,, (am)), (F~, (bl), ..., Fnm (bm))-] 

which consist o f k  F~, (ai)'s and m - k F~, (bi)'s. But this means 

( - 1 )  k E F,, ..... nm(6)~>O, 
k=O J e A k ,  rn 

where, in this expression, 5 ranges through the set A k, m of those (~') vertices of  the cell 
(a, b] which consist o f k  ai's and m - k  bi's. 

Thus, the Kolmogorov Theorem applies to the collection F and there exist a 
probability space (f2, d ,  P )  and random variables X~ over f2 whose distribution func- 
tions and joint distribution functions are, with corresponding indices, those in F. 
Therefore Tis admissible over (G~}. 

DEFINITION 2. Suppose 0~<a~<b ~< 1. In the class of functions T(xx,. . . ,  Xm), 
define 

dk (a ,b )  T(Xl , . . . ,Xm)  
= T ( X , , . . . , X k _ t , b ,  Xk+I, . . . ,Xm)--  T (X~ , . . . , Xk - I , a ,  Xk+I , . . . ,X , ) .  

We shall write Aakbg for Zt k (ak ,  b k )  and note that these operators commute:  

AakbkAajbjT (xl,  ..., Xm) = AajbjAakbkT (Xl, ..., Xm). 
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LEMMA 2b. Let m>~ 1. Suppose T is any function which carries I" into E 1 and 
suppose the cell ((al,. . . ,  am), (bl,..., bm)] liesin Im. Then 

ra 

E (--1)  k E T( f )=AambmAa , , - l bm- l " "Aa lbxT(x t  .... . x . ) .  (8) 
k = O  ~ E: ~k,  m 

where 5 ranges as in (7). 
Proof. If m = 1, clearly (8) holds. Assume for arbitrary q that (8) holds for all 

functions carrying 14- ~ into E ~. Let T be any function from I q into E 1 and let ((al,..., 
as) , ( b l ,  . . .  , bq)] be a cell in I q. Then Tb and T a, given respectively by 

T(xl , . . . ,  xq_l, bq) and T(xl , . . . ,  xq_l, aq), 

are q -  1 place functions to which the induction hypothesis applies: 

q q - - 1  q - 1  

E ( - 1 )  k E T ( 6 ) =  Z ( - 1 )  k Z Tb(6)--~_, ( - -1)  k E T.(5) 
k = 0  ~ E A k ,  q k = 0  t$ ~ Ak, q - 1  k = O  ~ a A k ,  q-i 

= ... .... , x _i) -- Aa _Ib _, ... AalbiT.(**, ..., 

= Aaq_ xbq- 1... Aa lbl T ( x D . . . ,  x a- ,, b~) - A a  a_ 1 bq_ ~... Aa 1biT (xt , . . . ,  x , _  1, aq) 

= AaqbqAaq-lbq-t ... A a l b i T ( x l ,  ..., xq-a, xq). 

LEMMA 2c. Let m >~ 1. I f  f is completely monotone from [0, oo] onto [0, 1], then 

o a [ 
l(x,)  =f , [ f_ l (X l ) ] . . . f , [ - - - f -~ (Xk)]  (9) 

/>0 

for all (xl, ..., Xm)eI" and 1 <<,k<<.m. Moreover, if 

((al, ..., am), (bx, ..., bm)] is a cell in I m, then 

Aa, ,b , , . . .Aatbl f  L~=l f - l ( x j ) ]  >10. 

m I1~. 
Proof. We shall write simply ~ for ~j= x f -  t (x j). The first assertion obviously 

holds for k = 1. Suppose 1 ~< q ~< m - 1 and (9) holds for k = q -  1. Then 

0 ( ~ ~ ) 0 f(q-1)(~) 

Oxq a~_~ Ox z f ( Z )  = f f ~ x ~ f , [ f _ l ( x , ) ] . . . f , [ f _ t ( x q _ l ) ] ,  

which by the chain rule is the desired 

f(q) (8) 
f '  I 'f -1 (Xl)] ... f '  [ f - t  (xq)] " 
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It follows for odd q that both numerator and denominator are nonpositive, and for 
even q, both nonnegative. Thus (9) holds. 

To prove the second assertion, first note 

0 t3 
- -  Aa,,bmf(~) >1 O, 

Ox,,_ 1"" Oxl 
since by (9), the function 

0 0 
- -  f ( ~ )  . o .  

Ox,,_ 1 Oxl 

is nondecreasing in xm. Suppose now for 2 ~< k ~< m that 

Then the function 
OXk-1 OXl 

0 0 
. ° °  

OXk- 2 OX 1 

is nondecreasing in Xk-1, SO 

O O 
, o o  

OXk-2 OXl 
whence 

Aamb m . . .  Aakbkf(Z ) ~ O. 

- -  Aa,,b,, ... Aakbkf(~ ) 

Aak- l bk- ~ Aambm ... Aakbkf (~) >>- O, 

0 0 
- -  A a m b  m . . .  A a k b k A a k _ i b k _ l f ( ~  ) >f O. 

OXk-2 OXl 

Interpreting d/Oxo as the identity operator, we have Aambm... Aalbi f (S) >t O. 
We now rephrase Theorem 2 as follows: 

T H E O R E M  2'. Suppose (F,) is a sequence of  distribution functions. I f  T is a 
strict t-norm with completely monotone generator f ,  then T is admissible over (F,} and f 
is admissible over {F,}. 

Proof. We intend to show that Tis completely monotone. Then, by Lemma 2a, Tis 
admissible ove~ {F,}. Consequent ly,f  is admissible over (F,) .  

Let (a, b] =( (a l ,  . . . ,  am), (bi, . . . ,  bin)-] be a cell in 15  By Lemma 2b, 
n l  

( - - 1 )  k Z T ( 6 ) = A a , ~ b m A a m - l b m - l ' " A a l b l T ( x a , ' " , x m ) "  
k = O  6~ Ak, m 

By Lemma 2c, the right side is nonnegative, since 

for all (x~, ...,  x,,) in Im. 
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L E M M A  3a. ([2, p. 245]) Let - oo <~ a ~ b ~ oo. Suppose f ,  g, and ~ are nonnegative 
over [a, b] and ct (b) - ~ (a) <~ 1. I f  ~ is nondecreasing on [a, b] and both f and g are non- 
increasing on [a, b], then 

b b b 

f f(t)g(t) ff(t)as(t)fg(t)d ,(t). 
a a ,,i 

L E M M A  3b. 
only i f  

([14], p. 160) A function f is completely monotone on [0, oo) i f  and 

O0 

f ( x )  = f e -x' do~ (t), (101 

o 

where o~ ( t ) is bounded and nondecreasing and the integral converges for 0 <~ x < oo. 

T H E O R E M  3a. Suppose f is a completely monotone function from [0, oo) into 
(0, 1 ]. Then f ( x + y) ~ f ( x ) f ( y ). I f  T is a strict t-norm generated by f ,  then r ~ Product. 

Proof. For  such a function f ,  we have f (0)~<l ,  so that  in Lemma 3b, we have 
0¢ (oo) - ~(0) ~< 1. Thus Lemma 3a applies with f (t)  = e -  ~ t and g (t)  = e -  yt and we con- 
clude t h a t f  (x + y) >~f (x) f (y). 

Then, for a, b e I, we set x = f - x (a) and y = f - 1 (b) to get 

T ( a ,  b) = f [ f - 1  (a) + f - ~  (b)] t> ab.  

T H E O R E M  3b. Suppose f is a completely monotone function from [0, oo) into 
[0, oo). Then 

f ( x  + y) ~ [ f ( x  + my)] l /m[f (x)]  t/" 

for all x, y >10 and positive real m and n satisfying 1/m + 1/n = 1. 
Proof. For  fixed x I> 0 and variable y 1> 0, the func t ion f (x  + y) is completely mono-  

tone and therefore can be represented 
1 

f ( x  + y ) =  f t y d~x(t) ,  
o 

where % is bounded  and nondecreasing on [0, 1]. (This integral arises f rom (10) by a 
simple change of  variable.) 

We shall apply the following form of  H61der's Inequality:  

1 t 1 

(,3-< [f (,3]"" [f is (,3," 
o o o 
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where feL" ,  g e L  m, and 1/m+ l/n= 1. For f ( t )=t  y and g ( t ) =  I, 

1 1 1 

o o o 

i.e., 
f ( x  + y) < [ f ( x  + my)] ' /m[f(x)] 1/n. 

Taking Theorems 3a and 3b together, we now have Theorem 3. 

DEFINITION 3. Let {r,} be a moment sequence which satisfies r ,=So x t" 
dec(t), n=0 ,  1, 2,..., for some integrator ec(t) of bounded variation on [0, 1] with 
ec(0)=ec(0+)=0 (as in [14, p. 100]). We shall call {G} a strict moment sequence if 
the function 

1 

f ( x )  = [" t x dec(t) 
t /  

o 

is strictly decreasing from f ( O ) =  1 to f (oo)=O.  We define the t-norm generated by 
{r.} to be the strict t-norm generated byf.  

DEFINITION 4. ([3]) A strict generalized moment sequence is a collection 
{r(n, y)}y~, of sequences such that {r(n, y)} is a strict moment sequence for each 
fixed y in (0, 1). 

LEMMA 4a. Suppose {r (n, y)}y~ z is a strict generalized moment sequence. Let ecy 
be an integrator which corresponds to {r(n, y)} in the sense of Definition 3. Then the 
sequences {r(n, Y)}y~t, for 0 < y <  1, all generate the same t-norm T if and only if  for 
each such y there is a number u(y) in (0, 0o) satisfying ecy(t)=0q/2 (t "~') for all t in 
[0, 1]. 

Proof. For 0 < y  < 1, extend r(n, y )=  ~'o 1 t" decy(t)to 
1 

r ( x ,  y )  = t x aecy(t). 

0 

Then r (x, y) generates the same T as r(x, ½) if and only if there exists v (y) in (0, o0) 
satisfying r(x, y)= r(v (y)x, ½), since, as is easily established by Cauchy's functional 
equation, if f and g generate the same T, then g(x )=f (vx )  for some positive constant 
v. Hence, 

1 1 

f t x decy (t) = f t v(y)x decl/2(t ) 
o o 
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so that ~y(t)=~l/2(tl/v(Y)). (See, for example, [14], p. 63.) 

L E M M A  4b. Suppose T is a strict t-norm'generated by each of the strict moment 
sequences of  a strict generalized moment sequence {r(n,y)}y~. Then the mapping 
y--* u(y) defined in the proof of  Lemma 4a by r(x, y )=r(u(y )  x, ½) carries (0, 1) onto 
(o, 0o). 

Proof Let u~(0, oo) and set y=r(u,  ½). Then T(1, y)=r(Uo ½) and u must be the 
only solution to the equation T(1, y ) =  r (x, ½) since the right side is strictly decreasing 
in x. But r(x, y) must equal r(sx, ½) for some s and all x in [0, oo], so we conclude 
that r(x, y)=r(ux,  ½) for all x in [0, oo). 

L E M M A  4c. Suppose ~ is a nonconstant nondecreasing function on [0, 1]. Suppose 
g and h are strictly increasing continuous functions from [0, 1] onto [0, 1] and that 
g ( t ) = h ( t )  at only one point t= t  o in (0, 1). Finally, suppose ~t[g(t)]=~[h(t)] for 
every t in (0, 1). Then ~ has only one point of  increase in (0, 1). 

Proof Writing k ( t ) = g [ h - l ( t ) ] ,  we have ~[k(t)]=ct( t)  for every t i n  (0, 1). 
Moreover, 

k ( t ) < t  for 0 < t < t o  [ k ( t ) > t  for 0 < t < t o  
case i) k ( t ) = t  for t = t o  or case ii) k ( t ) = t  for t = t o  

k ( t ) > t  for t o < t < l  k ( t ) < t  for t o < t < l .  

Let k 2 (t) denote the function k [k (t)] and for n = 3, 4, . . . ,  let k" (t) denote the 
nth iterate k [k"-  1 (t)] of k (t). Consider the equations 

(t) = ~t Ek (t)] = ~ [k 2 (t)] . . . . .  ~t [k n ( t)] .  (11) 

In case i) we have l im,_ .®k"( t )=0  for 0~<t<to and l i m , _ ~ k " ( t ) =  1 for to<t<<.l. 
Therefore, by (l l), 

~ ( t o - - ) = ~ ( 0 + )  and ~ ( t o + ) = c t ( 1 - ) ,  

which is to say that ct has only one point of increase in (0, l), namely to. We obtain 
the same conclusion in case ii), wherein l im.- .~k"( t )=k( to)=to for 0 < t ~ t o  and 
for to~<t<l .  

We now rephrase Theorem 4 as follows: 

THEOREM 4. Suppose a strict t-norm T is admissible over a sequence {X.} of  
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random variables whose distribution functions are continuous. Then there exists a strict 
t-norm T* which is admissible over { - X , }  i f  and only i f  T * =  T=Produc t .  In other 
words, i f  the sets [Xn <<. x,] = {co E f2: X ,  (09) <<. x,} are jointly distributed by T #  Product,  
then their complements [ X , > x , ]  are jointly distributed by no t-norm. (In fact, the 
p roof  will show that not even a collection of  such sets all having the same probability 
need be so jointly distributed.) 

Proof. Let T be a strict t-norm. Given any generator of  T we can easily construct, 
via Lemma 4a, a strict generalized moment  sequence { r (n, y)}y ~ x each of  whose strict 
momen t  sequences, for 0 < y < l ,  generates T. Let ~y be an integrator which cor- 
responds to {r(n, y)} as in Definition 3. That  is, for all (c, d) in 12, 

where 
T (c, d) = f y [ f f - '  (e) + f~-l  (d)],  

1 

= r(x ,  y) = f t ~day(t) ,  0 < y < 1. fy(x)  

0 

We already have ~y(0+) - -ay(0)  by Definition 3. Let us note also that  a y ( 1 - ) =  
=ay(1)  since 0 = f y ( o o ) = a y ( 1 ) - ~ y ( 1  - ) .  Thus neither 0 nor  1 is a point  of increase 
of ay. 

Suppose {)in} is a sequence of  r andom variables whose distribution functions are 
continuous and that  T is admissible over {Xn}. Now suppose y in (0, 1) is arbitrary 
(but we reserve the right to fix its value later). Choose xl, x2,..,  satisfying 

P[X~ ~< x~] = y ,  n = 1, 2 , . . . .  

Let A" denote the usual nth order difference operator  ([14], p. 101). Then the events 
{[X~> xn]} are admissible under  the sequence 

{e(n, y)} = { ( -  1)"A"r(0, y)},  (12) 

in the sense that  the probability of  any n-fold intersection of these events is given 
by the nth term of  (12). An integrator for (12) is 

fly(t) = 1 - ~y(1 - t) .  

By Lemma 4a, the sequence {Q (n, y)} generates the same T* as {0 (n, ½)} if and only 
if there is a number  u in (0, ~ )  satisfying 

fly(t) = fll/2 (tu), 
or equivalently, 

Also by Lemma 4a, 

c t y ( l - - t ) = a l / z ( 1 - - t  u) fo ra l l  t e I .  

oe,(t) = oql2 (t ~) 
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for some number  v in (0, ~ )  so that  

0 ~ 1 / 2 ( 1  - -  t u) = ~ 1 1 2 ( 1  - t) v for all t e l .  (13) 

We shall use (13) to show that  0q/2 has only one point  of increase in (0, l). Suppose 
to and t 1 are points with 1 - t u = ( 1 - t )  ~ for t=to and t=q .  Then the function 

log (1 -- t u) 
gy(t) = logl_t (1  -- t " ) -  

l o g ( l - t )  

assumes the value v for t = to and t = ft. In accord with Lemma 4b, we now choose y 
to satisfy u(y)=2.  Then 

log (1 - t) + log (1 + t) 
gy(t) = 

l o g ( l - t )  

Clearly the one-to-oneness of  the function 

log (1 + t) 

log (1 -- t) 

is equivalent to that  of gy. Thus the hypothesis of  Lemma 4c holds with ct=~1/2, 
g ( t ) = l - t  u and h ( t ) = ( l - t )  v. Therefore ~112 has only one point  of  increase on 
(0, 1). We noted early in the p roo f  that  ~1/2 has no point  of  increase at the endpoints  
0 and 1. Therefore, as an integrator, ~1/2 determines a geometric  sequence, which 
makes T =  Product.  

with the Borel-Cantelli Lemma,  if Proof of Theorem 5. Part (i). Beginning 
~,~1 [1 - F~(x,)] < 0% then 

which implies 

0 = P [X~ > xi inf. oft.] 
= 1 - l im lim P [X,, ~< x.,, ..., X.  ~< x.] 

m --a, O0 n-.~ O0 

= 1 - l im lim f - 1 [F~ (x~ 

= lim lim ~ f - 1  [F , (x , ) ] ,  
m--~00 11-400 i = m  

o o  

E f - l [ F ' ( x ' ) ]  < oo. 
t = 1  

Part (ii). P[Xi>x~ inf. oft.] > 0  is equivalent to 

lim lim E f - ~  [Fi(x,)]  # O, 
m-t .¢O M.,..~O0 i = t l ,  i 
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which is equivalent  to 

f - 1  IF1 (x,)] = or .  
i = 1  

Part  (iii). Supposing Zi~1 [ 1 - F i ( x i ) ]  = ~ ,  we have 

oo = ~ - l o g F , ( x i )  
i = 1  

oo _ l o g  F~ ( x i )  

=E 
i = 1  n 

~< ~ f - a  IF  i (x i ) ] .  
i = 1  

The au thor  is very grateful to the referees for their helpful suggestions during 

the preparat ion of  this paper. 

REFERENCES 

[1 ] ACZI~L, J., Lectures on Ftmctional Equations and Their Applications (Academic Press, New York 
- London 1966). 

[2] APOSTOL, TOM M., Mathematical Analysis (Addison Wesley, Reading, Massachusetts 1957). 
[3] ELS~ERG, S. M., Moment Sequences and the Bernstein Polynomials, Canad. Math. Bull. 12, 

401--411 (1969). 
[4] FELLER, W., An Introduction to Probability Theory and Its Applications, Vol. IL (John Wiley 

and Sons, New York 1968). 
[5] DE FINETrI, B., Funzione caratteristica di un fenomeno aleatorio, Mem. Reale Academia Naz. 

Lincei, Ser. 6 4, 251-299 (1931). 
[6] IO~mERLING, C. H., On a Class of  Associative Functions, Publ. Math. Debrecen (to appear). 
[7] LING, Cno-HsIN, Representation of  Associative Functions, Publ. Math. Debrecen 12, 189-212 

(1965). 
[8] MENGER, K., Statistical Metrics, Proc. Nat. Acad. Sci. U.S.A. 28, 535-537 (1942). 
[9] MOSTERT, P. S. and SmELDS, A. L., On the Structure of  Semigroups on a Compact ManifoM 

with Boundary, Ann. of Math. 65, 117-143 (1957). 
[10] SCnW~IZER, B. and SKLAR, A., Associative Functions and Statistical Triangle Inequalities, Publ. 

Math. Debrecen 8, 169-186 (1961). 
[11] SCnWEIZER, B. and SKLAR, A., Associative Functions and Abstract Semigroups. Publ. Math. 

Debrecen 10, 69-81 (1963). 
[12] STOREY, C. R., The Structure of  Threads, Pacific J. Math. 10, 1429-1445 (1960). 
[13] TUCKER, H. G., A Graduate Course in Probability (Academic Press, New York 1967). 
[14] WINDER, D. V., The Laplace Transform (Princeton University Press, Princeton 1946). 

University o f  Evansville 


