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First I n t e g r a l s  in  the Discrete Variational Calculus 

JOHN DAVID LOGAN (Tucson, Arizona, U.S.A.) 

Abstract 

The intent of this paper is to show that first integrals of the discrete Euler equation can be deter- 
mined explicitly by investigating the invariance properties of the discrete Lagrangian. The result 
obtained is a discrete analog of the classical theorem of E. Noether in the Calculus of Variations. 

1. Introduction 

Due to its application to optimization and engineering problems, and because of 
recent emphases on numerical methods, the discrete calculus of variations has 
become an important mathematical discipline (Cadzow [1 ]) in the analysis of discrete 
systems, i.e., systems governed by difference equations. Briefly, the central problem in 
the discrete calculus of variations is to determine a finite sequence ru_l ,  r M .... , r N of 
real numbers for which the sum 

N 

J { r , } =  Z f ( n ,  rn, Lrn), L r ~ = r n - 1  (1.1) 
n = M  

is extremal, where the given function F(x ,  y, z)  is assumed to be continuously differen- 
tiable. A necessary condition for J to have an extremum for a given sequence {r,}, 
n = M -  1, M, .... N is  that {rn} satisfy the second-order difference equation 

F,(n,  rn, r . _ l )  + Fz(n + 1, r .+ , ,  r .)  = 0 n = M . . . . .  N - 1 (1.2) 

where we have denoted 
OF (x, y, z)  . . . .  y . . . . . . . . . .  

F,(n ,  r,, r , _ l )  = t3y 

and 

F : ( n +  X, rn+ r~) = O F ( x ' y ' z ) -  
1 '  ~ Z  Xmn+ 1, y = r n +  1, Z = r n  " 

Equation (1.2), which is in general nonlinear, is called the discrete Euler equation 
because of  its similarity to the classical Euler equation of the Calculus of Variations. 
Its derivation has been carried out (see Cadzow [1]) by treating J as an ordinary 
function of the N - M +  1 variables r M_ 1,,ru,..., rN and applying the usual rules of  the 

Calculus, namely 0J 
- 0 ,  n =  M - 1 , M , . . . , N .  

Or, 
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In the present paper, however, an attempt is made to derive the discrete Euler 
equation via a variational approach and thereby generate the proper boundary terms 
which are necessary for obtaining conservation theorems, i.e., first integrals of  the 
discrete Euler equation, from a study of the invariance properties of  F. In addition, 
the variational approach affords a discussion of  higher order discrete problems and 
their integrals. The catalytic factor in formulating this approach is a discrete version 
of Lagrange's identity for difference operators and their adjoints. In Section 2 some 
essential facts from the finite difference calculus are reviewed, while in Section 3 the 
first order discrete variational problem is discussed. A theorem similar to the classical 
Noether theorem on invariant variational problems is presented in Section 4, thereby 
generating first integrals of the discrete Euler equation. Section 5 contains a discussion 
of a discrete problem in which the Lagrangian depends on a vector sequence 
(ral, 2 K r . . . . . .  r n }. First integrals for these problems are also obtained from an invariance 
assumption. In Section 6 the problem in which the Lagrangian depends on higher 
order operators L q, where Lqrn = r n_ 4, is investigated. 

Instead of using the lag operator L, it is of course possible to formulate (1.1) in 
terms of the difference operator .4 defined by d r n = r n - r ~ _  1. Although the latter 
offers better analogy with the continuous case, the use of the operator L pays off in 
simpler computations, especially in the formulation of Lagrange's identity. 

2. Preliminary Remarks on Difference Operators 

An essential role in obtaining a discrete variational formalism is played by the dis- 
crete version of  Lagrange's identity for operators and their adjoints. A recent mono- 
graph by Miller [3] discusses adjoint difference operators in detail, so we will review 
in this section only the essential definitions and results which are required for our 
investigations of the one dimensional problem. 

We shall consider a p-th order linear difference operator R defined by 

R = a o ( n ) L  ° + a l ( n ) L  1 + . . . +  a p ( n ) L  p (2.1) 

where L is the lag operator defined by 

Lqrn = rn_ ~ . 

The coefficients a i (n), 0 ~< i ~<p, are assumed to be defined on lp+ m = {P + m, p + m + 1, 
...} where me I =  (integers}. It is also assumed that 

a 0 (n) ap (n) # 0,  n e l p + ,  (2.2) 

in order that R be of order p. The adjoint operator R* is defined in analogy with the 
theory of  ordinary linear differential operators. 
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DEFINITION (2.1). I f R  is given by (2.1), then the adjoint R* of  the operator R is 

R* = a*(n)  L ° + a* (n) L 1 + . . . +  a* (n) L p (2.3) 

wherea* ( n ) = a p _ , ( n + p - i ) ,  O<~i<~p,n~Ip+m. 
Clearly, R* is also of the p-th order since, from (2.2), 

a ~ ( n ) a * ( n ) = a p ( n + p ) a o ( n ) ¢ O ,  n~Ip+,,. 

Lagrange's identity follows directly. 

THEOREM 2.1. Let R and R* be defined by (2.2) and (2.3) and let t .  and s. have 
domain I m. Then 

s .Rt ,  - t,R*s.+p = AB(t , ,  s . ) ,  nelm+p (2.4) 
where 

p i 

B ( t . , s . ) = -  Z E s . _ j + i t . _ & , ( n - j  + i) (2.5) 
/ = 1  j = l  

and A is the difference operator, A r. = r._ 1 - r.. 
Equation (2.4) is Lagrange's identity and B (t., s,) is the discrete bilinear conco- 

mitant. Equation (2.4) will provide a mechanism analogous to the essential inte- 
gration by parts in the classical calculus of variations. That is, it will provide a method 
by which the variational derivatives can be isolated while at the same time certain 
boundary terms are generated. These variational derivatives and boundary terms will 
lead to discrete equations of motion and first integrals, respectively. 

3. The Fundamental Variational Equation 

The simplest problem in the discrete variational calculus is to select from among 
all finite sequences rM- 1, rM,..., rN the one which extremizes the sum 

N 

J { r , } =  E F ( n , r . , L r n )  (3.1) 
n = M  

where F is a given continuously differentiable function. Certain boundary conditions 
may be required, e.g., 

rM-1 = a rs = b (3.2) 
in a fixed endpoint problem. 

The approach to the discrete problem is similar to that of  the continuous problem. 
We embed the sequence in a one-parameter family of  sequences and calculate the 
derivative of  J, or which is the same, of F along this family. More precisely, we define 
the variation 6r. of r .  by 

6r. = e~?., n = M - 1, M, ..., N 
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where e is a parameter and O. is a sequence of real numbers. The resulting variation of  
Fis then defined to be the linear part in e of the increment 

F (n, f., L f . )  - F (n, r., Lr , )  
where 

f . =  r, + Sr. .  

If  we denote this variation by f iF(fr ,) ,  then 

fiF (fir.) = OF (n,t3e f"' L/") ~= o" (3.3) 

From (3.3), it is not difficult to show, by the chain rule and by the fact that the opera- 
tions L and fi commute, that 

fiF (fir.) = F, (n ,  r,, r , _ , )  fir. + Fz(n, r., r . _ , )  L fir,. (3.4) 

A procedure analogous to the integration by parts in the classical calculus of varia- 
tions can be performed on Equation (3.4) using the results mentioned in Section 2. 
We notice that fiF(fir.) in (3.4) can be written 

fiF ( f ir . )= R (fir.) (3.5) 

where R is the difference operator 

R = F, (n ,  r., r , _ a ) L  ° + F~(n, r,, r . _ l ) L  ~ . (3.6) 

According to Definition (2.1), the adjoint of R is given by 

R* = Fz(n + 1, r.+ ,, r.) L ° + Fy(n, r,, r . _ , )  L' . (3.7) 

Therefore, by Lagrange's identity (2.4) with s . =  1 and t. = & , ,  equation (3.4) can be 
written 

R (fir.) = fir.R* (1) + AB (fir., 1) (3.8) 
where 

B(fir. ,  1) = - f i r ._ lF, (n ,  r., r ._ l ) .  (3.9) 

Thus, from (3.5), (3.7), (3.8), and (3.9) we conclude that 

6F(fir ,)  = [Fy(n, r,, r , -1 )  + Fz(n + 1, r,+~, r.)] fir. + A [ -  f i r ,_ lF,(n ,  r., r ._ l ) ] .  
(3.10) 

This is the fundamental variational equation for F. The expressions 

~k. - F,(r ,  r., r . _ l )  + F~(n + 1, r.+l, r.) (3.11) 

n = M -  1 ..... N, will be called the discrete variational derivative. 
In order to obtain the discrete Euler equations, which represent a necessary con- 
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dition for J to be extremal, we define the variation of  J by 
N 

~J(~r.)  = E ~F(~r.) .  
n = M - 1  

Using (3.10) and (3.11), we obtain 

N 
zJ(~r , )  = Y, g,.~r. + ~rM-ir~(M, ~M, ~M-1) - ~r,,_,Fz(N, ~N, rN_~). 

n = M - 1  

By requiring that 5J vanish for all cSr,, it follows that 

ft. = O, n = M - 1 . . . . .  n. (3.12) 

These equations represent the Euler equations for the discrete problem defined by 
(3.1). I f  g%=0 for all n, then the condition that ¢5J=0 takes the form 

t~r,-1Fz(M, rM, rM-1) -- 5rN-1Fz(N, rN, rN-1) = 0, 

from which it follows that 

F~(M, ru, r u _ l ) = O ,  Fz(N,r~v, rN_~)=O (3.13) 

since the 5r, are arbitrary. 
Analogous to the continuous case, equations (3.13) are called the natural boundary 

conditions. In a problem with varied endpoints, i.e., where rM_ ~ and r N are not fixed, 
conditions (3.13) serve to determine the two arbitrary parameters which arise in the 
general solution of the second order difference equation, equation (3.12). In the case 
where both endpoints are fixed, the conditions given by (3.2) are used to select the 
free parameters in the solution of  the discrete Euler equation. On the other hand, if 
only one endpoint is fixed, e.g., ru_~=a, then the boundary conditions become 

ru_ 1 = a  and Fz(N, rN, rn_ l )=O.  

4. First Integrals 

In the classical calculus of  variations, E. Noether [4] in 1918 showed that if the 
variational integral is invariant under a r r  parameter infinitesimal group of  transfor- 
mations, then n combinations of the variational derivatives can be written as diver- 
gences. This is the well-known Noether theorem. Under the assumption that the 
equations of  motion hold true, the it identities reduce to conservation laws, or ex- 
pressions which are constant on the extremals. These conservation laws, which are 
first integrals of  the equations of motion, follow therefore only from the invariance 
properties of  the variational integrals. (Recent accounts of  Noether 's  work can be 

found in Logan [2] or Rund [5].) 
For  discrete systems, similar conclusions can be drawn. In this section it is shown 
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that a systematic procedure for the establishment of first integrals of the discrete 
Euler equation can be developed from a direct study of the invariance properties the 

discrete Lagrangian F(n, r., Lr.). 
Let u (n, r.) be a sequence depending upon n and r., n-- M ..... N -  1. 

DEFINITION 4.1. The discrete Lagrangian F(n, r., Lr.)  is difference-invariant 

with respect to the infinitesimal transformation 

P. = r. + eu (n, r .) ,  n = ' M  ..... N - 1 (4.1) 

if there exists a sequence v (n, r.), n = M ..... N -  1 such that 

6F(eu (n, r . ) )= ~Av (n, r.) (4.2) 

for each n, where 6Fis given by (3.10). 
The following theorem, which is analogous to the classical Noether theorem, is 

valid. Actually, the following theorem is more similar to a statement about conser- 
vation laws, which in the continuous case follows as a corollary to the Noether theorem. 

THEOREM 4.1. I f  F(n, r., Lr.)  is differenee-invariant with respect to the trans- 
formation (4.1), and if ~O.=O, n= M ..... N -  1, then 

u ( n - l , r , - , ) F ~ ( n , r . , r . - 1 )  + v ( n ' r . ) = c ° n s t a n t  } (4.3) 
n = M  ... . .  N -  1. 

Proof. From (4.2) and (3.10), 

~,.eu (n, r.) + A [ -  eu (n - 1, r._ 1) F, (n, r., r._ 1)] = eAv (n, r.).  

Simplifying and using the hypothesis qs, = 0, one obtains 

A(u(n  - 1, rn_,) V,(n, rn, rn- ,)  + v(n, rn) ) = O, 

whence (4.3) holds. This completes the proof. 
Equation (4.3), which is a first-order difference relation, represents a first integral 

of the second-order discrete Euler equation given by (1.2). We now illustrate this 

method by the following example. Let 

N 
J = ~', ½ran (r, - r._ z) 2 (4.4) 

n= l  

where ml, ..., mu are given constants. From (1.2), the discrete Euler equation is the 

second-order difference equation 

m. ( r  _ r , _ l ) _ m . + x ( r . + l - r . ) = O  , n = l  .. . . .  N - 1  (4.5) 
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which, if desired, can be solved by classical techniques or the z-transformation method. 
On the other hand, direct verification shows that 

F (n, r n, L r . )  = ½mn (r n - Lrn) 2 

is difference-invariant (with v -  0) with respect to the infinitesimal translation 

f n = r n + e .  

Therefore, by Theorem 4. l,  we immediately obtain a first integral of (4.5), 

Fz (n, r., r~_ 1) = constant 

o r  

- m~ (r. - r,_ 1) = constant.  

Due to the discrete nature of the problem in the variable n, it is not possible to 
vary n continuously, and consequently we have not obtained the 'energy' integrals as 
in the classical, continuous calculus of  variations, but only the 'momentum'  integrals. 
In addition, we note that v(n,  r . )  in the invariance assumption of  Definition (4.1) 
could also depend upon r n_ 1 and not affect the order of the first integral. However, the 
sequence u (n, G) in the invariance transformation given by equation (4. l) can depend 
only upon n and r . ;  otherwise the first integral would not be one degree less than that 
of  the Euler equation. 

5 .  A M o r e  G e n e r a l  P r o b l e m  

In this section we discuss a discrete variational problem in which the Lagrangian 
depends on several 'discrete' functions r~, r~ .. . .  , r,  K, More precisely, the problem is to 
select a vector sequence {r), r )  . . . . .  rff}, n = M -  1 . . . . .  N for which the sum 

N 
J ~ F ( n ,  1 r 1 r . ,  L r . ,  L r~ )  (5.1) 

n=M 

is extremal, where the given function F ( x ,  y l  . . . . .  yx, zl . . . . .  zr)  is continuously 
differentiable. After determining the discrete Euler equations for this problem, we 
derive first integrals by again investigating the invariance properties of  F. 

For  simplicity, we denote 
, 2 ~} r. = {r~, r . . . . . .  r 

and 
Lr'n = {Lr.,1 Lr2 Lr.r} .  

Proceeding in a fashion similar to Section 3, we define the variation of F with respect 
to the infinitesimal transformation 
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a s  

6F (6r'.) = 8F (n, f~, L r~) . 
~8 e=O 

Using the commutativity of L and t5 and the chain rule for derivatives, we obtain 
K 

6F(fir',) ~ [FrA(n, ' ' a ' Lr',) Lfra.].  = r., Lr.)  6r. +.F~A (n, r,, 
A = I  

Applying Lagrange's identity (2.4) to each term in the above sum, we get 

6 F ( f r ' )  = ~ [Fra(n, r', r ' - l )  + FzA(n + 1, r'~+~, r')'l 5r• ] 
a = 1K ] (5.2) 
+ v , t r -  a , , 6r._lr=A(n, r., r . _ , ) ] .  

/ _ . /  L 

A = I  

The variation 6J of the sum J given by (5.1) can be calculated as in Section 3, and by 
imposing the requirement that 6J vanish for all 6r~, the following set of discrete Euler 
equations for the variational problem can be obtained: 

~k., a =- FyA(n, r'., r'._~) + F~,(n  + 1, r',+,, r',) = 0 (5.3) 

where A =  1, 2 ..... K; n = M -  1 . . . .  , N. As before, first integrals of  this system of 
difference equations can be obtained if the Lagrangian F is invariant under certain 
transformations. In the present case, because of the large number of  variables in F, it 
is possible to have invariance under infinitesimal transformations having several 
parameters. 

Let u~(n, r'),  A =  1, 2 . . . . .  K; ~= 1 . . . . .  F be a sequence depending upon n and r' ,  
n = M -  1,..., N, and let e~, ~ = 1 .... , F be essential parameters. In the following we 
will assume the summation convention of summing over repeated indices on different 
levels. 

DEFINITION 5.1. The Lagrangian F(n, r', Lr ' )  is difference-invariant with 
respect to the infinitesimal transformations 

- a ~ a ( n ,  r' ,)  ( 5 . 4 )  rn A = r n -{- 8 U~ 

if there exists a vector sequence v~(n, r~), ~t= 1 ..... F such that 

= r'.) (5 .5 )  
for each n. 

The following theorem gives conditions under which explicit first integrals of  (5.3) 
can be obtained. 

THEOREM 5.1. I f  F(n,  r', Lr~) is difference-invariant with respect to the F-para- 
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meter infinitesimal transformations given by (5.4), and i f  ~b., a = 0 for  all n and A,  then 

u~ (n - 1, r '_  1) F,~ (n, r'., r'._ 1) + v~ (n, r'.) = constant (5.6) 
ct= 1,..., F. 

From (5.5) and (5.2), it follows that 

~]n,  ct A t t t AS U~ + d [ - -  e'ua.(n - 1, r . -1 )  F,A(n, r., r n _ l )  ] = 8~Apa(n, r~t ) . 

Since ~.,A = 0 and the parameters s~ are independent, we conclude that 

A lug (n - i ,  r',_x) F,A (n, r'n, r '  n_,)  + v~ (n, r ' , ) ]  = O. 

Therefore (5.6) holds true, and this completes the proof of  the theorem. The expressions 
(5.6) represent r first integrals of the system of difference equations 4 , , a  = 0. 

6. Higher Order Discrete Problems 

In this section we deal with a discrete Lagrangian 

F (n, r,, Lr, ,  L2r. . . . . .  LPr,) (6.1) 

where L is the lag operator and F(x ,  Zo, zl . . . . .  Zr) is a continuously differentiable 
function of  the p +  2 variables x, Zo, zl, ..., zp. This case is analogous to the continuous 
variational problem in which the Lagrangian depends upon a function and its derivatives 
up to the p-th order. We shall show that the discrete Euler equation corresponding to 
(6.1) is a 2p-th order finite difference equation, and we shall derive an integral of the 
equation from an invariance principle. Although the problem discussed in this section 
is a special case of  the one in Section 5, it is sufficiently different to merit its own discus- 
sion. Moreover, the higher order problem especially reveals the important role played 
by Lagrange's identity. The range of the index n in the following discussion is omitted; 
we assume that the range is large enough so that the problem has meaning. 

The variation of  the Lagrangian (6.1) with respect to an infinitesimal transfor- 
mation 

f , =  r, + 6r, 

is defined as in Section 3. It is not difficult to show that 

6F (tSrn) = Fzk (n, r., Lr  . . . . . .  LPrn) 6I~r. (6.2) 

where the summation convention is assumed for k = 0, l, ..., p. Since 6L r.  = L 6r. for 
all k, it follows that Equation (6.2) can be written as an operator R acting upon the 
variations 6r. as 

6F (6r.) = R (6r.) (6.3) 
where 

R = F~k (n, r,, Lr ,  . . . . .  LPr,) I~. 
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According to Definition (2.1), the adjoint R* of R is given by 

R* = Fzp_k (n + p -- k,  r.+p-k, r ,+p-k-1  . . . . .  r . - k )  L k. (6.4) 

Therefore, by Lagrange's identity with s, = 1 and t. = 6r., we conclude that 

R ( 6 r . )  = 6r.R* (1) + AB(6r . ,  1) (6.5) 

where 
p i 

B(6r . ,  1) = - E ~ 6r._jF~,(n - j  + i, r._~+,, r._j+,_~ ..... r._j+~_p). (6.6) 
i = 1  j = l  

Consequently, the requirement that 6F(6r , )  vanish for all fir. implies from equation 

(6.5) that R* (1)=0, or 
p 

~.  = E Fzp-k( n + P - k, r.+p-k, r .+p-k-~ . . . .  , r . - k )  = 0. (6.7) 
k = 0  

Equation (6.7) is the discrete Euler equation of  order 2p for the p-th order discrete 

variational problem. 
We now give an invariance procedure for determining an integral of  equation 

(6.7). 

DEFINITION 6.1. The function F given by (6.1) is a difference-invariant with 

respect to the infinitesimal transformation 

e. = r. + eu (n, r.) (6.8) 

if there exists a sequence v (n, r., r._ 1 ..... r._ p) for which 

6F (eu (n, r.)) = eAr (n, r . . . . . .  r . _ . ) .  (6.9) 

From equations (6.5) through (6.7), it follows that equation (6.9) can be written 

e~.u (n, r.) + AB (eu (n, r.), 1) = ~Av (n, r . . . . . .  r ._p) .  (6.10) 

If  ~ .  = 0, then equation (6.10) becomes 

v(n ,  r., r . -1  . . . . .  r._p) 
p i 

+ Y', Z u ( n - j , r . _ j ) F z , ( n - j + l , r . + j - ~ , r . - j + l - ,  . . . . .  r._#+~_p) (6.11) 
i = 1  j = l  

= constant. 

Consequently, we can state the following theorem. 

THEOREM 6.1. I f  F is difference-invariant with respect to the infinitesimal trans- 

formation 
~. = r .  + ~u (n ,  ~.) 

then equation (6.11) is an integral of  equation (6.7). 
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The first integral represented by equation (6.11) is of  order 2 p - 1 .  For  this fact 
to remain true, it is essential that the sequence u(n, r.)  in the invariance transforma- 
tion depend only upon n and r. ,  and not on r . -1 ,  r . - 2  . . . . .  Otherwise, the first integral 
would have an order greather than or equal to the order of the Euler equation. 

An analysis of higher dimensional discrete problems is straightforward and will 
not be discussed in this paper. For  two dimensions, the fundamental problem can be 
briefly described as follows: Let {rm,.} be a sequence depending upon two indicies m 
and n. Further,  define the lag operators Lm and L .  by 

Lmrm, n = r r a _  l ,  n , Lnrm, n = rm, n_ 1 . 

If  F(x ,  y,  u, v, w) is a given continuously differentiable function, then the problem is 
to select a sequence rM,-a,ul,  r M , , u , - . . . . ,  rM,,u~ for which the sum 

MS N2 

J{rm, n} = Z Z F ( m ,  n, r . . . .  L,.r . . . .  Lnrm,.) 
mmM1 n = N !  

is extremal. In this case, the necessary condition takes the form of a partial difference 
equation, and first integrals can be generated from the invariance properties of F. 
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