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General theory of the translation equation 

ZENON MOSZNER 

Summary. This paper gives a survey of the results of the general theory of translation equation which 
appeared after 1973. 

Introduction 

In [41] I listed several mathematical domains (abstract geometric and algebraic 
objects, abstract automata,  groups of transformations, iterations, linear representa- 
tions of  groups, dynamical systems) in which the translation equation appears. I 
showed there also some directions of  the development of  the general theory of this 
equation. The bibliography in [41] contains papers in these directions published 
until 1973. So, in this survey we consider papers concerning the general theory of 
the translation equation which appeared after 1973 (both in the directions men- 
tioned in [41] and in new domains of this theory). 

The equation 

F(F(e, x), y) = F(~, x -  y), (1) 

where the unknown function F has its values in an arbitrary set F and is defined on 
a subset of the Cartesian product F x G, where G is a set with a binary operation 
" • ", defined for some pairs (x, y) e G x G, is called the translation equation (or the 

transformation equation). 
I f  the function F is defined on the whole set F x G and the operation " • " is 

defined for all pairs (x, y) e G × G, then the notion that F satisfies the translation 
equation needs no comments: both sides of the equation are defined and equal for 
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any c~ e F and x, y e G. The situation changes when we deal with the general case, 
as it has been formulated above. One can define in various ways what it means that 
the translation equation is satisfied, and in various fields of mathematics we do use 
various definitions. 

To this area belong the papers [27], [62], [82], [83], from which I quoted the first 
two in [41] with incomplete data. They give a complete system of definitions stating 
when the translation equation is satisfied, comparison of these definitions and their 
consequences, e.g. for the problem of extending solutions. 

I. Structure of  solutions 

The papers [60], [76], [65], [63], [64], [15], [80], [14], [5], [24], contain construc- 
tions of the general solution of  the translation equation on some algebraic struc- 
tures. No additional assumptions are supposed. I present here the result of one of 
these papers. The paper [80] gives some simplification of the construction of the 
general solution of  (1) in the case where G is a group (see [41]). It reads as follows. 

Let {G k }k ~ x denote an arbitrary family of subgroups of  the group G. We do 
not assume that the map k---,Gk is one-to-one, thus the map k ~G/Gk, where 
G/G, = {G,x: x ~ G}, is also not necessarily one-to-one. We shall introduce the so 
called indexed quotient structure (G/Gk, k):={(Gkx, k): x ~ G} for k ~ K. In this 
way we shall obtain a one-to-one map k ~ (G/Gk, k). 

The multiplication of indexed cosets by elements of the group G is defined in the 
natural way: 

(Gkx, k)y ,= (G~xy, k) for x, y 6 G, k ~ K. 

We choose 

(1) an arbitrary family {Gk }k ~ K of subgroups of  G such that 

card ~j (G/Gk, k) < card F; 
k ~ K  

(2) an arbitrary one-to-one map ~b: Uk,x(G/Gj,, k ) ~ F  and 
(3) an arbitrary function g: F---,F such that g(g) =g and 
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We define the function F by the formula  

F(~, x) . '=  q~[q~- L(g(~))x] for ~ ~ F, x ~ G. (2) 

I f  we know all solutions of  (1) on a structure G, it was shown in [60] how to get 
all solution of  this equat ion on the structure obtained by adjoining a zero 0 (i.e. we 
set 0 - x = x - 0 f o r x ~ G u { 0 } ,  w h e r e 0 ¢ G ) .  

In Chapter  VI I I  o f  [76] the general structure of  the solution of  (1) on G w {0} 
was given in the case where G is an Ehresmann groupoid.  

In [63] the general solution of  (1) was given in the case where card(G • G) = 1 
or ab = b for  all a, b 6 G or ab = a for all a, b ~ G. The paper  [5] generalizes these 
results to the case of  equat ion 

F(.. .  F(F(a, X l )  , x 2 )  . . . .  ) ,  X n )  = F ( o ~ ,  x 1 . x 2 . . . x n ) .  

Under  the assumpt ion  that  x l x 2 . . ,  x,, = x,, for all x~ . . . . .  x ,  ~ G we have the 
following result. 

A mapping  F: F x G ~ F is a solution of  the equat ion 

F ( . . .  F(F(~, x l ) ,  x 2 ) . .  ), xn) = F(~, x , )  

iff there exist a par t i t ion {F,. }i~ i o f  F, a family J o f  functions f :  F ~ F and a 
function h: G ~ J such that  the following condit ions are satisfied: 

(1) i f f e  J then f " - l ( F i )  c Fi and c a r d f ( F i )  = 1 for every i e I;  

(2) f~(f2)  =f~ (f3) for all f~ , fz , f3  ~ J: 
(3) F(~, x) = (h(x))(~) for  all (a, x) e F × G. 

In  [14] the construct ion of  the general solution of  (1) was given in the case 
where G is a commuta t ive  semigroup,  G .  G = G and the order  < defined by 
x _< y ~ x + y = y is linear, complete  and G possesses a minimal element. 

The  long paper  [24] concerns, a m o n g  other  things, the construct ion of  the 
general solution of  (1) on some not  necessarily associative structures called QD- 

groupoids.  
A groupoid  (G, - ) is called a groupoid  with quasi-division (QD-groupoid) ,  if the 

condit ion 

Va, b ~ G 3 c ,  d ~ G  ( a , c , b = a o r a ,  d , b = b )  
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is satisfied, where, by definition, 

a, c, b equals either a(cb) or (ac)b (a, b, c ~ G). 

Obviously, a, c, b is uniquely defined iff (G, . )  is a semigroup. 
It is easy to verify that every groupoid with division (D-groupoid) is a 

QD-groupoid. Consequently, quasigroups, loops and groups are QD-groupoids. 
For QD-groupoids the solution of  the translation equation can be characterized 

by means of partitions P of the set G satisfying the condition 

V a e G V A e P g B e P  ( A . a = B ) ,  (3) 

and the following condition 

( A a ) b c B ~ A ( a b ) c B  fora, b e G ; A ,  B e P .  

Such partitions are called the translative partitions of (G, • ). 
In [25] it is proved that, in the case where (G, - ) is a quasigroup, every solution 

of (1) can be characterized by means of the translative partitions of (G, .). 
Moreover, it has been shown that each translative partition of  (G~.) is of the form 
{Ha: a e G), where H is some special subquasigroup of (G, .) ,  called translative 
subquasigroup of (G, • ). In the paper [24] we generalize this result. In the class of 
QD-groupoids we characterize the solution of equation (1) by means of the 
translative partitions, and we characterize also the translative partitions by means 
of some special QD-groupoids in (G, .) ,  called translative QD-groupoids in (G, • ). 
In this case the main problem is net the form of solutions of (1) but the 
characterization of  the translative partitions. This is related to the fact that we do 
not assume associativity and that there need not exist local identities and inverses. 
It compels to distinguish some elements, the role of which is similar to that of local 
identities and inverses. The translative QD-groupoids play for the QD-groupoids an 
analogous role to that of the subgroups for groups. 

Several more papers were published in the considered period which give only 
some classes of the solutions of equation (1), for instance [6], [7], [42], [15], [39], 
[33], [50], [54], [2]. 

The papers [6], [7], [39] generalize results of [4]. For example, in [39] the 
following theorem was proved. 

/ f  
(1) F is a Hausdorff topological space and a function F: F × R --* F satisfies the 

translation equation 

F(F(~, x), y) = F(o~, x + y), 
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(2) for  some s o ~ F the function g(y )  = F(zo, y) is continuous and not constant, 
(3) F is transitive, i.e. 

V~, f l e  F 3x ~ R F(c~, x)  = fl, 

then the function g: R --* F is a bijection such that 

F(a, x)  = gig 1 ( ~ )  _}_ X] 

on the set F x R or there exists a constant c > 0  such that the function 

gp[o,c) : [0, c) --* F is a bijection with which 

1 f (~ ,  x) = gl[0,c) i[o,c)(c0 + c 
m o d  c 

on the set F x R (here + denotes the addition modulo c). 
rood c 

In [42] all the solutions F: F x G + ~ F  of equation (1) were given, where F is an 
arbitrary set and G + is a semigroup of  positive elements of an Archimedean group 
G, satisfying the condition 

Ve, fl e F(F,  a +) [F(c~, a +) c~F(fl, a +) ~ (g 

~ F ( a ,  a +) c F(fl, a +) or F(fl, a +) c F(c~, G+)]. (4) 

These solutions are given by the following construction (C): 

(1) Let f :  F ~ F be a mapping satisfying the condition 

Va e r : f ( f ( ~ ) )  =f(a) .  

(2) We decomposef (F)  into a disjoint union of non-empty sets Fk (k ~ K) such 
that for each k e K there exists an invariant decomposition { W~k }i~*k (i.e. 
satisfying (3) for P -- {Wik}i~z~) of the interval Ak c G such that G + c Ak 

and card Ik = card F~. 
(3) Let hk: {Wi~}i~Zk --*Fk be a bijection and let us define h*: Ak ~ F k  in the 

following way 

h*(x) = hk(Wik) for x e I, Vi~. 
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(4) We put 

F(cqx) =h~(h '~-I( f (a))x)  fo r f ( a )  ~ Fk. 

The decompositions mentioned above were given in [43], [32], [35]. 
Some generalizations of the construction (C) were given in [15] and [33]. 
The papers [50], [54], [2] generalize, among other, the particular form of  the 

solution of  (1), known from [3], [1], to the following: 

F(a, x) = f - '( f (a)l(x)), (a) 

where f is a bijection of  F onto group G1 isomorphic to the group G, l is a 
homomorphism of  G into G,, 

F(o~, x, . . . . .  Xm) = f - l ( f ( ~ )  + C,X, + ' ' "  + CruX,,), (b) 

where f is a homomorphism of  F into R and (c, . . . . .  c~) ~ R' ,  

F(a, x) = k -I(k(~) + Cx), (c) 

where F: R n x R " ~ R " ,  k: R"-- ,R"  is a bijection and Cis  a constant n x m matrix 
of rank rain(n, m), 

F(c~, x) = (I)-l(O(a) + c(x)), (d) 

where F: F × G ~ F, cI) is an injection of  F into a group H, c is a homomorphism 
of the group G into H, 

F(~, x) = / - ' [ ( u  + vB(~))J~ +f(~)],  

where F : R " × R " - - , R " , f  is a bijection 

(e) 

of R" onto itself, Q =min(n ,m) ,  
X ~--" (X 1 . . . . .  XQ . . . . .  Xtt), 1./ : (X 1 . . . . .  Xe) ,  v = (x~+l . . . . .  x . ) ,  B ( ~ )  f o r  ~ from R n 
is a (m - 0 )  x 0 matrix satisfying 

B(F(~, x)) =/~(~), 

JQ = (1~, 0), IQ is a unit Q x 0 matrix and 0 denotes e x (n - ~ )  zero matrix. 
Moreover, in these papers necessary and sufficient conditions are given for a 

solution of (1) to be of  one of  the forms given above. 
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The form (e) of the solution of (1) and the problem, considered in [2], when the 
composition of two solutions of form (e) is of this form as well, generated the 
papers [9], [10], [11] in which these problems are considered locally. In [21], the 
more general translation equation of "Pexider's type" 

F, (Fz(~, x), y) = F3(a, xy), 

is considered, where the unknown functions F1, F2, F3 are defined on subsets of a 
set F × E, where F is an arbitrary set, E is in particular an Ehresmann groupoid 
[78] and F~, F2, F3 take their values in F. 

E. J. Jasiflska and M. Kucharzewski [28], [29] began to define accurately the 
notion of the Klein geometry. These considerations and their continuation in [72] 
led to an interesting possibility of expressing a solution of the translation equation 
in terms of a particular solution. Generally this result can be formulated as follows 
[78]. 

Given a solution f: F1 x G --* F1 of(1),  where G is a group and e its unit, satisfying 
the identity condition 

V~ ~ F:f(oq e) = o~, 

and the effectivity condition 

Vx e G  [Y~ e F:f(~, x) = e + x  =el,  

we can express with aid o f f  every solution F: F 2 × G -~  F 2 of equation (1) satisfying 
the identity condition if  

card F 2 < sup(card F1, card 2r ' ,card 2 2rl . . . .  ). 

Considerable applications of the general theory of equation (1) to the Klein 
geometry are possible (see e.g. [28], [29] and references in [41] and [76], [52]). 

II. Regular solutions (continuous, differentiable, analytic, monotonic) 

Continuous solutions (with respect to one variable or to both variables) of (1) 
appear natural in different applications of this equation, in particular to iteration 
theory. Therefore this domain contains many interesting papers concerning contin- 
uous solutions (e.g. by J. Acz~l, J. A. Baker, C. Blanton, D. Gronau, E. Jabotinsky, 
H. Michel, M. Sablik, A. Sklar, G. Targoflski, J. Weitk~imper, M. C. Zdun) in 
which variables run over subsets of the set of real numbers with natural topology. 
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Since results of iteration theory is discussed in another survey, by G. Targonski, in 
this issue, I omit them in the rest of my survey and in the bibliography. Similarly, 
the theory of dynamical systems is a theory of regular solutions of  (1) with some 
additional properties. It is impossible to discuss here the results of  this theory, even 
those achieved in the last twenty years. 

Therefore we present only the papers [46], [18], [17], [19], [55] briefly. 

I quote from [17] the following theorem concerning differentiable solutions of 
equation (1), where F is a real interval and (G, - )  = (R, +).  

Let F be a solution o f  (1) on F x R (where F is a real interval) which is 

differentiabte with respect to each coordinate. Then F is of  the structure 

=~h,~(hL~(~)+x) when ct~Jm, 
F(~,x)  

otherwise, 

where {J,. } ~  ~t are the components of  an open set O, O = U,.~ M J,., h,.: R -o J,. is 
a differentiabte homeomorphismfrom R onto J,. such that h'm(U) # O for all u ~ R and 

for each m ~ M. 

Conversely, any function F of  the above structure is a solution of ( l ) ,  differentiable 

with respect to the second variable. It is differentiable with respect to the first variable 

iff each o f  the functions ct ~ F ( a ,  x) is differentiable at any point ~ E ,50, the border 

of O. 
Further, the author finds conditions on O or on the functions hm which make F 

differentiable with respect to the first coordinate at the points ~ ~ 60. 

The paper [19] deals with locally differentiable solutions of (1) in a Banach 
space, defined in the following way. 

Let F be a real or complex Banach space. A F-valued function F is said to be 

a local solution of  the equation (1) if there exist open neighbourhoods U, U' in F 
of  0 ~ F and real (open or half open) intervals I, I '  or open connected subsets I, I '  

of  complex numbers, each containing the number 0 and where U' is a subset of  U, 
I '  a subset o f / ,  such that F is defined on U x I and 

F(~, x) ~ U for (~, x) ~ U' x I '  

and 

r(v(~, x), y) = F ( . ,  x + y) 

holds for all x, y e I with x + y e I and a e U, whenever F(F(ot, x), y) is defined. 

The following theorem was proved there: 
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Let F be a solution of(1) (in the sense of the above definition) with F(0, 0) = 0 and 
let F(~, O) be continuously differentiable near zero. Then there exist closed subspaces 
Y and K of F and a local diffeomorphism T with fixed point zero, such that 
F = Y ® K .  

The conjugate 

F*(~, x) = T(F(T-1(oO, x)), 

which is again a solution of (1), defined on some neighbourhood W x I of (0, 0) in 
F x L satisfies 

(i) F*(fl + y, 0) =/~ for/? + 7  e Y G K ;  

(ii) Im F* is contained in Y; 

(iii) F*( /3+y jx )=F*(~ ,x )  f o r ~ e Y c ~ W ,  7 e K c ~ W ,  x e L  

I f  F(~, x) is continuously differentiable with respect to the variable 7 for all x, 
then so is F*(~, x). And if, with x e L also - x  is contained in L then F*(c~, x) 
restricted to Y is a local diffeomorphism on Y with its inverse F*(~, - x ) .  

The paper [18] concerns monotonic and continuous solutions of (1), where F is 
a linearly ordered set and G a linearly ordered group. We say that a mapping 
F: F x G ~ F is monotonic if 

(1) for each x e G the mapping F( -, x) is monotonic (in the same direction) 
and 

(2) for each a e F the mapping F(~, . )  is monotonic (in the same direction). 
As we know [41] that the general transitive (i.e. W,/~ e F 3x e G; F(~, x) = 13) 

solution of (!)  is given by the formula 

F(~, x) = g(g-I(~)x), (5) 

where g is a bijection of G/G*--the set of right cosets of G modulo some of  its 

subgroup G*, onto F. 
One can prove easily that, if G* is a convex subgroup of G, then G/G* is 

linearly ordered by the following relation 

A < B ~ - - ~ 3 x e A 3 y e B : x < _ y  forA ,  B e G / G * .  

The general transitive and monotic solution of (1) is given by (5), where it is 
additionally required that G* be convex and g be monotonic. 

Assume now that 1-" and G are endowed with topologies induced by the orders 
in F and G, respectively. Then every transitive and monotonic solution of (1) is 

continuous. 
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A characterization of continuous solutions of  (1) in the general case, where F is 
a topological space and G a topological structure, is very difficult even in the case 
where G is a topological group and F is a non-transitive solution. These difficulties 
are considered in [46]. In that paper a condition is given under which continuity of  
a (not necessarily transitive) solution of (1) on a topological group is equivalent to 
the continuity of  the parameters used in the construction of  the solution. 

At the University of Graz (D. Gronau,  G. H. Mehring, L. Reich, J. Schwaiger) 
the theory of  formal power series has been developed in which a condition called also 
the translation equation appears, however it is not an equation of the type (1) (see 
[55]). For  this reason I am not going to present the interesting results of  this group. 

In [55] analytic solutions of  (1) are considered, which are defined as follows: 
Let {F(a,x)}x,~:,  where K = R  or K =  C, be a family of  functions 

F ( . ,  x): C(x )  ~ K for all x e K, where C(x)  = {~ e K: I~[ < O(x)} for Q(x) being real 
positive (e(x) = oo is not excluded for some x), analytic with respect to a and such 

that 

Vx ~ K: F(0, x) = 0, 

i.e., such that 

F(e ,  x )  = al (x)a  + a2(x)cd +"  • • 

for each x s K  and each ~ E C(x) ,  where av(x): K - - * K .  

The family {F(:~, x) }x ~ K is an analytic solution of (1) provided that there exists 
an open interval L symmetric with respect to zero or an open ball I with the centre 
at zero (I  = K is also possible) such that (1) is valid for all ~ ~ I and x, y e K. 

In [55], among other things, it is proved that F(a, x) = a~ (x):¢, where a l ( x )  is an 
exponential function, is the unique analytic solution of (1) in the case where I = K 

or if 

K = C  and la,(x)l-~l or a l ( X ) = l  or F ( I , C )  c I .  

It has also been shown there that in the case K = C the function 

1 F(o¢, x )  = ~ e irex 2c~ e i~ '  + ( 1 - e i r e x )  4~ + (4c0 2 + . . .  

1 irex i rex  e i r e x  __ e i r e x ) (  1/2] = : e  [e - 1 + 2 ~  + ( 1  1 + 4 ~ )  
Z 

is an analytic solution of (1), which is not of  the form a~(x)~. 
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At the University of Innsbruck (W. F6rg-Rob, K. Kuhnert, R. Liedl, H. 
Reitberger) a theory has been developed, by the method of the so-called Pilger- 
schritt transformation, which enables to determine one-parameter subgroups of a 
topological group and which has some applications to characterizations of regular 
solutions of the translation equation. The discussion of  the results of this theory 
and of papers related to it (see, for example, the bibliography in [31]) is beyond the 
framework of this topic. 

HI. The problem of extension 

For a given set F* such that F c F* and a given structure G*, such that G is a 
substructure of G*, the problem arises of extending a solution F: F × G - - ,F  of  
equation (1) to a solution F*: F* x G* ~ F* of this equation. Different modifica- 
tions of this problem can also be considered (see [44]). To this area belong the 
papers [27], [59], [74], [75], [76], [58], [64], [83], [13], [44], [47], [16], [38], [84], [34]. 
Below I give some results of some of  these papers. 

In [59] the following theorem was proved about the extendability in the case 
where F* = F, G and G* are groups and we do not assume the transitivity of F. 

A function of  the form (2) is extendable from the set F x G to the set F × G* iff 

VG~ 3G'~ c G* (G* ~ G  = Gk) 

and there exists a decomposition {K I }l~ L of  the set K such that 

V l ~ L 3 q ~ K ~ V k ~ K I V a k ~ G *  [ G k = a ~ G q a k a n d t h e  family 

, ] {A,}~K,, where Ap = U G~akb is a decomposition of G* . 
b e g  

Let A be an arbitrary set and G an arbitrary group. Consider the translation 

equation 

F[F(~; (a, b, x)), (b, c, y)] = F(~; a, c, xy)) (6) 

for all a, b, c 6 A, ~ E ]? and all x, y 6 G. A binary inner operation in A x A x G is 

also defined as follows: 

(a, b, x) . (d, c, y) = (a, c, xy) ~ b = d 

(from the theory of  geometric objects). 
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The general solution of this equation can be obtained in the following way [74], 
[76]: 

(1) for every a ~ A we choose arbitrarily sets F a and F* such that F* c F. ~ F 
and card Fa = card F* a ,  

(2) for each a E A we construct a function f .  mapping F a onto F~* such that 
fa(~) = ~ for 7 ~ F* a ~  

(3) for a fixed element ao ~ A and for every a ~ A we construct a bijection h a of  
the set F* onto the set F* 

a o ~  

(4) we choose an arbitrary function H satisfying the translation equation on 
F* x G ,  

gO 

(5) we put 

F[c~; (a, b, x)] = hd 1H[hbfb(~), x] for c~ e F b. (7) 

The following theorem is valid [74]: 
Let F satisfy equation (6) and let A* be a superset o f  A (i.e. A c A * )  and G* a 

supergroup o f  G. The function F can be extended to a solution of  equation (6) on the 
set F × A* × A* × G* iff there exists a representation of  F i n  form (7) such that the 
function H can be extended to a function H*: F* 0 x G* ~ F* o satisfying equation (1) 
on the set F* o x G*. 

Extensions of  solutions of  equation (1) on an Ehresmann groupoid are dis- 
cussed also in chapter VIII  of [76]. 

A different question is the problem of extendability of regular (e.g. continuous, 
open, differentiable) solutions of  equation (1). I quote from [75] the following 
results. 

I f  G is an open subgroup of a topological group G* and F is a topological space 
then every extension on the set F x G* of  a transitive regular solution F of (1) (i.e. 
F is continuous and for each ~ ~ F the mapping x ~ F(~, x) is open), is transitive 
and regular, too. 

I f  F is a topological T~-space, G an algebraic subgroup of a topological group 
G* and F a transitive, regular solution of  (1) on F x G, which is regularly 
extendable on the set F x G*, then, for every so called stability subgroup 
G~ := {x ~ G: F(~, x) = ~} of  the solution F, there exists a topological subgroup G* 
of  G* such that 

G * = G * ' G  and G , = G * n G .  

G 

The following theorem was proved in [47]. 
I f  P is semigroup o f  the positive elements o f  a linearly ordered Archimedean group 

and F : F x P ~ F  is a solution o f  (1) then F is extendable to a solution 
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F*: F × 6;-+1-" o f ( l )  /ff 

(A) for  an arbitrary ~ f rom F the cardinality o f  the 

{x ~ P: F(7, x) = fl} does not depend on fl f rom F(a, P), 

(B) the relation R defined on the set F(F,  e) m the following way 

set E,(b) ,= 

~Rfl ~ 3x c P[F(et, x) = fl or F(fl, x) = ~] 

is translative, 

(C) Vx ~ P: F(F,  e) ~ F(F ,  x). 

From [58] we quote the following theorem: 
The conjunction of the conditions (A) and (B) mentioned above is necessary 

and sufficient for the existence of a set F* ~ F and a solution F*: F* x G -+ F* of  
(1) which is an extension of F. 

The following was proved in [38]. 
I f  P is a subsemigroup o f  the group G sueh that G = P w P -  1 and F: F x P -+ F 

is a solution o f  (1) then there exists a solution F*: F x G -+F o f ( l )  which is an 

extension o f F  iff  for  all x f rom P the function F( . , X)IF~r. ,,) is a bijection onto F(F ,  e). 

We quote also the following theorem from [34]: 
I f  P is a subsemigroup o f  the group G such that G = P w P -  1 and F: r × P -+ r 

is a solution o f ( 1 )  then there exists a set F* ~ F and a solution F*: F* x G -+ F* o f  

(1) which is an extension o f  F iff  for  all x f rom P the function F ( .  , X)IF~r, e) is an 

injection into F(F ,  e). 

IV. Additional properties of solutions 

Various applications of solutions of equation ( l )  require that they satisfy some 
additional properties on them. It turns out that possession of these properties by 
solutions, in the case where G is a group, can be characterized by the parameters 
g(~) and G~ (the so called stability subgroups of the solution) determining solutions 
of the form (2). I am going to give, following [56], definitions of  some of these 
properties and after each of them an equivalent condition formulated in terms of 

the parameters g(~) and Gk. 

(1) The identity condition: V~ ~ F: F(~, e) = ~, 
- - i t  is equivalent to g(~) = ~. 
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(2) The  transitivity: V~, fl ~ F 3x ~ G: F(~, x) =/3, 
- - i t  is equivalent  to g(ct) = ct and  card K = 1. 

(3) The  quasi-transitivity: V~,/~ ~ F 3x ~ G: F(7, x) =/~ or F(fl, x) = ~, 
- - i t  is equivalent to g(~) = ct and  card K = 1. 

(4) The  simple transitivity: the transit ivity and the injectivity of  F(~ , .  ) for  each 

XE G, 
- - i t  is equivalent to g(~) = ~ and card K = I and Gk = {e}. 

(5) The injectivity of  F ( . ,  x) for each x ~ G, 
- - i t  is equivalent to g(~) = ~. 

(6) The effectivity: Vx ~ G [Va e F: F(~, x) = c~ ~ x  = e], 

- - i t  is equivalent to N : =  Ok~X N,,~G a-IGa = {e}. 
(7) G acts freely on F by F, i.e. Vx e G [q~ ~ F: F(~, x) = ~ ~ x  = e], 

- - i t  is equivalent to Gk = {e } for  each k s K. 

(8) F is disjoint at  a point  ~o, i.e. 

Vx, y e G iF(c%, x) = F(~o, y) --, W e F: F(ct, x) = F(e,  y)]. 

- - i t  is equivalent to Gko = N for  ko such tha t  g(~o) e Fko. 
(9) The commuta t iv i ty  of  F, i.e. 

Vx, y e G Vc¢ ~ F: F(F(c~, x), y) = F(F(c~, y), x), 

- - i t  is equivalent  to the condit ion that  the quotient  group GIN is abelian. 

(10) F is maximal ,  i.e. 

Vp: F --, F [V~ e F Vx e G: p(F(ot, x)) = F(p(~), x) 

~xo e G V~ ~ F: p(~) = F(c~, Xo)], 

- - i t  is equivalent to the following: 

g(c 0 =ct  and  G k # G  for  e a c h k ~ K  

and (-] Gka(k) ¢ ~ for each funct ion a: K ~ G. 
k ~ K  

(11) F is called parallelizable if there exists such a function t :  F ~ G  that  

T(F(~, x)) = t(~t)x-l, 
- - i t  is equivalent to the following: G is abel ian and Gk = {e} for  each k E K. 

The above  equivalences were p roved  in the papers  [60], [8], [51], [53], [56]. In 
the case where G forms  a s tructure more  general than a group,  the condit ions in 



VoL 50, 1995 General theory cf the translation equation 31 

these equivalences are more complicated. The commutativity of a. solution, in the 
case where G is e.g. an Ehresmann groupoid, is discussed in [30]. The papers [73] 

and [77] refer to commutativity as well. For a structure with a zero element, in 
place of  G, some of  these conditions are discussed in papers [60] and [51] and for 
the case where G is a semigroup of positive elements of an Archimedean group in 

[51], [36], [37]. In [37] I give, as an example, a condition equivalent to the effectivity 
of a solution of (1) in the case where G ÷ is a semigroup of  positive elements of  an 
Archimedean group G and the solution satisfies the condition (4). 

Referring to the above mentioned construction (C) we give an arbitrary 
invariant decomposition of the interval Ak : 

(i) there exists an element u from the complement of G such that points of  the 

interval Jk '=  {x ~ Ak : x ~ u}, where ~ = < or ~ = < ,  form components 
of  this decomposition (Jk = ~ is not excluded), 

(ii) the remaining components of  the decomposition are restrictions of  cosets 
G/Gk to the set Ak\J~, where Gk is a subgroup of G. 

Then a condition equivalent to the effectivity of a solution of (1) is the 
following: 

N= ~ Gk={e} or G + c  U {xy-':x, yeJk}. 
k e K  k e K  

V. Translation equation on the products of structures 

In the papers [40], [30], [61], [12], [48] a solution of the translation equation on 
the direct product or on the semi-direct product of  some structures is expressed by 

solutions of  this equation on the components of  the product. The results of  the 
paper [40] have been generalized in [12] and [48]. 

VI. Homomorphisms and solutions of the translation equation 

A function F : F  × G ~ F  is a solution of equation (1) iff the mapping 

x ~ F( •, x) of  the structure (G, - ) into the family of functions mapping F into itself 

(with the composition as a binary operation), is a homomorphism. So, every 
solution of  (1) is a homomorphism. The converse is also true. Each homomorphism 
h of the structure G into an associative structure S dictates a solution F of equation 

(1), with S in place of  the fibre F. This homomorphism is defined by the following 
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condition: F(~, x) = ~h(x). This means that a correlation exists between the solu- 
tions of  (1) and homomorphisms, which has its consequences in the theory of the 
translation equation. There are some papers establishing also these consequences. 
To this area belong the papers [20], [22], [23], [26], [13], [45], [49]. Good examples 
are the results of the paper [21], which are consequences of the theorems concerning 
homomorphisms, given in [20] and [13]. 

VII. Set-valued iteration semigroups 

Let A, X, Y and Z be nonempty sets with A c X and let F be a set-valued 
function from X into Y, i.e. the values of  F are subsets of  Y. The image of A under 
F is the set 

F(A) = U {F(x): x E A }. 

Moreover, if G is a set-valued function from Y into Z then one can define the 
composition G(F) of  F and G: 

(G(F))(x) ..= G(F(x)). 

A family {F', t > 0} of set-valued functions F '  from X into X is said to be an 
iteration semigroup if the equation 

F"(F') = F" +' (8) 

holds for every s, t > 0 and sets F'(x) 4: ;2~ for every s > O, x ~ X. 
Let (X, ~) be a separable metric space, then the set c(X) of  all nonempty 

compact subsets of  X is a separable metric space with respect to the Hausdorff 
metric. 

An iteration semigroup of set-valued functions F': X ~ c ( X )  is said to be 
measurable (continuous) if the set-valued functions 

1 - - *  F'(x) (x e X) (9) 

are measurable (continuous) with respect to the Hausdorff metric. 
If F': X ~  c(X) is an iteration semigroup of  set-valued functions and X is a 

locally compact space and Ft (x )c  g(t, x) for t > 0, x ~ X, where g is an upper 
semi-continuous compact-valued function, or X is compact or the U(x) are lip- 
schitzian in x, then the measurability of  F '  implies its continuity (see [67] and see 
also [79] for single-valued iteration semigroups). 



Vol. 50, 1995 General theory of the translation equation 33 

We say that the family F'  fulfils functional equation (8) almost everywhere (a.e.) 
if the set of  all pairs (s, t) (s, t > 0) for which equation (8) does not hold, is a set of  
Lebesgue measure zero. 

Suppose that X is a nonempty and closed subset of  a separable Banach space 
and assume that U: X ~ c(X)  is a family of  lipschitzian set-valued functions such 
that every function (9) is Lebesgue measurable for x E X. I f  equation (8) is fulfilled 
for a.e. s, t > 0 in X, then there exists a continuous iteration semigroup {G', t > 0} 
of lipschitzian set-valued functions on X such that G'  = U a.e. on (0, oo) (see [69]). 

Let X be a locally compact and separable metric space. I f  F': X ~ c(X)  is an 
iteration semigroup of contractions such that the set-valued functions (9) are upper 
semi-continuous then there exists a minimal semi-continuous iteration semigroup 
{G', l >0} of contractions G ' : X ~ c ( X )  such that G ~ ( x ) c U ( x )  for t > 0  and 
x ~ X. This iteration semigroup is continuous (see [68]). 

Let X be a nonempty subset of a linear space and let 4': X ~ R. A set-valued 
function F from X into X is said to be qS-increasing if, for every x, y ~ X with 
4'(x) < 4'(Y) and every w ~ F(y),  there exists a u ~ F(x)  such that 4'(u) < 4'(w). 

Let X be a non-empty convex subset of a normed linear space and let 4' be a real 
strictly convex and lower semicontinuous function defined on X. I f  {F', t > 0} is an 
iteration semigroup of 05-increasing set-valued functions from X into X with convex, 
compact values, then there exists an iteration semigroup {ft,  t > 0} of single-valued 
functions from X into X such that f ' ( x )  ~ U ( x )  and 05(f'(x)) = inf{05(y): y ~ Ft(x)}  

for every x ~ X and t > 0. I f  4' and the set-valued functions x --, F'(x)  (t ~ F'(x))  are 
continuous then the functions x ~ f t ( x ) ( t  ~ f t ( x ) )  are continuous (see [67]). 

We note that set-valued solutions of  the generalized translation equation, 
analogous to (8), occur in the theory of abstract, nondeterministic automata (see 

[70] or [71]) as functions of  passage. 

VIII. Some open problems 

(1) Comparison of  various definitions of  the local solution of the translation 
equation (e.g. in [11], [19], [55]) and establishing conditions for extendability of  

these local solutions to global ones (see [57]). 
(2) Constructions of solutions of translation equation on various algebraic 

structures by means of  independent parameters. 
(3) Problem of stability of the translation equation. 
Let (F, ~) be a metric space and let G be a group. Does there exist for each e > 0 

a 6 > 0 such that for each H:  F x G ~ F satisfying the condition 

V~ e F, Vx, y ~ G: Q(H(H(~, x), y), H(~, x '  y)) < 6 
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there  exists a so lu t ion  F o f  the t r a n s l a t i o n  e q u a t i o n  such tha t  

V~ ~ F Vx ~ G: ~(H(~, x), F(~,  x)) < ~? 

F o r  the e q u a t i o n  F ( F ( e ) )  = F (e )  the answer  is posi t ive.  

Some o p e n  p r o b l e m s  are f o r m u l a t e d  in  [56]. 

AEQ. MATH. 
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