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Cauchy’s equation on A*: further results

THOMAS RIEDEL

Summary. In a previous paper (Cauchy’s equation on A™, Aequationes Math. 47 (1991), 192-211], we
began the study of Cauchy’s equation on A*, the space of probability distribution functions of
nonnegative random variables. In this paper we continue this study and extend our previous results to
triangle functions of the form t,,, where T is a continuous Archimedean t-norm and L a binary
operation on R*, which is iseomorphic to a strict t-conorm. We again use a lattice theoretic approach,
and introduce first a theorem on the powers and roots of certain elements of A* under 7,,. Under
certain additional restrictions we obtain a representation of sup-continuous solutions, similar to the one
found in the first paper.

1. Introduction

In a previous paper [8] we began the study of Cauchy’s equation on A*, the
space of probability distribution functions of nonnegative random variables. In this
paper we continue this study and extend our previous results to triangle functions
of the form 7;,, where T is a continuous Archimedean t-norm and L a binary
operation on R*, which is isomorphic to a strict t-conorm. We again use a lattice
theoretic approach, and introduce first a theorem on the powers and roots of
certain elements of A* under 7.

This paper is divided into four sections, Section 1 being this introduction. In the
next section we introduce some additional notation and preliminary results beyond
those of [8]. In Section 3 we prove a theorem about the existence of roots and
powers of certain functions in A*. Finally, in Section 4 we prove the main result,
a representation of sup-continuous solutions of Cauchy’s equation on A*, as well
as the corresponding explicit formulas for order automorphism solutions.
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2. Preliminaries

We assume that the reader is familiar with the notation and results from [8]
(details can be found in [9]), and introduce here only a few additional items.

We will denote by 7, the set of strict t-norms and by 7, the set of continuous
Archimedean t-norms (see [9, Definition 5.3.6]). Further, we say that a binary
operation L on R is a *-composition law if there is a t-norm 7 and a continuous,
strictly increasing bijection ¢ from R™* into 7, such that

L, v) = ~Y(1 — T(1 — y(u), 1 — y(v))), for all u,vin R™. (2.1)

A x-composition law L is strict (continuous Archimedean), if the corresponding
t-norm T is strict (continuous Archimedean), and we write L in £, (£ ,).
Since every T'in 7 , admits a representation of the form (see [9, Theorem 5.5.2])

T(x, ) =g~ V(g(x) +g(»), (2.2)
(2.1) yields a corresponding representation for every L in & ,:
Lu,v) =fC(f(w) +f(v)), forallu,vin R*, (2.3)

where f'is a continuous, strictly increasing function from R™* into R* with f(0) =0
and £~ 7 is the pseudo-inverse of f (see [8, Section 2}). In the case where L is in #,,
fisonto R* and /P =f~"' the ordinary inverse of f.

We are interested in the triangle functions which are induced by a t-norm 7 and
a #-composition law L as follows:

1 (F, G)(x) = L(3t1)p=x T(F(u), G(v)), for all xin R™. (2.4)

We are now able to state our main goal: to find solutions of Cauchy’s equation
for 7;,, i.e., to find functions ¢: A* - A* which satisfy

oty (F, @) = 17, (0(F), 9(G)), for all F, G in A™. (2.5)

3. Properties of t,, and A™

As in our previous paper we will use the lattice theoretic properties of A* (see
[8, Section 3]), to solve (2.5). Again we let Aj ={6,, |a €[0, ], b €[0, 1]}, and
note that, since

TT,L((Sa,ln 65.:1) = 5L(a,c),T(b‘d)’ for an 5a,b, 50,:1 in Ag- s (31)
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(A}, 77.) is a subsemigroup of (A*, 71, ) (compare [8, Lemma 3.4]). Furthermore,
every F in A* can be written as a supremum of elements of A; :

F = sup 4, g, (3.2)
t>bp

where b, =sup{t € R* | F() =0}. This is a refinement of [8, Lemma 3.5], since
01y # Eo fOT 1 > bp.

It was shown in [10, 7] that 7, is sup-continuous (see [8, Definitions 2.5, 3.6]),
and thus we have

LEMMA 3.1. A4 function ¢: A* - A~ is a sup-continuous solution of Cauchy’s
equation for T, on A" if and only if it is a solution on AF .

We are now ready to turn to the question of powers and roots under 7., , where
Tisin 9 , and L is in %, with generators g and f, respectively. We let

t.={FeA*|g-Fof'is convex on (b, )}.
Since b;,, = a, and J,, is constant on (g, ), we have
Af = A7,

The set A7, corresponds to the set of T-log-concave elements which R. Moynihan
introduced in [5].
The following theorem is an extension of a result by B. Schweizer [9] (see also

[5D-

THEOREM 3.2. Let T be in T , with generator g, L in &, with generator f, and
suppose F is in Af; \{e, }. Using the abbreviation F for g o F o f ™', for u >0, let F*
be defined by

Fi(x) = g OuF(f(x)/w),  for 0<p< oo, (3.3)
FO = lim F*=¢g,, (34)

u—0
€05 fO"F=80,

5
£, for F+#g,. (3:5)

F* = lim F"={

p—

Then
(a) F* is in Af,, for all p 20,
(b) F* < F*, whenever v < p,
(¢) Ty (F*, F*) =F**”, for all p,v 20,
(d) (F")Y =F*, if either u<lorp>1andvz=1.
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Proof. (a) For p=0 and pu = o, F* is g, or &, and therefore in A, . Now let
0 < u < o0, then puF(x/u) is convex whenever

x > sup{t | g P(ug(F(f~'(t/W))) = 0} = b,

since it is a composition of convex functions. Hence F* is in A7, for all x4 > 0.
(b) Suppose v < u; since ! is increasing, F nondecreasing, and g and g~V are
nonincreasing, we have, for any x >0,

g WESf (/) < g RS (x)/v),

whence F* < F*.

(c) This is trivial if 4 or v is either 0 or co. Now suppose that 0 < u, v < o0 and
let x >0 be given. Then there are two cases to consider:

Case (1). 15 (F* F)(x) =0. This is easily seen to hold if and only if
Frty(x) =0.

Case (2). 77, (F¥, F')(x) > 0. Then we have

T (FY F)(x) = L(ftl)P:xg(‘ DIF(f W) /1) + VE(f (0) [v)).
\
Since g(~? is nonincreasing and continuous, we have

T (F", FY)(x) =g~ "(L(uigfz N [uF(f @)/19) + vE(f @) )],

and, since F is convex, we obtain

[WF(f @) /i) + VE(f (0) 9] 2 (1 + (S @) +f @) /(1 + V)
=+ VF )/ (1 + V)

with equality holding when f(u) =f(x)u/(u +v) and f(v) =f(x)v/(u + v). Conse-
quently,

tT,L(F“’ FV) =F#+v.

(d) The case when u <1 is settled by straightforward calculation. When u > 1
and v > 1 then either uF( f(x)/uv) < g(0), and a simple calculation yields the result,
or uF(f(x)/uv) > g(0), in which case (F¥)*(x) =0 = (F). 0

We note that, for any positive integer n, F” is just the n-fold 7, -product of F;
and that, for strict 7, (d) of the above theorem holds for any u, v > 0, since in this
case F* never equals ¢,.

We also have the following corollary regarding the uniqueness of roots:
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COROLLARY 3.3. Let T, L be as in Theorem 3.2 and let yu > 0 be given. Then for
any 9, in Ay \{e,,}, there exists a unique 8., in Af \{e,.} such that

Oap =844, (3.6)
l_’f‘and Only Jé;{g ?é 800. In thls case 50,11 = 5f“1(f(a)/y),g(_”(g(b)/ﬂ)’

Proof. Using (3.3), we get

Oup = 5f—l(uf(c)),g<~ D(ug(a))

and hence a =f~'(uf(c)), b = g~ Y(ug(d)). Obviously, ¢ = f~'( f(a)/y), and, since,
b #0 we have g(b)/u = g(d). Therefore d is uniquely determined if, and only if,
g(b)/u < g(0), which is the case if, and only if, )/ #e,,. O

The next lemma is a direct consequence of (3.1) and of the above (recall that
&, = 5a,l )'

LEMMA 34. Let d,, # ¢, let T be in F, with generator g, and let L be in ¥,
with generator f. Then, for any c in (0, 1), é,, admits the decomposition,

Bup = Tpp (@D, 55®E@) (3.7)

4. Sup-continuous solutions

In this section we discuss the properties of sup-continuous solutions of Cauchy’s
equation for 7., , where Tis in Z; and L is in £, and give a representation of such
functions. We conclude by giving explicit formulas for order automorphism solutions.

LEMMA 4.1. Let T be in 9, and L in ¥,. Suppose that ¢ is a sup-continuous
solution of Cauchy’s equation for tr, having the property that, if é,, is in A \{e,,},
then, for all positive integers n, (613 is in Aj \{e,.}. Then for all u >0,

?(6%,5) =[0(du)1", (4.1)
with the understanding that e = ¢ .

Proof. Note first that, if u =0, then 5%, =¢, and @(g) = &,. Furthermore, if
O4y = &4, then, since ¢(e,,) =€, (this is the case for any solution of Cauchy’s
equation, for a proof see [8]), (4.1) holds for all x> 0. Now assume 8%, # ¢,..
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Let u =n be a positive integer. Then this follows by induction from (2.5). Since
OYr 2 4,, # €y, we have, by (d) of Theorem 3.2,

P(.5) = 9((823)") = 0(8.)".
Now we can apply Corollary 3.3 and obtain

(8.3) = (9.0,
and thus (4.1) holds for all rational u > 0. To establish the result for all g >0, we
let {r,}>_, be a sequence of rational numbers with inf r, = u. Since r, > p, we have,
by (c) of Theorem 3.2,

Oy <0445
but, if T is not strict, 677, may equal g,, for some r,. The fact that

0% = Or -1, f@)g — re®)

and that g and g~ " are continuous, implies that there exists a subsequence {q,, } of
{r, }, such that for all m,

Olm #ey.
Thus we have
S{‘;lp O =00s-
Using the sup-continuity of ¢, we obtain that (4.1) holds for all u > 0. O

Note that (4.1) implies, if ¢(J,,) = J.4, that we necessarily have d < b.
We are now able to prove the main results of this paper:

THEOREM 4.2. Let T be in F, with generator g and L in ¥, with generator f.
Suppose that ¢ is a sup-continuous solution of Cauchy’s equation for T, having the
property that, for some c in (0, 1) and all positive integers n, @(4/7) and @(e}") are
in A \{e,}. Then, for all F in A",

O(F) = sup t7, (9(e))"®, [0 NI, (42)

where | = 1/)f(1) and k = 1/g(c).
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Proof. By (3.2) and Lemma 3.4 we have that

F = sup 6, pq = sup T, (]O0 D, §5FDVEO),
t>bp t>bp ’

whence the sup-continuity of ¢, the fact that ¢ is a solution of Cauchy’s equation
for t,,, and (4.1) yield (4.2). ]

The converse of Theorem 4.2 is also true. To establish it we will need the
following lattice-theoretic lemma (see, e.g. [3]).

LEMMA 4.3. Let # be a complete lattice and let {X,z|peB,tely} be a
collection of elements of M, where B is an index set and {1} is a family of index sets
indexed by B. Then, letting I =\ g5 ls, we have

sup sup X, ; = sup sup X, 5. (4.3)

tel BeB peB relg

Proof. An element « is an upper bound of {X,, | § € B} if and only if u is an
upper bound of sup,. 15 X5 Hence u is an upper bound for every f§ in B of sup,,, s Xip
if and only if u is an upper bound of supg. s SUPes; X1 p- Therefore we have

sup sup X, ; =sup{X,; | e B, t € I5}. (4.9)

BeB itelg
On the other hand, an element « is an upper bound of {X,, | § € B} if and only if
u is an upper bound of sup, z X, ;, where tis in 7 = {Upes Is- This in turn holds if
and only if u is an upper bound of sup,.; sups. s X, 5, which implies that

sup 2up X,g=sup{X,z|BeB, tel;} (4.5)
te{ peB
Putting (4.4) and (4.5) together yields the result. O

THEOREM 4.4. Let T be in F, with generator g and L in # with generator f. Let
cin (0,1) and 8,4, 84, in Af \{e,} be given (where e <c, if T is non-strict); and
define o: AT > A" by

@(F) = sup 77, (355, 65X, (4.6)
t>bp
where [ = 1/f(1) and k =1/g(c). Then ¢ is a sup-continuous solution of Cauchy’s

equation for 11, . Moreover, 8., = ¢(g,), 04, = @(do ) and for all positive integers n,
@(ei") and @(842) are in AF \{e.}.

Proof. We first observe that, for F=¢,, we have b, = o0, whence the
supremum in (4.6) is over the empty set. This implies that ¢(e,,) =&,,. Now let G
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and H be in A} \{e,,} and suppose é,, # ¢, . Then we have, with / =1/f(1) and
k = 1/g(c),

17 (GYO, H¥#®) fora <1< o,

TrL (G /4 (t)’ Hkg(éa,b(t))) —
€oos for t = o0.

Therefore, letting ¥ =4,, in (4.6), we obtain,
@(8,) = 17, (GV@, HE®). 4.7
Using (4.7) we have, in particular, that for all positive integers n,

@(30/2) = @(Bo5 - 1(g(eym) = 17, (GO H') = 17 (0, H'"™y=H'"
and, since g(1) =0,

o(e {/n) = (P((Sffl(fu)/n),l) = TT,L(GI/", &) = G

Hence, using Theorem 3.2, we have that ¢(¢}’”) and @(84/7) are in A; \{e,, } and for
n =1 this yields G = ¢(¢,) and H = ¢(d; ).
To show that ¢ is sup-continuous, we first note that

SUp @(8,.r(y) = suUp 7, (G, H D)
t>bp t>bp
= @(F) = @(sup 0, r(y))-
t>bgp
Now let F = supj. 5 Fj, where Fy is in A* for all f in some index set B. (Recall that
this supremum is pointwise, i.e., F(x) = sup. s Fs(x).) Using the facts that g and f

are continuous, that H is left continuous, inequality (d) of Theorem 3.2 and the fact
that g is decreasing, we obtain

sup H*Up) = Hinses kg(Fg) — [fk&(suPgen Fp)
feB

Hence, using the abbreviation supy for supg.p, we have on the one hand that

@(F) = w(sgp Fy)
= sup sup 17, (GYO, H*¥p)); (4.8)

t>bp

and, writing b, for b;ﬁ, on the other hand, that

sup ¢(Fj) =sup sup 17.,(GY O, H¥ED)), (4.9)
B B 1>bg
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In order to apply Lemma 4.3 we note that, since F(x) = sup; Fg(x), we have
br =infz b; and, by writing te(bg, c©) instead of t>by, we obtain that
t € (b, ©) = | J4 (bg, ). Thus by Lemma 4.3, equations (4.8) and (4.9) are equal
and ¢ is sup-continuous.

It remains to show that ¢ satisfies Cauchy’s equation for 7., . Using (4.7), (3.7)
and the fact that 7,, is commutative and associative, we have that, for all §,, and
0pqin AT,

tr0(0(8.), 9(04,0)) = T (17, (GY@, H'S®), 17, (GH®, HED))
=t (17 (GY @, GYO), 1, (HSO, HEDY)

= TT,L(ka (L(a,b))’ H%&(Tted )))

= (p(éL(a,b),T(c,d))
= (p(rT,L (611,(" 6b,d))3

whence the conclusion follows from Lemma 3.1. C
\

We pause here to consider the case when T'is actually in 7. In this case we can
replace the set A by the larger set A, wherever it occurs in Corollaries 3.3 and
4.1, Lemma 3.4, and Theorems 4.2 and 4.4.

Finally, we consider functions on A* which are order-preserving bijections
whose inverses also preserve order, the so-called order automorphisms. These were
characterized by R. C. Powers in [6]; we state his main result here:

THEOREM 4.5. A mapping ¢ is an order automorphism of A", if and only if, for
all F in A*, either

P(F)=0oFey, (4.10)

where 0 is a continuous, strictly increasing bijection on I and y is a continuous, strictly
increasing bijection on R*, or

pF)=aoFYop, (4.11)

where a and B are continuous, strictly decreasing bijections from R* to I and F" is
the right-continuous quasi-inverse of F which is given by

0, Jory =0,
FY(y) =<inf{x | F(x) >y}, for 0<y <1, (4.12)
0, fory =1,
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From this it is easily seen that order automorphisms of the type (4.10) have to
map d, . onto dg, for some a in (0, 1), and &, onto &, for some b in (0, o). Similarly,
order automorphisms of type (4.11) map &,, onto ¢, for some b in (0, o0), and
¢ onto d,, for some a in (0, 1). Note also that every order automorphism
is sup-continuous. Using these facts and formula (3.3) of Theorem 3.2, we obtain
the following.

COROLLARY 4.6. Let ¢ be given by (4.10). Then ¢ satisfies Cauchy’s equation
for t1.,, where
(a) T is in F,, with generator g, and L is in L, with generator f, if and only if
there exist k, 1 > 0 such that for all x in R* and F in A™,

(@(F))(x) = g~ (kg(F(f I ), (4.13)

(b) T is in T\, and L is in L, with generator f, if and only if there exists an
[ > 0 such that for all x in RY and F in A™,

(UFNX) = F(f~' (U (). (4.14)

Proof. Suppose ¢ is of type (4.10) and that ¢ satisfies Cauchy’s equation for
771, then @(dy,.) = 8y, and ¢(¢,) = ¢ and, by (4.2) of Theorem 4.1, we have that

@(F) = sup (OO, FaE0EE)

t>bp

= f;‘bp T (& -1 erorans %og- Nawerwysen)
F

= tsup Or 1 @B @Y. £ Ne@eFD)g(e)

=sup9 5:F(:)°Y—6 o Foy,

t>bg

where

1) = g '>(g§“; (z)) for all ¢ in 7

and

AQ) o

y(x)=f‘<———f() for all x in R*.
AG)

It is easily checked that y is always a continuous, strictly increasing bijection. If T

is in 7 ,, then 8 is also a continuous, strictly increasing bijection for any choice of

a in (0, 1), and we have k = g(a)/g(c) and I =f(1)/f(b).
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In the case where 7 is non strict, we need, however, that a <c. But, if a <¢,
then we have g(a)/g(c) <1 and @ is not a bijection. Thus we need that a =c,
therefore @ = identity on I, and thus / = f(1)/f ().

Now suppose T is in 7, and ¢ is given by (4.13), for some &, > 0. Then it is
easily checked that ¢ is an order automorphism of type (4.10), furthermore

(P(éa.b) = 6/ —NS@)0).g ~ kg(®))>

thus it maps A} onto AJ . In particular, we have

@(dy,.) = Bo.g - L(kg(e)) and o) = Er—i D (4.15)

Thus, if we define ¢(F) via (4.5), we have a sup-continuous solution of Cauchy’s
equation for 7, . It remains to show that = ¢. By Lemma 3.1 it suffices to show
equality on A} . Using (4.15) and (4.17), we have

~ — e 884, (N)/2(c)
q)(éa,b) - tsllll?p Tre (Ef ICFQyy? 50 g — Wkg(c)) )

= TT,L(af"(f(ﬂ)/l)’ 50,3 “1(kg(b)))

= O —\(f(ayiing — \(keiB))>

thus @ =¢. In case (b) we have, using (4.14), that ¢(6,.) =3J,, and
@(&1) = &1 sy, and an argument similar to the above yields the result. O

COROLLARY 4.7. Let ¢ given by (4.11) and let T be in 9; and L in ¥, with
generators g and /. respectively. Then ¢ satisfies Cauchy’s equation for 1, if and
only if Tis in T, and there exists a k > 0 such that, for all x in R™ and all Fin A™,

(e(F)(x) =g~ "(f(F" (g~ ' (kf (0)))). (4.16)

Suppose ¢ is of type (4.11) and that ¢ is a solution of Cauchy’s equation for
T4, then @(g,) =y, and @(d,,.) = ¢, for some a in (0, 1) and b in (0, o) and, by
(4.2),

o( F) = sup TrL ( 5f Wir (1) i(F (f))/x(C))

= f;‘bp 1, (0,6~ D (a@at@n & ~ (e f BYgen)
F
= ISBP O/ 1 g(F()f B)a() e~ X Dg(a)a(c)

=supaoc5,F(,)voﬁ—ocoF"oB

t>bp
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where a(f) =g~ "(g(a)f (1) [f (@) and P(1) = g‘“”(g(C)f ()/f(1)). But «, B are one-
to-one only if g~V =g~! ie, only if T is in J,. Since any two generators of L
(and any two of T) differ only by a constant multxple (see [8, Theorem 2.2]), we
can choose f such that g(a)/f(1) =1. Finally, letting k = f(b)/g(c), we obtain
(4.16).

For the converse, assume @ is given by (4.16). This defines an order automor-
phism only if 7 is strict, since otherwise g(~f is not a strictly decreasing bijection.
A simple calculation shows that

P(8ap) = & 1(grmrg ' fian>

and hence

©(80.c) = & 10 and o) = 50_g~l(f(1))- (4.17)

As in the proof of the previous corollary, we use (4.6) of Theorem 4.4 to define a
function @ which is a solution of Cauchy’s equation for 7, ,. This yields

-« _ SOID 50 s
?(025) = by LB 1ran & - g )

=17, (B0¢ ~ ¢ rians & 1(eBrrk)
= ‘Sf— Y gb)/k).g — 1 (fF(a)*

Therefore ¢ and ¢ agree on A} and hence on all of A*. a
In conclusion, we note that, for strict 7 and for L(u, v) = Sum(u,v) =u +v
(where the generator is the identity function), the formulas in Theorems 4.2 and 4.4,
as well as in Corollaries 4.6 and 4.7, are exactly the ones obtained in [8].
Furthermore, for strict T and for L(u,v) = f~( f(u) +f(v)), the order automor-
phism I" of A*, defined by
I(F)=Fof ", for all Fin A*,
let us reduce the problem to that studied in [8]. Since

17 (F, G) =T (zr(T(F), [(G))),

we have that a function ¢ is a solution of Cauchy’s equation for 7, if and only if
T'oI' ! is a solution of Cauchy’s equation for ;.
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