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Cauchy's equation on A+: further results 

THOMAS RIEDEL 

Summary. In a previous paper [Cauchy's equation on A +, Aequationes Math. 41 (1991), 192-211], we 
began the study of Cauchy's equation on A +, the space of probability distribution functions of 
nonnegative random variables. In this paper we continue this study and extend our previous results to 
triangle functions of the form Tr, L, where T is a continuous Archimedean t-norm and L a binary 
operation on R +, which is iseomorphic to a strict t-conorm. We again use a lattice theoretic approach, 
and introduce first a theorem on the powers and roots of certain elements of A + under zT, L. Under 
certain additional restrictions we obtain a representation of sup-continuous solutions, similar to the one 
found in the first paper. 

I. Introduction 

In  a previous paper  [8] we began the study of Cauchy 's  equat ion  on A +, the 

space of  probabi l i ty  dis t r ibut ion funct ions of nonnegat ive  r andom variables. In  this 

paper we cont inue  this study and extend our previous results to triangle funct ions 

of  the form rr, z, where T is a cont inuous  Archimedean  t -norm and L a b inary  

opera t ion on  R +, which is isomorphic to a strict t -conorm.  We again use a lattice 

theoretic approach,  and  introduce first a theorem on the powers and  roots of 

certain elements of A + under  zr.z. 

This paper is divided into four sections, Section 1 being this in t roduct ion.  In  the 

next section we introduce some addi t ional  no ta t ion  and prel iminary results beyond 

those of [8]. In  Section 3 we prove a theorem abou t  the existence of roots and  

powers of certain funct ions in A +. Finally,  in Section 4 we prove the ma in  result, 

a representat ion of sup-cont inuous  solut ions of Cauchy 's  equat ion  on A +, as well 

as the corresponding explicit formulas  for order au tomorph i sm solutions.  

AMS (1990) subject classification: Primary 89B50. Secondary 60B99. 
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2. Preliminaries 

We assume that  the reader is familiar with the notat ion and results f rom [8] 
(details can be found in [9]), and introduce here only a few addit ional  items. 

We will denote  by J-~ the set of  strict t -norms and by Y-,•, the set of  cont inuous  
Archimedean  t -norms (see [9, Definit ion 5.3.6]). Further,  we say that  a binary 
opera t ion L on R + is a . - compos i t ion  law if there is a t -norm T and a cont inuous,  
strictly increasing bijection ~k f rom R + into /, such that  

L(u, v) = 0 - l (1  - T( I  - ~b(u), 1 - $(v))), for  all u, v in R + (2.1) 

A . - compos i t ion  law L is strict (cont inuous  Archimedean) ,  if  the corresponding 
t -norm T is strict (cont inuous Archimedean) ,  and we write L in £,e~, (LeA). 

Since every T in J A  admits  a representat ion of  the form (see [9, Theorem 5.5.2]) 

T(x, y) = g~- l)(g(x) + g(y)), (2.2) 

(2.1) yields a corresponding representat ion for  every L in LeA: 

L(u, v) =f( - l ) ( f (u)  +f(v)), for all u, v in R +, (2.3) 

w h e r e f i s  a continuous,  strictly increasing function f rom R + into R + with f ( 0 )  = 0 
and f(-1~ is the pseudo-inverse o f f ( s e e  [8, Section 2]). In the case where L is in Le~, 

f i s  onto  R + a n d f ~ - ~ ) = f  -1, the ordinary inverse o f f  
We are interested in the triangle functions which are induced by a t -norm T and 

a , - compos i t ion  law L as follows: 

zr, z(F, G)(x) = sup T(F(u), G(v)), for  all x in R +. (2.4) 
L ( u , v )  = x 

We are now able to state our  main goal: to find solutions of  Cauchy ' s  equat ion 
for  VT.L, i.e., to find functions q~: A + ~ A  + which satisfy 

~O(~r,L(F, G)) = rr, L((P(F), ~o(G)), for all F, G in A +. (2.5) 

3. Properties of  ~r,L and A + 

As in our  previous paper  we will use the lattice theoretic propert ies  of  A + (see 

[8, Section 3]), to solve (2.5). Again we let A~- = {6a.b [a ~ [0, m], b e [0, 1]}, and 

note that,  since 

zr, L(fi.,b, 6c,~) = 6L(a,c),r~b,a), for  all 6a,b, 6c,a in A; ~ , (3.1) 
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(A J-, ZT, L) is a subsemigroup of  (A +, ZT, L) ( compare  [8, L e m m a  3.4]). Fur thermore ,  
every F in A ÷ can be writ ten as a sup remum of  elements of  A~- • 

F = sup fit,F(,), (3.2) 
t >  b F 

where bF = sup{t ~ R + IF( t )  =0} .  This  is a refinement of  [8, L e m m a  3.5], since 

fit, F(0 :# e~ for  t > bF. 
It  was shown in [10, 7] that  zr, L is sup-cont inuous  (see [8, Definitions 2.5, 3.6]), 

and  thus we have 

LEMMA 3.1. A function q~" A + ~ A  + is a sup-continuous solution of  Cauchy's 
equation for  ZT, L on A + /f and only i f  it is a solution on A~-. 

We are now ready to turn to the question o f  powers  and roots  under  ZT, L, where 

T is in "Y-A and L is in £~'s with generators  g and f ,  respectively. We let 

Ar+ L = {F ~ A + I go F o f - '  is convex on (bv, oo)}. 

Since bn.,b = a, and 6.,b is constant  on (a, oo), we have 

A + = A~L. 

The set A~L corresponds  to the set o f  T- log-concave elements which R. Moyn ihan  

int roduced in [5]. 
The  following theorem is an extension o f  a result by B. Schweizer [9] (see also 

[5]). 

THEOREM 3.2. Let T be in ~--A with generator g, L in £Ps with generator f ,  and 
suppose F is in A~,L \ { ~  }. Using the abbreviation i f  for g o F o f -  1, for  # >>, O, let F u 

be defined by 

F ' (x )  = g(-1)(#f f ( f (x) /#)) ,  for 0 < # < 0% (3.3) 

F ° = lim F"  = so, (3.4) 
g for F ~'0, (3.5) 
( s o ,  for  F v~ ~o. 

Then 

(a) F u is in A~,L, for  all # >i O, 
(b) F ~ <. F v, whenever v <.% I~, 
(c) ZT, L(F u, F v) = F ~+ v, for  all #, v >1 O, 
(d) (F ~) v =Fuv, i f  either # <~ 1 or # > 1 and v >i. 1. 
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+ Proof  (a) For  # = 0 and p = ~ ,  F ~ is e. 0 or  e~ and therefore in Ar, L. N o w  let 
0 < p < 0% then #if(x/a) is convex whenever  

x > sup{t I g( -  t ) (#g(F(f  - l(t/#)))) = O} = bF~, 

since it is a composi t ion  o f  convex functions. Hence F a is in A~,L for  all g i> 0. 
(b) Suppose v ~</t; since f - 1  is increasing, F nondecreasing,  and g and g ( -  i) are 

nonincreasing,  we have, for any x > 0, 

g(-  ' ) (#P(f(x)/#))  < g(- ' ) (vP(f (x) /v) ) ,  

whence F ~ ~ F*. 
(c) This is trivial if p or  v is either 0 or  ~ .  N o w  suppose that  0 < p, v < oo and 

let x > 0 be given. Then there are two cases to consider: 
Case (1). rr, l.(FU, FV)(x)=0.  This is easily seen to hold if and only if 

F~ + V(x) = O. 
Case (2). zr.t.(F u, P ) ( x )  > 0. Then we have 

zr, L(F u, FV)(x) = sup g ( - ' ) ~ P ( f ( u ) / # )  + vff(f(v)/v)l.  
L ( u , v )  = x , 

\ 

Since g ( - O  is nonincreasing and continuous,  we have 

• r,L(F u, F ) ( x )  = g(-1)( inf [uF(f(u)/#) + vF(f(v)/v)l),  
L ( u , v )  = x 

and,  since ff is convex, we obtain 

~ f f ( f ( u ) / # )  + vff(f(v)/v)l  >t (# + v)F((f(u) + f (v ) ) / (#  + v)) 

= (# + v)P( f (x ) / (~  + v)) 

with equali ty holding when f ( u )  =f(x)l~/(la + v) and f ( v )  = f ( x ) v  /(p + v). Conse-  
quently,  

rr.L(F ~, F v) = F" + ~. 

(d) The  case when # ~< 1 is settled by s t ra ightforward calculation. When  # > 1 
and v/> 1 then either #P( f (x ) /gv )  <~ g(O), and a simple calculation yields the result, 

or  l l f f ( f  (x) /#v) > g(0), in which case (F~) V(x) = 0 = (F~) u. [] 

We note that,  for  any positive integer n, F"  is just  the n-fold zT.L-product o f  F; 
and that,  for  strict T, (d) o f  the above theorem holds for any #, v i> 0, since in this 
case F ~ never equals e~. 

We also have the following corollary regarding the uniqueness of  roots: 
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COROLLARY 3.3. Let T, L be as in Theorem 3.2 and let # > 0 be given. Then for 
any 6a,b in A~- \(eoo }, there exists a unique cS,,,d in A~- \{e~ } such that 

6~,b = 6 ,.a, (3.6) 

i f  and only " ~ ~/" tj oa,b #eoo. In this case 6c,d = 6f-l(f(a)/l~),g~-l)(g(b)/#). 

Proof Using (3.3), we get 

~a ,b  : ~ f  -- l (I t f (c)) ,g(--  l)(pg(d)), 

and hence a =f-l(/zf(c)),  b = g<-I)(#g(d)). Obviously, c = f - l ( f ( a ) / lO  , and, since, 
b ~ 0 we have g(b)/# = g(d). Therefore d is uniquely determined if, and only if, 
g(b)/# < g(0), which is the case if, and only if, 61(~ ~ eo~. [] 

The next lemma is a direct consequence of (3.1) and of the above (recall that 

LEMMA 3.4. Let 6~,b ~ e~, let T be in ~ with generator g, and let L be in . ~  
with generator f Then, for any c in (0, 1), fi~,b admits the decomposition, 

(~ a,b = "CT, L (~{ (a)/f(l), vO,~'~g~b)/g(~)~J. (3.7) 

4. Sup-continuous solutions 

In this section we discuss the properties of sup-continuous solutions of Cauchy's 
equation for zr, L, where T is in ~ and L is in LPs, and give a representation of such 
functions. We conclude by giving explicit formulas for order automorphism solutions. 

LEMMA 4.1. Let T be in ~ and L in ~s .  Suppose that ~o is a sup-continuous 
solution of  Cauchy "s equation for zr, L having the property that, i f  6a,b is in A~- \{e~}, 

l /n then, for all positive integers n, ~P(6,,b) is in A£ \{e~}. Then for all # >10, 

# rp(6 ~,b) = [q~(6.,6)] ~, (4.1) 

with the understanding that e~ = e~. 

Proof. Note first that, if # = 0, then ~,b = eo and tp(eo) = ~0. Furthesmore, if 
6~.b = e~, then, since ~p(~) = e~o (this is the case for any solution of Cauchy's 
equation, for a proof see [8]), (4.1) holds for all # > 0. Now assume 6,",b :~ ~ .  
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Let /~ = n be a positive integer. Then this follows by induction f rom (2.5). Since 
a,b/> 6~,b 4: e~,  we have, by (d) o f  Theorem 3.2, 

q~((6 o,b) ) = v~,, a,~, • 

N o w  we can apply Corol lary  3.3 and obtain 

l /n  1/n ~o(,L,D = (~0(,L,~)) 

and thus (4.1) holds for all ra t ional /~ > 0. To  establish the result for  al l /z  > 0, we 
let {r, }~= ~ be a sequence of  rat ional  numbers  with inf  r, = it. Since r,  >//~, we have, 
by (c) o f  Theorem 3.2, 

•ftn, b ~ 6a~b; 

but, if  T is not  strict, 6f,,% m a y  equal e~ for  some r , .  The fact that  

(~ ran b : (~ f  -- l ( r n f ( a ) ) , g (  l)(rng(b)) 

and that  g and g~ ~ are continuous,  implies that there exists a subsequence {qm ) o f  

{r, }, such that  for  all m, 

6q,"~ 4: ~ .  

Thus  we have 

sup 6 ~'~ = 6 ~,b" 
qm 

Using the sup-continui ty of  ~o, we obtain tha t  (4.1) holds for  a l l / t  > 0. [] 

Note  tha t  (4.1) implies, if  ~o(6~,b) = 6~,a, that  we necessarily have d ~< b. 
We are now able to prove  the main  results of  this paper: 

THEOREM 4.2. Let T be in ~ with generator g and L in £f~ with generator f .  
Suppose that q9 is a sup-continuous solution o f  Cauchy's equation for zr, L, having the 

l /n property that, for some c in (0, 1) and all positive integers n, q~(3o, ~ ) and ~o(E ~/~) are 
in A~- \ { ~  ). Then, for all F in A +, 

¢p(F) = sup Zr, L([Cp(el)]~f~t), [q~(6Ox)]kg~F~t))), (4.2) 
t > b  F 

where l = l / f ( 1 )  and k = 1/g(c). 
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Proof By (3.2) and L e m m a  3.4 we have that  

F = sup ¢~t,F(,) = s u p  "CT, L ( ~ {  ( t ) / f ( l ) ,  0 ~(F(t))/g(c)] o,c i~ 
t > b  F t > b  F 

whence the sup-cont inui ty  of  q~, the fact that  ~o is a solution of  Cauchy ' s  equat ion 

for  Zr, z,  and (4.1) yield (4.2). [] 

The  converse of  Theorem 4.2 is also true. To  establish it we will need the 
following latt ice-theoretic l emma (see, e.g. [3]). 

LEMMA 4.3. Let dg be a complete lattice and let {X,,~[fl ~ B, t ~ 1~} be a 
collection of elements off~l, where B is an index set and {I~ } is a family of  index sets 
indexed by B. Then, felting I = Ua~s I~, we have 

sup sup X~,B = sup sup Xt,~. (4.3) 
t e l  f l~B  f l ~ g  r~Ifl 

Proof An element u is an upper  bound  of  {Xt,a ] fi ~ B} if and  only if u is an 
upper  bound  of  supt~:~ X,,a. Hence u is an upper  bound  for  every fl in B o f  sup t ,#  X,,p 
if and only if u is an upper  bound  of  superb supt~ 0 Xt,~. Therefore  we have 

sup sup Xt,p = sup{Xt,~ ] fl E B, t ~ Ip }. (4.4) 
#EB tEtt3 

On the other  hand,  an  element u is an upper  bound  of  {X,.¢ I fl ~ B} if and only if 
u is an upper  bound  o f  supa~s Xt,a, where t is in I = ~ e ~ a  I a. This in turn holds if 
and only if u is an upper  bound of  s u p ~ t  supa~B X,.a, which implies that  

sup sup Xt,p = sup{X~, e ] f l e  B, t ~ I a ). (4.5) 
t ~ l  f l~B  

Putt ing (4.4) and (4.5) together  yields the result. [] 

THEOREM 4.4. Let T be in ~ with generator g and L in ' ~  with generator f Let 
c in (0, 1) and 6,.b, 6e,~ in A~-\{e~} be given (where e <~c, i f  T is non-strict); and 

define qg: A + ~ A  + by 

q~(F) = sup ~ ¢x~,ct,) ..~kg(F(t))~ (4.6) ~T,L~,t"a,b , V d ,  e 1~ 
t > b  F 

where t = l / f (1 )  and k = 1/g(c). Then q~ is a sup-continuous solution of Cauchy's 
equation for vr, L. Moreover, 6a,b = qg(el), 6a, e = ~0((50,c) and for all positive integers n, 
q~(~[/") and 1/~ q~(6o.c) are in A~-\{e~}.  

Proof We first observe  that,  for  F =  e~ ,  we have b v = ~ ,  whence the 
sup remum in (4.6) is over  the empty  set. This implies tha t  ~o(eo~) = ~ .  N o w  let G 
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and H be in A + \{e~} and suppose 5a.b ~: Coo. Then we have, with l = l / f ( 1 )  and 

k = l /g(c) ,  

f~T,L(G g(t), Hkg(b)),  for a < t < 00, 
"CT, L ( G  If(t) ,  Hk*(~a,~ (0)) 

( e ~ ,  for t = oo. 

Therefore,  letting F = ~a,b in (4.6), we obtain,  

q~( 5 o,5 ) = ~ T,L ( G ty (a), Hkg(5)). (4 .7)  

Using (4.7) we have, in part icular,  that  for  all positive integers n, 

lfn = T,L ~, , J = "~r,L(eO, Hl/~) = HI;~, q~(3o.c) ~O(60.g-~(g(c)/n)) = ~ tG°  H t/n~ 

and, since g(1) = 0, 

cp(g.[/') = ~p(ff '(:(t)/n).,) = Zr, L( Gtm, Co) = G 1In. 

Hence,  using Theorem 3.2, we have that  ~p(e l/n) and 1In ~0(50.c ) are in A ;  \{coo } and for  

n = 1 this yields G = cp(el) and H = ~p(50,c). 
T o  show that  cp is sup-continuous,  we first note that  

sup ~(¢~t,F(t))  = sup zT-,L(G li"), H kg(F(t))) 
t > b  F t > b  F 

= 9 (F )  = cp( sup (~t,F(t))" 
t > b  F 

Now let F = supa~n F¢, where Fa is in A ÷ for all fl in some index set B. (Recall  that  

this sup remum is pointwise, i.e., F(x )  = superb F¢(x) .)  Using the facts that  g a n d f  
are cont inuous,  that  H is left continuous,  inequality (d) o f  Theorem 3.2 and the fact 

that  g is decreasing, we obta in  

sup H kg(F~ ) = H i~fe ~ B kg(F~ ) = Hkg(sup# eB Fp ). 
13eB 

Hence,  using the abbrevia t ion  supa for superB, we have on the one hand that  

cp(F) = ~p(sup Ft~) 
# 

= sup sup ZT.L(G lf(O, Hkg(rP)); 
t>  bF fl 

and, writing b e for b ~ ,  on the other hand,  that  

sup ~p(F~) = sup sup Zr, L(G ~('), H kg(v~)). 
fl fl t > b.O 

(4.8) 

(4.9) 
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In order to apply Lemma 4.3 we note that, since F ( x ) =  supa F,(x), we have 
b F = i n f a  ba and, by writing t ~(bt~, ~ )  instead of t >b~, we obtain that 
t E (bF, ~ )  = Ua (b,, ~) .  Thus by Lemma 4.3, equations (4.8) and (4.9) are equal 
and ~p is sup-continuous. 

It remains to show that ~p satisfies Cauchy's equation for rr, L. Using (4.7), (3.7) 
and the fact that TT.L is commutative and associative, we have that, for all 6ax and 
6b.a in A J-, 

~T,L(q)(~a,c), q)(~b,d)) = ~T,L(~T,L(Gkf(a), Htg~b)), ~T,L(Gkf(b), HtgCa))) 
= "~T,L(TT, L(G kf(a), Gkf(b)), "~T,L(H lg(c), Htg(d))) 

= ,T,L(GkT(L~'b)), H~g(7-t~,d))) 

= ~O((~L(a,b),T(c,d)) 

= ~o(~r,L(6 ..... 6b,~)),  

whence the conclusion follows from Lemma 3.1. [] 
\ 

We pause here to consider the case when T is actually in Jj~. In this case we can 
replace the set A~- by the larger set A ÷r,L, wherever it occurs in Corollaries 3.3 and 
4.1, Lemma 3.4, and Theorems 4.2 and 4.4. 

Finally, we consider functions on A + which are order-preserving bijections 
whose inverses also preserve order, the so-called order automorphisms. These were 
characterized by R. C. Powers in [6]; we state his main result here: 

THEOREM 4.5. A mapping ¢p is an order automorphism of A +, i f  and only if, f o r  

all F in A +, either 

~o(F) = 0 o F o 7, (4.1 O) 

where 0 is a continuous, strictly increasing bijection on I and ~, is a continuous, strictly 

increasing bijection on R +, or 

q~(F) = ~ o F ~ o fl, (4.11) 

where a and fl are continuous, strictly decreasing bijections f r o m  R + to I and F v is 

the right-continuous quasi-inverse o f  F which is given by 

t O, 

F ~ ( y )  = inf{x IF(x) >y} ,  
(oo, 

for  y = O, 

f o r O < y < l ,  

f o r y  = 1. 

(4.12) 
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F rom this it is easily seen that order  automorphisms o f  the type (4.10) have to 
map  6o, c on to  60." for  some a in (0, 1), and el onto  eb for some b in (0, ~ ) .  Similarly, 
order  automorphisms of  type (4.11) map  6o.~ onto eb for some b in (0, ~ ) ,  and 
el onto 60, ~ for some a in (0, 1). Note  also that every order au tomorphism 
is sup-continuous. Using these facts and formula (3.3) of  Theorem 3.2, we obtain 
the following. 

COROLLARY 4.6. Let  ~o be given by (4.10). Then q9 satisfies Cauchy's  equation 

for  ZT, L, where 
(a) T is in ~-~, with generator g, and L is in ~a , with generator f ,  i f  and only i f  

there exist k, I > 0 such that f o r  all x in R + and F in A +, 

(~o(F))(x) = g - ' ( k g ( F ( f  - I(If(x))))), (4.13) 

(b) T is in ~ \~-~ and L is in . ~  with generator f ,  i f  and only i f  there exists an 

l > 0 such that f o r  all x in R + and F in A +, 

(q~(F))(x) = F ( f -  ' (/f(x))). (4.14) 

Proof. Suppose ~o is of  type (4.10) and that ~p satisfies Cauchy's  equat ion for 
rT, L, then q~(6o,,.)= C$o,~ and ~o(el) = eb and, by (4.2) of  Theorem 4.1, we have that 

(fl(F) = s u p  ~" [ ~ f ( t ) / f ( l )  .~g(F(t))tg(c)~ 
T ,L~  b ~ VO,a ,# 

t > b  F 

= sup ZT,  L ( , 9 . f - l ( f ( b ) f ( t ) l f ( 1 ) ) ,  (~O,g(-I)tg(a)g(F(t))ig(c))) 
t >  b F 

= sup ~ f - I ( f ( b ) f ( t ) / f ( 1 ) ) , g ( - I ) ( g ( a ) g ( F ( t ) ) f g ( c ) )  
t >  b F 

= sup 0o5,,Fu) o V = 0 o F o ? ,  
t >  b F 

where 

O(t) = g(- ,)(g(a) g(t) ) \g(c) 
for  a l l t i n I  

and 

, / f ( l )  ~, ,'~ 
=s- for  all x in R + 

It is easily checked that  V is always a continuous,  strictly increasing bijection. If  T 
is in @s, then 0 is also a continuous,  strictly increasing bijection for any choice o f  

a in (0, 1), and we have k =g(a) /g(c)  and l = f ( l ) / f ( b ) .  
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In the case where T is non strict, we need, however, that a ~< c. But, if a < c, 
then we have g(a)/g(c)< 1 and 0 is not a bijection. Thus we need that a = c, 
therefore 0 = identity on L and thus l = f ( 1 ) / f ( b ) .  

Now suppose T is in ~ and ~o is given by (4.13), for some k, l > 0. Then it is 
easily checked that ~o is an order automorphism of  type (4.10), furthermore 

~J(l~ a.b ) = (~f -- l(f(a)j[),g --l(kg(b)) , 

thus it maps A~- onto A~-. In particular, we have 

~P(¢5o..) = 6O.g-,(kg(<)) and ~P(el) = ef-~(fo)/t). (4.15) 

Thus, if we define c~(F) via (4.5), we have a sup-continuous solution of Cauchy's 
equation for ZT, L. It  remains to show that ~ = 6o. By Lemma 3.1 it suffices to show 
equality on A~-. Using (4.15) and (4.17), we have 

- -  or, ~ ,z,- I c f  ( t ) / f (1)  ,~g(3a,b(t))/g(c)$ 
~(¢~a,h) -- 7>~v ~T,L ' c ~ f - ' ( f ( 1 ) l O '  " o,g - ' (kg(c)) J 

= ZT, L(gf- l ( f (a) / l ) ,  (~O,g - l(kg(b))) 

~ f  _ l(f(a)/t) ,g -- l(kg(b)), 

thus ~ = ~ o .  In case (b) we have, using (4.14), that cp(~5ox)=6o, ~ and 

~ 0 ( g l )  = 8 f - l ( f ( 1 ) / i )  , and an argument similar to the above yields the result. [] 

COROLLARY 4.7. Let q~ given by (4.11) and let T be in ~ and L in ~ ,  with 

generators g and f ,  respectively. Then q9 satisfies Cauchy's equation for  rr, L i f  and 
only i f  T is in ~--s and there exists a k > 0 such that, for  all x in R + and all F in A +, 

(q~(F))(x) = g - l ( f ( F  '~ (g- ' (kf (x) ) ) ) ) .  (4.16) 

Suppose ¢p is of  type (4.11) and that q~ is a solution of Cauchy's equation for 

Zr, t ,  then ~O(el) = 6o,~ and q~(6o.c) = eb for some a in (0, 1) and b in (0, ~ )  and, by 
(4.2), 

- rg f ( t ) / f ( l )  _g(F(t))/g(c)~ 
~o(F) = sup ~r, LtOo, , % ) 

t > b F  

-~- s u p  ~T,L (¢~O,g(-- l)(f(t)g(a)/g(c)), ~'f --l(g(F(t))f(b)]g(c))) 
t > b  F 

= sup ~f-I(g(l~(t))f(b)/g(c)),g(-l)(f( t)g(a)/g(c)) 
t > b  F 

=supao6,,e(ovOfl=aoF"ofl, 
t > b  F 
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where ~ ( t )=  g(-I)(g(a)f( t ) / f (a))  and p( / )=g( -1) (g(c ) f ( t ) / f ( l ) ) .  But ~, fl are one- 
to-one only if g(-O = g-~, i.e., only if T is in ~'~. Since any two generators of L 
(and any two of T) differ only by a constant multiple (see [8, Theorem 2.2]), we 
can choose f such that g(a ) f f (1 )=  1. Finally, letting k =f(b)/g(c) ,  we obtain 
(4.16). 

For the converse, assume c¢ is given by (4.16). This defines an order automor- 
phism only if T is strict, since otherwise g(-~Cis not a strictly decreasing bijection. 
A simple calculation shows that 

and hence 

~P(3o.c) = ey-l(g(c)/k) and ~0(/{1) = 6o.g-,(f(,)). (4.17) 

As in the proof  of the previous corollary, we use (4.6) of Theorem 4.4 to define a 
function ~ which is a solution of Cauchy's equation for %-,L- This yields 

(O(6a,b) ,¢f(O/fO) .g(6a,btO)/g(c)~ 
= s ? P  F TT, L~-O O,g - l(f(I))' ,bf_ i(g(c)[k) ) 

= "~T,L((~O,g-i(f(a)) , ~ f  l(g(b)/k)) 

= (~f_ I(g(b)/k),g - l(f(a)). 

Therefore ~b and ~o agree on A~ and hence on all of A +. [] 

In conclusion, we note that, for strict T and for L(u, v) = Sum(u, v ) =  u + v 
(where the generator is the identity function), the formulas in Theorems 4.2 and 4.4, 
as well as in Corollaries 4.6 and 4.7, are exactly the ones obtained in [8]. 
Furthermore, for strict T and for L(u, v) = f - ' ( f ( u )  +f(v) ) ,  the order automor- 
phism F of A +, defined by 

F(F) = F o f  1, for all F in A +, 

let us reduce the problem to that studied in [8]. Since 

TT, L ( F ,  G )  = F - I ( z T ( F ( F ) ,  F(G)) ) ,  

we have that a function ~0 is a solution of Cauchy's equation for rr, L if and only if 
F~0F -1 is a solution of Cauchy's equation for zr. 
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