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The combinatorially regular polyhedra of index 2 

J. M .  WI L L S*  

Dedicated to Professor Otto Haupt with best wishes on his lOOth birthday. 

Summary. We investigate polyhedral realizations of regular maps with self-intersections in E 3, whose 
symmetry group is a subgroup of index 2 in their automorphism group. We show that there are exactly 5 
such polyhedra. The polyhedral sets have been more or less known for about 100 years; but the fact that 
they are realizations of regular maps is new in at least one case, a self-dual icosahedron of genus 11. Our 
polyhedra are closely related to the 5 regular compounds, which can be interpreted as discontinuous 
polyhedral realizations of regular maps. 

1. Introduction and History 

Fifty years ago Coxeter discovered (cf. [3, p. 141]), that two of the 53 uniform 
polyhedra (cf. [6]) are polyhedral realizations of Kepler-Poinsot-type (for definitions 
compare Section 2) of the regular maps {5,4}6 and {5,6}4 (cf. [7, p. 139]). These 
polyhedra were discovered more than 100 years ago independently by Hess (1878), 
Pitsch (1881) and Badoureau (1881); (for the history see [4, §6.4], for the figures see 
[6, figs. 45 and 53], or [4 fig. 6.4a]. Clearly these authors were merely interested in the 
metrical shape and in the symmetry properties of these polyhedra. The interpretation 
of the Kepler-Poinsot solids and other self-intersecting polyhedra as Riemann surfaces 
or as regular maps was suggested about 1930 by Threlfall (cf. [18, pp. 19-21]) and 
DuVal (cf. [4, p. 116]). 

The regular map {5,4}6 w a s  discovered first by Gordan [9] (and several times 
rediscovered). Gordan was interested in it as a Riemann surface and algebraic curve. 

AMS (1980) subject classification: Primary 51M20, 57M20, 52A25. Secondary 51F15, 20C30, 52A37, 
20F32. 

Manuscript received December 2, 1986, and in final form, February 17, 1987. 
* The author was born on March 5, 1937; so exactly half a century after Otto Haupt. 
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The regular map {5,6}4, which is the Petrie-dual (cf. Section 2 or [7, p. 112] of 
Gordan's {5 ,4 }6  , w a s  found by Coxeter [3]. 

By a recent result of Grfinbaum and Shephard [10] the dual of a Kepler-Poinsot- 
type polyhedron does always exist. So it is easy to show that the dual maps {4,5}6 and 
{6,5}4 can be realized as Kepler-Poinsot-type polyhedra, namely the first one as the 
well-known small stellated triacontahedron (cf. [4, fig. 6.4c]). The realization of {6,5}4 
is also easy to describe: Its visible part is one of the 59 stellated icosahedra, namely 
De2f 2 on plate XI in [5]. The invisible parts are simple added by completing the 20 
faces to hexagons. As far as we know the last two polyhedra were first considered as 
realizations of regular maps in [16]. 

These 4 Kepler-Poinsot-type polyhedra all have the full icosahedral symmetry 
group C2 x As, which is a subgroup of index 2 of the automorphism group C2 x S 5 of 
the underlying regular map. We call a polyhedral realization of a regular map with this 
property a (combinatorially) regular polyhedron of index 2. 

Because the 5 Platonic solids and the 4 Kepler-Poinsot-solids can be interpreted as 
regular polyhedra of index 1, the above mentioned 4 polyhedra are closely related to 
the classical regular polyhedra. So the natural question is: Are there further regular 
polyhedra of index 2? 

The following theorem shows that there is exactly one more regular map which can 
be realized by a combinatorially regular polyhedron of index 2, namely by a self-dual 
icosahedron of genus 11. Our main result is the following. 

THEOREM: There are exactly 5 (orientable) regular maps which can be realized by a 
combinatorially regular polyhedron of index 2, namely the dual maps {4,5}6 and {5,4}6 of 
genus 4, the dual maps {6,5}4 and {5,6}4 of genus 9 and the self-dual map {6,6}6, of genus 
11. The realizations are (up to dilatations) metrically unique. 

REMARK: The notations of the maps are given in Section 2; for the first 4 maps it is 
the usual notation, whereas for the fifth map the '  means that this new map was found 
in a different way (cf. Sections 2 and 4). 

In Section 2 we give the necessary definitions and notations. In Section 3 we show 
that the regular compounds can be interpreted as discontinuous polyhedral realiza- 
tions of regular maps. In Section 4 we introduce the new polyhedron. In Section 5 (the 
main part of the paper) we prove the theorem. In Section 6 we describe the flag- 
diagram. 
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2. Definitions and Notation 

According to [7] a map M is a decomposition of a closed real 2-manifold into f2 
simply-connected, non-overlapping regions of M called faces by means off1 arcs called 
edoes of M. The f0 intersections of the edges are the vertices of M. The triplet f = 
(fo~Cl0C2) is called the f-vector of M. A fla9 of M is a set consisting of one vertex, one 
edge containing this vertex, and one face containing this edge. 

M is said to be of type {p,q} if all its faces are topological p-gons, q meeting at each 
vertex. 

To every map M there corresponds the dual map M* having fo faces, one 
surrounding each vertex of M, f l  edges, one crossing each edge of M, and f2 vertices, 
one contained in the interior of each face of M. 

In [7] a map is called regular if its (combinatorial) automorphism group A(M) 
contains two particular automorphisms: one, say p, which cyclicly permutes the edges 
that are successive sides of one face, and another, say a, which cyclicly permutes the 
successive edges meeting at one vertex of this face (these are the automorphisms R and 
S of [7]). Thanks to the connectivity property of maps, for a regular M its group A(M) 
is transitive on the vertices, on the edges, and on the faces, but need not be flag- 
transitive. Now, A(M) is flag-transitive if and only if it contains an automorphism 
which interchanges the vertices of some edge without interchanging the two faces 
sharing this edge. These are exactly the so-called reflexible regular maps of [7] in 
contrast to the irreflexible (or chiral) regular maps, where A(M) is not flag-transitive. 

According to a more modern definition requiring flag-transitivity for 
combinatorial regularity we will use the term "regular map" without further 
qualifications to mean a reflexible regular map in the sense of [7], and also of [11- 
16,19,20]. From the description it is clear that the order of the automorphism group 
is 4fl. A Petrie-polygon of a map is a "zigzag" along its edges such that every two but 
no three successive edges of the polygon are edges of a single face. Petrie-polygons do 
exist for every regular map M, and the various Petrie-polygons are all alike because 
of the flag-transitivity of the group. This justifies speaking of the Petrie-polygon of 
M. 

Every regular map can be derived from its (unique) universal cover {p,q} by 
making suitable identifications [7]. An effective method for the construction of regular 
maps of type {p,q} is the identification of those pairs of vertices of the regular 
tessellation {p,q} which are separated by r steps along a Petrie-polygon (cf. [7, 
chapter 8.6]). For suitable values of r this identification process gives in fact a regular 
map denoted by {P,q}r. If one replaces the faces of a regular map M by the various 
specimens of the Petrie-polygon while leaving the vertices and edges of M unchanged, 
one gets a new map {r,q}p with the same group, but in general on a different surface (cf. 
[7, p. 1123). 
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This observation shows that there is one common automorphism group of the six 
related regular maps 

{P,q}r, {q,P},, {r,q}v, {q,r}p, {r,p}q, {p,r}¢ 

These are called the direct derivates of each other I-7,20]. Some of these maps may 
coincide, if self-duality or self-Petrie-duality occurs (for more details see I-7, p. 112] and 
[20, p. 13 if]). We mention finally that the underlying 2-manifold for the map {p,q}, is 
orientable or non-orientable according to whether r is even or not. 

In our paper we only consider oriented maps and their realizations. For oriented 
maps we have the well-known Euler-Poincar6 relation 

fo - f ~  + f z  = 2 - 29, (1) 

where g denotes the genus of the manifold. 
For  a map of type (p,q), (but not necessarily regular) of genus 9 we also use the 

short notation {p,q;#}. 
From the regularity follows the simple condition 

Pfo = 2f~ = qfz (2) 

and in the hyperbolic case (9 > 2): 

1 1 1 
P + q < ~. (3) 

There are various possibilities of geometric realizations of a given regular map. For  
certain reasons, but mainly from an intuitive geometrical point of view, we are only 
interested in polyhedral realizations in the Euclidean 3-space E 3 with or without self- 
intersections, according to the 5 Platonic solids and the 4 Kepler-Poinsot-solids. 

To be exact, by a polyhedron we mean a closed compact 2-manifold in E 3, which 
can be expressed as a finite union of plane polygonal regions. If these regions are such 
that no two adjacent ones are coplanar, they are called the faces of P; the vertices and 
edges of P are the vertices and edges of the faces of P, respectively. This way the set of 
all vertices, edges and faces of P becomes the set of all vertices, edges and faces of a 
map on the underlying surface. 

We also consider polyhedra with self-intersections, as e.g. the Kepler-Poinsot 
polyhedra; in particular also with self-intersecting faces (e.g. the pentagram). One 
reason for this is the existence of the Kepler-Poinsot polyhedra, another one is that 
regular polyhedra without self-intersections seem to be very rare; in particular there 
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are none of index 2. But the main reason is that for polyhedra without self-intersections 
the dual may not exist, whereas, by a recent result of Grfinbaum and Shephard [10], 
the dual of a polyhedron with self-intersections does always exist. In the proof of the 
theorem we do not always distinguish between polyhedra with or without self- 
intersections. We only distinguish in the case where it is necessary or to avoid 
confusion. 

If the map is regular we call the polyhedron combinatorially regular, or regular 
with hidden symmetries. The definition makes sense because these polyhedra cannot 
have a flag-transitive symmetry group (except for the 5 Platonic solids, and, with self- 
intersections, for the 4 Kepler-Poinsot solids). These polyhedra can only have a flag- 
transitive combinatorial automorphism group. The symmetry group of the 
polyhedron is a subgroup of the automorphism group of the underlying map. The 
index of this subgroup is called the index of the polyhedral realization. So 
combinatorially regular polyhedra of index 2 are, in a sense, the closest analogues of 
the Platonic solids and the Kepler-Poinsot solids. 

We emphasize that our polyhedral realizations with or without self-intersections 
do not include realizations of regular maps, which have two faces or two vertices joined 
by more than one edge. So, in particular, this rules out the dihedra (and hosohedra) 
and in particular branched covers of regular polyhedra (e.g. polyhedral realizations of 
hyperelliptic Riemann surfaces). 

The condition that every pair of vertices or every pair of faces are incident with 
1 1 

at most one common edge leads to f l  < 2fo(]o - 1),fl -< ~f2(f2 - 1), and with (1) to 

fo-> 1(5 + x/~ + 16g),f2 > ~(5 + V/9 + 169) (4) 

3. The Regular Compounds 

The 5 regular compounds (cf. [4], p. 47) are compounds of equal Platonic 
polyhedra and are clearly no polyhedra. But in our context they occur in a natural way 
and can be interpreted as discontinuous combinatorially regular polyhedra. This is 
described in detail for Kepler's stella octangula [20], which can be interpreted as a 
discontinuous polyhedral realization of the toroidal maps {3,6}4 and {6,3}4. We 
denote these realizations by C3, 6 and C6, 3. For the other regular compounds we give a 
short survey to show their relationship to our polyhedra of index 2. 

The regular compound consisting of 5 cubes has the 20 vertices of the (regular) 
dodecahedron and in each of these 20 vertices lie 2 of the 3-valent vertices of a cube. So 
each of these 20 vertices can be interpreted as a 6-valent vertex, where the hexagonal 
vertex-figure splits into 2 triangles. Hence this compound can be interpreted as a 
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discontinuous polyhedron with p = 4, q = 6 a n d f  = (20,60,30), i.e. the 30 squares of 
the 5 cubes. For  brevity we denote it by C4,6. 

In the same way the regular compound consisting of 5 octahedra can be 
interpreted, where the role of vertices and faces changes. So here we have a discon- 
tinuous polyhedron with p = 6, q = 4 and f = (30,60,20) which we denote by C6,4. 

Finally the regular compound consisting of 10 tetrahedra has (with this 
interpretation) 20 hexagons, which split into two triangles each, and 20 vertices which 
split into two 3-valent vertices each. We denote it by C6,6. 

To complete the list we add two further compounds: 
(a) The compound consisting of the (regular) dodecahedron and the (regular) great 

stellated dodecahedron {2,3} (cf. [4, p. 96]) with common vertices can be in- 

terpreted as a discontinuous polyhedron with p = 5, q = 6 a n d f  = (20,60,24); 
the 24 faces are the 12 pentagons and the 12 pentagrams. We denote it by C5,6. 

(b) The compound consisting of the (regular) icosahedron and the (regular) great 

icosahedron {3,2} (cf. [4, p. 96]) with common face-planes can be interpreted 

as a discontinuous polyhedron withp = 6, q = 5 a n d f  = (24,60,20). We denote 

it by C6,5. 
These 5 discontinuous polyhedra are shown in the flag-diagram in Figure 2. They 

are symbolized by the hexagonal stars, built up of two triangles. The most important 
property of C4,6,C6,4,C5, 6 and C6, 6 in our context is that they all have 60 edges and the 
icosahedral symmetry group. This shows their close relation to the 5 combinatorially 
regular polyhedra of index 2 in the theorem, which all have these properties, too. 

The fact that C6, 6 splits in its faces and vertex figures leads to the well-known 
property that C6, 6 itself can be decomposed into two regular compounds of 5 
tetrahedra each, which are chiral (left and right). 

4. A Sei~Dual  Icosahedron of Genus 11 

In the following we describe the polyhedron shown in Figure 1 and prove that it is 

the polyhedral realization of a regular map. 
The polyhedron is of type {6,6}, oriented and of genus 11, so it has 20 6-valent 

vertices and 20 self-intersecting hexagonal faces. One face is hatched in Figure 1. The 
20 vertices are the vertices of the regular dodecahedron. The visible part of the 
polyhedron is one of the 59 stellated icosahedra (cf. I-5, fig. Eflgl on Plate IX]); it traces 
back at least to Brfickner (cf. [2, fig. 26, Tafel VIII]), but is perhaps much older. The 
invisible part of the polyhedron is the icosahedron. The symmetry group of the 
polyhedron is the full icosahedral group; it acts transitively on the 20 vertices and the 
20 faces. The 60 edges split into two orbits (long edges and short edges) under the 
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{6,6} 6 f ig.  1 f=20(1,311) 

symmetry group. The main point is that the 240 flags split into two orbits only under 
the symmetry group, which is easy to see. So, if the polyhedron is combinatorially 
regular, it is of index 2. To prove the regularity we need an "outer automorphism" as 
mentioned by Coxeter ([3, p. 142]) for the other regular maps of index 2. 

In our case the outer automorphism is very geometric and easy to find by using the 
self-duality which interchanges the role of the 20 vertices and the 20 faces. This self- 
duality interchanges also the two flag orbits (of the 30 long edges and the 30 short 
edges) while preserving all incidence properties, which is easy to verify. For this we 
labelled in Figure 1 the 12 flags incident with the front vertex by 1 . . . . .  12 and the 12 
corresponding flags incident with the corresponding (hatched) face by 1', . . . .  12'. So 
the polyhedron is combinatorially regular of index 2. 

We add some remarks: 

(1) The surprising fact that the regularity properties of the polyhedron were never 
observed before is due to the fact that the faces are not metrically regular. 

(2) The underlying regular map for the polyhedron is relatively new: It was 
discovered in 1976 by Wilson in his thesis ([21, p. 151; regular map no. 
(60,57)]). Wilson only investigated regular maps; he did not consider polyhedral 
realizations. We denote the map by {6,6}~ because ofp = q = 6 and the length 
6 of its Petrie-polygon. The '  indicates that Wilson found it in a different way as 
the {p,q}, are usually constructed (cf. [7, p. 111] or Section 2). 

(3) Another regularity proof for the polyhedron by standard methods of 
comparing the incidence properties of the polyhedron and the underlying 
regular map has been proposed by E. Schulte (personal communication). 
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(4) The polyhedron has no "false" edges; i.e. the only points of self-intersection are 
the 12 points where the visible and the invisible part  of the polyhedron intersect. 

(5) If  one considers the "holes" (cf. [20, p. 5 and p. 151]) of {6,6}~ then the 2-holes 
H 2 form exactly the regular compound C5, 6 and the 3-holes n 3 form the 
degenerate compound of 15 dihedra, described in Lemma 7. 

5. Proof of the Theorem 

In this section we prove that no other regular map besides the 5 mentioned in the 
theorem is realizable as a polyhedron with or without self-intersections of index 2. 
Moreover we show that these realizations are unique up to dilatations. We need 6 
lemmas. The final part  of the theorem is after Lemma 6. 

LEMMA 1: There are no combinatorially regular polyhedra of  index 2 with the cyclic 
or dihedral symmetry group. 

Proof. If such a polyhedron exists, its vertices lie on k orbits with respect to the 
rotation. We consider three cases: k = 1, k = 2, k > 3. 

(1) k = 1. The "polyhedral" realization is "flat", i.e. lies in a plane. Hence no 

polyhedral realization exists. 
(2) k = 2. There is at least one face which contains vertices of both orbits. This face 

cannot contain more than two vertices of each orbit. So it is either a triangle or 
a quadrangle. If it is a triangle it belongs to flags of at least three different orbits 
(with respect to the full symmetry group). If it is a quadrangle, then it must be a 
rectangle or a degenerate rectangle (with 2 parallel edges replaced by the two 

diagonals). 
In both cases one needs further faces from another orbit to build up a 

polyhedron. Hence there are more than two flag orbits and the polyhedron has 

an index > 3. 
(3) k > 3. There is at least one edge which joins a vertex of an "outer" orbit and a 

vertex of one "inner" orbit. This edge belongs to two flags which are from 
different orbits (with respect to the symmetry group). Further there is at least 
one edge which does not belong to the same orbit as the first one. Hence there 
are at least three flag-orbits and the polyhedron has an index > 3. 

LEMMA 2. There are no combinatorially regular polyhedra o f  index 2 and either the 
rotation group or the full symmetry group of  the tetrahedron or the octahedron. 



214 J. M. WILLS AEQ. MATH. 

Proof If such a po lyhedron  exists, its au tomorph i sm group  has the order 24, 48 or 
96, hence f l  = 6 or 12 or 24. Without  restriction we can assume p < q, SOfo < f2. 

F r o m  (4) follows for g = l : fo  > 5. But the only regular m a p  with g = 1 andf~ = 
6 or  12 or 24 is {3,6}4 and h a s f o  = 4 (cf. 1-7, p. 104, 108]). So let g > 2. 

F r o m  (4) follows for g > 2: fo >- 6, and for g > 3: fo > 7. 

From (3) and p <- qfollows q > 5 and so from (2): fo < [~fi].  

F r o m  this follows fo r f~  _ 12:fo _< 4. This contradicts  fo ___ 6, and so the only 
remaining case is f l  = 24. F r o m  (2) we have 

qfo =Pfz = 4 8 .  

F r o m  this and q > 5,fo > 6 it follows that  the only possible values for q andfo  are: 

(1) q =  8 a n d f o  = 6 f o r g  = 2 
(2) q =  6 a n d f o  = 8  forg___ 3. 

If  in case (2) we have g > 6, then we get f rom (1):fo - f l  + f2 = - 16 + f2 < 2 - 
12 = - 10 or f2 < 6, which contradicts  f2 > fo = 8. 

So it is easy to check f rom (1) and (2) and the complete  lists of  regular maps  for g = 
2,3,4,5 in [7 p. 140], [17 p. 475] and [8 pp. 53, 54] that  the only possible regular maps  
are the following, which are uniquely determined by their f -vector :  

g = 2 f = (6,24,16) 

g = 3 f = (8,24,12) 

g = 5 f = (8,24,8). 

All these maps  have the p roper ty  that  two adjacent  vertices are joined by more  
than one edge, which can either be seen f rom I-7,8,17] and the li terature ment ioned 
there, or  f rom Wilson's  list [20 p. 130], where all these maps  and their propert ies  
are listed. 

LEMMA 3. There are no combinatorially regular polyhedra of index 2 which have 
the rotation group of  the icosahedron. 

Proof If  such a po lyhedron  exists, then f l  = 30. F r o m  the lists of  Coxe te r -Moser  
(I-17, pp. 104, 108 and 140]), Sherk ([17, p. 475]) and G a r b e  ([8, pp. 53, 54]) follows 
that  for g < 6 the only regular  m a p  with f l  = 30 is the one of type {5,5} and of genus 
4, which is just  the m a p  for the two Keple r -Poinso t  po lyhedra  of  genus 4. So we can 
assume that  a regular  m a p  with g > 7 and f l  = 30 exists. Then 
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qfo =Pf2 = 2 f l  =60 .  

Without restriction p _< q, so fo < f2. 
Further we have from the icosahedral rotation group 12 < fo < f2 and hence 

p < q < 5. From this and (3) it follows that the only possible pairs (p,q) are (4,5) and 
(5,5). The corresponding pairs (f0f2) are (15,12) and (12,12). So we have from Euler's 
relation (1): 

- 6  < f o  - f l  + f 2  = 2 - 29 

or 9 < 4, which contradicts 9 > 7. 

So we only have to consider the map with f l  = 30 and 9 = 4 mentioned above. 

map has the two realizations {5,2} and {2,5} which are two of the Kepler-Poinsot- This 

solids with the full icosahedral symmetry group. We have to show that no realization 
with the icosahedral rotation group is possible. For  this we note that the 12 vertices 
of a realization must be the vertices of a regular icosahedron. 

We consider one rotation axis through two opposite vertices V and I7". Then the 
other 10 vertices lie on two orbits, say X and Y, of 5 vertices each. Because each vertex 
is 5-valent, the edges of Vmeet either all vertices of X o r  of Y. No other distributions of 

30 edges is possible. But these two possibilities yield {5,2} and {2,5} and another the 

polyhedral realization of this map with icosahedral rotation group does not exist. 

LEMMA 4. Combinatorially regular polyhedra of index 2, and f l  = 60 are at most 
possible for the followin9 triplets {P,q;9}: 

{4,5;4}, {4,6;6}, {5,5;7}, {5,6;9}, {6,6;11}, 

{5,4;4}, {6,4;6}, {6,5;9}. 

Proof If such a polyhedron exists, then it has the full icosahedral symmetry group. 

S o  f l  = 60 and 

qfo =Pfz = 2fl = 120. 

Again let p < q, so fo < f2. 

(1) From the lists of the regular maps for O < 6 (cf. [7, pp. 104, 108, 140], [8, pp. 53, 
54]; [17, p. 475]) follows that the only regular maps with O < 6 and f l  = 60 are: 
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(a) {4,5;4} = {4,5}6, {4,6;6} = {4,6/3} and their duals {5,4;4} = {5,4}6, {6,4;6} = 
{6,4/3}. 

(These maps are realizable, but not all of index 2, as we will see later.) 
(b) {3,10;5} and {10,3;5}. These maps are hyperelliptic (cf. [8] or [20]), i.e. two 

adjacent vertices are joined by two edges. So these maps are not realizable in 
our sense. 

(2) In the following let g > 7. Then (4) implies 8 < fo < fz. From qfo = 120 it 
follows that fo is a divisor of 120. 

So we obtain the following values for fo  and the corresponding q > 3: 

fo = 8, 10, 12, 15, 20, 24, 30, 40 

q = 15, 12, 10, 8, 6, 5, 4, 3. 

Because of the icosahedral symmetry the casesfo = 8, 10 and 15 are not possible. 
We show that alsofo = 12 is not possible. Iffo = 12, then the vertices are exactly 

the 12 vertices of the regular icosahedron. Because no 6 vertices of the icosahedron lie 
in a plane, we have p = 3,4 or 5. There are exactly 12 planes which contain 5 vertices 
of the icosahedron. This yields Pf2 = 60, which contradicts Pf2 = 120. This rules out 
p = 5 .  

Now let p = 4. A quadrangle cannot lie in one of the 12 planes which contain 5 
vertices of the icosahedron, because then for symmetry reasons 5 quadrangles lie in 
each of these planes, which violates the properties of a polyhedron and of a regular 
map. So these quadrangles are not possible. There are exactly 15 planes which contain 

exactly 4 vertices of the icosahedron. This yields Pfz = 60, which contradicts Pf2 = 
120 and rules out p = 4. 

I f p  = 3, thenfz  = 40, and from (1) follows 

f o - f l  + f 2  = - 8  = 2 - 2 0 ,  

and so g = 5, which contradicts g > 7. 

So the only remaining values are now: fo = 20,24,30 and 40, and we have 
p < q < 6. From (3) and q < 6 fol lowsp > 4. 

(3) So we have from (1) and (2) that for f l  = 60 the only possible pairs (p,q) with 
p < q and their duals with p > q are: 

(4,5), (5,5), (4,6), (5,6), (6,6) 

(5,4) (6,4), (6,5). 
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Because the genus g is uniquely determined by (p,q) and already mentioned in (a) 
for g < 6, we have all triplets {p,q;g} mentioned in the lemma. 

LEMMA 5. There is no comb&atorially regular polyhedron {5,5;7} of  index 2. 

Proof If such a polyhedron exists, it follows from the Euler-relation that f = 
(24,60,24). Its symmetry group is the full icosahedral group, which is a subgroup of 
index 2 in its automorphism group C2 x Ss. So its vertices and its faces lie on exactly 
two orbits of 12 each, say the orbits x ,X  and y, Y. Further there exist edges which join 
vertices of different orbits, and hence faces which contain vertices of different orbits. 
Because the faces are pentagons (or pentagrams) they cannot have the same number of 
vertices from both orbits. Hence the faces from the face-orbit X must have more 
vertices from, say vertex-orbit x, than the faces from face-orbit Y. 

From this it follows that there are at least four orbits of flags and so the poly- 
hedron has at least the index 4. 

LEMMA 6. There are exactly 2 comb&atorially regular polyhedra of  &dex 2, which 
are realizations of  regular maps of  the type {4,6;6}, {5,6;9} or {6,6;11} and have fo = 20. 

Proof Let P be such a polyhedron of index 2. From Lemma 4 we know that f l  = 
60 and that its symmetry group is the full icosahedral group. So the 20 vertices lie on 
one orbit, i.e. they are the vertices of a regular dodecahedron. 

We consider a rotation-axis through one vertex v and its opposite vertex f. Then 
the remaining 18 vertices of P split under this rotation into two orbits of 3 vertices each 
and two orbits of 6 vertices each. 

We denote the orbits by Oi, i = 1,2,3,4, where i is the length of the shortest path 
from v to a vertex of O i along the edges of the dodecahedron. 

So O 1 and 04 contain 3 vertices each, and 02,03 6 vertices each. 
Now let vi~ denote the vertices of O~, i.e. 

0 1  = { v , , , v , a , v , 3 } ,  0 2  = . . . . .   26} 

0 3  = {v3 ,  . . . .  o .  = 

From q = 6 and the icosahedral symmetry follows that for the 6 edges incident 
with v there are only the following three possibilities: 

(I) ~ i =  1,4,j = 1,2,3 

(II) vv2j j = 1 . . . . .  6 
(III) VVsj j = 1 . . . . .  6 
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(I), (II) and (III) define uniquely the three only possible 1-skeletons (=edge- 
graphs) for P, and we have to check all possible (orientable) 2-manifolds with p = 4,5 
or 6, which can be constructed from these. This needs much space to write down in 
detail, but is easy to check for the few possible cases, if one takes a model of a regular 
dodecahedron: 

(I) p = 4. One obtains 30 rectangles which form 15 dihedra, i.e. a highly 
degenerate compound, but no polyhedron. 

p = 5. One obtains the regular compound C5,6 described in Section 3. 
p = 6. One obtains the unique polyhedral realization of index 2 of {6,6}L 

(II) p = 4. One obtains the regular compound (?4,6 described in Section 3. 
p = 5. One obtains the unique polyhedral realization of index 2 of {5,6}4. 
p = 6. No 6 edges form a plane hexagon. 

(III) p = 4,5,6. No polyhedra are possible. It can easily be seen that the only 
possible polygons are 40 regular triangles which yield the well- 
known regular compound built up of 10 regular tetrahedra, i.e. 
C6.6 of Section 3. 

Proof of the theorem. After Lemma 6 we are now able to complete the proof of the 
theorem: From Lemmas 1,2,3 it follows that such realizations exist (if at all) for f l  = 
60, i.e. for the full icosahedral symmetry group. These cases are investigated in 
Lemmas 4,5 and 6. From Lemmas 4 and 5 follows that such realizations exist (if at all) 
only for the following triplets p,q;g: 

{4,5;4}, {4,6;6}, {5,6;9}, {6,6;11} 
{5,4;4}, {6,4;6}, {6,5;9}. 

For O = 4 there are exactly the two regular maps (cf. [8]) ({4,5}6 and {5,4}6, and 
their polyhedral realizations with icosahedral symmetry group (i.e. of index 2) are 
unique, which was proved e.g. in [4, p. 102]. 

For the 3 triplets {4,6;6}, {5,6;9} and {6,6;11}, it follows from Lemma 7 that 
exactly the regular maps {5,6}4 and {6,6}~ are realizable by a polyhedron of index 2 
and that these realizations are metrically unique (up to dilatations). 

From Griinbaum's and Shephard's duality theorem this follows also for the dual 
map {6,5}4 and the theorem is proved. 

6. The Flag-Diagram 

Regular maps and their various polyhedral realizations can be shown in a flag- 
diagram (Fig. 2) i.e. in ap,q-diagram forp _> 3, q > 3 (orp _> 2, q > 2, if one wants to 
include dihedra and hosohedra). The labels in the (p,q)-fields denote the genus g. 
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6 

5 

Z, 

3 

3 s 6 

fig. 2 

The number of flags at a vertex is 2q, and in a face is 2p. 
The bold lines separate the three regions 

1 1 1 
(1) Elliptic; ~ + a > 2' g = 0 

1 1 1 
(2) Parabolic; ~ + a = 2 ,  g = 1 

1 1 1 
(3) Hyperbolic; P - + q - < ~, g > 2. 

The 5 large circles denote the 5 Platonic polyhedra; the 3 large pentagrams denote 

the 4 Kepler-Pointsot polyhedra ({5,2} and {2,5} are realizations of the same map); 

bold squares denote the 3 regular tilings of the plane. The 2 small circles denote 
Coxeter's regular maps {4,6/3} and {6,4/3} of genus 6, which can be realized in E 3 with- 
out self-intersections [12], but not as polyhedra of index 2, as shown in Lemma 6. 
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The hexagonal stars denote the regular compounds 

C3,6, C6,3, C4,6, C6,4, C5,6, C6,5, C6,6 

described in Section 3. Finally the 5 diamonds denote the 5 combinatorially regular 
polyhedra of index 2 of our theorem. 
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