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Compositions with distinct parts 

B. RICHMOND AND A. KNOPFMACHER 

Abstract. The number of compositions C(n) of a positive integer n into distinct parts can be considered 
as a natural analogue of the number q(n) of distinct partitions of n. We obtain an asymptotic estimate 
for C(n) and in addition show that the sequence ~C(n, k)} of distinct compositions of n with k distinct 
parts is unimodal. Our analysis is more complicated than is usual for composition problems. The results 
imply however that the behaviour of these functions is of comparable complexity to partitian problems. 

§I. Introduction 

In this note  we consider  C(n, k), the number  o f  compos i t ions  of  n with k dist inct  

parts ,  as well as C ( n ) =  ~ k  C(n, k), the to ta l  number  o f  compos i t ions  of  n with 

dist inct  parts .  It is clear tha t  C(n, k ) =  k!q(n,  k)  where q(n, k) is the number  o f  

par t i t ions  o f  n with k dis t inct  parts .  Thus  q(n, k) is the number  o f  solut ions  in 

integers to 

xj + x2 q- . . . + xk = n, 1 <- xl  < x2 < . . . < x k. 

The funct ion q(n, k)  has been s tudied in detail  by Szekeres in two remarkab le  

papers  [Szl]  and  [Sz2]. We  shall depend  very heavily upon  the results in [Sz2]. 

Unres t r ic ted  compos i t ions  have a well known  cor respondence  with combina t ions  o f  

multi-sets.  F r o m  this we ob ta in  a fur ther  combina to r i a l  in te rpre ta t ion  o f  C(n, k): 

Let S be a mult i -set  with k dist inct  objects,  each with unl imited repet i t ion.  Then 

C(n, k)  is the number  o f  n - combina t ions  o f  S in which each object  appears  at  least 

once and the number  o f  t imes each o f  the k objects  appears  is different. 

A sequence a, (k ) ,  k = 1, 2 . . . .  K is said to be un imoda l  if  there is a ko such that  

a , (1 )  < a , (2 )  < . . .  < a,(ko)  >- an(1 + k0) > " "  > an(K).  A surpris ingly rich variety 

AMS (199t) subject classification: 11P82. 

Manuscript received September 27, 1993 and, in final form, January 12, 1994. 

86 



Vol. 49, 1995 Compositions with distinct parts 87 

of  methods  exist for proving unimodali ty,  see the thorough and fascinating survey 
by Stanley [S]. Szekeres [Sz2] showed that  if n = m ( m + l ) / 2 + f ,  O<g <m, 
then q(n, 1) < q(n, 2) < .  • • < q(n, ko) > q(n, 1 + ko) > " " • > q(n, m). He also showed 
that  if c=6~/2n,  b = c 2 1 o g Z 2  then ko=21/2c(log2)nl/2-1+2b(log2) - l -  
~b/(1 -2b)  - 1 + 0 (n -  ~r2). The paper  [Sz2] has led to m a n y  further analytic proofs  
of  unimodali ty,  see [S] for  references. We prove  that  C(n, k) is unimodal  using 
[Sz2]. Other  sequences such as mkk!q(n, k), mkq(n, k) the number  of  composi t ions  
(respectively parti t ions) with m colours and k parts  can be proved to be unimodal  
by modifying Szekeres's method.  We shall identify the required results f rom [Sz21 
for our example  so as to facilitate proving that  sequences constructed f rom q(n, k) 
(or  f rom p(n, k) defined below) are unimodal.  

We first prove 

THEOREM 1. Let n = m(m + 1)/2 + E, 0 < f < m. Then there is an #Tteger kl, 
such that 

C(n, 1) < C(n, 2) < . . -  < C(n, kl)  -> C(n, k 1 4- 1) > " "  > C(n, m). 

Furthermore, if y is defined as the real solution of eq. (2.12) modified by deleting 
the O-term and replacing i by y, and if i~ is the integer part of y then 

k l = m - i ~  or m ii 1 and i l~c-:m/ log 2m. 

Here c = 6~/2/z and the symbol  ~ means that  the ratio of  the two sides tends to 

1 a s  n - - *  o o .  

Szekeres derived an asymptot ic  formula  for q(n, k) in [Sz2] valid for all n and k 
tending to infinity so o f  course there is such a formula  for C(n, k). It is not  
complicated for k near  k~, as we now see. 

Let p(n) denote the ordinary part i t ion function (p(n) = P(n, n) defined below). 
The H a r d y - R a m u n u j a n  formula  

1 1/2 c 
P(n) ~" {23/2rc( n ---~jjl "~'~-l/2exp(2c-'(n -- ~-~) ){1--  2--~+ 0 ( ! ) }  

is derived in [Sz2]. It  also follows f rom the results in [Sz2] or  immediately f rom the 
results in E r d 6 s - L e h n e r  [ELI that  if k > c{n - k ( k  + 1)/2}1/2L + w(n)n ~/2, where 
L = log{c(n -- k(k + 1)/2) 1/2} and w(n) is an arbi trary function tending to infinity, 

then 

q(n,k) ...p(n - k ( k +  1)/2), 
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which gives a simple asymptotic formula for C(n, k) when Stirling's formula is 
applied. (It follows from the estimates in (2.9) that k, - c  {n - k l  (kl + 1)/2)I/2L ,,~ 
m log m/log m so that since kl " m the Erd6s-Lehner condition is satisfied.) 

We also prove 

THEOREM 2. Let n = m (m + 1)/2 + ~, 0 < ~ < m. Let C(n) = ~ C(n, k). Then, 
with c and kl defined in Theorem 1, 

C(n, kl )n 1/2m 1/2 
C(n) ,,, x ~ g  m 

(The proof of Theorem 2 shows that the C(n,k)/C(n) tend to a normal 
distribution with mean k~ and standard deviation ~x/2(m/log m)1/2.) 

The inequalities mk~ !q(n, k~) > C(n) > m! show that 

log C(n) ,,~ (2n)i/2 log n. 

Thus the restriction that the parts be distinct is strong since if this restriction is 
dropped we have 2" - t  compositions. 

In addition, using the fact that C(n)= ~ k!q(n, k) and the known generating 
functions for q(n, k), we obtain the ordinary generating function 

k + i )  
,~ k!x ( 2 

C ( x )  = 2 ,  C ( n ) x " -  - L " • 
n=l k=l (1 - - X ) ( I ~ '  (1 --X k) 

It seems simplest to estimate C(n, k) using the k-th term of this series and then sum 
these estimates, rather than dealing directly with C(x). 

Although it is not explicitly stated there it follows from the results in [Sz2] that 
if k < k0 then q2(n, k - 1) > q(n, k - 2)q(n, k), i.e, q(n, k) is log-concave for k < k0 
while if k > k0 then q(n, k)q(n, k + 2) > q2(n, k + 1), i.e. q(n, k) is log-convex for 
these k. These inequalities are shown to hold for C(n, k) also. 

Some related enumeration problems concerning distinct partition sizes in the 
contexts of  set partitions and permutations are considered in [KORSW]. 

§2. Proofs 

Let p(n, k) denote the number of  partitions of n into k parts and P(n, k) = 
~k~np(n ,  k). Then, as Szekeres points out, q(n, k ) =  P ( n - k ( k  + 1)/2, k). Sup- 
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pose f is defined as in Theorem 1 and k = m - s  where s < m ~/5. Then 

n - k ( k  + 1)/2 = f + s m -  s(s + 1)/2, 

SO 

P(n - k ( k  + 1)/2, k) = P ( (  + s m  - s(s + 1)/2,m - s) = p ( f  + s m  - s(s + 1)/2). 

Hence, if 0 <- s < m ~/5, 

C(n, m - s) 

C(n, m - s -  1) 

p ( f  + s m  -- s(s + 1)/2 
(m 

S ) p ( f  + (s + l)m -- (s + 1)(s + 2)/2)" 

Hence, f rom the H a r d y - R a m a n u j a n  formula, 

C(n, m)  ? ( : )  mp(m)  
= m  < < 1  

C ( n , m - 1 )  p ( ( + m + l )  p ( 2 m + l )  

and it is seen that more generally 

C(n, rn - s) 

C(n, m - s - 1) 
< 1 for 0 g s -< m 1/5 

Also if k is bounded then 

1 
P(n - k ( k  + 1)/2, k) = [x"-k~k+ 1)/2] 

(1 -- X)(1 -- X2) . . .  (1 -- xk) 

(n - k(~  + 1)/2) k 

k! 

as is easily seen from the partial fraction decomposition. Thus Theorem 1 is easily 

verified for bounded k. 

We suppose throughout  this section that 

n = r n ( r n + l ) / 2 + f ,  0 < f - < m  and c=6112/m 

Let k = m - i t h e n  

n - k ( k  + 1)/2 = im - i(i - 1)/2 + ~. 

We now list some relations from [Sz2] that we need. Define • and u by 

~k = u (2.1) 
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and [eq. (44), Sz2] 

~ - 2  l dl + o~ -1 -- 
e ' - ~  -2 ~ 1  

B. RICHMOND AND A. KNOPFMACHER 

- -  - 1 )  = i m  - -  ( i  - 1)i /2  + ~' + 0(1) .  

Note that an equivalent definition of • is [eq. 10, Sz2] 

k j (k + l)k 
,~=l e ~7- 1 n 2 - -  - i m - - i ( i - - 1 ) / 2 + E  

AEQ. MATH.  

(2.2) 

Now [top of page 1 l l  and bot tom of page 102, Sz2] 

where 

e u 1 A o l u Z ( e " + e  2u) 
log((q(n, k + 1))/l(n, k)) = - l o g ( e  ~ -  1) - ~ ~ + 2 (e u -  1) 2 

- -2  4 2u 
3 A o  I ue ~ 1 A o  u e "X 
2 e ~ - ~  + 2 ~ --- 1-~-) + O(c¢ 2) (2.4) 

fu t2e t 
Ao = Jo ( e T Z i )  z dt. (2.5) 

Clearly we need accurate estimates for ~, u and Ao to use these relations. We begin 
by estimating ~. From [eq. 42, Sz2] 

e-S~_ldt  = c -2 - (u + 1)e -~ + O(ue-2") .  (2.6) 

kl!q(n, kl) q(n, k l )  
= 1  or - l + k l .  (2.3) 

(kl + 1)!q(n, 1 + k l )  q(n, 1 + k ~ )  

which shows, since the left-hand side is monotonic in ~, that ~ and u are uniquely 
determined. 

We shall use the method of successive approximations or bootstrapping as 

Greene and Knuth [GK] say. Since the solutions to (2.1) and (2.2) are unique, the 
approximations we derive this way are valid for u and ~. To motivate the following 
calculations we have these considerations: 

We expect the maximum of C(n, k)  to be very near the k 1, for which 
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F r o m  (2.2), (2.6) and the formula for the roots o f  a quadrat ic  we have 

1 I ~ ( u ( e " - - ] ) ] ) + { ~ ( u ( e ~ - - l ) 1 ) 2 + 4 ( i m - - i ( i - - l ) / 2 + E + O ( 1 ) )  

) ~/21 
×(c  2 - - ( u +  l ) e - " + O ( u e  2~)) t ][2(c Z - - ( u + l ) e - u + O ( u e - 2 " ) ) ]  - '  

(2.7) 

For  our first estimate, we suppose u ~ ~ and i = o(m), then f rom (2.1), (2.7) 

- ~ ~ c ( im)  1/2 hence ak  = u ,,~ c -  Im l;Zi l j2 

N o w  from (2.4) we see that, if k satisfies (2.3), 

u ~ l o g ( m - i + l )  so i ~ c - 2 m / l o g 2 m .  

Hence there is a solution to (2.3), (2.4) and (2.5) that satisfies, with kl = m - i ~ ,  

i I ~ c 2m(log m) -2 

o t ~ c  l ( i m ) - l f 2 ~ ( I o g m ) / m ,  u ~ l o g m  

A o ~ t2e ' (e  ~ - 1) 2 dt = 2 c - 2 ,  (2.8) 

which is the unique solution. 

We now refine our  estimates for ~ considerably. Note  first o f  all that  f rom eq. 
(41) o f  [Sz2] we have that  the O(1) term of  (2.7) is 1 / 2 4 + O ( l o g m / m )  (using 
u ~ log m from (2.8)), which we will use in solving (2.7). We begin by solving (2.2) 
more  precisely. 

I f  we now set i = c 2 m log 2 m + m f ( m )  and substitute this expression into 
(2.2) we see that  all terms involving an e" or  e -u can be neglected and 

l o g m (  c 2 c  2 ) 
c~ = 1 + - -  log 2 m f ( m )  + O(log -2 m f ( m ) )  + f e ( m )  . 

m 4 log 2 m 2 

Hence log(m - i + l) = ~(m - i + 1) implies 

log m i 1 i: 
m 2 \ m  ~J 

C -  2 

log m + 4 log m 

c_2 )( ) 
2 l°g3 m r ( m )  + O(log m r ( m ) )  1 - i 1 

m 
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and so 

3 c -4 2C - 4  

f(m) = 4 log 4 m + ~ + O ( l ° g - 6  m). 

Hence 

i = c -2m log-2  m 
3 c-4m 
4 log 2 m 

2£ - 5m 
- -  + ~ + O ( l o g  - 6  m )  

l o g ~ m  

~ =  l q  
m 810g 2m l ~ g  3m + O  m 

3 
u = ~k = 0~(m - i) = log m - ~ c -2  l o g - i  m - c - 2  log-2  m + O(log -3 m) 

(2.9) 

We now solve (2.7) using (2.9). 
Note  that  

4 ( u + l ) e - " = 4 m  l o g m + l + ~ c -  + ~ c -  + l ~ C  -4 l o g - ' m + O ( l o g - 2 m )  . 

Using similar estimates for  u(e u- 1)-~ we find that  the expression inside the root  
of  (2.7) when divided by 4 (c -2  _ (u + 1)e-U + O(ue-ZU)) equals 

1 1/2 c2(log m + 1 - c - 2  _ 3c-2 / log  m) 

2m 

1 + o(m ,og2 m,)) 
all squared. 

We now find that  (recall i ~ c-2m log -2 m) 

1 

3 5 7 (~+c/2)1ogm+c-'+'~c-3+(c-3+~4c- +~)/log m 

cm(im--i(i--l)/2 '~- ~ -31- 1 >  1/2 Jr" 0 <F/'/2 l-l°g m >" 

(2.10) 
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Thus 

u = ~(m -- i) 

c - l ( m -  i ) -  ( ~ +  2) log m - c  
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3 -3 ( + 9  c + ~ ) l o g - l m  - I  - - ~ C  _ C--3 --5 
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1 "~1/2 
im - i(i-- 1)/2+ ~ + ~ /  

1 m)" (2.11) + O(m log 

Furthermore, using (2.9) in (2.4), we find that 

log(q(n,_k + l)~ 1 l (c z 
\ q(n,k) it= m c2mlogm c~ -~-log zm 3c2 u ----~-log m + 1 --2c -2 

+(3--2c-2) j logm + O(log-2 m)). 

Hence when we use (2.10), (2.9) and (2.11) to solve (2.3) we have the equation 

(c l )  3 3 ( 3 9 ~) c- ' (m-- i ) - -  ~+~ logm- -c - l - -~c  - +~c- +-~c 5+ log-ira 

1 )1/2 
im - i(i-- 1)/2 + ~ + 

+--+(c2mlogm)-~+m-~ log 3 m - ~ c  log 2 m +  ~-~-2c 
m 

(2.12) 

Note that the contribution to y of the O-term will be O(log -~m) since 
{A log(m - y  + 1)[ < (m - y) - l  Ay. The claims concerning it in Theorem 1 follow. 
One can use Newton's method starting with the estimate given by (2.9) to solve for 
y. 

We now turn to verifying the unimodality of C(n, k). 
We shall show first that, if k > k~, 

C(n, k + 1) C(n, k + 2) 
> 

C(n, k) C(n, k + 1)" 
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We use the equat ion at the top o f  page 111 o f  [Sz2] to estimate A log(C(n, k + 1)/ 
C(n, k)). The analysis to compute  A logp(n,  k) starting with eq. (32) and cont inuing 
to eq. (46) in [Sz2] shows that " the  difference of  smaller terms is smaller ."  (This is 
also basic to [RS].) Thus to estimate A l o g { C ( n , k  + 1)/(Cn, k )}  is suffices to 
estimate A -  log(e u -  1). Hence 

- A u  
A log{C(n, k + 1)/C(n, k)} I - e ~" 

F rom the equat ion just after  (44) o f  [Sz2] 

A~ = A o  I ~tZue"/(e u -  1) + O(c~3). 

Since u = ~k we have Au = kAc~ + ~, so 

Au ,,~ Aolot2u2e"/(e u -- l). 

Hence, from (2.8) 

u(kl + 1) - u(kl )  ~ A o l ~ u  3 eU/(e u -- 1) ~ c (log 4 m). 
l m  

i 
A log(kj + 1) = kl +~--1 + O 

Now 

and, since k {  ~ ~ 1/m, we see that 

A log{C(n, k~ + 1)/C(n, kl)} < O. 

However  since A2u is easily seen to 
Au(k) -> Au(kl )  for  k -> kl.  Also 
A log(k + log(k~ + 1). Hence  A log{C(n, k + 1)/C(n, k)} < 0 for all k > k~. 

For  k < k ~  we note that A u ( k - l ) < A u ( k )  since A u > 0  and 
(k - 1) - 1 > k - i. Hence 

(2.13) 

be ~Aoct23u2Au ,,~ 3 ~ u  5 > 0  we see that  
A l o g ( k + l )  = ( k + 2 ) - J + O ( k  -2)  so 

that  

A log{C(n, k) /C(n ,  k - 1)} > A log{C(n, k~)/C(n,  k~ - 1)}. 
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But it is easily seen that 

A log{C(n, k,)IC(n, k, - 1)} > 0 

since here the change is asymptotically 
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the negative 
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(2.14) 

of the change in (2.13). 
Equations (2.13) and (2.14) complete the proof o f Theorem 1 (along with eq. (2.12) 
and the comments following immediately). 

We prove Theorem 2. From Stirling's formula 

(kik,!+y)'_ exp(y l o g ( m - i ) + y 2 1 ( m - i ) +  O(mY-~2_2)). 

Since from (2.11) 

log(q(n'kl +---1)~ = - u  + O(~t logZ m) 
\ q(n, kl) / 

we have 

log(-q(n--', kl,---+,l)~ = - y u  + O(y~ log 2 m) 
\ qtn, Kl) / 

(yu = --yot(m -- il + y)) = --y~(m - il) --yZot + O(y~x l o f  m). 

Now 

~(m - il) ~ log(m - il), so ~ ,,~ log(m -- il)/(m - il). 

Hence, for y = O(m 2/3), 

q(n'ki + Y ) = e x p ( - - y l ° g ( m - - i l ) - - Y  21°g(m-i l)  ( ~ ) )  
q(n, kl) "~" ~- 717 + O • 

Thus 

C(n, k~ + y) { z log(m - i, )'~ { z log m'~ 
C(n, ki) "exPt-Y (m-~ii)-)~exPt-Y m)"  

Hence 

C(n, k, ) v/~m ,12 
Y. c@, k) 

yi-  m 

and Theorem 2 follows. 
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Numerical  computations 

An exact computation of  the sequence {C(n, k)} and the numbers C ( n ) =  

~ k  ~ 1 C(n, k) for reasonably small n is easily accomplished using the recurrence 
relation C(n, 1) = 1, 

C(n, k) = C(n - k, k) + k C ( n  - k, k - 1). 

We deduce this by subtracting 1 from each part of  the distinct compositions of 
n into k parts. Then those distinct compositions in which no part is 1 have a one 
to one correspondence with distinct compositions of n - k  into k parts, whereas 
those distinct compositions with a part 1 correspond to a distinct composition of 
n - k  into k - 1 parts with an additional zero part which can occur in any of k 
positions. 

We provide below a brief table of the values of C(n) and {C(n ,k ) }  for 
1 < n  < 2 0 .  

n c(n)  m {C(n, ~:) } 
1 1 {1} 

2 1 1 {1} 
3 3 2 {1,2} 
4 3 2 {1, 2} 
5 5 2 {1,4} 
6 11 3 {l,4, 6} 
7 13 3 {1,6,6} 
8 19 3 {1, 6, 12} 
9 27 3 {1, 8, 18} 

10 57 4 {1, 8, 24, 24} 
11 65 4 {1, 10, 30, 24} 
12 101 4 {1, 10, 42, 48} 
13 133 4 {1, 12, 48, 72} 
14 193 4 {1, 12, 60, 120} 
15 351 5 {1, 14, 72, 144, 120} 
16 435 5 {1, 14, 84, 216, 120} 
17 617 5 {1, 16, 96, 264, 240} 
18 851 5 {1, 16, 114, 360, 360} 
19 1177 5 { 1, 18, 126, 432, 600} 
20 1555 5 (1, 18, 144, 552, 840} 
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In add i t ion  we compare  the max imum value of  {C(n, k)} for  a few larger  values o f  n. 

n C(n) m kl C(n, kl) C(n, kl )  k log  m] 

100 1.093 × 1012 13 12 4.335 × l0 II 2.5232 1.2701 

. 200 1.011 × 1020 19 17 3.627 × 1 0 1 9  2.7884 1.4331 

300 4.339 × 1026 24 21 1.431 x 1 0 2 6  3.0316 1.5504 

The asymptot ic  formula  for  kl when m = 24 predicts  kl = 2 4 - c - 2 2 4 / l o g  2 2 4 -  

24 - 4.3 so we expect  kl to be 19 or  20 from the asymptot ic  fo rmula  for n = 300. 

Also the rat io of  C(n) to C(n, kl) is off by 20% for m = 24 or n = 300. P r o b a b l y  we 

should not  expect bet ter  for such small  values of  m. 

F ina l ly  we have only proved that  C(n, k) [s a un imoda l  sequence for  n 

sufficiently large, say n -> no. However ,  no is a computab le  number .  It seems very 

likely that  C(n, k) is un imodal  for all n. We have not  found an  n such that  the 

m ax i mum is a t ta ined for two values o f  k. 
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