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0. Introduction

In this paper we continue the study of 7, semigroups begun in [8). Let A be
the space of one-dimensional probability distribution functions and let T be a
t-norm (i.e., a suitable semigroup on [0, 1]). Then, for any F, G € A and any real
x, we define

r(F, G)(x)= sup T(F(u), G(v)). (0.1

utv=x
The space A under the operation 7, is then a semigroup, called a 71
semigroup.

This paper consists of three sections. In the first section we study iseomorph-
isms among 7, semigroups. Since, for any t-norm T, ([0, 1], T) is a semigroup, we
can relate properties of the 7 semigroups to properties of the t-norms on [0, 1].
We first show that if T;, T, are left-continuous t-norms such that ([0, 1], T,) and
({0, 1], T,) are iseomorphic then the corresponding 7 semigroups are iseomor-
phic in the topology of weak convergence. Additional results establish a partial
converse to this theorem. For any Archimedean t-norm T, we show that 7, can be
represented in terms of Tp,oq. If T is strict, then 7 and 7,4 are isecomorphic. If T
is Archimedean, but not strict, then 7 and 7 are iseomorphic where T, (x, y) =
max {x + y—1, 0}. For distribution functions concentrated on [0, ©) we show that
no 7 semigroup is isomorphic to the convolution semigroup.

In Section 2 we solve equations in 7, semigroups. Given F, He A and a
left-continuous t-norm T, we construct the maximal solution G to the inequality
m(F, G)<H. Hence, if the corresponding equation, 7,(F, G)=H, has a
solution then the G we construct is a solution. In addition, we exhibit a necessary
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condition on F, H for the existence of a solution to the above equation and show
that, in some cases, this condition is also sufficient.

In the final section we consider a class of operations on the unit interval
introduced by A. Sklar [15] and named copulas by him. These functions are used
to relate joint distribution functions and their marginal distributions. We show
that a t-norm T is a copula if and only if it satisfies the simple Lipschitz condition
T(a,c)— T(b,c)<a-b for all a, b, ¢ in [0, 1] with a=b.

To keep this paper reasonably self-contained we state some definitions and
known facts:

DEFINITION 0.1. The spaces of probability distribution functions which
we will consider are:

A={F:R —[0, 1]| F is left-continuous and non-decreasing},
A*={FeA|F(0)=0},

D={FeA | irxlf F(x)=0 and sup F(x)=1},

DT=ATND.

DEFINITION 0.2. A t-norm is any two-place function T:[0, 1]x{0, 1]—
[0, 1] satisfying

(@) T(a,1)=a,

b) T(c,d)=T(a, b), for c=a,d=b,
() T(a, b)=T(b, a),

(d) T(T(a,b), c)=T(a, T(b,c)).

We say that a t-norm T is left-continuous if it is left-continuous as a two-place
function. We then have ([11], [13]):

THEOREM 0.1. Let T be a left-continuous t-norm and, for any F, G in 4, let
the operation 71 be defined as in (0.1). Then (4, 17), (A%, 70), (D, 77), and (D*, 1)
are all semigroups, called T semigroups.

The modified Lévy metric, £, induces the topology of weak convergence on A
(and hence also on any of its subsets). To be precise, in any of the spaces
A, A", D, 9" we will say that a sequence {F,} converges weakly to F if and only if
the sequence {F,(x)} converges to F(x) at each continuity point x of the limit
function F. In this topology (4, ¥) and (A*, &) are compact, hence complete,
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metric spaces, whereas (9, £) and (2%, £) are not compact [14]. In addition, if
the t-norm T is continuous, then (4%, 1, &), (D, v, ¥) and (D7, 7, F) are
topological semigroups, whereas (4, r, &) is not [11].

In this setting, an iseomorphism between two semigroups is an algebraic
isomorphism which is also a homeomorphism.

The following distribution functions will be useful in the sequel. For any real
a, we define

0, X=a,

= 0.2
1, a<x: and £,(x)=0 for all x. 0.2)

gq(x)= {

Note that g, is the unique unit in any 7 semigroup and &, is the unique null
element in (4, ) and (A™, 7).

It will also be useful to characterize t-norms. Commonly used t-norms are
Product, Min, and T,,, where T,,(a, b)=max{a+b—1, 0}. From now on we will
let I denote the unit interval [0, 1].

DEFINITION 0.3. A t-norm T is (a) Archimedean if T is continuous on I X [
and satisfies T(a, a)<a for all a €(0, 1); and (b) strict if T is continuous on I X [
and strictly increasing in each place on (0, 1]x(0, 1].

It is easily seen that every strict t-norm is Archimedean. Note that T, is
Archimedean but not strict, Product is strict, and Min is continuous but non-
Archimedean. Archimedean t-norms form an important class and the next result
provides a useful tool for studying them.

DEFINITION 04. If h:I— I is a continuous and increasing function with
h(1)=1 then the pseudo-inverse of h, denoted hi™, is given by

0, 0=x<=h(0),

[-1] —
) {h'l(x), hO)=x=1,

where h™! is the usual inverse of h on [h(0),1]. Note hl™"! is uniformly
continuous and non-decreasing.

Combining results from [1], [5], and [7] we then have:

THEOREM 0.2. Let T be an Archimedean t-norm. Then there exists a
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continuous and increasing function h: I — I with h(1) = 1 such that T is representa-
ble in the form

T(x, y) = KA (x) - h(y)), (0.3)
where hU"! is the pseudo-inverse of h.

If T is an Archimedean t-norm and h is a function derived from Theorem 0.2
so that (0.3) holds, then h is called a multiplicative generator of T. Every
multiplicative generator of T has the form h* for some A >0. Alsoif h:I—Tisa
continuous and increasing function with h(1)=1 and we define T by (0.3) then it
is easily shown that T is an Archimedean t-norm. Thus we have a simple
procedure for generating Archimedean t-norms.

If h is a multiplicative generator of an Archimedean t-norm T with pseudo-
inverse hl™Y, then, using Definition 0.4, K" h: T — I and hhl""): 1 — I are given
by

hEYp(x)=1x, for all x,

and

h0), 0=x=<h(0),

X, h(0)=x=<1. (0.4)

hht"(x) = max {h(0), x} = {

For a multiplicative generator h, if h(0)=0 then by Definition 0.4 we have
k"Y'= p~' whence """ is an increasing function on I and we have:

COROLLARY 0.1. If h is a multiplicative generator of an Archimedean
t-norm T, then T is strict if and only if h(0)=0, i.e., if and only if hTH =h™",

Multiplicative generators can also be looked at as iseomorphisms, via:

THEOREM 0.3. Let T be an Archmedean t-norm with multiplicative generator
h. (1) If T is strict then h is an iseomorphism between (I, T) and (I, Product).
Hence, any two strict t-norms are iseomorphic and any t-norm iseomorphic to a
strict t-norm is strict. (2) If T is non-strict then the function g(x)=
1—1log h(x)/log h(0) is an iseomorphism between (I, T) and (I, T,,). Hence, any
two Archimedean non-strict t-norms are iseomorphic and any t-norm that is
iseomorphic to an Archimdean non-strict t-norm is Archimedean non-strict. (3) The
only t-norm iseomorphic to Min is Min.
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Remark. Archimedean t-norms are distinguished among the continuous t-
norms by the fact that they have no interior idempotents. Strict t-norms are
distinguished from Archimedean non-strict t-norms by having no nilpotents. Min
is the only t-norm for which every real in I is idempotent.

1. Iseomorphisms among 7 semigroups

In this section we will establish iseomorphism relationships and distinctions
among the 7, semigroups and also between =, semigroups and convolution. A
key step in this direction is:

THEOREM 1.1. Let Ty, T, be left-continuous t-norms. If the semigroup (I, T,)
is iseomorphic to (I, T;) then (4, 1r,, £) is iseomorphic to (4, 7r,, £). Moreover, the
same conclusion holds when A is replaced by any of A", D, or D*.

Hence if the t-norms T, and T, are both strict, or both Archimedean but not
strict, then the corresponding 7, semigroups are iseomorphic.

Proof. Let ¢ :(I, Ty) — (I, T,) be an iscomorphism. By Definition 0.2, 0 is the
unique null element and 1 is the unique identity for any t-norm. Thus we must
have ¢(0)=0 and é(1)=1. But ¢ is necessarily one-to-one and continuous.
Hence ¢ is an increasing function.

Consider the map ¢*:(4, 7r,, £) — (4, 7,, &) defined for any Fe A by
d*(F)(x) = ¢ ° F(x) = d(F(x)) for all real x. (1.1)

Since ¢ : I — I is continuous and increasing, it is clear that ¢*(F)e A for all Fe A.
Also, since ¢ is one-to-one and onto, it easily follows that ¢* is one-to-one and
onto.

Next, using (1.1), the fact that ¢ is a continuous increasing isomorphism, and
(0.1), for any F, G in A and real number x we have that

¢*(7r,(F, G)(x) = ¢ ( sup Ti(F(u), G(v)))

utv=x

= sup ¢(Ty(F(u), G(v)))= sup T(d(F(u)), 6(G(v)))

utv=x utv=x

= 11,(¢*(F), $™(G)(x).
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Hence ¢*(7,(F, G)) = v,(¢*(F), $*(G)) for all F, G in A and ¢* is an
algebraic isomorphism.

It remains to show that ¢* is a homeomorphism. Thus suppose {F,} is a
sequence in 4 such that F, = Fe A. Then at every continuity point x of F we
have F,(x)— F(x), whence ¢(F,(x))— ¢(F(x)), since ¢ is continuous. Further-
more, since ¢ is strictly increasing, ¢*(F) is continuous at x if and only if F is
continuous at x. Thus ¢*(F,) = ¢*(F). Hence ¢* is continuous on (4, ¥) and,
since (4, &) is a compact Hausdorff space, we have that ¢* is a homeomorphism
[16, Th. 17.14].

Since, for any left-continuous t-norm T, (47, 7r), (@, 77) and (27, ) are
sub-semigroups of (4, 7r) which are closed under ¢*, ie., d*(A%)=A", ¢*(D) =
% and ¢*(D*)= D", the conclusion also holds for them.

Finally, the last statement follows from the fact that, in each case, (I, T;) and
(I, T,) are iseomorphic {7].

Our next theorem is useful in distinguishing 7 semigroups and establishes a
partial converse to Theorem 1.1. It is a consequence of the following:

LEMMA 1.1 Let T be a continuous t-norm. Then:

(a) (A", 7r) contains (non-trivial) idempotent elements if and only if T is
non-Archimedean.

(b) (A7, 71) contains neither (non-trivial) idempotent nor (non-trivial) nilpotent
elements if and only if T is strict.

Proof. First note that in any 7, semigroup g, is the unique unit and &, is the
unique null element. Let T be continuous and non-Archimedean. Then there is a
point ¢ €(0, 1) such that T(c,c)=c. If FEA" is given by

0, x=0,
c, 0<x;

F(x)={

then it is easily seen from (0.1) that 7p(F, F)=F. Hence F is a non-trivial
idempotent in (47, 7).

In the other direction, suppose T, is Archimedean. Let Ge A™ with G# ¢,
and G# €.. Then either

0<G(y)<1 for some y >0 (1.2)



Vol. 17, 1978 On 7, semigroups of probability distribution functions II 25

or G=¢, for some a>0. If (1.2) holds then, since we are in A*, we have

o(G; G)(y) = sup Ty(G(u), G(v))

ut+ov=y
u,v>0

=To(G(y), G(y) < G(y);

and if G=¢, then 71,(G, G)=¢,,. In other words, (A", ;) contains no non-
trivial idempotent elements. This establishes (a).

For (b), first assume that T is an Archimedean non-strict t-norm with
multiplicative generator h. Then by Corollary 0.1 we have that 0 <h(0)<1. Thus
h(0)<vh(0)<1, so that, since h is continuous and increasing, there is a point
be(0, 1) where h(b)=+h(0). Define EcA* by

0, x=0,

b, 0<x; .3)

E(x)={

so that E# ¢... But, using (0.3) and the fact that h'=") is non-decreasing, we have,
for any x, that

(B, E)x)= sup_hI"'(h(E(w)) - h(E(v))

<=k (b) - h(b))= Kt~ (h(0)=0.

Hence 7+(E, E)=¢., i.e., E is nilpotent in (A", 71). Note G is also nilpotent in
(A7 TT)'

Next assume T is a strict t-norm and let Fe A" with F# g,. Then, for some
real w, we have F(w)>0. Since T is strict it then follows that

mr(F, F)(2w) = T(F(w), F(w))>0,

whence 7(F, F) # ¢,,. Note that the same argument holds for any Fe A4 with
F# g... Thus neither (A™, ) nor (4, 71} contain non-trivial nilpotent elements.
This completes our proof.

THEOREM 1.2. (a) If the continuous t-norms Ty, T,, Ts, are, respectively,
strict, Archimedean but not strict, and non-Archimedean, then no two of the
semigroups (A", 7r), (A", r,), (A7, 71,) are isomorphic. In addition, (4, 1,) and
(4, 1) are not isomorphic. (b) There is no continuous t-norm T, other than
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T =Min, such that (D, 7;) is isomorphic to (D, 1v,,). The same statement holds
with 9 replaced by @*.

Proof. (a) follows from the preceding Lemma and its proof, where we showed,
in particular, that (4, 7,) contains non-trivial nilpotent elements whereas (4, r,)

does not.
For (b), we demonstrated in [8] that, for any continuous t-norm T, the

cancellation law holds in (2, 77) or in (@7, 77} if and only if T=Min. This fact
completes the proof.
Combining Theorem 1.2 with Theorem 0.3 yields:

COROLLARY 1.1. Let T, be an Archimedean t-norm. Then, for any continu-
ous t-norm T, if (A, 74,) is isomorphic to (A™, 7)), then (I, T,) is iseomorphic to
(Ia Tl)

The preceding results are helpful in classifying 7 semigroups but provide no
means for going from one 7, semigroup to another. In this respect the following
theorem is very useful.

THEOREM 13. Let T be an Archimedean t-norm with multiplicative
generator h. Then:

(a) For any F, Ge A,

r(F, G) = h' N(7poa(hF, hG)), (1.4)

where h'™") is the pseudo-inverse of h.

(b) If T is strict, then h induces an iseomorphism between 71 and Tp,.q, i.e€., for
S=4A,A",9D or @7, the map h*:(S, 71, £) — (S, Tpr0a, £), defined for any Fe S
and any x by h*(F)(x) = h(F(x)), is an iseomorphism.

(c) If T is not strict then the function g defined on I by

g(x)=1-1log h(x)/log h(0) (1.5)

induces an iseomorphism between 7y and Tr_ on each of the spaces, given above,
where T, (a, b)=max {a+b—1,0}.

Proof. By Theorem (.2 and Definition 0.4, h is a continuous increasing
function of I and k" is continuous and non-decreasing on I In particular note
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that hFe A for any Fe A. Thus, using (0.1) and (0.3), for any x

7(F, G)(x)= sup h'""'(hF(u) - hG(v))

utv=x

= hT( sup hF(u) - hG(0) = h rproa(hE, hG)(x)),

establishing (a).

Parts (b) and (c) follow by combining Theorem 0.3 with the proof of Theorem
1.1.

Finally we would like to distinguish the 7 semigroups from the convolution
semigroup. That the 7, operations are fundamentally different from the operation
of convolution of distribution functions has been demonstrated in [12]. We
further characterize the distinction in the following result:

THEOREM 1.5. For any continuous t-norm, T, the semigroup (A™, 1) is not
isomorphic to the semigroup (A™, ) where = is convolution. The same result holds
with A™ replaced by 9.

Proof. In [8, Th. 3.1] we showed that the cancellation law fails in the
semigroup (4, 7). The same proof also shows that the cancellation law fails in
(A", 77). We will show that the cancellation law does hold in the semigroup
(4", *) which will yield our desired result.

The validity of the cancellation law in (47, #) is easily established by combin-
ing some theorems given in Feller [2]. Let F, G,, G,€ A™ with F# ¢, and suppose
Fx*G,=F+G,. Then F*G,€ A", thus using [2,p.411] if ¢ denotes the Laplace
transform then

O(F) - ¢(Gy) = ¢(F*G,) = $(F*G;) = ¢(F) - ¢(Gy). (1.6)

Now, as is easily seen from the definition of the Laplace transform [2,p .407],
since F# ¢, we have ¢(F)(A)>0 for all A€[0,»). Hence (1.6) yields that
¢(G,) = ¢(G,). But the Laplace transform is one-to-one on A* [2, Th. 1, p. 408].
Therefore G, = G, and the cancellation law holds.

If T# Min then the same argument works for @*. However, in (2", ryy,) the
cancellation law holds. But in [8] we showed that any distribution function F has a
square root under Ty, in @”. This fact does not obtain for (2, *) [6], completing
the proof.
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2. Seolving equations in 7 semigroups

In [8] we studied the algebra of 7, semigroups and showed that, for every
continuous t-norm T, the cancellation law fails in the semigroup (4, 71) and that,
for every strict T, (4, ) contains indecomposable elements. In this section we
study the question of when, given F, He A, there exists a Ge€A such that
(F, G)= H. The existence of indecomposable elements implies that such a
solution G need not exist and the failure of the cancellation law suggests that a
solution, if it exists, may not be unique. Nevertheless, we will show that, for any
given F, He A and any left-continuous t-norm T, the inequality 7+(F, G)= H has
a maximal solution G. This solution G is constructed explicitly and, when the
corresponding equation has a solution, it is the unique maximal solution. This
answers the question in theory. In practice, the method has the drawback that, in
order to determine whether or not the equation 7(F, G)= H has a solution, one
must construct the function G and evaluate 7r(F, G). Thus we also exhibit a
necessary condition on F, H e A for a solution to exist. For certain restricted F, H
this condition is sufficient.

In the sequel we shall occasionally encounter distribution functions which are
not left-continuous. Any such distribution function will be distinguished by an
asterisk, e.g., G*; and its left-continuous version will be denoted by G, so that

G(x)= lim G*(y). 2.1)

y—x—
Thus, removing the asterisk normalizes G* to be left-continuous, so that G € A.
Clearly,

G(x) = G*(x), for all x. -(2.2)

THEOREM 2.1. Let T be a left-continuous t-norm and let F, He A. For any
X, y define

w(x,y)=sup{ael|T(F(y),a)< H(x+y)} (2.3)

and let
G*(x) = inf {w(x, y)}. (2.4)

Then we have: _
(a) G is the unique maximal solution in A to the inequality

(F, G)<H, ' (2.5)
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i.e., for any E€ A, if 7(F, E)<H then E<G.
(b) There is an E € A such that

(F, E)=H

if and only if
1r(F, G) = H. (2.6)
(© If G, is defined by

0, x=0,

G(x), 0<x; @7

Go(x) = {

then the above results hold with A replaced either by A* or by 9 and
G replaced by G,.

»

Proof. Note first that, for any fixed y, w(x, y) is a non-decreasing function of x.
Hence G* is non-decreasing and, since 0= G*(x)=1 for any x, G € A. Now from
(2.2), (2.3), (2.4) and the fact that T is left-continuous and non-decreasing we
have, for any u, v, that

T(F(u), G(v))= T(F(u), G*(v))
= T(F(u), w(o, u)) < H(u+v),

whence, by (0.1), for any x, m(F, G)(x) < H(x).
Now assume that 7(F, E)= H for some E € A. Then for any x, y we have by

(0.1) that T(F(y), E(x))=< H(x +y). Thus from (2.3) it follows that E(x) < w(x, y),
whence

E(x)=inf {w(x, y)} = G*(x).
y
Since E is left-continuous we then have that
E(x)= lim E(y)=< lim G*(y)= G(x).
y—rx— y—x—

This proves (a).
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Next, (b) is an easy consequence of the maximality of G and the non-
decreasing character of .

Finally, (c) can be established by checking some minor details, completing the
proof.

Remark. It is interesting to note that Theorem 2.1 does not hold with A
replaced by &, i.e., the maximal solution G to (2.5) need not lie in 9. To see this,
let T=Product and let F, He 9 be given by

1/x2, x=-1,
1, -1=ux

—1/x, x=-1,

1, l=x: and H(x)={

F(x)={

If G satisfies (2.5) then, by (0.1), for all x, y, we must have F(y) - G(x) =< H(x+y),
whence, for any fixed x,

G(x)= lim H(x+y)/F(y)= lim —y/(x+y)*=0.

y—>—0 y—>—w

Thus G =¢.¢ 9.

Theorem 2.1 thus shows that in A, A* and @* we can solve simple equations
and inequalities of the form (2.5) and (2.6). However, in order to find out whether
a solution to the equation (2.6) exists, one must compute G via (2.4) and (2.1)
and then determine whether (2.6) does indeed hold. This is inconvenient and
therefore easily verifiable necessary and/or sufficient conditions on F, H for the
existence of a G satisfying (2.6) are desirable. Our next result is directed toward
this end. First, for notation, we need:

DEFINITION 2.1. For any function F and any x, let D, F(x) denote the
left-hand derivative of F at x and let D,F(x) denote the right-hand derivative of
F at x (when they exist).

THEOREM 2.2. Let T be a left-continuous t-norm and let F, He A. Suppose
that t; = inf {x|F(x) = 1} and t,=inf {x|H(x)=1} both exist and are finite. Then a
necessary condition for the existence of a G € A satisfying

m(F, G)=H | 2.8)
is:

F(t,— &)= H(t,— §) for all 6§ >0. 2.9)
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If, in addition, F, H are continuous at t,, t,, respectively, if D;F(t,) and D H(t,)
both exist, and if (2.8) holds for some G € A, then necessarily,

D, F(t,)= D, H(t,). (2.10)
Proof. Assume there is a Ge A so that (2.8) holds. We then claim that
G((t,-1)")=1. (2.11)
Otherwise, for some £ >0,
G(t,—t,+e)<1. (2.12)
Thus for any points u, v with u+v=1t,+¢/2 either u<t,—¢/2, so that
T(F(u), G(v))= T(F(u), 1) = F(u) = F(t,— ¢/2),
or v=t,—t;+¢, so that
T(F(u), G) =T, G(v)) = G(v)= G(t,— 1, +¢),
whence, by (0.1), (2.12) and the definition of ¢,

H(t, + €/2) = 7(F, G)(t,+ &/2)
=max {F(t, —€/2), G(t,— t; + )} <1,

contradicting the definition of ¢,.
Next, for any 8 >0 and any £ >0, using (2.8) and (2.11) we have

H(t,—8)=T(F(t;—6—¢), G(t,— t; + €)= F(t;— 8 —¢),

whence, since F is left-continuous and £ >0 arbitrary, (2.9) follows. If FH
are continuous at ¢, t,, respectively, then clearly F(t,) = H(t,) = 1. Thus if D, F(t;)
and D; H(t,) exist and (2.8) holds for some G € 4, then (2.10) easily follows from

(2.9), completing the proof.
In some cases the necessary condition (2.10) of Theorem 2.2 is also sufficient.

More precisely, we have

THEOREM 2.3. Let T be an Archimedean t-norm with multiplicative
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generator h and let F, He 9. Suppose, for some numbers s,<<t, and s,<t,, we

have:
(I) F(s;)=0, F(t;)=1, and hF is concave and strictly increasing on (s, t,};

and
(II) H(s,)=H(s3)=0, H(t,)=1, and hH is convex and strictly increasing on

(Sza t2]'

Then there is an E € D safisfying

m(F, Ey=H (2.13)
if and only if

Dy (hF)(t,) = D (hH)(1,). (2.14)

Proof. Note by (I), (II) that, in fact, hF is concave on (s, ®) and hH is convex
on (—=, t,]. We will use basic facts concerning the continuity and differentiability
of convex (concave) functions as given in [9, p. 42} and [4, pp. 1-5]. In particular,
for convex (concave) functions, one-sided derivatives exist at each point and are
themselves non-decreasing (non-increasing) functions.

Assume that (2.13) holds. Then by Theorem 1.3 (a) and (0.4) we have

hH(x) = h(r(F, E)(x)) = Tpoa(hF, hEXx),
whenever H(x)>0. The proof of Theorem 2.2 then yields (2.14).

Now assume that (2.14) holds and, for our given T, F, H, let G* be defined by
(2.4) of Theorem 2.1. Choose any x, with s,<x,<¢, and let

c=sup {{s;}U{x | x > s, and D, (hF)(x)/hF(x)

= Dy (hH)(x0)/hH(xp)}}.  (2.15)

Note by condition (II) that
0< Dy (hH)(x,)/ hH(x) <,
so that s, =c =1, since D, (hF)(x)=0 for x>t,. Now by (2.15)

D; (hF)(x)/hF(x) < Dy (hH)(x,)/hH(x,) for all x> c. (2.16)
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But, using (I), (II) and (2.14), for any x with c<x=t,, we have
Dl,(hF)(x)ZDL(hF)(tl)EDL(hH)(t2)2DL(hH)(x0)7

or, using (2.16), hF(x)> hH(x,) for all x >¢, whence hF(c")=hH(x,).
So let

k = hH(x,)/hF(c"). 2.17)
Since x,>>s, we have H(x,) >0 and clearly hF(c")=1, so that

hO)<k=1. | (2.18)

Thus, using (2.16), (2.17), the concavity of hF on (s, %) and the convexity of hH
on (s, t,], we have for any y with 0<y=t,—x, that

[(hF(c+y)—hF(c"))/y]- k

= lim [(hF(c+y)— hF(c+8))/(y—8)]  k

= lim [Dg(hF)(c+8)] - k=< lim [D (hF)c+38)]- k

8—0+

= 81ir(r)1+[hF(c +6) - Dy (hH)(xp)/hH(x,)] - k

= Dy (hH)(xo) = Dr(hH)(x,) = (hH(xo+ y) — hH(x())/y.
Hence, using (2.17) again, the above yields that

hF(c+y)- k=hH(x,+y). (2.19)
Note if y>t,—x, then, by (II), hH(x,+y)=h(1)=1 so that (2.19) holds for all

y > 0. Similarly, if y=<s;—c then, by (I}, F(c+y)=0 so that (2.19) holds in this
case also. In particular, if ¢ =s, then we have shown via (2.19), that

hF(u) - k<=hH(xq+u—c) for all u (2.20)
To establish (2.20) in general assume that s, <c<t,. Then, since from [4], [9]
D; (hF)(x) is left-continuous and hF(x) is continuous on (s,, ®), it follows from

(2,15) that

D, (hF)(c)/hF(c) = Dy (hH)(x)/ RH (xo)- (2.21)



34 R. MOYNIHAN AEQ. MATH.

Note, since we are assuming c > s,, that hF(c™)= hF(c) here. Thus, if 0<y<
¢—s,, then, using (I), (IT), (2.17), (2.21) and the fact that hH is convex on
(—0, 1,], we have

[(hF(c)— hF(c—y)/y]- k=[D.(hF)(¢c)]" k
=D (hF)(c)/hF(c)] - hH(xo) = Dy (hH)(x,)
= (hH(xo) — hH(xo— y))/y,

whence, using (2.17),
hF(c—y) - k=hH(x,—y). (2.22)

Note here if y=c—s, then by (I), F(c—y)=0, whence (2.22) holds for all y=0.
Combined with the fact that (2.19) holds for all y >0, this establishes (2.20).

Hence, using (0.3), (0.4), (2.18), (2.20), and the fact that h"" is non-
decreasing, we have, for any u, that

T(F(w), A" "X(k)) = R (hF (u) - kT 'X(k))
= hUY(hF(u) - k)< hUY(hH(xo+u—c))
= H(x,+u—c),

whence, using the notation of Theorem 2.1, w(x,—c, u)= hi=H(k) for all u, so
that, by (2.4), G*(xo— c)=h" (k). Therefore, by (2.1) and (2.17), we have

r(F, G){(x§)= lim T(F(c+ §/2), G(x,— ¢+ 8/2))
30+

= T(F(c*), G*(xo— ¢)) = h"(hF(c") - kh" (k)
= h""Y(hH(x,)) = H(xo)

for all xg€(s,,t,). Since both H and 7;(F, G) are left-continuous and non-
decreasing, this implies, in view of (II), that 74(F, G)= H. Combined with
Theorem 2.1, this yields 7(F, G)= H. It is trivial to show that G is actually in 9,
completing the proof. ‘

Remark. Assume in Theorem 2.3 that D; h(1) exists. If (2.14) holds then by (I),
(II) both D, (hF)(t,) and D, (hH)(t,) must be positive and finite so that one can
use a “chain rule” for left-handed derivatives to show that D; F(t,) and D; H(t,)
necessarily exist. Moreover, in this case, it follows that



Vol. 17, 1978 On 1 semigroups of probability distribution functions II 35

D, F(t,)= D, H(t,). (2.23)
Conversely, if (2.23) holds and one of D h(1), D, F(t,), D_H(t,) is positive and
finite, then the chain rule yields that (2.14) holds. Thus, in most cases, we can use
(2.23) instead of (2.14) in applying Theorem 2.3.

A simple argument, which we omit, extends Theorem 2.3 to @7, at least for
strict t-norms. To be precise, we have:

THEOREM 2.4. Let T be a strict t-norm with multiplicative generator h and let
F, He @". Assume, for some numbers 0 <s5,<t;, and 0=<s,<1,, that F, H satisfy
(I), (I) of Theorem 2.3. Then there is a Ge 9™ so that 7+(F, G)= H if and only if
sy =s, and D; (hF){(t,)= D; (hH)X(t,).

To illustrate the use of Theorem 2.3 and the method given by Theorem 2.1,
we have:

EXAMPLE 2.1. Let T = Product (which has the identity as its multiplicative
generator). Consider the functions F,, € 9" defined for p, ¢> 0 by

0, x=<0,
F,(x)=4 (px)!, 0=x=1/p, (2.24)
1, 1/p=x.

Given F,,, F,, we want to determine when there is a G € @7 5o that 7p,,o(F,p, G) =
F, and then to calculate G. First, to satisfy (I), (I) of Theorem 2.3 we must have

g=1 and s=1. (2.25)

If (2.25) holds then by Theorem 2.4 a solution G € @* exists if and only if

D, F,,(1/p)=pq=D,F,(1/r)=rs. (2.26)
Note (2.25) and (2.26) imply that p=r, or 1/p=1/r.

Now if G is a solution then by (2.11) we have G(x)=1 for x > 1/r—1/p. Thus
choose x so that 0<x <1/r—1/p. Then from Theorem 2.1 we obtain

min {1, (r(x + y))*/(py)?}, 0<y=1/p,

ooy )={min{1,(,(x+y)y}, 1p=y;
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which, using simple calculus minimization techniques, yields by (2.4) that

0, x <o,
rs Ss___-g)q o—q Osxs _ /
Glx)= (S_q)(pq x4, (s ~q)/pq,
{rx+1/p)y, (s-q)pg=x=<1/r-1/p, 2.27)
1, 1/r—1/p=x

If s=g (so that. by (2.25), s=q=1), then

0, x=0,
G(x)=< rx+1/p, 0<x=1/r-1/p (2.28)
i, r-1/p=x

In this case note that the solution G is discontinuous at 0.

Even without using Theorem 2.3, we could use Theorem 2.1 and direct
calculation to discover that whenever s=gq and pg=rs then the distribution
function G, given by (2.27), is a solution t0 Tpqa(F,q G) = F,. Otherwise, no
solution exists.

3. Copulas.

In [15] A. Sklar introduced a class of operations on the unit interval which he
called copulas. The importance of copulas lies in the fact that they describe the
functional relationships between joint distribution functions and their marginal
distributions. Thus, if X and Y are real-valued random variables defined on a
common probability space, with distribution functions Fx and Fy, respectively,
and joint distribution function Hy,, then there exists a copula Cxy such that

HXY(u’ U) = CXY(FX(u)y FY(U))

for all u, v on the extended real line [12]. A corresponding result holds for any
n-tuple of random variables [15].

In this final section we will study the relationship between t-norms and
{two-dimensional) copulas. The latter are defined as follows:

DEFINITION 3.1. A function C is a copula if
(1) C:IxI—> ],
2) C(a,0)=C(0,a)=0, forall ael,
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3) C(a,1)=C(1,a)=a, forallael
(4) C(a, b)- C(a, d)— C(c, b)+ C(c, d)=0,
whenever a, b, ¢, del and a<c, b=d.

It follows from properties (2), (3) and (4) of the above definition that every
copula is continuous and non-decreasing in each place. Thus every associative
copula is a topological semigroup on I and hence [see e.g., 10, Cor. p. 85 and Th.
2.5.6, p. 87] a continuous t-norm. In the other direction, it is clear from
Definition 0.2 that a t-norm is a copula if and only if it satisfies property (4). This
latter condition can be weakened. For we have:

THEOREM 3.1. A t-norm T is a copula if and only if it satisfies the Lipschitz
condition

T(c, b)— T(a, b)=c—a, (3.1)
for all a, b, ¢ in I with a<c.

Proof. If T is a copula then letting d = 1 in (4) of Definition 3.1 yields (3.1). In
the other direction, assume T satisfies (3.1) and choose s, ¢, 4, v € I satisfying s=¢
and u=wv. Note by (3.1) that T is continuous. Hence, since T(0,v)=0 and
T(1, v) = v, there exists ¢ € I so that T(c, v)= u. Thus, since T is associative and
commutative, we have that

T(t, u)— T(s, u) =T, T(c, v))— T(s, T(c, v}))
=T(T(t, v), c— T(T(s, v), C)
=T, v)— T(s, v),

which is equivalent to (4) of Definition 3.1. Thus T is a copula, completing the
proof.

Note that Theorem 3.1 states that, for t-norms, property (4) of Definition 3.1
and (3.1) are equivalent.

There is a somewhat more general version of Theorem 3.1 that applies to a
wider class of binary operations on I To state it we need the following:

DEFINITION 3.2. For any binary operation T on I, denote by T* the binary
operation on I defined by

T*(x,y)=1-T(1-x,1—y).
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When T is a t-norm, T* is called the t-conorm of T. We then have:
THEOREM 3.2. Let T be a semigroup with unit on L If
0=T(c,d)—T(a,b)<{c—a)+{d—b) 3.2)

whenever 0<a<=c=<1and 0=b=d=1, then either T or T* is a copula and also
a t-norm.

Proof. Assume T satisfies the hypotheses above with e as unit. By (3.2) T is
continuous, and hence T is a topological semigroup on I Since I is compact and
connected [3, p. 169, item 17] then implies that either e=0 or e=1.

CASE 1. Suppose e=1. Using (3.2) we then have that, for any a€cl,
T(a,0)=T(1,0)=0 and T(0,a)=T(0,1)=0 or T(a,0)=T(0,a)=0forall ael
Hence 0 is a zero element of the semigroup. By [10, Th. 2.5.6] T is then abelian.
But by (3.2) T is non-decreasing in each place, whence T is a t-norm. Applying
Theorem 3.1 then yields that T is a copula.

CASE 2. Suppose e = 0. Note by Definition 3.2 that T* is continuous if T is
continuous. Also, the associativity of T* follows easily from that of T. Thus T* is
a topological semigroup on L It is also easily checked that T*(x, 1)= T*(1, x) = x
for any x € I so that 1 is the unit for T*. Now choose a, b, ¢, d in I with a =c and
b=d. Then, using Definition 3.2 and (3.2),

T, d)-T*a, b)=(1-T(l-¢c,1-d))-(1-T(1~a, 1-b))
=T(1-a,1-b)~T(1-c,1-4d)
=(c-a)+(d—b),
since 1-¢=1-a and 1-d=1-b. Thus T* satisfies (3.2). But then applying the

argument of Case 1 to T* yields that T* is a t-norm and a copula, completing the
proof. ‘

It is apparent then that (3.2) is a very strong condition on semigroups on I.
One would expect, therefore, that 7, semigroups associated with t-norms which
are copulas have distinctive properties. One such property is given in:

THEOREM 3.3. Let the t-norm T be a copula. Suppose Fe A satisfies the
Lipschitz condition

|F(x)—~F(y)|=M - [x—y|* for all x,y, (3.3)
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for constants M, @ >0. Then, for any Ge A, H= 7;(F, G) satisfies the same
Lipschitz condition.

Proof. Let F, G, H be as in the hypotheses above. Let ¢>0 and x,y be
arbitrary. If x =y there is nothing to show. So, without loss of generality, assume
x>y. Then by (0.3) there exist points u, v with u + v = x such that

H(x)= T(F(u), G(v))= H(x) - g|x — y|*. (3.4)
Combining (3.3) and (3.4) with Theorem 3.1 then yields that

0=H(x)-H(y)< T(F(u), G(v)) + & |x— y|* = T(F(u—(x - y)), G(v))
=F(u)—-Fu—-(x—y)+e-|x—y|*
=(M+¢g)-|x—y|~

Since € >0 was arbitrary, this proves our desired result.
A slight variation of the above proof yields:

COROLLARY 3.1. If the t-norm T satisfies the Lipschitz condition
|T(a, c)— T(b,c)l<N -|la—b|? for a,b,cel

for constants N, >0 and if Fe A satisfies the Lipschitz condition
|F(x)—F(y)|sM- |x —y|* for all real x, y,

where M, a>0 are constants, then, for any Ge A, H=7.(F, G) satisfies the
Lipschitz condition

|H(x)— H(y)|=<N - M? - |x— y|*® for all real x, y.

CONIJECTURE. It would be of interest to know when the absolute continuity
of F and G implies that of 7(F, G). For real functions it is of course known that
if f is absolutely continuous and g satisfies a simple Lipschitz condition then the
composite function g o f is absolutely continuous [9, Vol. 1]. In view of Theorem
3.1 then, it seems reasonable to expect that if F and G are absolutely continuous
and if T is a copula then r(F, G) is absolutely continuous. But this is an open
question. Note that if this question were answered in the affirmative then 7
would induce a binary operation on density functions.
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