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O. Introduction 

In this paper  we continue the study of ~'T semigroups begun in [8]. Let A be 
the space of one-dimensional  probability distribution functions and let T be a 
t-norm (i.e., a suitable semigroup on [0, 1]). Then, for any F, G ~ A and any real 
x, we define 

rT(F , G)(x)= sup T(F(u),  G(v)). (0.1) 
l a + u  = x  

The space a under the operation ~'r is then a semigroup, called a ~'T 
semigroup. 

This paper  consists of three sections. In the first section we study iseomorph-  
isms among ~'T semigroups. Since, for any t-norm T, ([0, 1],T) is a semigroup, we 
can relate properties of the "rT semigroups to propert ies  of the t-norms on [0, 1]. 
We first show that if Ta, Tz are left-continuous t-norms such that ([0, 1], T1) and 
([0, 1], 7"2) are iseomorphic then the corresponding rT semigroups are iseomor- 
phie in the topology of weak convergence. Additional results establish a partial 
converse to this theorem. For any Archimedean t-norm T, we show that ~'T can be 

represented in terms of "rprod. If T is strict, then "rT and TProd are iseomorphic. If T 
is Archimedean,  but  not strict, then ~'T and ~'Tm are iseomorphic where T,,(x, y) = 
max {x + y -  1, 0}. For  distribution functions concentrated on [0, oo) we show that 
no ~'T semigroup is isomorphic to the convolution semigroup. 

In Section 2 we solve equations in ~'T semigroups. Given F , H ~ z l  and a 
left-continuous t-norm T, we construct the maximal  solution G to the inequality 
TT(F,G)<--H. Hence,  if the corresponding equation, "CT(F, G)= H, has a 

solution then the G we construct is a solution. In addition, we exhibit a necessary 
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condition on F, H for the existence of a solution to the above equation and show 
that, in some cases, this condition is also sufficient. 

In the final section we consider a class of operations on the unit interval 
introduced by A. Sklar [15] and named copulas by him. These functions are used 
to relate joint distribution functions and their marginal distributions. We show 
that a t-norm T is a copula if and only if it satisfies the simple Lipschitz condition 
T(a, c) - T(b, c) <- a-b for all a, b, c in [0, 1] with a -> b. 

To keep this paper reasonably self-contained we state some definitions and 
known facts: 

DEFINITION 0.1. The spaces of probability distribution functions which 
we will consider are: 

A = {F:f~ --~ [0, I ] I F  is left-continuous and non-decreasing}, 

a *  -- (F  a [ F(0) = 0}, 

= {Fe  a ]inf F(x) = 0 and sup F(x) = 1}, 

~+ = za+ fqS~. 

D E F I N I T I O N  0.2. A t-norm is any two-place function T: [0 ,  1 Ix[0 ,  1] -+ 
[0, 1] satisfying 

(a) T(a, 1)--- a, 
(b) T(c, d) >- T(a, b), for c -> a, d -> b, 
(c) T(a, b)= T(b, a), 
(d) T(T(a, b), c) = T(a, T(b, c)). 

We say that a t-norm T is left-continuous if it is left-continuous as a two-place 
function. We then have ([11], [13]): 

T H E O R E M  0.1. Let T be a left-continuous t-norm and, for any F, G in A, let 
the operation rr be defined as in (0.1). Then (A, rT), ( A+, rT), (~, rr), and (2~ +, rT) 
are all semigroups, called rr semigroups. 

The modified Ldvy metric, ~,  induces the topology of weak convergence on A 
(and hence also on any of its subsets). To be precise, in any of the spaces 
A, A +, ~,  ~+  we will say that a sequence {F,} converges weakly to F if and only if 
the sequence {F,(x)} converges to F(x) at each continuity point x of the limit 
function F. In this topology (A, 2g) and (A +, ~ )  are compact, hence complete, 
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metric spaces, whereas (5~, ~ )  and (~+, 2g) are not compact [14]. In addition, if 
the t-norm T is continuous, then (za÷,,rT, 2f), (5~, rT ,~ )  and (~÷,  I-T,L¢) are 
topological semigroups, whereas (A, ~'T, Le) is not [11]. 

In this setting, an iseomorphism between two semigroups is an algebraic 
isomorphism which is also a homeomorphism. 

The following distribution functions will be useful in the sequel. For any real 
a, we define 

0, x --< a, and e=(x) = 0 for all x. (0.2) eo(x) = 1, a < x ;  

Note that eo is the unique unit in any ~'T semigroup and e~ is the unique null 
element in (A, ~'T) and (A +, ~'T)- 

It will also be useful to characterize t-norms. Commonly used t-norms are 
Product, Min, and Tin, where Tin(a, b) = max {a + b -  1, 0]. From now on we will 
let I denote the unit interval [0, 1]. 

DEFINITION 0.3. A t-norm T is (a) Archimedean if T is continuous on I x  I 
and satisfies T(a, a ) <  a for all a c (0, 1); and (b) strict if T is continuous on I × I 
and strictly increasing in each place on (0, 1] × (0, 1]. 

It is easily seen that every strict t-norm is Archimedean. Note that Tm is 
Archimedean but not strict, Product is strict, and Min is continuous but non- 
Archimedean. Archimedean t-norms form an important class and the next result 
provides a useful tool for studying them. 

DEFINITION 0.4. If h:I---~ I is a continuous and increasing function with 
h(1) = 1 then the pseudo-inoerse of h, denoted h [-1~, is given by 

hi  - 1](x ) _ ~0 ,  
-th-l(x), 

0 -< x <- h (0), 

h(0)--- x-< 1, 

where h -1 is the usual inverse of h on [h(0), 1]. Note h t-l~ is uniformly 

continuous and non-decreasing. 

Combining results from [1], [5], and [7] we then have: 

T H E O R E M  0.2. Let T be an Archimedean t-norm. Then there exists a 
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continuous and increasing function h : I --e, I with h(1) = 1 such that T is representa- 
ble in the form 

T(x, y) = ht-n(h(x)  • h(y)), (0.3) 

where h E-11 is the pseudo-inverse of h. 

If T is an Archimedean t -norm and h is a function derived from Theorem 0.2 
so that (0.3) holds, then h is called a multiplicative generator of T. Every  
multiplicative generator  of T has the form h x for some :t > 0. Also if h : I ---> I is a 
continuous and increasing function with h(1) = 1 and we define T by (0.3) then it 
is easily shown that T is an Archimedean t-norm. Thus we have a simple 
procedure for generating Archimedean t-norms. 

If h is a multiplicative generator  of an Archimedean t -norm T with pseudo-  
inverse h t-ll, then, using Definition 0.4, ht-~lh:I  ---) I and hhr-n: I--> I are given 

by 

h~-lJh(x)= x, for all x, 

and 

hht-1](x) = max {h(0), x} = / h(0)'  
I, x, 

0-< x --< h(0), (0.4) 
h(O)<-x<- 1. 

For a multiplicative generator  h, if h (0)=  0 then by Definition 0.4 we have 
h t-13 = h -1, whence h t -~  is an increasing function on I and we have: 

C O R O L L A R Y  0.1. If h is a multiplicative generator of an Archimedean 
t-norm T, then T is strict if and only if h(O) = O, i.e., if and only if h [ - 1 ]  = h -1. 

Multiplicative generators can also be looked at as iseomorphisms, via: 

T H E O R E M  0.3. Let T be an Archmedean t-norm with multiplicative generator 
h. (1) If T is strict then h is an iseomorphism between (I, T) and (I, Product). 
Hence, any two strict t-norms are iseomorphic and any t-norm iseomorphic to a 
strict t-norm is strict. (2) If T is non-strict then the function g ( x ) =  
l - l o g  h(x)/log h(O) is an iseomorphism between (I, T) and (L Tin). Hence, any 
two Archimedean non-strict t-norms are iseomorphic and any t-norm that is 
iseomorphic to an Archimdean non-strict t-norm is Archimedean non-strict. (3) The 
only t-norm iseomorphic to Min is Min. 
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Remark. Archimedean t-norms are distinguished among the continuous t- 
norms by the fact that they have no interior idempotents. Strict t-norms are 
distinguished from Archimedean non-strict t-norms by having no nilpotents. Min 
is the only t-norm for which every real in I is idempotent. 

1. Iseomorphisms among ~'T semigroups 

In this section we will establish iseomorphism relationships and distinctions 
among the ~"r semigroups and also between ~'T semigroups and convolution. A 
key step in this direction is: 

T H E O R E M  1.1. Let T1, 7"2 be left-continuous t-norms. I f  the semigroup (L T1) 
is iseomorphic to (I, T2) then ( A, rr~, 5g) is iseomorphic to ( d, ~T:, ~¢). Moreover, the 
same conclusion holds when A is replaced by any of A +, 9, or 9 +. 

Hence if the t-norms T1 and T2 are both strict, or both Archimedean but not 
strict, then the corresponding rT semigroups are iseomorphic. 

Proof. Let 4~ : (/, T1) --* (/, T2) be an iseomorphism. By Definition 0.2, 0 is the 
unique null element and 1 is the unique identity for any t-norm. Thus we must 
have ~b(0)= 0 and &(1)= 1. But 4~ is necessarily one-to-one and continuous. 
Hence cb is an increasing function. 

Consider the map 4,* :(A, ~'TI, ~ ) ~  (A, rT2, ~ )  defined for any F ~  A by 

+ *(F)(x) = dp o F(x) = qS(F(x)) for all real x. (1.1) 

Since q5 : I ~ I is continuous and increasing, it is clear that ~b*(F) e zl for all F e A. 
Also, since ~b is one-to-one and onto, it easily follows that ok* is one- to-one and 
onto. 

Next, using (1.1), the fact that ~b is a continuous increasing isomorphism, and 
(0.1), for any F, G in a and real number x we have that 

&*(rT~(F, G))(x) = qS( sup TI(F(u), G(v))) 
U + O = X  

= sup ¢k(Tl(F(u), G(v)))= sup T2(&(F(u)), ¢k(G(v))) 
u - I - v ~ x  U q - v = x  

= rr2(~*(F), &*(G))(x). 
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Hence qS*(rT,(F, G) )=  ~-T,(~b*(F), 4)*(G)) for all F, G in A and 4~* is an 
algebraic isomorphism. 

It remains to show that 4~* is a homeomorphism. Thus suppose {F,} is a 
sequence in A such that F~ w ~ F~  A. Then at every continuity point x of F we 
have F,,(x)--* F(x), whence ck(F,,(x))--~. 4~(F(x)), since q5 is continuous. Further- 
more, since cb is strictly increasing, ch*(F) is continuous at x if and only if F is 
continuous at x. Thus &*(Fn) w ~ 4~*(F). Hence 4~* is continuous on (zl, ~ )  and, 
since (zl, L¢) is a compact Hausdorff space, we have that ~* is a homeomorphism 
[16, Th. 17.14]. 

Since, for any left-continuous t-norm T, (A ÷, ~'T), (5~, ~'T) and (9  ÷, ~'T) are 
sub-semigroups of (zl, ~'T) which are closed under qS*, i.e., cb*(A ÷) = A ÷, ~b*(~) -- 

and ~b*(~ ÷) = ~+,  the conclusion also holds for them. 
Finally, the last statement follows from the fact that, in each case, (/, T1) and 

(/, T2) are iseomorphic [7]. 
Our next theorem is useful in distinguishing r~r semigroups and establishes a 

partial converse to Theorem 1.1. It is a consequence of the following: 

L E M M A  1.1 Let T be a continuous t-norm. Then: 
(a) (A +, ~'T) contains (non-trivial) idempotent elements if and only if T is 

non-Archimedean. 
(b) (A+, ~'T) contains neither (non-trivial) idempotent nor (non-trivial) nilpotent 

elements if and only if T is strict. 

Proof. First note that in any ~'T semigroup eo is the unique unit and e~ is the 
unique null element. Let  T be continuous and non-Archimedean.  Then there is a 
point c ~ ( 0 ,  1) such that T(c, c)= c. If F ~ A  + is given by 

J'0, x --< 0, 
F(x) 

t c, 0 < x ;  

then it is easily seen from (0.1) that ~ 'T(F,F)=F.  Hence F is a non-trivial 
idempotent  in (A +, ~'T). 

In the other direction, suppose To is Archimedean.  Let  G e z l  + with G ~  e0 
and G ~  e~. Then either 

0 < G(y)  < 1 for some y > 0 (1.2) 
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or G =  e~ for some a > 0 .  If (1.2) holds then, since we are in a ÷, we have 

rTo(G, G)(y): sup To(G(u), G(o)) 
u + ~ = y  
u,~>O 

-< ro (G(y) ,  G(y))  < G(y) ;  

and if G = ea then rTo(G, G) = e2a. In other words, (A +, "/'To) contains no non- 
trivial idempotent  elements.  This establishes (a). 

For  (b), first assume that T is an Archimedean non-strict t -norm with 
multiplicative generator  h. Then by Corollary 0.1 we have that 0 <  h ( 0 ) <  1. Thus 

h ( 0 ) < x / h ~ <  1, so that, since h is continuous and increasing, there is a point 
b e ( 0 ,  1) where h(b)=x/h-(0). Define E ~ A  + by 

0, x -< 0, (1.3) 
E ( x ) =  b, 0 < x ;  

so that E g  e=. But, using (0.3) and the fact that h t-lJ is non-decreasing, we have, 
for any x, that 

rT(E, E)(x)  = sup hE-~l(h(E(u)) • h(E(v)))  
u + ~ = x  

<- ht-l~(h(b) • h(b)) = ht-~(h(O)) = O. 

Hence rT(E, E)---e~, i.e., E is nilpotent in (A ÷, rr). Note G is also nilpotent in 

(a,  ~'T). 
Next assume T is a strict t -norm and let F e z i  + with F ~  e~o. Then, for some 

real w, we have F ( w ) >  0. Since T is strict it then follows that 

rr(F, F)(2w) - T(F(w) ,  F(w))  > 0, 

whence rr(F, F ) ~  e~. Note that the same argument holds for any F e A  with 
F g  e~. Thus neither (za+, rT) nor (A  rr) contain non-trivial nilpotent elements.  

This completes our proof. 

T H E O R E M  1.2. (a) I f  the continuous t-norms T1, T2, T3, are, respectively, 
strict, Archimedean but not strict, and non-Archimedean, then no two of the 
semigroups (zi ÷, rT), (zi ÷, rr2), (~+, rr~) are isomorphic. In addition, (a ,  rrl) and 
(A, ~T2) are not isomorphic. (b) There is no continuous t-norm T, other than 
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T = M i n ,  such that (@, rT) is isomorphic to (~,'rMin). The same statement holds 
with ~ replaced by ~+. 

Proof. (a) follows from the preceding Lemma and its proof, where we showed, 
in particular, that (A, "rr) contains non-trivial nilpotent elements whereas (za, ~'x,) 
does not. 

For (b), we demonstrated in [8] that, for any continuous t-norm T, the 
cancellation law holds in (9, "rT) or in (~+, "rw) if and only if T = Min. This fact 
completes the proof. 

Combining Theorem 1.2 with Theorem 0.3 yields: 

C O R O L L A R Y  1.1. Let T~ be an Archimedean t-norm. Then, for any continu- 
ous t-norm T2, if (A +, "rT) is isomorphic to (A +, ~'T1), then (I, T2) is iseomorphic to 
(I, T1). 

The preceding results are helpful in classifying ~'T semigroups but provide no 
means for going from one "rT semigroup to another. In this respect the following 
theorem is very useful. 

T H E O R E M  1.3. Let 
generator h. Then: 

(a) For any F, G ~ A, 

T be an Archimedean t-norm with multiplicative 

~'T(F, G)=  ht-~l('rp~od(hF, hG)), (1.4) 

where h t-q is the pseudo-inverse of h. 
(b) If  T is strict, then h induces an iseomorphism between rT and r],~od, i.e., for 

S = A , A + , ~  or ~+,  the map h*:(S,'rT,~)-->(S,~e~od,£g), defined for any F e S  
and any x by h *(F)(x)= h(F(x)) ,  is an iseomorphism. 

(c) I f  T is not strict then the [unction g defined on I by 

g(x) = 1 -  log h(x)/log h(O) (1.5) 

induces an iseomorphism between "r T and I"T~ on each of the spaces, given above, 
where T,,(a, b) = max {a + b - 1, 0}. 

Proof. By Theorem 0.2 and Definition 0.4, h is a continuous increasing 
function of I and h t-q is continuous and non-decreasing on L In particular note 
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that hFe  A for any F c  A. Thus, using (0.1) and (0.3), for any x 

I"T(F, G)(x)= sup hE-'l(hF(u) . hG(v)) 
u W v = x  

= hi- 'l( sup hF(u) ,  hG(v))= hE-tl($prod(hF , hG)(x)), 
u + v = x  

establishing (a). 

Parts (b) and (c) follow by combining Theorem 0.3 with the proof of Theorem 
1.1. 

Finally we would like to distinguish the rr  semigroups from the convolution 
semigroup. That the ~'T operations are fundamentally different from the operation 
of convolution of distribution functions has been demonstrated in [12]. We 
further characterize the distinction in the following result: 

T H E O R E M  1.5. For any continuous t-norm, T, the semigroup (zl +, "rT) is not 
isomorphic to the semigroup (A +, ,) where • is convolution. The same result holds 
with A + replaced by if)+. 

Proof. In [8, Th. 3.1] we showed that the cancellation law fails in the 
semigroup (A, rT). The same proof also shows that the cancellation law fails in 
( A÷, TT). We will show that the cancellation law does hold in the semigroup 
(A ÷, *) which will yield our desired result. 

The validity of the cancellation law in (A+, ,) is easily established by combin- 
ing some theorems given in Feller [2]. Let F, G1, G2 e A + with F #  e~ and suppose 
F.G1 = F'G2.  Then F * G l e  A ÷, thus using [2, p. 411] if ~b denotes the Laplace 
transform then 

(~(F)  • 6 ( G , )  = ~ ( F * G 1 ) =  q~(F*G2)  = t~(F)  • t~(G2) .  (1.6) 

Now, as is easily seen from the definition of the Laplace transform [2, p . 407], 
since F #  e~, we have tk(F)(,~)>0 for all ,~ e [0 ,~) .  Hence (1.6) yields that 
q~(Gl) = q~(G2). But the Laplace transform is one-to-one on A + [2, Th. 1, p. 408]. 
Therefore G1 = G2 and the cancellation law holds. 

If T#  Min then the same argument works for ~+. However, in (~+, rMi.) the 
cancellation law holds. But in [8] we showed that any distribution function F has a 
square root under ~'ui, in ~+. This fact does not obtain for (~+, *) [6], completing 
the proof. 
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2. Solving equations in "rT semigroups 

In [8] we studied the algebra of I"T semigroups and showed that, for every 
continuous t-norm T, the cancellation law fails in the semigroup (A, ~'T) and that, 
for every strict T, (A, ~'T) contains indecomposable elements. In this section we 
study the question of when, given F , H ~ A ,  there exists a G ~ A  such that 
~'T(F, G ) =  H. The existence of indecomposable elements implies that such a 
solution G need not exist and the failure of the cancellation law suggests that a 
solution, if it exists, may not be unique. Nevertheless, we will show that, for  any 
given F, H ~ zl and any left-continuous t-norm T, the inequality I"T(F, G) <- H has 
a maximal solution G. This solution G is constructed explicitly and, when the 
corresponding equation has a solution, it is the unique maximal solution. This 
answers the question in theory. In practice, the method has the drawback that, in 
order  to determine whether or not the equation ZT(F, G) = H has a solution, one 
must construct the function G and evaluate rT(F, G). Thus we also exhibit a 
necessary condition on F, H ~ A for a solution to exist. For certain restricted F, H 
this condition is sufficient. 

In the sequel we shall occasionally encounter  distribution functions which are 
not left-continuous. Any such distribution function will be distinguished by an 
asterisk, e.g., G*; and its left-continuous version will be denoted by G, so that 

G ( x ) =  lim G*(y).  (2.1) 
y---*x -- 

Thus, removing the asterisk normalizes G* to be left-continuous, so that G ~ A. 
Clearly, 

G(x) <-G*(x), for all x. (2.2) 

T H E O R E M  2.1. Let T be a left-continuous t-norm and let F, H e  A. For any 
x, y define 

w(x, y) = sup {a ~ I [ T(F(y),  a) <- n ( x  + y)} (2.3) 

and let 

G*(x) = inf {w(x, y)}. 
Y 

Then we have: 

(a) G is the unique maximal solution in A to the inequality 

(2.4) 

rT(F, G)-< H, (2.5) 
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i.e., for any E ~ A, if zT(F, E) <- H then E <- G. 
(b) There is an E ~ tl such that 

zT(F, E)  = H 

if and only if 

rT(F, G) = H. 

(c) If Go is defined by 

[ O, x <- O, 
Go(x) t G(x), 0<x; 

then the above results hold with A replaced 
G replaced by Go. 

either by A + 

29 

(2.6) 

(2.7) 

or by ~+ and 

Proof. Note first that, for any fixed y, w(x, y) is a non-decreasing function of x. 
Hence  G* is non-decreasing and, since 0--- G * ( x ) -  1 for any x, G c A. Now from 
(2.2), (2.3), (2.4) and the fact that T is left-continuous and non-decreasing we 

have, for any u, v, that 

T(F(u), G(v)) <- T(F(u), G*(v)) 

<- T(F(u), w(v, u))<- H(u + v), 

whence, by (0.1), for any x, "rT(F, G)(x)<-H(x). 

Now assume that ~T(F, E ) -  H for some E e d. Then for any x, y we have by 
(0.1) that T(F(y),  E(x))<-H(x + y). Thus from (2.3) it follows that E(x)<-w(x, y), 

whence 

E(x) <- inf {w(x, y)} = G*(x). 
Y 

Since E is left-continuous we then have that 

E(x)=  lim E ( y ) -  lim G*(y)--G(x).  

This proves (a). 
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Next, (b) is an easy consequence of the maximality of G and the non- 
decreasing character of ~'T. 

Finally, (c) can be established by checking some minor details, completing the 
proof. 

Remark. It is interesting to note that Theorem 2.1 does not hold with zi 
replaced by 9 ,  i.e., the maximal solution G to (2.5) need not lie in 9 .  To see this, 
let T =  Product and let F, H e  ~ be given by 

F ( x ) = ~  -1 /x '  x < - - l '  and H ( x ) = ~  1Ix2' x < - - l '  
L1, - l < - x ;  t l ,  - 1 -<x .  

If G satisfies (2.5) then, by (0.1), for all x, y, we must have F(y) • G(x) <- H(x  + y), 
whence, for any fixed x, 

G(x)  <- lim H(x  + y)/F(y)  = lim - y / ( x  + y)2 = 0. 
y~--~ y--,--oo 

Thus G = e~ g 9.  

Theorem 2.1 thus shows that in A, d + and 9 + we can solve simple equations 
and inequalities of the form (2.5) and (2.6). However,  in order to find out whether 
a solution to the equation (2.6) exists, one must compute G via (2.4) and (2.1) 
and then determine whether (2.6) does indeed hold. This is inconvenient and 
therefore easily verifiable necessary and/or sufficient conditions on F, H for the 
existence of a G satisfying (2.6) are desirable. Our next result is directed toward 
this end. First, for notation, we need: 

D EF I NI TI ON 2.1. For any function F and any x, let DLF(X) denote the 
left-hand derivative of F at x and let DRF(x) denote the right-hand derivative of 
F at x (when they exist). 

T H E O R E M  2.2. Let T be a left-continuous t-norm and let F, H c za. Suppose 
that tl = inf {x IF(x) = 1} and t2 = inf {x I H(x)  = 1} both exist and are finite. Then a 
necessary condition for the existence of a G ~ A satisfying 

~'T(F, G) = H (2.8) 

is: 

F(tl - 8) <-- H ( t 2 -  ~) for all ~ > 0. (2.9) 
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If, in addition, F, H are continuous at  tl, t2, respectively, i f  DLF( tO and DLH(t2) 

both exist, and i f  (2.8) holds for some G c A, then necessarily, 

D L F ( h )  >- DLH(t2).  (2.10) 

Proof. Assume  there is a G ~ A so that  (2.8) holds. W e  then claim that  

G t ( t 2 -  h)  +) = 1. (2.11) 

Otherwise ,  for  some  e > 0, 

G ( t 2 -  h +  e ) <  1. (2.12) 

Thus for  any points  u, v with u + v = tz + e/2 ei ther  u <- tl - e/2, so that  

T ( F ( u ) ,  G ( v ) )  <- T ( F ( u ) ,  1) = F(u)  <- F(ta - e/2), 

or  v <-- t z -  ta + e, so that  

T ( F ( u ) ,  G ( v ) )  <- T(1, G ( v ) )  = G ( v )  <- G ( t 2 -  t I + E), 

whence,  by (0.1), (2.12) and the definit ion of ta, 

H ( t 2 +  e /2 )=  ~'T(F, G) ( t2+ e/2) 

-< max  {F(t t  - e/2), G ( t  2 - t 1 + e)} < 1, 

contradic t ing the definit ion of t2. 
Next ,  for  any ~ > 0  and any e > 0 ,  using (2.8) and (2.11) we have  

H ( t  2 - ~) >-- T ( F ( t l  - ~ - e),  G(t2 - tl + e) )  = F ( h  - 3 - e), 

whence,  since F is le f t -cont inuous  and e > 0 arb i t rary ,  (2.9) follows. If F, H 

are cont inuous  at h,  t2, respect ively,  then  clearly F ( h )  = H(t2) = 1. Thus  if DLF( t l )  

and DLH(t2)  exist and (2.8) holds for  some  G ~ A, then (2.10) easily follows f rom 

(2.9), comple t ing  the proof .  
In some  cases the necessary  condi t ion (2.10) of T h e o r e m  2.2 is also sufficient. 

More  precisely,  we have 

T H E O R E M  2.3. Let  T be  an A r c h i m e d e a n  t -norm with mult iplicative 
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generator h and let F , H ~ .  Suppose, for some numbers sl < h  and $2<t2, w e  

have: 
(I) F(sl) = O, F(q)  = 1, and hF is concave and strictly increasing on (sl, h]; 

and 
(II) H(s2) = H(s~-) = 0, H(t2) = 1, and hH is convex and strictly increasing on 

(s2, t2]. 
Then there is an E c ~ satisfying 

"rT(F , E)  = H (2.13) 

if and only if 

DL ( hF)( fi ) >- DL (hn)  (tz). (2.14) 

Proof. Note by (I), (II) that, in fact, hF is concave on (s~, ~) and hH is convex 
on (-w, t2]. We will use basic facts concerning the continuity and differentiability 
of convex (concave) functions as given in [9, p. 42] and [4, pp. 1-5]. In particular, 
for convex (concave) functions, one-sided derivatives exist at each point and are 
themselves non-decreasing (non-increasing) functions. 

Assume that (2.13) holds. Then by Theorem 1.3 (a) and (0.4) we have 

hH(x) = h(TT(F, E)(x))= ~'erod(hF, hE)(x), 

whenever H ( x ) > 0 .  The proof of Theorem 2.2 then yields (2.14). 
Now assume that (2.14) holds and, for our given T, F, H, let G* be defined by 

(2.4) of Theorem 2.1. Choose any Xo with sz<Xo< t2 and let 

c = sup {{&} t3 {x [ x > sl and DL(hF)(x)/hF(x) 

>-- DL(hH)(xo)/hH(xo)}}. (2.15) 

Note by condition (II) that 

0 < DL (hH)(xo)] hH(Xo) < 0% 

so that sl--- c -  q, since DL(hF)(x) = 0 for x > q. Now by (2.15) 

DL(hF)(x)/hF(x) < DL(hH)(xo)/hH(xo) for all x > c. (2.16) 
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But, using (I), (II) and (2.14), for  any x with c<x<_tl,  we have 

D, (hF)(x) >_ Dr(hF)(tl) >- DL(hH)(t2) >- DL(hH)(xo), 

or, using (2.16), hF(x)> hH(xo) for  all x > c, whence hF(c +) >_ hH(xo). 
So let 

k = hH(xo)/hF(c+). (2.17) 

Since x0>  s2 we have H(xo)> 0 and clearly hF(c +)-< 1, so that 

h(0) < k -< 1. (2.18) 

Thus,  using (2.16), (2.17), the concavity of hF on (so, oo) and the convexi ty  of hH 
on (s2, t2], we have for any y with 0 < y < t 2 -  Xo that  

[(hF(c + y ) -  hF(c+))/y] • k 

= lira [(hF(c + y ) -  hF(c + 8))/(y - 8 ) ] .  k 
~----~0+ 

-- lira [D~(hF)(c +8)]. k < - lim [DL(hF)(c +8)].  k 
8 - -*0+  8---*0+ 

-< lira [hF(c + 8).  Dr(hH)(xo)/hH(xo)]" k 
, ~ 0 +  

= DL(hH)(xo) <- DR (hH)(xo) <- (hH(xo + y) - hH(xo))/y. 

Hence ,  using (2.17) again, the above  yields that  

hF(c + y) -  k <- hH(xo + y). (2.19) 

No te  if y >  t2-xo then,  by (II), hH(xo+y) = h ( 1 ) =  1 so that  (2.19) holds for  all 
y > 0 .  Similarly, if y-< Sx-C then,  by (I), F(c + y ) =  0 so that  (2.19) holds in this 
case also. In particular,  if c = sl then we have shown via (2.19), that  

hF(u) • k <- hH(xo+ u -  c) for  all u. (2.20) 

T o  establish (2.20) in general  assume that  sl < c - t o .  Then ,  since f rom [4], [9] 
Dr(hF)(x) is lef t -cont inuous and hF(x) is cont inuous  on (sl, oo), it follows f rom 
(2,15) that  

DL (hIO(c)/hF(c) >-- DL (hn)(xo)/hH(xo). (2.21) 
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Note, since we are assuming c > sl, that hF(c +) = hF(c) here. Thus, if 0 <  y < 
c - s t ,  then, using (I), (II), (2.17), (2.21) and the fact that hH is convex on 
( - ~ ,  t2], we have 

[ (hF(c ) -  h F ( c -  y))/y] • k <-[DL(hF)(c)]. k 

= [DL(hF)(c)/hF(c)].  hH(xo) >- DL(hH)(xo) 

>- (hH(xo) - hH(xo - y))/y, 

whence, using (2.17), 

hF(c - y).  k -< h H ( x o -  y). (2.22) 

Note here if y - c -  sl then by (I), F ( c -  y) = 0, whence (2.22) holds for all y -> 0. 
Combined with the fact that (2.19) holds for all y > 0, this establishes (2.20). 

Hence, using (0.3), (0.4), (2.18), (2.20), and the fact that h t-ll is non- 
decreasing, we have, for any u, that 

T(F(u),  hE-~l(k )) = ht-~l(hF(u) - hht- t l (k  )) 

= ht-~l(hF(u) • k) <- ht-ll(hH(xo + u - c)) 

= H ( x o  + u - c ) ,  

whence, using the notation of Theorem 2.1, W(Xo-C, u)>-ht-t~(k) for all u, so 
that, by (2.4), G * ( x o - c )  >- hE-~l(k). Therefore, by (2.1) and (2.17), we have 

rr(F, G)(x~) >- lim T(F(c + 8/2), G ( x o -  c + 8/2)) 
8---~0+ 

>- T(F(c+), G * ( x o -  c)) >- ht-lJ(hF(c÷) • hhL-tl(k)) 

= ht-ta(hH(xo)) = H(xo) 

for all Xoe(S2, t2). Since both H and ~'T(F, G) are left-continuous and non- 
decreasing, this implies, in view of (II), that TT(F, G) >- H. Combined with 
Theorem 2.1, this yields "rT(F, G) = H. It is trivial to show that G is actually in 9,  
completing the proof. 

Remark. Assume in Theorem 2.3 that DLh(1) exists. If (2.14) holds then by (I), 
(II) both DL(hF)(tl)  and DL(hH)(t2) must be positive and finite so that one can 
use a "chain rule" for left-handed derivatives to show that DLF(tl) and DLH(t2) 

necessarily exist. Moreover, in this case, it follows that 
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DLF(tl) >- DLH(t2). (2.23) 
Conversely, if (2.23) holds and one of DLh(1), DLF(tO, DLH(t2) is positive and 
finite, then the chain rule yields that (2.14) holds. Thus, in most cases, we can use 
(2.23) instead of (2.14) in applying Theorem 2.3. 

A simple argument, which we omit, extends Theorem 2.3 to fl0 +, at least for 
strict t-norms. To be precise, we have: 

T H E O R E M  2.4. Let T be a strict t-norm with multiplicative generator h and let 

F, H ~ ~+. Assume, for some numbers 0 <- st < tl and 0 <- s2 < t2, that F, H satisfy 
(1), (H) of Theorem 2.3. Then there is a G ~ f9 + so that zT(F, G) = H if and only if 
sl <- s2 and DL(hF)(q) >- DL(hH)(t2). 

To illustrate the use of Theorem 2.3 and the method given by Theorem 2.1, 
we have: 

E X A M P L E  2.1. Let  T =  Product (which has the identity as its multiplicative 
generator). Consider the functions Fpq ~ ~+ defined for p, q > 0 by 

f 
0, x ~ 0 ,  

Fpq(x)= (px) q, O<-x<-l/p, 

1, 1/p <- x. 

(2.24) 

Given Fpq, Frs we want to determine when there is a G e fl~+ so that TProd(Fpq , G )  ~" 

F,, and then to calculate G. First, to satisfy (I), (II) of Theorem 2.3 we must have 

q<--1 and s---1. (2.25) 

If (2.25) holds then by Theorem 2.4 a solution G e 5~ + exists if and only if 

DLFpq(1/p) = pq >- DLF, s(1/r) = rs. (2.26) 

Note (2.25) and (2.26) imply that p---r, or I /p <-1/r. 
Now if G is a solution then by (2.11) we have G(x)  = 1 for x > I / r -  1/p. Thus 

choose x so that O < x < l / r - 1 / p .  Then from Theorem 2.1 we obtain 

f m i n  {1, (r(x + y))7(py)q}, 
W(X~ Y) 

J 

= ~. rain {1, (r(x + y))~}, 

O<y_~ l /p ,  

1/p_~y; 
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which, using simple calculus minimization techniques, yields by (2.4) that 

G(x) = 

• 0 ,  x ~< O, 

rs ~ ' [ s - -q \  q ~_q 
~ _ q ]  t - - - ~ }  x , O<-x<--(s--q)/pq, 

(rx + r/p)', (s--q)/pq<_ x <_ 1/r-- I/p, 

1, 1/r-- 1/p <-- x. 

AEQ, MATH. 

(2.27) 

If s =  q (so that. by (2.25), s = q  = 1), then 

i 
O, x-<O, 

G(x) + 0 < x <  = rx r/p, - - I / r - 1 / p  (2,28) 

1, 1 I t -  l i p  <--- x. 

In this case note that the solution G is discontinuous at 0. 
Even without using Theorem 2.3, we could use Theorem 2.1 and direct 

calculation to discover that whenever s->q and pq >-rs then the distribution 
function G, given by (2.27), is a solution to ~'Prod(Fpq, G ) =  F~. Otherwise, no 
solution exists. 

3 .  C o p u l a s .  

In [15] A. Sklar introduced a class of operations on the unit interval which he 
called copulas. The importance of copulas lies in the fact that they describe the 
functional relationships between joint distribution functions and their marginal 
distributions. Thus, if X and Y are real-valued random variables defined on a 
common probability space, with distribution functions Fx and Fy, respectively, 
and joint distribution function Hxy, then there exists a copula Cxy  such that 

H ~ ( u ,  v) = Cxy(F×(u), Fy(v)) 

for all u, v on the extended real line [12]. A corresponding result holds for any 
n-tuple of random variables [15]. 

In this final section we will study the relationship between t-norms and 
(two-dimensional) copulas. The latter are defined as follows: 

DEFINITION 3.1. A function C is a copula if 
(1) C : I x I - - *  I, 
(2) C(a, 0) = C(0, a) = 0, for all a e / ,  
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(3) C(a, 1 ) = C ( 1 ,  a ) = a ,  for a l l a e I ,  
(4) C(a, b) - C(a, d) - C(c, b) + C(c, d) >- O, 

whenever a, b, c, d e I and a -< c, b -< d. 

It follows from proPerties (2), (3) and (4) of the above definition that every 
copula is continuous and non-decreasing in each place. Thus every associative 
copula is a topological semigroup on I and hence [see e.g., 10, Cor. p. 85 and Th. 
2.5.6, p. 87] a continuous t-norm. In the other direction, it is clear from 

Definition 0.2 that a t -norm is a copula if and only if it satisfies proper ty  (4). This 

latter condition can be weakened.  For we have: 
T H E O R E M  3.1. A t-norm T is a copula if and only if it satisfies the Lipschitz 

condition 

T(c, b) - T(a,  b) <- c - a, (3.1) 

for all a, b, c in I with a <-c. 

Proof. If T is a copula then letting.d = 1 in (4) of Definition 3.1 yields (3.1). In 
the other direction, assume T satisfies (3.1) and choose s, t, u, v e I satisfying s -< t 
and u<-v.  Note by (3.1) that T is continuous. Hence,  since T(0, v ) = 0  and 
T(1, v) = v, there exists c e ! so that T(c, v) = u. Thus, since T is associative and 

commutat ive,  we have that 

T(t, u ) -  T(s, u) = T(t, T(c, v ) ) -  T(s, T(c, v)) 

= T(T( t ,  v), c - T(T(s ,  v), c) 

<- T(t, v ) -  T(s, v), 

which is equivalent to (4) of Definition 3.1. Thus T is a copula, completing the 

proof. 

Note  that Theorem 3.1 states that, for t-norms, proper ty  (4) of Definition 3.1 
and (3.1) are equivalent. 

There  is a somewhat  more  general version of Theorem 3.1 that applies to a 
wider class of binary operations on L T o  state it we need the following: 

D E F I N I T I O N  3.2. For any binary operat ion T o n / ,  denote  by T* the binary 
operat ion on I defined by 

T*(x,  y) = 1 - T(1 - x, 1 - y). 



38 R. MOYNIHAN AEQ. MATH. 

When T is a t -norm, T* is called the t-conorm oI T. We then have: 

T H E O R E M  3.2. Let T be a semigroup with unit on L If 

0<--- T(c, d ) -  T(a, b ) < - - ( c - a ) + ( d - b )  (3.2) 

whenever 0 <- a <- c <- 1 and 0 <- b <- d <- 1, then either T or T* is a copula and also 
a t - n o r m .  

Proof. Assume T satisfies the hypotheses above with e as unit. By (3.2) T is 
continuous, and hence T is a topological semigroup on L Since I is compact  and 
connected [3, p. 169, item 17] then implies that either e = 0 or  e = 1. 

C A S E  1. Suppose e =  1. Using (3.2) we then have that,  for any a c / ,  
T(a, 0)_< T(1, 0) = 0 and T(0, a) < - T(0, 1) = 0 or T(a, 0) = T(0, a)  = 0 for all a e L 
Hence  0 is a zero e lement  of the semigroup.  By [10, Th.  2.5.6] T is then abelian. 
But by (3.2) T is non-decreasing in each place, whence T is a t -norm. Applying 
Theorem 3.1 then yields that  T is a copula. 

CASE 2. Suppose e = 0. Note by Definition 3 .2  that  T* is continuous if T is 

continuous. Also, the associativity of  T* follows easily f rom that of T. Thus T* is 
a topological semigroup on L It is also easily checked that  T*(x, 1)= T*(1, x ) =  x 
for any x ~ I so that  1 is the unit for T*. Now choose a, b, c, d in I with a --< c and 

b-<d.  Then,  using Definition 3.2 and (3.2), 

T*(c, a) - T*(a, b) = (1 - T(1 - c, 1 - d ) ) -  (1 - T(1 - a, 1 - b)) 

= T ( 1 - a ,  1 - b ) - T ( 1 - c ,  l - d )  

< - ( c - a ) + ( d - b ) ,  

since 1 - c -- 1 - a and 1 - d <- 1 - b. Thus T* satisfies (3.2). But then applying the 
argument  of Case 1 to T* yields that  T* is a t -norm and a copula, completing the 
proof.  

It  is apparent  then that  (3.2) is a very strong condition on semigroups on L 
One would expect,  therefore,  that  ~'T semigroups associated with t -norms which 
are copulas have distinctive properties,  One such proper ty  is given in: 

T H E O R E M  3.3. Let  the t-norm T be a copula. Suppose F e A satisfies the 
Lipschitz condition 

IF(x)-F(y)I<-M. I x - Y [  ~ for all x, y, (3.3) 
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for constants M, a > 0 .  Then, for any G ~ A ,  H =  ~'T(F, G) satisfies the same 
Lipschitz condition. 

Proof. Let  F, G, H be as in the hypotheses above. Let  e > 0  and x, y be 
arbitrary. If x = y there is nothing to show. So, without loss of generality, assume 
x > y. Then by (0.3) there exist points u, o with u + v = x such that 

H(x) >- T(F(u), G(v)) >- H(x)  - elx - yl% (3.4) 

Combining (3.3) and (3.4) with Theorem 3.1 then yields that 

0 <-- H ( x ) -  H(y)-< T(F(u),  G(v)) + e I x -  yl '~ - T(F(u - ( x -  y)), O(v)) 

<- F ( u ) -  F ( u  - ( x  - y)) + e .  Ix - y I ~ 

- ( M + e ) .  I x - y l  =. 

Since e > 0 was arbitrary, this proves our desired result. 
A slight variation of the above proof yields: 

C O R O L L A R Y  3.1. If the t- norm T satisfies "the Lipschitz condition 

IT(a, c ) -  T(b, c)]-< N "  la - b] ~ for a, b, c ~ I 

for constants N, [3 > 0 and if F ~ zl satisfies the Lipschitz condition 

IF(x)-F(y)I<--M • I x - y ]  ~ fo r  all real x, y, 

where M, a > 0  are constants, then, for any G eA ,  H =  rT(F, G) satisfies the 
Lipschitz condition 

]H(x ) -H(y ) I<-N  • M ~ . I x -  yl ~ for all real x, y. 

C O N J E C T U R E .  It  would be of interest to know when the absolute continuity 
of F and G implies that of rT(F, G). For real functions it is of course known that 
if f is absolutely continuous and g satisfies a simple Lipschitz condition then the 
composite function g o f is absolutely continuous [9, Vol. 1]. In view of Theorem 
3.1 then, it seems reasonable to expect that if F and G are absolutely continuous 

and if T is a copula then ~'T(F, G) is absolutely continuous. But  this is an open 
question. Note  that if this question were answered in the affirmative then "rT 
would induce a binary operat ion on density functions. 
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