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Abstract 

Given a strong starter for a group G of order n, where 3 does not divide n, a construction is given 
for a strong starter for the direct sum of G and the integers modulo 5. In particular, this gives a Room 
square of side 5p for all non-Fermat primes p. 

A Room square is a (2n + 1) × (2n + 1) array of cells each containing either 

nothing or an unordered pair from a set of 2n +2  objects. Every object must occur 

exactly once in every row and column, and every possible pair must occur exactly 

once. Room squares were first introduced mathematically in [6], where one of side 7 

was constructed, and it was pointed out that there is no Room square of side 3 or 5. 

A set of pairs S =  {{Xl, YI}, {x2, Y2},..., {Xn, y,}} chosen from an abelian group 
G of 2n + 1 elements is a starter if all the non-zero group elements occur exactly once 

in S, and also occur exactly once in the set of differences of S, (+_ ( x - y ) ] { x ,  y} ~ S}. 
The starter S is said to be strong if the set of sums of S, {(x +y)[  {x, y ~ S } ,  are all 

distinct and non-zero. It is known that the existence of a strong starter for a group 

of order 2n + 1 implies the existence of a Room square of side 2n + 1 [4]. Mullin and 

Nemeth [4] have constructed strong starters for all finite fields other than those of 

order 2n + 1. 
There are many other constructions for Room squares. Computers have been 

used to get Room squares of all odd sides between 7 and 55, [9] and [1 ], including 

9 and 17. Also, it was proved in [2] and [3] that if a Room square of side v l exists, 

and if a Room square of side v2 exists with a subsquare of side v3, and Vz-V3 =/=6, 
then a Room square of side vl (v2-v3)+v3 exists. Note that if v3=0, this gives a 

multiplication theorem for Room squares, as originally proved in [7]. Also, using 

this theorem, Room squares of side p were found for all Fermat primes p other than 

3, 5, 257, and 65537 [3]. Recently, Mullin has used it to obtain a Room square of 

side 65537 as well. Wallis, in [10], has shown that if there is a Room square of side n 

with a property called skewness, then there is a Room square of side 2n + 1. Since 

the Mullin-Nemeth construction gives skew squares, and the recursive construction 

to give vl (/)2-1)3) dr./)3 preserves skewness, this is a useful construction. 

T H E O R E M .  I f  there exists a strong starter for an abelian group G of  order n, 
and 3 does not divide n, then there is a strong starter for I5OG, the direct sum of  the 
integers modulo 5 and G. 
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Proof As G is a finite abelian group, G can be written as the direct sum of cyclic 
groups, none with order divisible by 2 or 3. Since the integers modulo m form a ring, 
we may view G as the additive group of the direct sum ring, in which the multiplicative 
identity 1, and the elements 2 = 1 + 1, 3 = 1 + 1 + 1, and the respective inverse elements 
2-1 and 3-1 exist. 

Let X =  ({x~, y,)le= 1, 2, ..., ( n -  1)/2) be the strong starter. Then find a non-zero 
a and b in G such that there is no pair {x, y} in X whose sum is a or b. This can be 
done as there are only ( n -  1)/2 elements in the set of sums of X, while there are n -  1 
non-zero elements of G, and n f> 7. Let h = k ( b -  a) and g = ½a. Now partition the non- 
zero elements of G into two sets P and N, such that x is in P if and only if - x  is in 
N. We add the restrictions that h is in P, and so is -½h.  Now we consider the sets of 
pairs; 

A = {{(0, x), (0, y)} [ {x, y}~X},  

B = {{(1, x + g), (2, 2x + g)} lxeP,  x :/= h}, 

C = {((4, x + g), (3, 2x + g)} l xep ,  x =/= h}, 

0 = {{(1, x + g), (3, 2x + g)} [ x N}, 

E = {{(4, x + g), (2, 2x + g)}lxeN}, 
F = {{1, h + g), (2, g)}, {(4, h + g), (3, g)}, 

{(1, g), (4, g)}, {(2, 2h + g), (3, 2h + g)}. 

The union of these 6 sets forms a strong starter for 15OG. All no n-zero elements of 
the form (0, x) appear in some pair of A. All pairs of the form ( 1, x) appear exactly 
once in one of B, D, or F, since x + g  will run over G as x runs over G. All pairs of 
the form (2, x) appear in one of B, E, or F, since 2x + g  will run over G as x runs 
over G. Similarly, all pairs of the form (3, x) and (4, x) appear exactly once. 

All non-zero group elements also occur as the difference of some pair. All 
elements of the form (0, x) occur as differences of pairs in A. All elements of the form 
(1, x) occur as differences of pairs in B and C, except for (1, 0), (1, h), and (1, - h ) .  
All elements of the form (4, x) occur as differences of pairs in B and C, except for 
(4, 0), (4, h), and (4, - h ) .  All elements of the form (2, x) and (3, x) occur as dif- 
ferences of pairs in D and E except (2, 0) and (3, 0). The eight elements that have 
not  yet been accounted for are the differences of the four pairs in F. 

The sums of all these pairs are also all distinct and non-zero. The sums from A are 
of the form (0, x +y )  where x + y  is not  zero, and are all distinct; the sums from B 
are of the form (3, 3x +2g),  x in P, and are all distinct, since 3 has a multiplicative 
inverse; the sums from C are of the form (2, 3x + 2g); the sums from D are of the 
form (4, 3x + 2g); the sums from E are of the form (1, 3x + 2g). The sums from F 
are: (3, h +2g),  (2, h +2g),  (0, 2g), (0, 4h +2g).  These are distinct from the other 
sums. If  h+2g=3x +2g, then 3x=h and -}h would have to be in P, but -½h is in 
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P. If 2 g = x + y ,  where { x , y }  is in X, then a = x + y .  If 2 g + 4 h = x + y ,  where {x,y} 

is in X, then b = x +y.  Either of these results contradicts the choice of a and b. 

Thus, we have constructed a strong starter, and have a Room square of side 5n. 

This theorem is useful in constructing more Room squares. For example, since 

strong starters are known to exist for groups of order p, where p is an odd non- 

Fermat prime, it proves the existence of Room squares of side 5p, for p a non-Fermat 

prime. This, together with the multiplication theorem and the existence of Room 

squares for all prime-power sides except 3, 5, and 257, shows that a Room square 

of side v exists unless v is divisible exactly once by 3, 5, 257, or 5 times a Fermat  

prime. Other results have also been proved. In [8], a Room square of side 5k is 

shown to exist for all odd k > 1. In [8], it is also shown that if a Room square of side 

v does not exist, then v is divisible exactly once by either 3, or 257, but not both. To 

complete the proof that a Room square of side v exists for all odd v except for v=  3 or 

5, it is sufficient to prove that Room squares of sides 3p and 257 exists where p is any 

prime congruent to 3 modulo 4. The only v ~< 1000 for which Room squares have not 

yet been found are: 69, 93, 129, 213, 237, 257, 321,453, 597, 669, 717, 789, 933. 
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