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The Disk-Packing Constant 

DAVID W. BOYD 1) (Pasadena, California, U.S.A.) 

Let U be an open subset of the Euclidean plane, which has finite area. A simple 
osculatory packing Co of U is a sequence of disjoint disks {Dn) each contained in U, 
and such that Dn has the largest radius of disks contained in U\(D1 u D2 w . . .  u D,,_,),  

for n = 1, 2, .... The exponent of such a packing is the number 

e(C0, U ) = s u p  t" r , = m  = i n f  t" r , < o o  , 
= 1  = 1  

where r~ is the radius of Dn. 
In this paper, we shall consider simple osculatory packings of a curvilinear triangle 

T which has mutually tangent circular sides. The exponent in this case does not depend 
on the radii of the sides (see Wilker [8]), and will be denoted by S. It was shown by 
Melzak [5], that 

1.035 < S < 1.999971. (1) 

The lower bound was subsequently improved by Wilker [8] to 1.059, and by the 

author [2] to 1.28467. An improved upper bound of 1.5403 . . . .  (9+x/41)/10 was 
proved in [3], but the arguments there, although they apply to sphere packings in 
higher dimensions, are too general in nature to yield a significant improvement of 
this bound. 

In this paper, we present a method of attack which gives both upper and lower 
bounds. In fact, for any integer x, we obtain bounds 2 (K)<S</~(x)  such that 
/z ( x ) -  2 (x) < 1/log, o x. Thus, in principle, S can be determined to arbitrary accuracy 
by this method. However, the amount of computation needed to determine 2 (x) and 
#(x)  increases quite rapidly, and the convergence to S is quite slow. The numbers 
2 (6~) and p (6~), where ~o = 2, 6, = 5 and 3., = 26m-1 + ~m- 2, are of special significance 
as we shall see in § 2, and we give the results of the computation of these for m =0, 1, 
2, 3 in § 3. This gives 

,~(841) = 1.272441 < S < 1.357603 = #(841).  

Note that the upper bound is a significant improvement over the previously known 
bounds, but the lower bound is somewhat less than our previous bound of 1.28467. 
Although/z(84 z) could not be computed in the time we allowed, we did show that 
# ( ~ ) <  1.3500. Thus we have improved (1) to 

1.28467 < S < 1.35000. (2) 

1) This work was supported in part by N.S.F. grant G.P-14133. 
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Our results are consistent with the heuristic result S ~ 1.306951 which Melzak [6] 
obtained by fitting a power law r, .~An -~ to the radii of the first 19600 disks in a 
packing. We can use the four values of 2(x) and/~(~c) to obtain alternate heuristic 
estimates by approximating 2 (~c)~A1 (logK) -1 +5'1 and #(to) ~A 2 ( logx)-I  + $2. The 
least squares fit gives Sx = 1.29179 and $2 = 1.29764, suggesting a value for S near 1.3. 
(The fact that $ 2 - $ 1  > 5 x 10-3 prevents us from attaching too much significance 
to these heuristic results.) 

One further point we may observe is that since the Hausdorff dimension d(Co, T) 
of the residual set T\ 0 (D,:n>>. 1) is dominated by e(Co, R) (see [1 ]), our upper bound 
(2) improves the bound 1.43113 t> d (C0, T) obtained by Hirst [4]. 

Our main result is Theorem 1 which appears in § 2. The details of the com- 
putation are in § 3. 

(Added in proof: We have recently improved our method somewhat, and can now 
show that 1.300197 < S <  1.314534.) 

1. Preliminary Results 

Let T(a, b, c) be the region bounded by three mutually externally tangent circles 
of curvatures a, b, c, where O<~a<~b<~c, and b>0.  We observe that T(a, b, c) has 
finite area even if a =0, so we may, (and do), allow a =0. Let t be real, and let 

O(3 

t M(a,  b, c ; t )  = ~ r , ,  (possibly ~ ) ,  (3) 
n = l  

where the r, are the radii of the disks in a simple osculatory packing of T(a, b, c). 
(Note the notational difference between (3) and the paper [8] where a, b, c are the 
radii of the bounding circles.) 

The results of [8] show that M(a, b, c ; t) is a decreasing function of the variables 
a, b and c, (strictly decreasing, if finite), and, if ~ > 0, 

M (~a, ctb, ~c ; t) = ct-tM (a, b, c ; t). (4) 

Also, by the results of [8], (or by Lemma 1 of this paper) M(a, b, c; t )<  oe if and 
only if M(0, l, 1 ; t ) <  oo. Hence, we wish to determine 

S - sup {t : M (O, l, 1; t) - c ¢ }  - inf {t : M (O, l, 1; t) < oo} . (5) 

The following Lemma, though basically very simple, is crucial to our method. 

LEMMA 1. Let a, b, e be real numbers with 0 <<. a <~ b <~ c, and 0 < b, and let M be 

defined by (3). Then (a, b, c ; t) <~ b- '  M (0, 1, 1 ; t) (7a) 

(a + c ) - ' M ( O ,  1, 1; t) ~< M(a ,  b, c ; t ) .  (7b) 

Equality holds in (7a) and (7b)for finite values of M(a, b, c; t) and M(0, 1, 1 ; t )  if 
and only if  a =0 and b = c. 
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Proof. Using (4) and the fact that M decreases in all variables, we have 

M(a,  b, c ; t )  = b-'  M (ab -1, 1, cb -1", t) 

<. b- 'M (o, 1; O, 

since ab-l>~O and cb-l>>, 1. This proves (7a), with strict inequality for finite M, 
unless ab -1 =0 and c b - l =  1. 

The proof of (7b) uses inversion. We first note that 

M (a, b, c ; t) = c- '  M (ac- ' ,  bc -1, 1", t) 

c - t M ( a c - 1  1 l ' t )  

with equality only if bc-~= 1. This proves (7b) for a=0 .  It remains to show that if 
0 < r <  oo, then 

M (r -1, 1, 1; t) > (r/(r + 1))+M (0, l, 1; 0 . 

For notational convenience, let (r)  mean 'circle of radius r'. Choose coordinates for 
T(r -1, q.L.1) SO that the (r)  has its centre at the origin and the two (l)'s have their 
point of tangency on the negative real axis. For an inversion to map (r)  into an (~ ) ,  
the centre of inversion must be on (r) ,  and in order to preserve the radii of the two 
(1)'s, the circle of inversion must be orthogonal to each of these. In addition, we wish 
to map the interior of T(r-1,  l, l) to the interior of T(0, 1, 1). Hence, the centre of 
inversion is the intersection of (r)  with the positive real axis. The radius of the in- 

verting circle is ? = r + x / ( r +  l) 2 -  l, and the distance from the centre of inversion 
to T(r -1, l, 1)is 6=2r  cos0, where cos 2 0 = ( 7 - r ) / ( r +  1). Thus, 

62? -2 = 2r z (cos20 + 1) ?-2 = r](r + 1), 

after some algebraic manipulation. Hence, by the Corollary to Lemma 3.6 of [8], 
each of the disks of radius 0 in a packing of T(r-1, 1, 1) inverts into a disk in the 
packing of T(0, 1, 1) with radius ~', where ~>b2}'-2~ '. Thus, 

M ( r - l , l ,  1 ; t ) > f z t ? - 2 t M ( O , l , l ; t ) = ( r / ( r +  1)) 'M(0,  1, 1 ; t), 

which proves (7b), substituting r =ca-~. 

LEMMA 2 (Melzak). Let A, B, and C be three pairwise externally tangent circles 
with curvatures a, b, and c. Let { C.) be the sequence of disks in which C1 is the smaller 
of the disks tangent to A, B, and C, and C, is the smaller of the disks tangent to A, B, 
and C,_ 1 for n = 2, 3, .... Let c. be the curvature of C.. Then, for n = 1, 2,..., 

c, = g, (a, b, c) = (a + b) n 2 h- 2 (ab + be + c a )  1/2 n -+- c .  (8) 

Proof. See Lemma 5 of [5]. The restriction a<~b<~c stated there is not used if 
a, b and c are non-negative. 



Vol. 7. 1972 The Disk-Packing Constant 185 

Analogously we define disks A, and B, with curvatures 

a , = g , ( b , c , a )  and b n = g , ( c , a , b ) .  (9) 

To motivate some of the definitions to follow, we note that we may write M(a, b, c; t) 
in the following way, suppressing the variable t, and using the notation of Lemma 2- 

oo 

M ( a , b , c ) = a , 4, Z (an t 4" b ~ t 4- c~ t) 
n = 2  

o(3 

+ Z {M(a, On, c,,+t) + M(b,  c,,, On+,) + M(a,  bn, bn+,) (10) 
n = l  

+ M(c,b,,,b,,+l) + M(b, an, a .+l)+ M(c,a,,,a,,+a)) 

To see (10), note that if we remove the disks A., (n~>l), B., (n>~2) and C., (n>~2) 
from T(a, b, c), we are left with triangles T(a, c,,, c,,+1), (n>~ 1), etc. 

Our basic idea will be to iterate (10) starting with (a, b, ¢)=(0, 1, 1), and then to 
apply Lemma 1. For example, from (10), applying Lemma 1 to M(0, c., on+x)etc., 
we have 

oo oo 

M (0, 1, 1) ~< a;'  + Z (an t 4" b; t 4" Cn t) 4" 2M (0, 1, 1) ~ (an t 4" bn t 4" Cnt), 
n = 2  n = l  

where b. = Cn = (n + 1)2 and a. = 2n z + 2n. If we write 

oo 

f ( t )= 2 Z (an t4" bn t+ c;t) , 
n = l  

and 

we will have 

oo 

h ( t )= a-i'+ E (a;t 4. b~ t 4, c~t), 
n = 2  

M(O, l, 1) <<. h(t) + M(O, l, 1) f (t). 

This would seem to imply that if 1 > f (t), then 

M(O, 1, 1) <~ h(t)/(1 - f ( t ) ) .  

(11) 

(12) 

Zs3 F (a, b, c) = F (a, b, c) 4. F (b, c, a) + F (c, a, b) I 

4. F (a, c, b) + F (c, b, a) 4, F (b, a, c). 
(14) 

However, we must be more careful since, possibly M(0, 1, 1)--oo and, for example, 
the true inequality 20o ~< 1 + ~ does not imply that 0o ~< 1. Lemma 3 will give the 
technical machinery needed to avoid this fallacy. 

Because (10) is rather cumbersome, and since such sums appear often in this paper, 
we adopt the following notational device: If F (a, b, c) is a function of a, b and c, then 

(13) 
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A similar convention will be used for unions of sets and for minima and maxima taken 
over sets. 

LEMMA 3. Let a, b, c be real numbers with 0 <~ a <~ b <~ c and 0 < b. Let a,, b, and cn 
be as in (8) and (9). For any real t and integer i define m i (a, b, c ; t) by the followh~g 
reeursion : 

Ma (a, b, c; t) = a[ '  (15) 

i 

• - '  + b2 ~ + c ; ' )  Mi(a, b, c, t) = a l  + ~ (a;  t 
n=2  

i--1 

+ Z  Z M , _ , ( ~ , c . , c . + ~ ; t ) .  
$3 n = l  

(~6) 

Then M~ (a, b, c; t) is an increasing sequence with limit M(a, b, c; t). 
Proof. Let .~ =9  ~ (a, b, c) denote the set of disks in the simple osculatory packing 

of T(a, b, c) and for D e ~ ,  let k (D) denote the curvature of O. We claim that there 
is a nest of finite subsets 9~,=~,(a ,  b, c ) c ~ ( a ,  b, c) such that 

M,(~, b, ~ ;t) = Z  (k(d) -~ o ~ , ) .  

The proof follows by inductively checking 

(+ ) ( , , )  
~i~ i ( a ,  b ,  c )  -'- { A 1 )  k.) {An, Bn, Cn} k.) U U ~i--1 (a, Cn, c,+ 1) • (17) 

n=2  $3 n = l  

To show that M~ increases to M we must prove that #~ increases to ~ .  To do this 
we will show that k~(a, b, c), the minimum curvature for disks in ~ \ ~ ,  tends to 
infinity. Using 0 ~< a ~< b ~< c, we have 

kl (a, b, c) = cz > c, = a + b + c + 2(ab + bc + ca) 1/2 | 

>~ 2b + 2"/b2 / (18) 

= 4 b .  

We shall prove by induction that k~(a, b, c)>~i2b. For, if this is true for i - 1 ,  then 

(19) 

k~ (a, b, c) = min {a,+ 1, ki- t  (a, cl, c2)} 
S3 

~> min {ci+ x, ( i -  1) 2 cl} 
>~ man {(i + 1) 2 b, ( i -  1) 2 4b} 
>~ i2b. 

2. The Main Result 

In the statement of Theorem 1, certain functions will appear which we will define 
and discuss now. Let 0 ~< a ~ b ~< c, and a., b., c. be given by (8) and (9). Let t > ½, 
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let x > 0  be any positive number, and m be any non-negative integer. Define functions 
f, g and h recursively by 

0(3 

fo (rc; a, b, c; t) = E  Z c ; ' ,  
$3 n = t  

c~3 

go(~;a,b,c;t)=Y~ E (a+c.+~)-', 
$3 n = l  

ho (K ;a ,  b, c ; t )  = aT' + ~ (a2' + b2' + c2') 
n = 2  

= lfo (K; a, b, c; t) - 2a~-'. 
And, for m ~> 1, 

f= (~c ; a, b, c ; t) = Z {~., [f=- a (K ; a, c,, c,+ t, t) " c, < rc] + Z [c;t " c, >t to]} (23) 
$3 

(20) 

(21) 

(22) 

gin(tO ; a, b, e; t) = Z  {Z [gm-1 (tO; a, c,, c,,+1 ; t )"  c,, < ~:3 
$3 

+ Z [(a + c, ,+,)- '  • c,, >~ ~c]} 
(24) 

hm(l¢ ;a, b, c ; t )  = ho (r  ;a ,  b, c ; t)  + ~ Z [h,~_, (rc ;a, c., c.+ 1 ; t ) ' c .  < rc]. (25) 
$3 

We observe that for fixed m, x, a, b, c, the functions f, g and h are defined for 
t > ½ (since c,,,-, (a + b) n2), and, if cl > 1, are non-negative strictly decreasing, con- 
tinuous functions of t, which tend to zero as t - - ,~  and to m as t---,½+. Note that the 
triples (a, c,, c,+ 1), (and those obtained by permuting a, b, c) satisfy a~< c,~< c.+1 and 
0 < c,. The following simple result is set aside as a lemma. 

LEMMA 4. Let f, g and h be defined as in the above paragraph. Then, for 
~c <~ 4 p + l b, we have 

f m ( r C ; a , b , c ; t ) = f p ( r c ; a , b , c ; t )  for all m ~> p.  

Similarly for g,, and hm. 
In case (a, b, c)=(0 ,  1, 1), let tSmbe definedby 6o=2, 6 t=5 ,  6m=26,,,_1 +6=-2  for 

m >i 3. Suppose • <<. 62, then 

f,~(~c; O, l, 1; t) - fp(tc; O, l, 1; t) for all m ) p .  

Similarly for gm and hm. 
Proof. Let z be the set valued mapping which maps (a, b, c) into the set Sf 1 = 

{(a, c,, cn+l)'n = 1, 2,..., (a, b, c) permuted in all possible ways}. Let 6a,,=zm(a, b, c). 
The recursive definition offm implies that fro--fm-1 provided min {fl" (c~, fl, 7)~ S e }  I> x. 
But, this is true provided 4rob i> x, by methods analogous to those used in Lemma 2 to 
prove that ~ i  increases to ~ .  
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In the special case that (a, b, c)=(0,  1, 1) the minimum fl is explicitly 62 which 
arises from the triple (0, 6~, (6,. + 6,,-a)2)~ Sp .  The induction begins with 62_ j = b  = 1 

and 62=a+b+c+2 ~/ab+bc+ca=4 and shows that C~m=26"+C~m_ ~. 

Remark. Note that 62/62 ~/2 ,,-1--' 1 + < 4, so that the statement of Lemma 4 for 
(0, 1, 1) is stronger than for general (a, b, c). 

THEOREM 1. Let Sbe definedby(5). Let f"(x; O, 1, 1; t )  andgm(~; 0, 1, 1; t) be 
defined for x>0 ,  t>½, m=0 ,  l,.. .  by (20) through (25). Let lt"(K) and 2m(tC ) be the 
unique solutions off,.(t¢; 0, 1, 1; pm(~c))= 1 and g,~Qc; 0, 1, 1; 2re(x))= 1 respectively. 
Then 

2,. (x) ~< S ~< Pm (K) for all x > 0, m = 0, 1, .... (26) 

Furthermore, let 6,. be as in Lemma 4" then for 62~x, 2,.(x)=2,,+1 (x) . . . .  and 
kin(tO) =/tin+ 1 (tO) . . . . .  For such m, define 2(to) =2~,(x) and/~(tc) =/.t" (to). Then, 

0 < / t  ( x ) -  2(r¢) < (log 10)/(log r ) .  (27) 

Proof. We first observe that 2,. (K) and p" (~c) are uniquely defined since fm and g,, 
are strictly decreasing and continuous and tend to ~ and 0, at i and oo respectively, 
since ca = 4  > 1. 

It will suffice to show that for t > 2,. Qc), one has 

M (0, 1, 1 ; t) < hm (~c ; 0, 1, 1 ; t)/(1 - f m  (r  ; 0, 1, 1 ; t)) (28) 

and for t>#m(r ) ,  that 

M(0,  1, 1; t) > hm(x;O, 1, 1, t)/(1 - g"(rc;0,  1, 1 ; t ) ) .  (29) 

We shall treat (28) first, since the proof requires more care. We shall show by induc- 
tion on m that if M~ is as in Lemma 3, then 

Mi(a, b, c; t) <<. h,,(tc ; a, b, c; t) + fro(r; a, b, c; t )Mi(0,  1, 1; t). (30) 

For convenience, we shall suppress the variables x and t, regarding these as fixed. 
For m=0 ,  from (16) and (22), we have, using Lemma 1 and Mi-1 <Mi, that 

M~ (a, b, c) < ho (a, b, c) + Z Z Mi-1 (a, c,, c.+ a) 
Ss n = l  

i - 1  

<~ ho (a, b, c) + Z ~. c;tM,-1 (0, 1, 1) 
Ss n=~ 

< ho(a, b, c) + fo(a, b, c) M,(0, 1, 1). 

(31) 
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Now, using induction on m, assume (30) for 1, 2,..., m -  1. Then using Lemma 1, 

M,(a, b, c) <<. ho (a, b, c) + E 2 [M,-x (a, c,, c,+ ,)" c, < tc] 
$3 

+ X E [M,-, (a, c . , c .+ , ) ' c . >  K,n <<. i - -  i ]  
S3 

< ho (a, b, c) + ~] 2 [h.,_, (a, c,,, c.+ ,) (32) 
Sa 

+ fro-, (a, c., c.+,) Mi_ I (0, l, l ) ' c  n < to] 
+ Z Z [c; 'M,_~ (0, 1, I)" c. ~> x]. 

$3 

This completes the induction, using the definitions of f~ and h m. Now set (a, b, c )=  
(0, 1, 1) in (30) and assume t >/~m (~:), SO that f~ (x; 0, 1, 1 ; t) < 1. We can then 
transpose the second term of (30) to the left member, divide by 1 --fro and let i ~  ~ to 
obtain (28). This shows M(0, 1, 1 ; t) < ~ for t >/~,, (x), hence that S ~</~m (x)- 

The inequality (29) is proved in a similar way. Here we may assume that 
M(0, 1, 1 ; t )<  ~ ,  since (29) is obvious otherwise. Thus, instead of (16) we may use 

oo 

M (a, b, c) = ho (a, b, c) + Z Z M (a, c,,, c,,+ x), (33) 
$3 n = l  

which is valid for all t. Once (29) is established for t>2 , , (x)  we let t~2m(X) to see 
that M(0, 1, 1 ; 2~, (~c)) = oo so that S~> Lm (x). 

The fact that 2m(X)=2m+l(X) . . . .  and /~m(X)=/~m+ l(x)  . . . .  for 62~>~ follows 
directly from Lemma 4. 

Finally, we must demonstrate (27). We claim that f,,(x; a, b, c ; t )  is a sum of 
the form 

f , , , ( r ; a , b , c ; t ) = E { w ( D ) k ( D ) - t : D E ~ , , ( x ; a , b , c ) } ,  (34) 

where ~m (r  ;a ,  b, c) is a subset of the disks in the packing ~ (a, b, c) of T(a, b, c), 
where k(D) denotes the curvature of D, and where w(D) is an integer in the set 
{1, 2,..., 6}. This follows easily by induction from the definition of fro. Further, if 

~< 6 2, then we claim that 

kin(0, 1, 1) = min {k (D)" De~, , (x  ; 0, 1, 1)} ~< r .  (35) 

To do this, we use the sets S~',, defined in the proof of Lemma 4, and observe that 

k,, (0, 1, 1) ~< min (x, k~- i  (0, 4, 9)) 

= min (x, kin-2 (0, 25, 49)) 
. . . . .  min (re, ko (0, 62_ 1, (6m-1 + 6,,_ 1)2)) = min (x, 62), 

which shows that k,, (0, 1, 1) ~ x provided 6m2 ~ X. 

Furthermore, we claim that (independent of x and m), 

gz(rC; a, b, c; t) >1 5-tf,,,(r.; a, b, c; t). (36) 
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To prove (36), we again use induction. First, for m =0, we use (20) and (21) and com- 
pare sums of terms of the form c~ -t and (a+c,+~)-~.  It is easy to see that if d =  
(ab + bc + ca) 1/z, then 

a+c,~+l  = a + ( a + b ) ( n + l )  2 + 2 d ( n + l ) + c  t 
~< 5c, = 5((a + b) n 2 + 2dn + c), , (37) 

where we do not use a ~< b ~< c. This shows (36) for m =0 and the induction to general 
m is straightforward. Now, using the representation (34) and (35), we see that for 
~>0,  if 6~>~x, 

f~ (K, 0, 1, 1; t) = y' w (D) k (D)- '  
> r# E w (O) k (O) - t -o = X~fm (re ;0,  1, 1, t + 6). , (38) 

As part of our computation we shall see that S <  1.4 so that 2re(K)< 1.4 for all m 
and ~c, and thus 5-a~"(~)> 10 -1. Now, using (36) and (38), we obtain 

1 - gm(K ; 0, 1, 1 ; 2m(~C)) 
>i 5-z"(~)fm (lc ;0,  1, 1; 2 m 0c)) 
> 10-1~¢~m(~)-am(~)f~ (~c ;0,  1, 1;/1m 0c)) 
= 10 -1 exp ((pro (~c) - 2m (K))log ~¢)- 1. 

This proves (27) and the Theorem. 

(39) 

3. Computations Based on Theorem 1 

In order to apply Theorem 1, we must compute the solutions offm (6~; 0, 1, 1 ; t) = 1 
and gm (62; 0, 1, 1 ; t ) =  1. To compute f,. from (23) and (20), we must first decide how 
to compute 

>f (40) 
where c,, = (a + b) n 2 + 2dn + c, d= (ab + be + ca) lj2. We consider the computation of 

oo 

Z ((a + b ) n  z + 2dn + c) - t ,  (41) 
n = N  

where N is to be chosen. We may write 

(a + b) n 2 + 2an + c = (a + b)( (n  + =)2 _ fl), (42) 
where 

o t = d / ( a + b ) ,  and f l = a b / ( a + b )  2. (43) 

Observe that fl ~< ¼. Thus 
o o  oo 

E ((a + b) n 2 + 2dn + c ) - ' =  Z (a + b) - t ( (n  + a) 2 -  f l)- '  

.=N ~=N (44) 
= (a + b ) - ' ~ o  - t k Z 

- -  n = N  
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We now use the well-known Euler-Maclaurin formula for the latter sum (see [7], 
p. 128), for which the first few terms are 

Y~ (~ + z) -~ ~½(N + ~)-~ + (N + ~)-~*~/(~ - 1) + ~(N + ~)-~-~/t2 (45) 
/ I=N 

- ~ (~ + 1) (~ + 2) (N + ~) -~-~ /720 .  

For gin, we need series of the form 

[(a + Cn +1)-'" c,,/> rc]. (46) 
In this case, we may write 

(a + b) , ,2  + 2dn + (c + a) = (a + b ) ( ( n  + ct) 2 + y), (47) 

where 
o~ = d/(a + b) ,  y = a2/(a + b) 2 . (48) 

It is natural to compute the series E (a + Cn)-' and y' (b+ G ) - '  together. Then 

}-' {(a + G) - t  + (b + Cn)-'} = (a + b) - t  ~o - t 
, ,  ~ k (~ + ~) ~ (n +,,) ~ ' - ~  

(49) 
where ) , l=aZ / (a+b)  2 and ~ z = b 2 / ( a + b )  2, so that ?,k + ek<l .  

We can always insure a choice of N>~ 20 by summing a few initial terms if necessary, 
and since we will find that 2t t> 2.4, we can compute the series in (44) and (49) with a 
relative accuracy better than 10 - 9  by using only k =0, 1, and the terms of the expan- 
sion shown in (45). For example, we will have 

oo 

~' c ;  t = (a + b) - t  (¢ (2t, N + 00 + t/~¢ (2t + 2, N + 0t) + ~) (50) 
n = N  

where Isl < 10- 9, and 
oo 

¢ ( s , N + 0 ~ ) =  E ( n + 0 0 - "  (51) 
n = N  

is computed as the right member of (45). 
We can avoid doing multiplications and taking square roots in the computation 

of Cn = (a + b) n z + 2(ab + bc + ca) 1/2 n + c by introducing a new variable which we 
denote by u. Given a, b, c with 0 ~< a ~ b ~< c, u will be the curvature of the largest circle 
tangent to the circles which bound T(a,  b, c). Thus, by the formula of Descartes, 

u = a + b + c - 2 (ab + bc + c a )  1/2 . (52) 

Then 
C O - " C  

Cl = 2 ( a  + b + c ) -  u 

C n = 2 ( a + b + c n _ l ) - c n _ 2 ,  for n>~2. 

(53) 

(54) 

(55) 
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Regarding x and t as fixed we write fro (K; a, b, c ; t ) = F . ,  (u, a, b, ¢). Now formula (23) 
becomes 

$3 
(56) 

because the circle of curvature b is the larger of the two circles tangent to the circles 
which bound T(a, c,, c,+1). For fixed x and m, we wish to compute t so that 
Fro(0, 0, 1, 1)=  1. Note that the initial values of (u, a, b, c) are integers, and the 
4-tuples needed in (56) are computed by the linear recursion (53)-(55), so that the 
variables u, a, b, c are always integers. 

One can estimate quite simply the time needed to compute fm(~C, a, b, c;t),  by 
using the formula (56). One finds, using induction that this time T,,(x; a, b, c ) g  

A(3 logr )  ~ x/~/b, for some constant A. Since we want K = 3 2 g ( 1  "~-N/2) 2m, it is 

apparent that the amount of computing increases very rapidly with m. 
The above ideas were incorporated into a computer program written in Fortran, 

using double precision, which was run on the 360/75 at the California Institute of 
Technology. The equations f =  1 and g = 1 were solved by the method of regula falsi 
using a starting value 1.35 for upper bounds and 1.26 for lower bounds. The second 
value was computed using the approximate slope - ( log tc ) .  The results are given in 

table 1. The heading 'iter' gives the number of values of t for which f and g were 
computed to obtain the indicated accuracy for f - 1  and g - 1 .  

Table 1 

m x 2m (x) g -  1 iter pm (~c) f--  1 iter 

0 4 1.191561 2 x 10 -5 6 1.571658 -- 1 x 10 -5 7 
1 25 1.246116 --5 × 10 -5 5 1.410266 --1 × 10 -5 6 
2 144 1.263876 2 × 10 -n 5 1.373234 --3 x 10 -7 6 
3 841 1.272441 7 x 10 -5 5 1.357603 4 x 10 -6 5 
4 4900 < 1.35 < 0 1 

Computing time was 128 seconds for ~o, Pl, ~f2, P3 and 10 minutes for the first 

iteration for P4 which showed that #4 (4900)< 1.35. For 2 o, 21 and 22, computing 
time was 36 seconds, while 23 took 314 seconds. The shorter time needed for the upper 

bounds is due to an extra symmetry present in fo over go- 
A least squares fit of 20,..., 21 and/~o,.--, ~3 to curves of the form A (logic)-a + B 

gives 

2 (to) - 1.29179 - .06990 (log K) -1 t 
/z (~c) - 1.29764 + .18897 (log ~)_ 1. a (57) 

The R.M.S. deviation in each case was less than 3 x 10 -3. The results (57) would 

suggest that the constant log(10) in (27) is somewhat pessimistic, but that the order 
of the error pQc) -2 (K) i s ,  in fact, approximately (logx) -1, as suggested by (27). 
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4. Concluding Remarks 

1. The methods developed here can be modified in many ways. For example, 
rather than using a parameter x, one could instead use a sequence of integers 

(kl, k2, ...) and define fm by 
t " / r  

fro(a, b, c; t ) ' - Z ~  fm-l (a, Cn, Cn+l)+ E Cnt[ ' (58) 
$3 •n = 1 n > k m  ) 

with a similar expression for g. If km>/2 m, for example, one can show that the solu- 
tions of fro = 1 do converge to S. The disadvantage of (58) over (23) is that an excessive 
amount  of computation is done with very small quantities of the order c - '  kin, which 
contribute mainly to round-off error. Also, one does not have the property that 
eventually fm--fm+l . . . .  . With (23), the smallest quantities which appear in the 
computation are, generally speaking, of the order x - t ,  which would seem to be an 

advantage. 
2. One can combine the method of this paper with that of [2] for obtaining lower 

bounds. That is, one considers, instead of gm which is a sum of terms of the form 
s -t,  a weighed average ~ w.s, and then uses Holder's inequality to determine con- 
ditions on the weights w so that ~ s-t~> 1. This is quite easy to formalize, using the 
sort of gm mentioned in the previous paragraph, but will not be pursued here. 

3. A possible way to proceed further would be to use the heuristic formulas (57) 
to predict values for 2(6 2) and , ( 6  2) for m~>4, and then to simply compute gm and 

f,, for these predicted values, without iterating. Since it is known that [gm[gml >I l og r  
and i fm/f,,.I ~>logx, the values of 2 and /t could then be corrected to insure that 

gm>~ 1 andfm~< 1. 
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