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On some functional equations of Gol~b-Schinzel type 

N I C O L E  B R I L L O U E T - B E L L U O T  

Dedicated to the memory of  Alexander M. Ostrowski on the occasion of  the lOOth 
anniversary of  his birth. 

Summary. Let E be a real Hausdorff  topological vector space. We consider the following binary law • 
on I~ x E: 

(c~, fl) , (a' ,  fl') = (2~:d, ~,kfl + ~lfl,) for (ce, fl), (cd, fl') • R × E 

where 2 is a nonnegative real number, k and l are integers. 
In order to find all subgroupoids of  (R x E, *) which depend faithfully on a set of  parameters, we 

have to solve the following functional equation: 

f ( f ( y ) k x  +f(x) ly)  = ) f ( x ) f ( y )  (x, y • E). (1) 

In this paper, all solutions f :  E ~  of (1) which are in the Baire class I and have the Darboux 
property are obtained. We obtain also all continuous solutions f :  E ~ ~ of (1). The subgroupoids of  
(E* x E, *) which depend faithfully and continuously on a set of  parameters are then determined in 
different cases. We also deduce from this that the only subsemigroup of L~ of  the form 
{(F(x2, x3, . . .  , Xn) , X2,X 3 . . . . .  X n )  ; ( x 2 , . . . ,  x , )  e ~"-~} ,  where the mapping F: ~ n - x  ..+ [~, has some 
regularity property, is {1} × R " -  i. 

We may notice that the Go[~b-Schinzel functional equation is a particular case of  equation (1) 
(k = 0, / = 1, 2 = 1). So we can say that (1) is of  Gotob-Schinzel type. More generally, when E is a real 
algebra, we shall say that a functional equation is of  Gol~tb Schinzel type if it is of  the form: 

f ( f ( y ) k x  + f(x)ty)  = F(x, y , f ( x ) , f ( y ) , f ( x y ) )  

where k and l are integers and F is a given function in five variables. In this category of functional 

equations, we study here the equation: 

f(f(y)~x +:(x)~y) =ftxy) (x, y e a;f: ~--, R). (4) 
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This paper extends the results obtained by N. Brillou~t and J. Dhombres in [3l and completes some 
results obtained by P. Urban in his Ph.D. thesis [11] (this work has not yet been published). 

Introduction 

Let E be a real vector space. The functional equation 

f ( f ( x )  . y + x) = f ( x ) f ( y )  (x, y • E) (GS) 

where f is a mapping from E into 4, is called the functional equation o f  Gotgb-  
Sehmzel.  It has been first considered by Acz61 in 1957, and then by Golob and 
Schinzel in 1959. The general solution of (GS) has been described (cf. [1]) and all 
the continuous solutions of (GS) have been explicitly obtained when E is a real 
topological vector space (el [3] and [6]). 

We consider now the binary law • defined on R × E by 

(a, fl) * (a', fl') = ( 2 ~ ' ,  a'*fl + a tfl,) for (c~, fl), (a', fl') • ~ x E 

where 2 is a nonnegative real number, k and l are integers. 
Let us recall the following definition (cf. [3]): 

DEFINITION 1. A subset H o f  ~ × E depends faithfully on a set F o f  parameters 

i f  there exists a mapping g f rom F onto H: g(u) = (~(u), fl(u)) f o r  u • F such that we 
have either 

o r  

(i) fl(F) = E and fl(u) = fl(u') implies ct(u) = ct(u') 

(ii) ~(F) = ~ and ct(u) = ~t(u') implies fl(u) = fl(u'). 

We look for the subgroupoids of (~  x E, , )  which depend faithfully on a set F 
of parameters. 

In the case (i), the relation f ( f l (u))  = ~(u) (u • F)  defines a function from E into 
R which satisfies the following functional equation: 

f ( f ( y ) k x  + f l x ) ' y )  = 2 f ( x ) f ( y )  (x, y • E). (1) 

In the case (ii), the relationf(0t(u)) = fl(u) (u • F)  defines a function from ~ into 
E which satisfies the following functional equation: 

f(,~xy) = y~f(x)  + x ' f ( y )  (x, y • 4). (2) 
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The functional equation of Goi~b-Schinzel (GS) is a particular case of equation 
(1) (k = 0, l = 1, 2 = 1). So we can say that (1) is of Goi~,b-Schinzel type. 

More generally, when E is a real algebra, we shall say that a functional equation 
is of Golftb-Schinzel type if it is of  the following form: 

f ( f ( y ) ~ x  + f(x)ty) = F(x, y , f ( x ) , f ( y ) , f ( xy ) ) ,  (3) 

where k and l are integers and F is a given function in five variables. 
In this category of functional equations, we shall also study here the following 

equation: 

f ( f (y )~x  +f(x)'y) =f(xy)  (x, y E ~ , f :  n --, ~). (4) 

We shall mainly look for the solutions of (1) and (4) which have some regularity 
property. 

Following A. M. Bruckner and J. G. Ceder in [4], we shall denote by ~ 1  the 
set of  all functions from ~ into g~ which are in the Baire class I and possess the 
Darboux property. 

We shall obtain here explicitly all solutions of (1) and (4) which belong to ~.~1. 
For this, we shall use the following property of the functions of  ~ ' ~ .  

LEMMA 2. Let f be a function in ~ 1 .  Let us define the function ~: R 2 ~ R  by: 

((x, y) = f ( y ) k x  + f(x)'y (x, y e ~). 

Then, for every fixed real numbers x and y, the functions ~(., y) and ~(x, .) have 
the Darboux property. 

Proof of  Lemma 2. If x is a nonzero real number, the graph of the function 
xf(.) k is connected since f is in ~ 1  (cf. [4]). Therefore, since the function 
(t, s) ~ f ( x ) q  + s is continuous, the function ~(x, .) has the Darboux property. 

We shall also use the following result: 

LEMMA 3. I f  g: R--+ R has the Darboux property and satisfies the following 
functional equation: 

g(g(x)) = ~g(x) + fix (x e R), (5) 

where ot and ~ are given real numbers and ~ ~ 0, then g is continuous. 
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Proof of  Lemma 3. The function g has the Darboux property and, because of 
the form of (5), g is one-to-one. Therefore, g is continuous (cf. [4]). 

Let us notice that in [ l l ]  P. Urban has studied the solutions of  (1) on a 
restricted domain in the case where ,~ is equal to 1, namely the solutions 
f :  [0, +oo[--+~ of (1) which are in Baire class I, have the Darboux property and 
satisfy f ( y ) k x  + f (x ) t y  >t 0 for every x and y in [0, + ~[ .  He has also investigated 
the so-called "trivial solutions" of (1) which are defined on a ring (X, + ,  .) and take 
on their values in {1, 0, - 1 } .  

Finally we mention that W. Benz studied in [2] the cardinality of  the set of  
discontinuous solutions f :  ~ ~ ~ of  (1). 

I. Investigation of functional equation (1) 

Let us first study some particular cases. 

I. Case 2 = 0 ,  k>~0 , /~>0  

In this case, (1) is j u s t f ( f ( y ) ~ x  +f (x ) ty )  = 0 ( x , y  ~ E). For k = 0 and l />0  it 
is obvious that the unique solution of  (1) is f - 0 .  

So we consider now the case where k and l are positive integers. Let us suppose 
that there exists an element x0 in E such that f (xo)  ¢ 0. By taking x = y = 0 in (1) 
we get f ( 0 ) =  0. Therefore Xo is different from 0. Let us suppose also that the 
function g: [~ ~ [~ defined by g(t) =f ( txo)  (t G ~) belongs to ~M~. By taking x = x0 
and y = txo (t ~ ~) in (1), we obtain 

f ( f ( txo)kXo +f(xo)~tXo) = 0 for every t in ~. 

Let us define ~O(t) = g(t) k + tf(xo) t (t ~ R). We have f(~(t)Xo) = 0 for every t in R. 
Since g is in ~ t ,  we may prove, as in Lemma 2, that ~O has the Darboux property. 

Therefore ~b(~) is an interval o f  ~ which contains 0 but does not contain 1. 
So ~b(l~) is included in ] - ~ ,  1[. Let us suppose that ~ is bounded below by b. 
The relation f ( txo)  k = ~k(t) - tf(xo) t (t e ~) shows that f ( ~ x o )  k = ~. This 
implies that k is an odd integer and so f (Rxo )  = R. Let c be the unique point 
of  ]0, 1[ which satisfies c k + c  t= 1. Then there exists a nonzero real number s 

such that f ( s x o ) = e .  By taking x = y  =SXo in (1), we obtain f ( s x o ) = 0 ,  which 
brings a contradiction. Therefore ~b(R) contains ] - ~ ,  0] and we have f ( t x o ) = 0  
for every nonpositive real number t. Since ~0 is bounded above by 1, we deduce first 
from ~k(t)= tf(x0) l (t ~< 0) that f (xo)  t is a positive real number and then that 
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g(t) k = ~(t) - tf(xo) t tends to - ~ when t goes to + ~ .  In view o f  the Darboux  
property o f  g, we deduce that g([0, + ~ [ ) k  contains ] - ~ , 0 ] .  By taking now 

x=tXo ,  t < 0 ,  and y = r x 0 ,  r > 0  in (1), we get f(g(r)ktXo)=O, and therefore 
f(sxo) = 0 for every positive real number  s. This contradicts f(xo) ~ O. 

PROPOSITION 4. In the class of  functions f: E ~ ~ which have the property that 
for every x in E the function defined by gx(t) =f ( tx )  (t ~ R) belongs to ~ i ,  the 
unique solution o f ( l )  in the ease Z = 0  is f - O .  

2. Case k = l = O ,  2 >O 

In this case, (1) is f ( x + y ) = 2 f ( x ) f ( y )  ( x , y ~ E ) .  So, 2f  is a solution o f  
I 

Cauchy 's  exponential equation. Therefore, all the solutions of  (1) are given by 

(i) f -  0 
(ii) f ( x )  = (1 /2)e  g(x~ (x • E) where g: E ~ ~ is an arbitrary additive function. 

3. Case k = O , l > O ,  2>O 

In this case, (1) i s f ( x  +f(x)ty)  = 2f(x) f(y)  (x, y • E). We suppose here that  E 
is a real topological vector space. 

The function g(x) = f ( x )  t (x ~ E) is a solution o f  

g(x + g(x)y) = 2~g(x)g(y) (x, y • E) (6) 

which is similar to (GS). 
By taking x = y = 0 in (6), we obtain either g(0) = 0 or  g(0) = 2 - l .  

When g(0) = 0, we get g =- 0 as we can see by taking y = 0 in (6). 
So we consider now the case where g(0) = 2- l .  By taking x = 0 in (6), we get 

g(y) = g (2 - ty )  (y  • E) and therefore 

g(y) = g ( 2  nly) (y • E) for every positive integer n. (7) 

When 2 is different from 1, (7) implies g -  g(0) = 2 -~ if we suppose f continu- 

ous. In this case, f is identically equal to 1/2. 
When 2 is equal to 1, (6) is just the functional equation o f  Gol~b-Schinze l  for 

which we know all the continuous solutions (cf. [3]). We deduce the solutions o f  

( I ) :  either 

f (x )  -- Sup( 1 + <x, x*>, O) ,Ii (x • E) 
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o r  

f(x) = (1 + (x,  x * ) )  ~/~ (x • E) when l is an odd integer, 

where x* is an element of  the topological dual of E. 
So we have the following result. 

PROPOSITION 5. All continuous solutions f:  E --* ~ of  

f ( x  + f (x) 'y)  = 2f (x) f (y)  (1) 

are given by 

(i) f -  0 
(ii) when ,t > O, 2 ~ 1: f - 1/2 

(iii) when ,t = 1: f ( x )  = Sup(1 + (x, x*) ,  0) l/t (x e E) 
(iv) when 2 = 1 and l is odd: 

f ( x )  = ( 1 + (x,  x* )) ~/l (x • E), 

where x* is an element of  the topological dual of  E. 

4. So, from now on, we consider only the case where 2 is a positive 
real number and k, l are positive integers 

In [3] all continuous solutions f :  N ~ N  of (1) have been obtained in the case 
k = l = 1. Let us recall the result: 

PROPOSITION 6. When k = l = 1, all continuous solutions f:  N--* N of  (1) are 

given by 

1 
/ f  2 ¢ 2 :  f - O  and f - ~  

1 
/ f  2 = 2 :  f - O ,  f - ~ ,  f ( x ) = l ~ x  f (x)=Sup( /~x ,O)  

where # is an arbitrary nonzero real number. 

Let us remark that, in the proof  of this result, the hypothesis of continuity for 
f is not necessary. It is enough to suppose that f belongs to ~ .  Namely, let f b e  
a not identically zero solution of  (1) in ~ .  There exists x 0 5 0  in ~ such that 
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y =f(Xo) # 0. By Lemma 2, the function g defined by g(y) = xo f (y )  + yy (y  e ~) 
has the Darboux property. Moreover, g satisfies the following functional equation: 

g(g(y)) = (2 + 1)?g(y) - 222y (y e R). (8) 

Therefore, g is continuous by Lemma 3 and f,  obtained from g by 

f ( y ) =  _1 (g(Y) -TY), 
x0 

is continuous• 
So, Proposition 6 gives all the solutions of (I) which are in ~ l .  

We shall obtain now all the solutions f :  ~ R of (1) which are in ~ ' ~ ,  when 
k and l are arbitrary positive integers. 

We give first some conditions under which a solution of (1) is necessarily 
constant. 

We begin with the following Lemma. 

LEMMA 7. I f  f: ~ ~ is a solution o f ( l )  in ~ which is bounded above on ~, 
then f is constant. 

Proof of Lemma Z For  an indirect proof, we suppose that f is a solution of (1) 
in ~ ' 1  bounded above on ~ and that f is non-constant. 

Let M be an upper bound o f f (~ ) .  By taking x = y in (1), we obtain 2f(x) 2 ~< M 
for every x in IR. Since f is not identically zero, M is a strictly positive real number. 

By taking x = y  in (1), we get successively: 

If(x) l .< x /~  
M~ 

If(x) 1 <~ ,--~ 

M½" 
If(x) [ ~ ,~=1 + 41 + . . . +  1 .  

for every x in R, 

for every x in IR, 

for every x in ~ and every positive integer n. 

As n goes to + 0% we obtain 

1 
[f(x) l ~< ~ for every x in •. (9) 
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Since f is bounded and non identically zero, we have, by the Darboux property of 
the function if(., t) (Lemma 2), ~(R, t ) =  I~ for each t ~ R such that f ( t ) ~ 0 .  
Therefore, for every real number x there exists a real number s such that ~(s, t) = x. 

In view of  the Darboux property o f f ,  we may choose x and t in ~ such that 
0 < If(t)l < If(x)l. By using (1) and (9), we obtain 

o < If ol < If x l = If<  s, t))l = 21f s) llf<t)l If<ol 

which brings a contradiction. 
Therefore, if f is bounded above on ~, f is constant. 

In [11] P. Urban has proved the following result: 

PROPOSITION 8. I f  f: ~--*~ is a solution o f ( l )  which belongs to ~ ,  then: 

(a) t f f ( 0 )  = 1/2, f is identically equal to 1/2 
(b) i f  f(O) = 0 and if  2 ~ 1/c, where c is the unique point of  ]0, 1[ salisfying 

c k + c t = 1, f is identically zero. 

Proof of Proposition 8. The following is a slight modification of the proof  of 
Theorem 2.1 in [11]. 

Let us suppose t h a t f i s  a solution of  (1) which belongs to ~ .  Then, f satisfies 
either f (0 )  = 1/2 or f ( 0 )  = 0. 

(a) In the ease where f (0 )  = 1/2, let us suppose that f is not identically equal 
to 1/2. So, there exists x0 in R such that f (xo) ~ 1/2 and we may write f(xo) = 
1/2 + e where ~ is a nonzero real number. By taking x = y = x 0 in (1), we get, with 

x, = xo(f(xo) k + f(xo) t), f ( x , )  = 2( 1/2 + e)2. 
By taking x = y = x ~  in (1), we get with X 2 = X l ( f ( x l ) k + f ( x l ) t ) :  

f (x2)=23(1/£ +e)4. This way we can build a sequence of real numbers x,  such 
that 

f ( x , )  = 22"- ~ + e = ~ (1 + 52) 2" for  every positive integer n. 

I f f (xo )  > 1/2, ~ is a positive real number and the sequence {f(x,)},~N tends to 
+ ~ .  By the Darboux property o f f ,  we deduce f(l~) =[1/2 ,  + ~[ .  

I f f (xo )  < 1/2, ~ is a negative real number and we can assume - 1 / 2  < e < 0. 
Therefore, the sequence {f(x,)} ,~N converges to 0. By the Darboux property of 

f ,  we deduce: f ( ~ )  = ] 0 ,  1/2]. 
We notice that f ( R )  does not contain 0 since, if there exists x0 in ~ such that 

f(xo) = 0, we get, by taking x = y = x0 in (1), f (0 )  = 0, which is not the case. 
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So, by Lemma 7, f ( R )  satisfies one o f  the two following conditions: 

(i) j"(R) = [I /L +~[  
(ii) f ( ~ )  = ]0, + ~ [ .  
In the case (i), there exists a nonzero real number  t such that 

f ( t )  > m a x ( ~ ,  (~)~/k). 

We have ~ ( - t ,  t) = t ( f ( - t )  t - - f ( t ) k ) .  

If f ( -  t) ~ <<.f(t) k then (( - t ,  t) and ((0, t) do not have the same sign. By Lemma 
2, ~(-, t) has the Darboux  property.  So there exists a nonzero real number  u such 
that  ~(u, t) = 0. On the other  hand, (1) implies 1/2 = f ( ( ( u ,  t)) > f ( u )  f> 1/2 which is 
impossible. Therefore,  we have f ( -  t) t > f ( t )  k. It is easy to verify that  ~ ( - t ,  t) and 
( ( - t ,  0) do not have the same sign and so, by the Darboux  proper ty  o f  ( ( - t ,  .) 
(Lemma 2), there exists a non zero real number  u such that ~ ( - t ,  u ) = 0 .  The 
functional equation ( l )  implies now 

1 / 
f ( ( ( -  t, u)) = ~ > ~ f ( -  t) > f ( t ) ~ ; ' >  ~,  

A A 

which is also impossible. 
Therefore,  the case (i) cannot  occur. 

Le t  us consider now the case (ii). Let c be the unique point  o f  ]0, 1[ satisfying 
c k + c t =  1. There exists a real number  x0 such that f (xo)  = c. By taking x = y  = x0 
in (1), we get 2 = 1/c. There also exists a real number  Yo such that f ( y o )  = 1. By 
taking first x = Yo, Y = 0 in (1), we g e t f ( y o  c~) = !. Next, by taking x = 0, y = Y0 in 
(1), we get f ( y o  c l )  = 1. Setting now x = y o c  k and y = y o d  in (1), we obtain 
f ( y o  ck + yo c t )  = 1 = ,~ = 1/c which brings a contradiction. Therefore,  the case (ii) 

cannot  occur. 
In conclusion, when f ( 0 ) =  1/2, f is identically equal to 1/2. 

(b) Le t  us consider now the case where f ( O )  = 0 and 2 # 1/c. I f  there exists a real 
number  x o such that f ( x o )  = c then, by taking x = y = xo in (1), we get as before 
2 = l/c, which is not  the case. Therefore,  considering the Darboux  proper ty  o f f ,  we 
have f ( x ) <  c for  every x in ~. By Lemma 7, f is constant  and is therefore 

identically zero. 
This ends the p roo f  o f  Proposit ion 8. 

We shall obtain now all the solutions f :  ~ --, ~ of  ( l )  which are in @~1. 
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For  this, we need the following result (cf  [5]). 

PROPOSITION 9. The complete set o f  continuous solutions g: ~ --, ~ o f  the func-  

tional equation: 

g(g(x))  = (Y + 1)g(x) - 7x (x • R) 

where 7 is a given nonzero real number, is given by 

(a) / f 7  > 0 , 7  ¢ 1: 

t TxX + (1 -- 7)a f o r x < a  
(i) g(x) = for  a <<. x <~ b 

[ . T x + ( 1  7)b f o r x > ~ b  

with - o o  <. a < b <~ + oo 

(ii) g(x) = 7x + 6 (x • fl~) with 6 • 

(b) i f ~  = 1: 

g(x) = x + 6 (x  • R) with 6 •  

(c) i f y  
(i) 

(ii) 

i f~ 
(i) 

(ii) 

(d) 

(lO) 

< O , y  v~ - 1 :  
g(x) = yx + 6 (x • R) with b • R 

g(x) = x (x  • •) 

= - 1 :  
g(x)  = x (x e R) 

r e ( x )  for  x • ] -- oo, c] 

g(x) = <(~p_ l(x) fo r  x E [c, + oo[, 

where c is an arbitrary real number and • is an arbitrary continuous and 

strictly decreasing function mapping ] - ~ ,  c] onto [c, + or[ 

We begin with the following Lemma.  

LEMMA 10. I f  the functional equation (1) has a non constant solution f:  R--* R in 

~ . ~ ,  then k = I. 
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Proof  o f  Lemma 10. Let f :  ~ be a non constant  solution o f ( l )  in ~ .  By 
Proposit ion 8, it satisfies f ( 0 )  = 0 and 2 = 1/c. We first prove that there exists a 

nonzero real number  Xo such that f ( xo)  = c. For  an indirect proof,  we suppose that 
we have f ( x )  ~ c for every x in ~. Then we have f ( x )  < c for every x in ~ since f 
has the Darboux  property and f (0 )  = 0. By Lemma 7, f should be constant,  which 
brings a contradiction. 

So, there exists a nonzero real number  x o such tha t f (xo)  = c. With y = Xo in (1), 
we get 

f ( x c  k + xof(x)  ~) =f (x ) .  (11) 

With x = ;Co in (1) and changing y into x, we get also 

f ( x c  t + Xo f ( x )  k) = f ( x ) .  (11') 

Let us define g(x) = xck + x o f ( x )  t (x ~ I~). Then, (11) implies 

g(g(x)) = (c k + 1)g(x) - ckx (x  ~ 1~). 

Let us now define h(x) = xc t + x o f ( x )  k (x ~ ~). Then, (11') implies 

(12) 

h(h(x)) = (c t + l)h(x) - clx (x ~ ~). (12') 

Since g(x) = ((x, Xo) and h(x) = ((x o, x), the functions g and h have the Darboux  
property. Moreover ,  by Lemma 3, they are continuous.  By using Proposi t ion 9 and 

the facts that  f i s  a nonconstant  solution of  (1) and c k +  c t =  1, we get: 

f rom (12), 

c l a  for x ~<a 
Xo 

f ( x ) / =  c z x  f o r a ~ x < ~ b  
Xo 

c t b  for x~>b  
Xo 

with - o o  ~<a < b  ~< + o o  
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and from (12'), 

c k ~  for x~<~ 
Xo 

f ( x )  k =  ck X foro~<x~<13 
Xo  

c kfl  for x ~>fl. 
XO 

with - o o  ~<~ < f l  ~< + o o  

Since f ( 0 ) =  0 and f ( x o ) =  c, 0 and x0 belong to both intervals [a, b] and [a, fl]. 
Therefore, also Xo/2 belongs to these intervals and we have 

( ~ )  ( 2 )  k 1 1 cj ek" z= and f f 

Thus 

+ . 

This implies k = 1. 

THEOREM 1 1. All the solutions f :  • ~ ~ o f  the functional equation (1) which are 

in @~1, are given by 
(a) i f  2 # 1/c or i f  k # I: 

( i ) f =  0 (ii) f = 1/;~ 
(b) i f 2  = 1/c and i f k  = t  is even: 

[1 "~ 1/I 
(i) f = 0 (ii) f = c = ,~, 
(iii) f ( x )  = (Sup(px, 0)) 1/t where # is an arbitrary real number 

(c) i f  2 = 1/c and i f  k = t is odd: 
( i ) f = O  (ii) f =  c = (~)lU 
(iii) f ( x ) = v x  1/l (iv) f ( x ) = S u p ( v x l / t , O )  where v is an arbitrary real 

number. 

Proo f  of  Theorem 11. The constant solutions of (1) are obviously f = O  and 
f =  1/2 sincef(O) is either 0 or l/;t. So we look now for the non constant solutions 
of (1) which are in ~ 1 .  If such a solution exists, we have, by Proposition 8 and 

Lemma 10, 2 = l/e, k = l and f(O) = O. 
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Let us define: W(x) = f ( x )  ~ (x ~ R). W is a noncons tant  solution o f  

W(xW(y)  + yU/(x)) = 2W(x) W(y) (13) 

and W is in ~ .  By the remark  following Proposi t ion 6, we deduce that  

either (i) W(x) =/zx 

or (ii) ~ (x )  = Sup(~x, 0), 

where/~ is a nonzero real number.  
I f  l is even, we have necessarily q '(x) = S u p ( # x ,  0) and therefore 

f ( x )  = ___ (Sup(/tx, 0))t/( By L e m m a  7, we see that  the image o f f  is never contained 
in ] - ~ ,  0]. Therefore,  we get only f ( x )  = (Sup(~tx, 0)) lit. It  is easy to verify that  

this is a solution of  (1). 
I f  l is odd, the solutions (i) and (ii) o f  (13) lead to f ( x ) = v x  l/: and 

f ( x )  = Sup(vx 1/~, 0) where v is an arbi t rary nonzero real number .  These also are 

solutions of  (1). 

We look now for the solutions f :  E ~ R  o f  (1) when E is a real vector  space. 
We begin with a generalization of  Proposi t ion 8. 

PROPOSITION 12. Let E be a real vector space. I f  f:  E ~ is a solution o f ( I )  

such that the functions fx defined by fx(t) = f ( t x )  (t ~ ~) belong to ~ l  for every x 
in E -  {0}, then: 

(a) t f f ( 0 )  = 1/2, f is identically equal to 1/2, 
(b) i f  f(O) = 0  and i f2  ~ lie or k ¢ l ,  then f is identically equal to O. 

Proof of  Proposition 12. It is easy to verify that, for every x in E -  {0}, the 
functions fx : ~ ~ ~ are solutions of  (1) in ~ .  

(a) I f  f ( 0 )  = 1/2, we have fx (0 )  = 1/2 for every x in E - {0}. By Proposi t ion 8, 
fx is identically equal to 1/2 for every x in E - {0}. Therefore  f is identically equal 

to 1/~,. 
(b) I f  f ( 0 ) = 0  and if 2 ~ 1/c or k 5 l ,  fx is identically zero for every x in 

E - {0} by Theorem 1 1. Therefore,  f is identically zero. 

REMARK. We may  notice that, if the functional equat ion (1) has a noncons tan t  
solution f :  E ~ ~ for which the functions fx belong to 5 ~  1 for  every x in E - {0}, 
then there exists x ~ E - {0} such that  fx is a noncons tan t  solution of  (1) in ~ .  

F rom L e m m a  10, we deduce k = l. 
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So, Lemma 10 can be formulated in a more general way as follows: 

Let  E be a real vector space. 
I f  the functional equation (1) has a nonconstant solution f :  E --* R such that the 

functions fx belong to @~,  for  every x in E - {0}, then k = l. 

We obtain now all continuous solutions f :  E ~  of (1) when E is a real 
Hausdorff  topological vector space. 

THEOREM 13. Let E be a real Hausdorff  topological vector space. All  the 
continuous solutions f :  E ~ R o f  functional equation (1) are given by 

(a) i f  ,~ vL 1/c or i f  k 51: 
(i) f = 0 (ii) f =  1/2 

(b) i f  2 = 1/c and i f  k = l is even: 
(i) f = 0 (ii) f = c = (½)l/~ 
(iii) f ( x )  = (Sup((x,  x* ) ,  0)) 1/t where x*  belongs to the topological dual o f  E. 

(c) i f 2  = 1/c and i f k  = l  is odd: 
(!~ Ill (i) f = 0 (ii) f = c = , : ,  

(iii) f ( x )  = ((x ,  x * ) )  lit (iv) f ( x )  = Sup(((x,  x * } )  l/t, O) 

where x* belongs to the topological dual o f  E. 

Proof  o f  Theorem 13. Let f :  E --* R be a continuous solution of (1). Then the 
functions fx defined by fx( t)  = f ( t x )  (t ~ ~) for every x in E - {0} are continuous 
solutions of (1). 

By Proposition 12, if f (0)  = 1/2, f i s  identically equal to 1/2 and, if f (0 )  = 0 and 
if 2 :~ 1/c or k ~ / ,  f is identically zero. 

So, we consider now the case where k = l, 2 = l /c and f (0 )  = 0. In this case, 
c = (½)~/t. The function W: E ~ R defined by tP(x) = f ( x )  ~ (x E E) is a non constant 

continuous solution of  (13). All continuous solutions W : E ~  of (13) 
are known and the non constant continuous solutions are given by (cf. [3] Theorem 

15) 

(i) W(x) = (x,  x * )  

(ii) W(x) = Sup((x,  x*) ,  0), 

where x* is a nonzero element of  the topological dual of  E. (We note here that, in 
a private communication, K. Baron observed that Theorem 15 of [3] stated for a 
real Hausdorff  locally convex topological vector space is true for a general real 

Hausdorff  topological vector space.) 
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As in Theorem 11, we deduce then the nonconstant continuous solutions of (1) 
given in (b) and (c). 

5. Application to finding subgroupoids 

(a) We consider first the groupoid R x E, where E is a real topological vector 
space and the binary operation is given by 

(~, fl) * (a', fi') = (A.~',  ~'kfl + a lfl,) (~, a' ~ ~; fl, fl' ¢ E)  (14) 

where 2 is a positive real number and k, I are positive integers. 
Let us recall the following definition (cf. [3]): 

DEFINITION 14. A subset H o f  ~ x E depends faithfully and continuously upon 

a set F o f  parameters i f F  is a topological space and i f  the mapping g: F - - * H  defined 

in Definition 1 satisfies the following property: 

- -  in the case (i), the mapping ~: F ~ g~ is continuous and fl admits locally a 

continuous lifting. 

- -  in the case (ii), the mapping fl: F ~ E is continuous and ~ admits locally a 

continuous lifting. 

When we look for the subgroupoids of  (• x E, *) which depend faithfully and 
continuously on a topological space F of parameters, we have to find: 

in the case (i), all the continuous functions f :  E ~  R defined by f ( f l ( u ) ) =  ~(u) 

(u e F) which satisfy the functional equation (1) 
in the case (ii), all the continuous functions f :  g~ ~ E  defined by f (~(u))  = fl(u) 

(u e F)  which satisfy the functional equation (2). 
The continuous solutions of  (I)  are given by Theorem 13 when E is a real 

Hausdorff topological vector space. 
For the functional equation (2), we have the following result which has been 

proved in the case k = 1 < / ,  A, = 1, by S. Midura (cf. [7], Theorem 1): 

PROPOSITION 15. Let  E be a real vector space. All solutions f :  R ~ E o f  the 

functional equation 

f(,~xy) = y k f ( x )  + x' f (y)  (x, y s ~) (2) 

are given by 

(a) f = 0 
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and 
(b) i f  k # l and 2 = l, by 

f ( x )  = ( x t - x k ) v  (x ~ •), where v is an arbitrary nonzero element o f  E. 

(c) i f  k = l and 2 = l, by 

{o'h(x) i f  x # O 
f ( x )  = i f  x = O, 

where h is a homomorphism f rom (R*, .) into (E, +).  
(d) i f  k = l and 2 = 2 l/l, by  

f ( x )  = xtv (x ~ •), where v is an arbitrary nonzero element o f  E. 

Proo f  o f  Proposition 15. Let f: R ~ E  be a not identically zero solution of (2). 
By inverting x and y in (2), we get 

f ( 2 x y )  = x k f ( y )  + i f ( x )  (x, y ~ R) (2') 

(2) and (2') imply 

( x t - - x k ) f ( y )  = ( y ' - -  y k ) f ( x )  ( x , y  e R). 

If k # 1, there exists a nonzero real number Yo such that Yo Yo. We deduce 

f ( x )  = (x t -- xk)v (x e R), (15) 

where v is a nonzero element o f  E. It is easy to check that the function given by (15) 
is a solution of  (2) if, and only if, 2 = 1. 

Let us suppose now k = I. By taking x = y = 1/2 in (2), we get 

f ( - ~ ) ( 1 - - ~ )  = 0, 

which implies either f(1/2) = 0 or 2 = 2 l/t. 
Let us suppose that f ( 1 / 2 )  = 0. By taking y = 1/2 in (2), we obtain 

f ( x ) ( 1 - ~ ) = 0  
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for every x in ItL Since f is not identically zero, this implies 2 = 1. Let us define 

f t x )  
g(x) = xt (16) 

for  every nonzero real number  x. We see that f is a solution of  (2) if, and only if, 
g is a homomorphism from (R*, -) into (E, +) ,  where 0~* is the set of  all nonzero 
real numbers. This gives the solution (c) of  (2). 

Finally, let us suppose 2 = 2'/(  Now f is a solution of  (2) if, and only if, the 
function g defined by (16) is a solution o f  

g(x) + g( y) = 2g( 21/'xy) (x, y ~ ~*). (17) 

Taking y = 1/2 '/~ in (17), we see that g is a constant function. Therefore,  we obtain 
f (x )  = x~v (x E ~) where v is a nonzero element of  E. 

REMARK. Notice that (b), (c), (d) o f  Proposit ion 15 give the expression o f f  -~ 
when f :  E-- ,  ~ is an arbitrary invertible solution of  the functional equat ion (1). 

F rom Proposit ion 12 and Proposit ion 15, we get easily the following results 
when E is a real topological vector space: 

COROLLARY 16. Let 2 be a positive real number different from 1 and 2 ~j~. We 
consider the groupoid (ff~* x E, *) where the binary law * is defined by (14). All the 
subgroupoids of  (R* x E, *) which depend faithfully and continuously on a set of 
parameters are the groupoid {(1/2, fl); ]~ ~ E} and the groupoid {(~, 0); a 6 R*}. 

The following Corollary can be compared with Corollary 1 from [7]. 

COROLLARY 17. Let us consider the groupoid (R* x E, *) where the binary law * 

is defined by 

(~,/~) • (a' , /~')  = ( ~ ' ,  ~'~/~ + ~/~') (~, ~' ~ ~*;/~,/~' ~ E).  

All the subgroupoids of (~* x E, *) which depend faithfully and continuously on a set 
of  parameters are the groupoids {(~, 0); ~ ~ ~*} and {(1, fl); fl ~ E} and, if  k # l, the 
groupoids G, = {(a, (a ~ -  ak)v); a E R*}, where v is an element of  E; i f  k = l, the 
groupoids G~. = {(a, a t tog(l~l)v);  ~ ~ R*}, where v is an element of  E. 
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(b) Let us apply now the result of Theorem 11 for determining some subsemi- 
groups of L~. In [11] P. Urban describes this example for n = 3 and 4 and asks the 
question for an arbitrary positive integer n. This example is based on the papers [8] 
and [10]. 

We recall first the definition of L~ (cf. [7]). We consider a family J of intervals 
of R containing 0 and a family @ of diffeomorphisms of class C ~°, each element of 

being defined on an element of ~ / and  mapping 0 to 0. Let n be a positive integer. 
We introduce on ~ the equivalence relation j~ defined by (f,  g) ~j"  (f,  g E ~)  if, 
and only if, all the derivatives of ( f  - g) of order k ~< n vanish at 0. On the set J ,  
of all the equivalence classes j"f, we define the binary law 

( f f f )  . (pg)  = j " ( f  o g). 

With this law, J,  R is a group which is called L 1. 
The coordinates of the point j " f  are the coefficients of the nth Taylor's 

expansion o f f .  Let j " f  and j"g be two elements of L~. Let us define 

fl~ =f°')(0), ct i = g~°(0) for i = 1, 2 , . . . ,  n, 

where f (~) is the ith derivative of f .  (/~,/~2 . . . .  ,/3,) is the set of coordinates ofj"f .  
Therefore, the set of coordinates of ( j " f )  • (j"g) = j " ( f  o g) is 

( ( fo  g)'(0), ( f  o g)"(0) . . . . .  ( f o  g)~m(0)). 

We shall look first for the subsemigroups of L~ of the form 
L = {(F(y, z), y, z); y, z e •} where F is a mapping from •2 into ~*. 

The following proof has been given by P. Urban in [11]. We can prove that L~ 
is just •* × ~2 endowed with the following binary law: 

(/~1' ~2' ~3)" (0~1' 0~2' ~3) = (]~1 ~1' fll~2 + ~20~12' 1~[~3 + 3~2~2~1 + f130(])" 

Then, L is a subsemigroup of L~ if, and only if, F satisfies the following 
functional equation: 

F(F(y l ,  zl)Y2 + ylF(y2,  -72)2, F( yl ,  zl)z2 + 3ylyzF(y2,  zz) + zl F(y2, z2) 3) 

= F(y l ,  z, )F(y2, z2). (18) 

Taking y~ =Y2 = 0 in (18), we obtain: 

F(O, F(O, zl)z2 + zlF(O, z2) 3) = F(O, zl)F(O, z2). 
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Let us define f(z) = F(0,  z) (z e ~). This  f is a solution of: 

f(f(z~)z2 + f(z2)3z, ) =/ (z ,  )f(z2) 

which is just the functional equat ion (1) with 2 = 1, k = 1, l = 3. 

I f  we suppose that  the function f :  ~ ~ R* is in ~ ,  Theorem 11 implies t h a t f  
is identically equal to 1. 

Let us take now Y2 = 0 in (18). We obtain: 

F(yI ,F(yl ,Zl )Z2+Zl)=F(Yl ,Zl )  ( y l , z l , z z e ~ ) .  (19) 

Since F(yl,  zl) belongs to R*, the mapping:  z2 ~ F ( y , ,  zl)z2 + z, is a bijection f rom 
onto ~.  Therefore,  (19) implies that  F(y~, z~) does not  depend on z~, and so, is 

equal to F(yl, 0). So, we have: 

F(yl , z l )=F(y~,O)  (y~ , z ,e~) .  

Let us consider now (18) with zl = z2 = 0 and let us define: 

g(y)  = F(y ,  0) (y  e I~). 

Using (20), we see that  g satisfies: 

g(g(Y, )Y2 + g(Y2)ZYl ) = g(Yl)g(Y2) 

(20) 

PROPOSITION 18. The only subsemigroup of L~ of the form 

z = {(F(y, z), y, z); y, z ~ R} 

where the mapping F: Rz~  R* has the property that the functions g(y) = F(y, O) 
(y e ~) and f(z) = F(0,  z) (z e R) are in ~ l ,  is {1} x R 2. 

P. U r b a n  has proved in [11] that the same result holds for L~ with a similar 
proof.  Namely ,  the only subsemigroup of  L4 ~ o f  the form: 

L = {(F(y,  z, u),y, z, u);y, z, u ~ R} 

which is just the functional equat ion (1) with 2 = 1, k = 1, l = 2. 
I f  we suppose that  g: ~ ~ •* is in ~ l ,  Theorem 11 implies that  g is identically 

equal to 1. We deduce f rom (20) that  F is identically equal to 1. 
So, we obtain the following result. 
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where the mapping  F: ~ 3  ...~ ~* has the proper ty  that  the functions F ( y ,  0, 0), 

F(0,  z, 0) and F(0,  0, u) are in @M,, is: {1} × R a. 

Now,  it is possible to prove, by using similar arguments,  that  this result holds 
for L~ with an arbitrary positive integer n. Namely,  we have the following: 

THEOREM 19. The only subsemigroup o f  L 1 o f  the f o r m  

L = {(F(x2, x3 . . . . .  x.),  x2, x3, • • • , x . ) ;  (xz, x3 . . . . .  x . )  e R " -  1} 

where the mapping F: R ~ -  ' ~ ~* has the property that the functions 
x~--*F(O . . . . .  O, xi, O . . . . .  O) belong to ~ l ,  is {1} × ~ . - 1  

Proo f  o f  Theorem 19. In  [9] S. Midura  has proved that L 1 is just the set 
~* × R " -  ' endowed with the following binary law: 

where 

P 
7p = 2 Z flJ p!~l~Z... CXpk: 

:= ,  k,+k2+ +k,=: / q ! ' ' ' k p ! ( l ! ) ~ ( 2 ! ) k 2 " ' ' ( P ! )  ~" 
k 1 + 2 k 2 +  ...+pkp=p 

kl~N 

for p = 1, 2 . . . . .  n. 

Using this character izat ion-of  L .  ~, we see that the set 

L = {(F(x 2, x3 . . . . .  x.),  x2, x3 . . . . .  x . ) ;  (x2, x3 . . . . .  x . )  ~ R " -  t}, 

where the mapping  F: •"- l - -* R* has the required property,  is a subsemigroup of  

L~ if, and only if, F satisfies the following functional equation: 

{ 
F~F(x2 ,  x3, • • • 

P p ! (r(y2 . . . . .  y . ) ) k , y ~ 2 . . ,  yk: 
+ E  E x, 

j=2 k, +k2+-. .+k.=j  k l ! ' " k p ! ( l ! ) K ' " ' ( P ! )  kp 
k 1 + 2k 2 + ... +pkp =p 

k ~  N 

= F ( x 2 ,  x3 . . . . .  x . ) F ( y 2 ,  Y3 . . . . .  Y . ) '  

, x .)y2 + x2F(y2,  Y3 . . . .  , Yn) 2 . . . . .  F(x2, X3 . . . . .  xn)yp 

/ 

(21) 
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By tak ing  x 2 = x3 . . . . .  x , _  i = Y2 = Y3 . . . . .  Y, - 1 = 0 in (21) and by setting 

f ( x )  = F(O, 13 . . . . .  x)  (x ~ ~), we get 

f ( f ( x n ) y .  + f ~ y . ) " x . )  = f ( x . ) f ( y . ) .  

Therefore,  f i s  a solut ion o f  funct ional  equat ion (1) with 2 = 1, l = 1, k = n. Since 

f i s  in ~M~ and does not  vanish, f i s  identical ly equal  to 1 by Theorem 11. So, we 

have F ( 0 , 0 , . . . , x . )  = 1 for every x .  in R, 

By taking now x2 . . . . .  x,,_ L = 0 in (21), we ob ta in  

F( y2 ,  Y3 . . . . .  y .  + x . ( F ( y z  . . . . .  y . ) ) " )  = F ( y z ,  Y3 . . . . .  Y~). (22) 

Since F does  not  vanish, the mapping  x~ ~ y , ,  + x, , (F(y2 . . . .  , y,,))" is a bi ject ion 

f rom J~ onto I~. We deduce from (22) that  F ( y 2 , y  3 . . . . .  Yn) does not  depend  

on y~ and is equal to F ( y 2 , y  3 . . . . .  Y ~ - t ,  0). Therefore,  F(xz ,  x 3 , . . . , x n ) =  

F(x2,  • • • , xn_ 1, 13) for every (x2, x3 . . . . .  x , )  in • " -  1 

With  the same arguments ,  it is easy to  prove  by induct ion  that  we have 

) 'F (0  . . . . .  0, x . _ k  . . . . .  x . )  = 1 
for  k = 0, 1 . . . .  , n - 3: I F ( x 2 ,  . , x . )  = F(Xz . . . . .  x n - k - ~ ,  0 . . . . .  O) 

for  every (x2 . . . . .  x . )  in R " -  1 
Consider ing  this assert ion for k = n - 3 ,  we get 

F(x2 . . . . .  x,,) = F(x2,  0 . . . . .  0) for  every (xz . . . . .  x . )  in R n -  i. (23) 

Sett ing g(x)  = F(x ,  0 . . . . .  0) (x s ~), we see that  (21) is equivalent  to the following: 

g(g(x2)y2 + x2g(y2)  2) = g(x2)g(y2).  

Therefore,  g is a solut ion o f  funct ional  equat ion (1) with 2 = 1, l = 1, k = 2. Since 

g is in ~M1 and does not  vanish, g is identical ly equal  to 1 by Theorem 11. By (23), 

we deduce  that  F is identical ly equal  to 1. 

II. Investigation of functional equation (4) 

F o r  this section, let us recall the fol lowing nota t ions  used for  the intervals  o f  R. 

A n  interval  o f  ~ is denoted  by 

(a, b) if  it is open,  half-open,  half-closed or  closed 
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[a, b) 

(a, b] 

Ea, bE 

if a belongs to the interval and b may or may not belong to it 

if b belongs to the interval and a may or may not belong to it 

if a belongs to the interval and b does not belong to it. 

In the case where k = 0, l >~ 0, it is easy to see by taking y = 0 in (4) that the 
only solutions of (4) are the constant functions. 

So, we suppose now that k and l are positive integers. By taking y = 0 in (4), we 
obtain: 

f(xf(O) k) = f ( 0 )  for every x in ~. 

So, if f (0)  4: 0, f is a constant function. 
Therefore, we have to look for the solutions f :  R-+ R of (4) which satisfy 

f (0 )  = 0. More precisely, we shall find now all solutions of (4) which belong to @~l 
and satisfy f(O) = O. 

Let us define 7 = f ( 1 )  k- By taking y = 1 in (4), we get 

f ( f ( x ) t+?x )  = f ( x )  for every x in N. (24) 

We define g(x) = f ( x )  ~ + ?x (x ~ R). (24) implies that g is a solution of func- 
tional equation (10). Since f belongs to @M1, g has the Darboux property by 
Lemma 2. If f ( 1 ) 4 :  0, g is continuous by Lemma 3 and is therefore given by 
Proposition 9. So, we shall consider the two cases: f (1 )  = 0 and f (1 )  4: 0. 

1. f (1 )  : 0 

In this case, (10) is the functional equation of indempotence: 

g(g(x)) = g(x) (x ~ •). (25) 

Considering the Darboux property of g, we obtain, i f f  is not identically zero, 

g(x) =f(x)~ = {x  if x ~(a,b) 
(a,b) i f x ¢ ( a , b )  

with - ~ < a < b ~ < + ~ .  (26) 

f (0 )  = 0 and f (1)  = 0 imply that (a, b) contains 0, but does not contain 1. So, we 
have a ~ 0 ~ < b  ~< 1. 
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Furthermore, by taking x = 1 in (4), we see that the function f (x )  k is also a 
solution of  (25) which possesses the Darboux property. So, f satisfies 

{~ i f x e ( ~ , f l )  w i t h - c c ~ < ~ < f l ~ < + o o  
f (x)k = (a, fl) if x ¢ (~,/?) (~ < 0 ~< ~ < 1). (27) 

It is easily seen that (a, b) n (~, ~) contains 0. 

Let us suppose that (a, b) n (a, fl) = {0}. We have then two possibilities: 

(i) ( a , b ) = [ 0 ,  b) and (~ , /~)=(a ,  0] 

(ii) (a, b) = (a, 0] and (~, ¢¢) = [0, fl). 

Let us consider the first case. By taking x in ]0, b[ and y in ]ct, 0[ in the 
functional equation (4), we obtain f ( 2xy )=f (xy ) .  We may choose x and y 
sufficiently close to 0 such that 2xy belongs to ]a, 0[. We get then, by using (27), 
2xy = xy, which is impossible. So, the first case cannot occur. 

We may prove similarly that the second case cannot occur either. 
Therefore, (a, b) n (~, ~) is an interval (t/, 6) which contains 0. For  every x in 

(r/, 6), we have, by (26) and (27), f ( x ) k = f ( x ) t =  X. This implies k = l. Conse- 
quently, we have 

~ = q = a  and f l = 6 = b .  

We have: 0 ~< b ~< 1. If  b is strictly positive we have, by taking 0 < x < b  and 
y = x/2 in (4), 

Since 

x 2 
O < - ~ < x 2 < x  <b, 

this implies, by (26), x2= x2/2, which is impossible. We conclude b = 0. 
We notice that, since f ( R )  t is contained in ] - ~ ,  0], l is necessarily an odd 

integer. 
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We shall first determine f on [0, 1]. I f  we take a < y < 0 and 0 < x ~< 1, we have 
a < x y  < 0  and the functional equat ion (4) implies f ( ( x  + f (x ) l ) y )  ~= xy. Let us 

define h(x) = x + f ( x )  t (x e R). So, we have 

f(yh(x))'= xy (28) 

for a < y  < 0  and  0 < x  ~< 1. 
Let  us suppose that  h vanishes at  Xo on ]0, 1]. Then (28) implies xoy = 0, which 

is impossible. Therefore,  h is a D a r b o u x  function which satisfies h(1) = 1 and which 
does not  vanish on ]0, 1]. This implies, with f ( x )  t <<. 0 (x e R), that  h(]0, 1]) is a 
subset o f ]0 ,  1]. So yh(x) belongs to ]a, 0[. (26) and (28) imply h(x) = x, o r f ( x )  = 0. 

Therefore,  f is identically zero on [0, 1]. 
Let  us consider now (4) with x in ]1, + oo[ and y = 1/x. We get 

,(1 ,(,,=0 

Since f ( x )  ~ belongs to (a, 0], we obtain,  by (26), 

1 
- f ( x )  t=O or f ( x ) = O .  
X 

So, f is identically zero on ]1, + oo[, and  therefore on [0, + oo[. 
Let us suppose that  a is a finite real number .  The  functional  equat ion (4) with 

x < a and  0 < y < a/x  gives, by (26), 

f ( y f ( x ) t ) l = x y .  (29) 

Therefore,  f ( x )  is different f rom zero for  every x < a. Let  us suppose that  y satisfies 

0 , Inf(a 
Equat ions  (26) and (29) i m p l y f ( x )  t =  x, which is impossible since x < a. We deduce 

a = - o o .  So, we obta in  

0 i f x  ~<0 
f ( x )  l = if x / >  0. 
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This implies: f ( x )  = Inf(x'/~, 0) (x e N) since l is an odd integer. It is easy to verify 
that  f is a solution of  (4). 

2. f ( 1 )  ~ 0  

In this case, g is given by Proposi t ion 9. 

(e) In the case where 7 is different f rom - 1, the solutions o f  (10) of  the fo rm 
g(x)  = yx  + 6 (x ~ ~)  correspond to constant  functions f Since f ( 0 )  = 0, this gives 
only the identically zero solution o f  (4). 

(/~) In the case where y is strictly negative, the solution of  (10) of  the fo rm 
g(x)  = x (x  ~ ~)  implies: 

f ( x )  t = (1 - 7)x (x e N). (30) 

Therefore,  l is necessarily an odd integer and, setting x = 1 in (30), we get 
7 = (1 - y )  kit, which is impossible. So, this solution of  (10) does not give a solution 
of  (4). 

(y) In the case where ~ is a positive real number  different f rom 1, the solution 
(a) (i) o f  (lO) implies 

! l - y ) a  f o r x ~ < a  

f ( x )  l = 1 - y)x for a ~ x ~< b 

l - 7 ) b  f o r x > ~ b  

with - o o  ~ a  < b  ~ +oo .  

With the hypothesis f ( 0 )  = 0, we deduce a ~< 0 ~< b. 
I f  we had b = 0, we would have f ( l )  = 0, which is not the case. Therefore,  b is 

strictly positive. I f  we had a = 0, we would have f (  - 1) = 0, which is not the case 
as we can see by taking x = y  = -  1 in (4). Therefore,  a is negative. F rom the 
inequality a < 0 < b, we deduce immediately that  l is an odd integer. So, the 

expression o f f  is the following: 

ti 
l - 7)~/ta l<r for x ~<a 

f ( x ) =  l - 7)l / tx  m for a <~ x <<, b 

l--y)~/lb ill for x ~>b 

with - o o ~ < a < 0 < b ~ <  +oo .  (31) 

Setting x = y in (4), we get 

f ( x ( f ( x )  k + f ( x ) '  )) = f (x2 ) .  (32) 
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Since the funct ion f ,  defined by (31), is cont inuous at  0, there exists a positive 
real number  r/, r / <  Inf(b, x/Cb), such that  x ( f ( x ) k + f ( x )  t)  belongs to the interval 
]a, b[ for every x in ]0, r/[. F r o m  (31) and (32), we obta in  for every x in ]0, ~/[ 

This implies l = k and 7 = ½- We deduce that  1 ~< b, since, if  had b < 1, we would 

have, by setting x = 1 in the expression o f f ( x )  t, 

Let us suppose that  b is a finite real number .  By taking x = ½ and 2b < y < 3b 

in (4) and using (31), we get 

This implies y = 3b, which gives a contradict ion.  Hence b = + oo. 
Let  us suppose now tha t  a is a finite real number .  By taking x = y < a in (4) and 

using (31), we get 

which is impossible. Hence a = - o o .  
We obta in  therefore f ( x )  = (1)1/l X 1/l (X ~-. ~ )  and it is easy to verify that  this is a 

solution o f  the functional  equat ion (4) in the case where k = ! is an odd integer. 

(6) We shall s tudy now the case where V = f ( 1 )  k =  - 1 .  This corresponds 

obviously to the case where k is an odd integer and f ( 1 )  = - 1. 
Let  us suppose that  l is an even integer. By taking x = y = 1 in (4), we obtain 

f ( 0 )  = f ( 1 ) ,  which is impossible.  So, l is an odd  integer in this case. 
Since the solution (d) (i) o f  (10) does not give any solution of  (4), we consider 

the solutions (d) (ii) o f  (10). The function: x ~ g(x)  - x  is cont inuous and strictly 

decreasing on •. Therefore  it vanishes at  mos t  at one place. F r o m  g(c) = c and 
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g(0) = 0, we deduce c = 0. So, by using also the fact that l is an odd integer, we see 
that the expression o f  the solutions of  (4) which correspond to the solutions (d) (ii) 
of  (10), is 

= f (O(x)  + x) l/; for x ~< 0 (33) 
f ( x )  [ ( ~ -  ~(x) + x) 1/; for x >i 0, 

where • is a continuous strictly decreasing function from ] - ~ ,  0] onto  [0, + ~ [ .  

We shall study the subset ~ of  ~ defined by ~ = {x e ~ : f ( x ) = - 1 } .  

contains 1, but  does not contain 0. Equat ion (24) impl ies f (g (x ) )  = f ( x )  for every x 
in ~. By taking x = 1, we see that ~ '  contains also - 2 .  We shall prove that there 
exists no interval containing either 1 or  - 2  and included in ~ .  Since g is a bijection 
which transforms any interval containing 1 into an interval containing - 2 ,  it 
suffices to show that ~ cannot  include an interval containing - 2 .  

Let us suppose for contradiction that there exists an interval [a, b] containing 
- 2  and included in ~ .  By taking x in ~ and y = g ( x )  = - x  - 1 in (4), we obtain 

f ( - x ( x + l ) )  = - 1  for every x in ~ .  (34) 

F r o m  (34), we may notice that ~ does not contain - 1  and we have necessarily 

a ~ < - 2 ~ < b < - l .  
Let us define h(x) = - x ( x  + 1) (x ~ ~). (34) impl ies f (h(x) )  = - 1 for every x in 

[a, b]. Since h is strictly increasing on ] - 0 % - ½ [ ,  we have h([a, b ] ) =  [h(a), h(b)], 

and, since h(x) < x for x e ] - ~ ,  - 2[ and h(x) > x for x ~ ] - 2, - 1 [, this interval 
includes [a, b]. Moreover,  in view of  (34), the interval [h(a), h(b)] is included in ~ .  

So, it does not  contain - 1 .  Therefore, we have 

h(a) <<. a <~ - 2  <~ b <<. h(b) < - 1 .  

Let h n denote the nth iterate o f  h: 

h"(x) = h (h" -  l(x)) (x ~ ~), 

where n is a positive integer. It  is easy to prove by induction that, for every positive 
integer n, the interval [h"(a), h n(b)] is included in ~ and 

h"(a) <~ a <~ - 2  <~ b <~ h"(b) < - 1. 

Let us suppose b > - 2 .  The sequence {hn(b)},~u is strictly increasing and 

bounded f rom above by - 1. Therefore it converges to a limit I which satisfies h(l) = l 
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and - 2  < 1 ~ < -  1. This is impossible. So, we have necessarily b = - 2  and the 
sequence {h"(b)),~N is constant and equal to - 2 .  Therefore we have a < - 2 .  
The sequence {hn(a)}n~N is strictly decreasing and converges to - ~ .  We deduce 
f(x) = - 1  for every x in ] - 0 % - 2 ] .  Since g ( ] - ~ , - 2 ] )  =[1 ,  + ~ [ ,  we have, 
by (24), f ( x ) = - t  for every x in [ 1 , + ~ [ .  By taking x = - 2  and y = 2  in 
the functional equation (4), we get f ( 2  - 2) = f ( 0 )  = 0 = f (  - 4) = - 1, which brings 
a contradiction. We deduce that ~ includes no interval containing either 
- 2 o r  1. 

Let us consider the functional equation (4) with x ¢-0 and y = 1/x. We obtain 

f x f  + f(x) t = - 1  for e v e r y x ~ 0 .  (35) 

Let us define 

(x ~ R*). 

By (33), f is continuous on R. Therefore, F is continuous on R* and, by (35), F 
takes its values in ~ .  Now, F(1) = - 2  implies that F(]0, + ~[ )  is an interval of  
containing - 2  and included in ~ .  From the previous result, we deduce 
F(]0, + oo[) = { - 2 } .  Therefore we have 

xf  + l f ( x ) l =  - 2  for every x in ]0, + ~ [ .  (36) 
X 

Let us now consider the functional equation (4) with x ~ 0 and y = - 2Ix. We 
obtain 

f ( x f ( - 2 ~  k - 2  f ( x ) t )  = - 1  for every x # 0. (37) 
x /  x 

Let us define 

for x in R*. 

In the same way as for F, we may prove that G(] - o% 0D = {1). Therefore we have 

xf - 2 f(x) t = 1 for every x in ] - ~ ,  0[. (38) 
X 
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Changing x into - 2 x ,  we obtain 

1)k 1 
- 2 x f  x + - f ( - 2 x ) ' = l  

X 
for every x in ]0, + ~[ .  (39) 

From (36) and (39), we deduce 

l l 
f ( x )  t = - ~ x - ~ f (  - 2x) for every x in ]0, +oe[. (40) 

Equations (40) and (33) imply 

3 1 
O - l ( x )  = - 2  x - ~ O(  - -  2x) for every x in ]0, + oo[. 

Since O ( - 2 x )  > 0, we have 

3 
O-'(x)  < - S x  

and so f (x ) t  < -½x for every x in ]0, + oo[. Therefore f c a n n o t  vanish on ]0, + oc[. 
The functional equation (4) with x = y < 0 shows that f c a n n o t  vanish on ] - 0 %  0[ 
either. Since f is continuous and satisfies f (  - 2) = - 1, f ( ]  - 0% 0D is an interval of  
R included in ] - oc, 0[. We deduce 

3 1 
- ~ x  < f ( x ) t  < - ~ x  for every x in 10, +oc[. (41) 

Let us define 

f ( x )  t 
((x) = for x in N*. 

X 

By (24), (40) and (41), ( is a continuous function which satisfies 

3 1 (42) 
- 5  < ~(x) < - 

3 
((x) = - ~ +  ( ( - 2 x )  for every x in ]0, +or[ .  (43) 

((x) (44) 
~(x(~(x)  --  1)) - ~ ( x ) ~ l  
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This implies 

( ( 2  ( 1 -  ( (x)))  = ~)(x_)_123 for every x in ]0, + ~[ .  (45) 

For  an arbitrary fixed real number x in ]0, + ~ [ ,  we consider the following 
sequence of  positive real numbers: 

x . _  ~ ( 1 - ~(x. _ ~)) for n i> 1. Xo=X and x n =  2 

By (45), we have 

1 ( ( x . _ l )  ( ( x . - 1 )  + 1 
((x.)  + 1 = - - ~ +  ( (x ._  ~) -- 1 - 2(((x._ ~) -- 1) 

Equation (42) implies now 

for n ~> 1. 

1 

and therefore 

! 
I¢(x.) + 11 < It(x) + II 

for n~> 1. 

From this, we deduce that the sequence { ( (x , )}~s  converges to - 1 .  
Let us study now the sequence { x n } , ~ .  We have 

X n - - I  

x,, = -~ pI'Jo ( 1 -- ((Xp)) for n ~> 1. 

By using (45), it is easy to prove by induction the following relation for 1 ~< k ~< n: 

k 

I-I ( 1 - ((x~ _ ,.)) = ~k( 1 - ((x~ _~)) + ilk, (46) 
i = 1  

where the real numbers ~k and flk satisfy 

3 
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We have therefore, for  k />  2. 

, 
a k = ~  2 k + l +  

1 

Writing (46) with k = n, we obtain: 

x .  = -~ 3 - 2((x) + (2z-~)~ (1 + ((x)) . 

Therefore,  the sequence {x. }.~u converges to (x/5)(3 -2if (x)) .  Using the conti- 
nuity of  ( on ]0, + m[, we obtain: 

( ( 5  (3 -- 2 ( (x) ) )  = - 1  for every x in ]0, + oo[ 

and then, by using (42), ((x) = - 1 for every x in ]0, + oo[. Equat ion (43) implies 
now ((x) = 1 for  every x in ] - ~ ,  0[. We deduce 

5 - x  l/t for x I>0 (47) 
f ( x )  = [(½)l/txl/, for x ~<0" 

By changing x into 1/x in (36), we see that: f ( x )  k = - x  for x t> 0 and, therefore, we 
have in this case k = l. 

It is now easy to show that (47) is a solution o f  (4). 
Therefore  we have the following result. 

THEOREM 20. All the solutions of the functional equation (4) in the class o f  
functions ~ 1  are: the constant functions and, in the case where k = 1 is an odd 
in teger, 

(i) f ( x )  = (l) l/tx'/t (x ~ R) 
(ii) f ( x )  = Inf(x 1/I, 0) (x e R) 

(iii) f ( x )  = Inf( - x  '/t, (½)'/txl/~ (x ~ ~). 
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