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Triangles II: Complex triangle coordinates 

JUNE A. LESTER 

Summary. This paper is the second in a series of three examining Euclidean triangle geometry via 
complex cross ratios. In the first paper of the series, we examined triangle shapes. In this paper, we 
coordinatize the Euclidean plane using cross ratios, and use these triangle coordinates to prove theorems 
about triangles. We develop a complex version of Ceva's theorem, and apply it to proofs of several new 
theorems. The remaining paper of this series will deal with complex triangle functions. 

1. Introduction 

This paper  is the second of  three examining triangle geometry in terms of  

complex cross ratios. The first paper o f  the series [4] developed the not ion o f  
triangle shapes. We now use cross ratios to coordinatize the complex plane relative 

to a given triangle. After some preliminaries, the coordinates are defined in §2, and 
some o f  their properties developed. In §3, we examine the coordinate map and its 

uses, and follow this in ~ by a discussion of  isogonal conjugates. The remaining 
sections (§5, 6) deal with complex versions o f  the theorems of  Ceva and Menelaus 

and their applications. The last paper of  this series [5] will discuss complex triangle 
functions. 

The main advantage o f  complex triangle coordinates over the more  usual 

trilinear/projective formulations is that, with complex triangles coordinates,  the 
calculations and proofs tend to be simpler and often provide more information.  

With one coordinate  (vs. a triple), checks for things like collinear or  concyclic 
points involve a single cross ratio [Theorem 3.1, (c), (d)] instead o f  a 3 × 3 

determinant,  and furthermore,  as an automatic  par t  o f  the same calculation, give 

the ratio o f  distances between the collinear points or the order o f  the concyclic 
points. Simultaneous calculation o f  the ratio of  lengths o f  two vectors and the angle 
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b e t w e e n  them [Theorem 3.1, (a)] becomes trivial, automatically keeping track of the 
correct angle orientation. Proofs involving extensive knowledge of trigonometric 
identities (by either human or computer; see [2]) become unnecessary: trigonometry 
becomes submerged in complex algebra, just as the trigonometric identities for 
cos(n0) and sin(n0) are submerged in the algebraic de Moivre's formula (ei°) ~ = e i~°. 

We outline some notational and mathematical preliminaries; further details may 
be found in [4]. Identify the Euclidean plane with the complex numbers C, and set 
C~:=Cw{oo}. The cycle notation and its properties are given by 

1 z - 1  1 
Z'.-- Z ~' -- -- I ----, Z "  = Z, Z Z ' E  " = -- 1 

l--z Z Z 

for any z ~ C~. The numbers co ,= e 7ti/3 = 1( 1 + x/~i) and e5 are the only solutions of 
Z = Z' = Z". 

The cross ratio of any a, b, e, d in C~ with at most two alike is the number 

(a  - c)(b  - d) 
[a, b; c, d] . -  

(a  --  d)(b - c) 

("cancel" any terms involving ~) .  Cross ratios have the symmetry properties 

[a, b; e, d] -~ = [a, b; d, e] = [b, a; e, d], [a,  b; e, d]' = [a,  e; d, b]. 

We may prove cross ratios equal with the following theorem from [4]. 

EQUAL CROSS RATIO THEOREM (ECRT). Let rl,  sl, tl, u 1 and r2, s2, t2, u2 be 
arbitrary quadruples of points in C~. 

(a) Assume that both quotients 

[rl ,  Sl; t l ,  Ul]' [r l ,  Sl; t l ,  Ul]" 
and 

[r2, s2; t2, u2]' [r2, s2; t2, u2]" 

are real, but that neither cross ratio is real. Then [r~, s~; t~, Ul] = [r2, s2; t2, u2]. 
(b) Assume that both products 

[r~, sl, tl, ul]'[r2, s2; t2, uz]' and [rl, sl; t l ,  ul]"[r2,s2; t2, u2]" 

are real, but that neither cross ratio is real. Then [r~, s~; t~, ut] = [r2, sz; h ,  u2]. 

Linear fractional transformations or conjugate linear fractional transformations 
of the form 
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az + b a2 + b 
z ~ - -  or z - - * - -  ( f o r a d - b c ¢ O ) ,  

cz + d c f  + d 

respectively preserve or conjugate cross ratios. They  are similarities or  anti-similar- 
ities respectively whenever they fix c~, i.e. whenever c = O. 

The following geometric  propert ies  of  cross rat ios may  be found in [10] or  [11]. 

• For  distinct p, q and r in C, 

& qpr = arg[ ~ ,  p; q, r]. 

• Points p, q and r in C are collinear whenever  [ ~ ,  p; q, r] is real. In this case, 
p divides segment qr in the signed ratio - [ ~ ,  p; q, r], so p is between q and r 
whenever [ ~ ,  p, q, r] is negative, and is the mid-point  o f  qr whenever  
[ ~ ,  p; q,  r] = - 1 .  

• Points p, q, r and s are concyclic or collinear whenever [p, q; r, s] is real. In this 
case, the pairs p, q and r, s separate each other  whenever [p, q; r, s] is negative, 
and p, q are harmonic  conjugates with respect to r, s whenever  
[p ,  q; r ,  s]  = - 1. 

• For  distinct points  p, q and r, the mapp ing  z--r w given by 

[w, p; q, r] = [z, p; q, r] 

is the reflection in the line containing the points  if they are collinear, or the 
inversion in the circle through them otherwise. 

The shape of  any t r i ang le  Aabc  is the number  A , b ¢ : = [ ~ ,  a; b, c]. Equilateral  
triangles have shape co := e ~i/3 or  o3. Two triangles are similar whenever they have 
the same shape and anti-similar whenever  they have conjugate shapes. The  angles 
o f  a triangle and its shape thus determine each other: for A := & bac, B , =  zk cba and 
C := ~ acb, we have [4] 

1 - e -era 
Aab~ 1 -- e 2ic -- (e2m)'(e2iC)' (angle-shape formula) 

together  with 

eiA Aabc 

IA,bcl' 
and 

e iB= A'~b~ eiC= Aab c 
/ , i r e  IAa ol IA, cl 

e 2 i A  A abc 

A a ~  
e2iB A'a~ e2iC= A~be 

r it 
/~ abc /~  abc 
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2. T r i a n g l e  c o o r d i n a t e s  

Complex  triangle coordinates  are made  possible by the following theorem.  

COORDINATE THEOREM. For distinct a, b and c in Coo, the mapping 
z --* [z, a; b, e] is linear fractional, and any linear fractional transformation has this 
form. The mapping is a similarity i f  and only if  e = co. 

Proof. Writ ten out  in full, the mapp ing  is 

( a  - -  c ) z  - -  ( a  - -  c )b  
Z---+ 

( a  - b ) z  - -  ( a  - -  b ) c '  

so  s ince  ( a  - -  c ) { - - ( a  - b)c} -- { - ( a  - c)b}(a - b) = (a  - b)(a  - c)(b - c) ¢ 0, the 
m app i ng  is linear fractional.  Conversely,  any linear fractional t r ans fo rmat ion  

T: Coo ~ C~ given by 

Tz - pz + q ps - qr # 0 
r z + s '  

has an inverse 

[ ' . .  
T z = [ T z ,  1 ; O , ~ ] = [ z , T - 1 1 ; T - l O ; T - I o o ] =  z, r - p '  p '  " 

The  condi t ion ~ - q r # 0  implies that  a : = - ( s - q ) / ( r - p ) ,  b . - = - q / p  and 
c.-= - s / r  are all distinct. 

The  m a p p i n g  z --* [z, a; b, c] is a similarity if and only if it fixes oo, i.e. if  and only 

if [oo, a; h, e] = oo. This holds  if and  only if e = oo. [] 

To  define complex triangle coordinates ,  first fix an arbi t rary,  non-degenerate  
base triangle A abe and  denote  its shape by A .'= A , ~ .  Now,  since the mapp ing  
z--*[z, a; b, e] is l inear fractional,  it is bijective on  Coo, and so m a y  be used to 

coordinat ize  Co~. 

DEFINITION. For  any point  z e Coo, the triangle coordinate of  z with respect to 

the base triangle A abe is the number  

z ~  :=  [z,  a; b, e] ~ C ~ .  
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Direct  calculation shows immediately  that  

a ~ = l ,  b A = 0 ,  c ~ = ~  and ~ = A .  

We shall use the subscripts A '  and A"  to refer to the cycled triangles Abca  and Aeab  
respectively, so 

ZA,"= [Z, b; e, a] = (zA) '  = 
1 z z - - I  

and z ~ . , =  [ z ,  c; a ,  b] = ( z A ) "  - 
1 - -  ZA ZA 

We then have that  

ZAZ~,ZA,, : -- 1. 

We now look at some elementary geomet ry  in triangle coordinates.  In  the 
following, we will always denote  the angles of  the base triangle A abe by A .'= 22 bae, 
B ..= 22eba and C := 22acb (so the angle shape formula  for Aabc  is A = (e2m)"(e2'C)'). 
The first thing to notice is that  triangle coordinates  are the product  o f  two shapes: for  
2 := A,¢b, we have zA = [ ~ ,  z; e, b][ ~ ,  a, b; e] = 2 A. This relation, in conjunct ion 
with the angle-shape formula,  can be used to find the coordinates o f  various special 
triangle points.  (See [3] for  a catalogue o f  special points.) 

EXAMPLE 2.1: INCENTRES AND EXCENTRES. The angle bisectors o f  A abe meet at  
1 1 its incentre i, so &bei = - ~ C  and 22ibe = --~B, whence ( f rom the angle-shape 

formula)  ~. := Aic b = (e 2i(- 1/2c)),,(e2i(-Ij2B))r = (e -ic)"(e -m),. Tl~en 

1 - -  e i c  1 + e - i B  

i ~  - 1 - - e  - m  A - -  1 + e i~" 

Similarly, the excentre of  Aabc  opposi te  vertex a has coordinate  

1 + e *c 1 - -  e - m  
- -  A - -  - -  

1 + e - m  1 - e ~c " 
[] 

EXAMPLE 2.2: ORTHOCENTRES. The altitudes of  Aabe  meet  at its or thocentre  h, 
so the quant i ty  (a - e) / (b - h) = [ ~ ,  b; h, e ] / [ ~ ,  e; a, h] is imaginary.  Tak ing  argu- 
ments,  we get &hbc = C __+ ½n; similarly, &bch = B _ ½n. F r o m  the angle-shape 
formula,  then, we have 2.-= / ~ h c b = ( e 2 i ( B + - l / 2 n ) ) " ( e 2 i ( C + I / 2 7 0 ) ' = ( - - e Z i B ) " ( - - e 2 i C )  ' .  

Then 

1 + e - 2 m  1 - -  e - 4 m  

ha - 1 + e 2 i ~  /~  1 - -  e 4 iC " [ ]  
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The triangle A zeh may  be degenerate, i.e. 2 .'= A zCb may  be real. 

THEOREM 2.1. Point z is on side be, ca or ab of  Aabe i f  and only i f  z A / A ,  
z~,] A ' or zA,,/ A " respectively is real. In this case, - [ 0 %  z; e, h] gives the signed ratio 

into which z divides be. The mid-points o f  sides bc, ca and ab have coordinates - A ,  
2 -- A and A ( 2 A  - -  1 )  - 1  respectively. 

Proof. We have zA/A = 2 = [oo, z; c, b], so z A / A  is real if and only i f z  is on the 
side be. Similar arguments  apply to the other  two sides. I f  2 := [ or, z; e, h] is real, 

then - 2  = ( b - z ) ] ( z - c )  gives the signed ratio into which z divides he. The 
mid-point  o f  be is the point  p satisfying [oo, p; e, b] = - 1, so PA = ( - l) A = - A.  

The mid-points  o f  the other sides can be found by "cycling";  for example, the 
mid-point  o f  ea is the point  q satisfying [oe, q; a, e] = - 1 ,  so qA, = -  A' ,  f rom 

which qA = (qA,)" = ( - A ' ) "  = 2 - A.  Similarly, the mid-point  o f  ab has coordi-  
nate A ( 2 A  - 1) -1 . [] 

Other  conditions on 2 .'= [ oo, z; e, b] give other  loci relative to A abe; for example 

z is on the perpendicular bisector o f  be whenever 121 = 1, etc. 
The next theorem gives triangle coordinate  o f  the foot  o f  a perpendicular to side 

he. 

THEOREM 2.2. For any point z,  the foot  o f  the perpendicular from z to side bc of  

Aabe  has coordinate 

fA = --[212 Re{2"} Re{2-(l -- 2)} 
Re{1/2'~ A - Re{1 - 2 }  A. 

where 2 := A~b = z A / A .  

Proof  For  z on be, 2 is real and the formula  gives fA = ,~ A = z~ as required. 
For  f = e, 2 '  = Aeb Z is imaginary,  and the formula  gives fA = ~ = cA. For  z not  on 
be and f #  e, 2 is not  real, and the quani ty ( f - e ) / ( f - z )  is imaginary. Solve the 

equat ion zA = 2 A  for z: z = ( 2 -  1 ) - 1 { 2 e - h } .  For  some real #, fA = / a A :  solve 

this equation for  f: f =  (/~ - 1)-1{~c - b } .  Then ( f -  e ) / ( f -  z) = (1 - 2)/(~ - 2), so 

1 - - 2  1 --)~ 

- 2  ~, _ £  

Solve for # and set fA = t~ A.  [] 

(The feet o f  the perpendiculars to the other sides may  be found by cycling, as 

in the previous theorem.) 
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EXAMPLE 2.3. The foot of  the altitude from a to side bc has coordinate 

1 - -  e 2 i C  1 -- e - - 2 i B  1 + e-2is 

fz~-- l  + e  2ic" 1- -e-2 iB A -  l + e  2ic" 

(Put 2 = aA/A = A -~ in Theorem 2.3; use the angle-shape formula for A.) [] 

EXAMPLE 2.4. The point of tangency of the incircle and side be has coordinate 

1 - e  'c l + e  -'B = ( l  + e - m ~  2 
tA l + e  'c 1 - e  - i ~ A  \ - I - + F ] "  

(The proof  is direct calculation from Example 2.1 and Theorem 2.2; t is the foot of  
the perpendicular from the incentre i to side be.) Similarly, the point of tangency of 
the excircle opposite vertex a and side be has coordinate 

1 W e  ic 1 - e  - is  (1--e-iB~ 2 

l _ eiC " 1 + e_i ~ /5 = ~.-1-~ eiC /i . 
[] 

Triangle coordinates give a simple criterion for points inverse in the circumcircle 
of  the base triangle. 

THEOREM 2.3. Two points are inverses in the circumcircle o f  the base tr&ngle 

Aabe whenever their triangle coordinates are conjugate. A point lies on the circumcir- 

cIe whenever its coordinate is real. The circumcentre o o f  Aabe has coordinate 

OA:A. 

Proof. Since inversion in the circumcircle fixes the vertices and conjugates cross 
ratios, points z and w are inverses whenever [w, a; b, e ] = [z, a; b, c], i.e. whenever 
wz = zz.  A point lies on the circumcircle whenever it is self-inverse, i.e. whenever 
its coordinate is self-conjugate, or real. The circumcentre is the inverse of  ~ ,  so 
oA = o o A =  ~ .  [] 

3. Applications of the coordinate map 

The coordinate map is the transformation z ~ z A .  As well as providing a 
coordinatization of C~, this transformation serves another very useful function: 
since it is linear fractional, the coordinate map preserves cross ratios, i.e. for all a, 
b, c and d in Coo, with at most two equal, 
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[a,b;e,  d] =[aA,bA; cA,dA]. 

This means that any geometric property expressed in terms of cross ratios of  points 
can be expressed in terms of cross ratios of  their triangle coordinates. We illustrate 
with a simple example. 

EXAMPLE 3.1. THE NINE POINT CENTRE. The nine point circle (or Feuerbach 
circle) of  a triangle contains the mid-points of  its sides, the feet of  its altitudes and 
the mid-points of  the segments between the vertices and the orthocentre. We show 
that the centre n of  the nine-point circle of  Aabe has coordinate 

1 + e -2 iB  - -  e 2 i c  
A .  n z  - 1 - -  e -2 iB  _~_ e2iC 

Let, p, q and r be the mid-points of  sides be, ea and ab respectively. Since n is 
the circumcentre of  Ariel, [n, r; p, q] = [co, r; p, q]. Since Arpq is similar to Aeba, 
[ ~ , r ; p , q ]  = A ~ =  A", so 

[n, r; p, q] [ ~ ,  r; p, q] A" [n, ~ ;  p, q] - - - e-2ic. 
[ ~ ,  r; p, q] [ ~ ,  r; p, q] A" 

Now apply the coordinate map: [n~, ~ s ;  Ps ,  q~] = e - 2 i c .  We have that ~A = A 
and ( f rom Theorem 2.1) p~ = - A, q~ = 2 - A. Set n~ = 2 A for some 2 e C; then 
we get [2 A, A; -- A, 2 -- A] = e - 2 i c .  Solve for 4: 

= 
2 - e 2 ic  - A ( 1 -  e 2ic)  l + e -  Zia - e 2 ic  

A( I -- e 2ec) + e 2 ic  - -  1 - e - 2~B + e2 iC 

(use the angle-shape formula A = ( e 2 B i ) " ( e Z i C ) ' ) ;  then set nA = 2 A. [] 

To do Euclidean geometry in triangle coordinates, it is in principle only 
necessary that we be able to calculate the angle between any two vectors and the 
ratio of  their lengths. This is done in part  (a) of  the following theorem; the 
remaining parts translate other geometric relations into triangle coordinate form. 

THEOREM 3.1. (a) F o r  p o i n t s  p # q a n d  r # s in  C, s e t  

[A,  sA;p~,  r~] 
~..___ 

[A ,  p~; s~, q~] '  
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then gives the ratzo o f  the length o f  rs to that o f  pq, and arg ~ gives the 
angle from p~q to r-s. In particular, the vectors are parallel when ~ is real and 
positive, antiparallel when ~ is real and negative, and perpendicular when ~1 is 
imaginary. 

(b) For distinct p, q and r in C, 

&qpr = arg[A,pA;qA,r~]  

(c) Points p, q and r in C are collinear whenever [A,  p•; q~, rA] is real. In this 
case, p divides segment qr the signed ratio being - [  A, PA; q~, rA], so p is between q 

and r whenever [A,pA;qA,rA] is negative, and is the mid-point o f  qr whenever 
[A, p~ ;q~ , r~]  = - 1 .  

( d) Points p, q, r and s are concyclic or collinear whenever [pz, q~; r~, sA] is real. 
In this case, the pairs p, q and r, s separate each other whenever [PA, qA; rA, s~] is 

negative, and p, q are harmonic conjugates with respect to r, s whenever 

[ p ~ , q ~ ;  r A, s~]  = - 1 .  

(e) For distinct points p, q and r, the mapping z ~ w given by 

[wA,pA;qA,rA] = [Z~, p~; qA,rA] 

is the reflection in the line containing the points i f  they are collinear, or the inversion 
in the circle through them otherwise. 

Proof. With the exception of (a), these statements are just applications of the 
coordinate map to the corresponding statements in §1. Statement (a) is the 
application of the coordinate map to the quantity 

[ ~ ,  s ;p ,r ]  s - r  

[or, p; s, q] q - - q '  

so the conclusions of (a) follow directly from the geometric properties of complex 
numbers. [] 

We look at some applications of this theorem. 

EXAMPLE 3.2. The Euler line of a non-equilateral triangle is the line through its 
circumcentre and its centroid, and contains several other interesting special points 
of the triangle (e.g. the orthocentre and the nine point centre). We identify those 
triangles for which the Euler line is parallel to a side. In A abe, suppose that this 
line is parallel to side ab. Since the centroid trisects the median to side ab, the Euler 
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1 (Theorem 2.1). From Theorem 3.1, line trisects side be at a point s with s~ = - 5  A 
(a) since oA = A, aA = 1 and b~ = 0, the quotient 

[ A , o ~ ;  bA,SA] ( 2 A  + A ) ( A  -- 1) 

[A,  bA;OA, aA] 3 ( A -  A) 

must be real. Its denominator is imaginary, so its numerator  must be as well; set the 
real part  of  the numerator  equal to 0 and simplify: 

(A+£)2--3(A+A)+2AA = 0 .  (1) 

~ ~-z 

a=- I  b = l  

To see which triangles this determines, coordinatize with a = -  1, b = 1 and 
c = z = x + i y .  Then we have A = ½[(x + 1) 2 + i y ] ,  and (1) becomes 

y 2  
x2 + ( -- l ,  

i.e. we have an ellipse. The side ab lies along its minor axis, and vertex c can be any 
other point on the ellipse with the exception of +,~f3i (for which no Euler line 
exists). Note that A abe must be acute angled. [] 

EXAMPLE 3.3: TRISECTING ANGLES. Beginning geometry students often believe 
they can trisect the angle at the vertex of a triangle by trisecting the opposite side 
and joining the trisection point to the vertex. This belief is of  course a fallacy in 
general, but does this construction e v e r  work? We identify those triangles for which 

it does. 
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Let  p be a po in t  on side be o f  A abe such that  ~ p a c  = ½ ~ b a e ,  and  such tha t  

p trisects side be; more  specifically, the po in t  with PA = - - 2 A  ( T h e o r e m  2.1). 

N o w  & b a c = a r g  A and f rom Theorem 3.1, (b) ~ _ p a e = a r g [ A ,  1 ; - - 2 A ,  oo] = 

a r g { 3 A / ( l + 2 A ) } ,  so the condi t ion  3 z k p a e = A b a c  implies that  a r g A =  

3 a r g { 3 A / ( 1  + 2 A ) }  = a r g { A / ( 1  + 2 A ) }  3. Two numbers  have the same a rgument  

whenever  their  quot ient  is real and  posit ive,  so we must  have ~ . -=  A2/ ( I  + 2 A )  3 

real  and positive.  

Hinds ight  shows us the most  app rop r i a t e  coord ina t iza t ion :  a = 1. b = 3 and 

c = z  for some non real z. Then A = [ o % l ; 3 ,  z ] = ½ ( z - 1 ) ,  so ~ = ( z - 1 ) Z / 4 z  3, 
and  we mus t  have d , = 4 1 z [ 6 ~  = Y~(z - 1) 2 real and  posit ive.  See d = ~ ,  expand,  

d ivide  off a factor  z - ~ # 0 f rom each pa i r  of  like powered  terms,  and  rear range  to 

get 

(z~) 2 _ 2(zz-)(z + ~) - (z + ~)z _ (z~) = 0. 

Set z = r e ~° (so z5 = r 2 and z + ~ = 2r cos 0), simplify, divide by r 2 and rear range  

to get (r - 2 cos 0) 2 = 1. The two equat ions  r = _+ 1 + 2 cos 0 represent  the same 

curve, since (r, 0) satisfies one whenever  the equivalent  po in t  ( - r ,  0 + n) satisfies 

the other, so we have the l imagon r = 1 + 2 cos 0. 

W e  have thus far  identif ied the points  c = z with d real; we mus t  still de termine  

which of  them make  ~ '  positive. We have z = r e  ~° for r = l - e  i ° - e  ;0, so 

z - -  1 = e 2i0 AT e iO = 2 e 3i°/z cos(½0). Then d = 4 cosZ(½0)/r 3, so ~ > 0 i f  and  only  if  

r > 0. The a l lowable  e 's  thus lie on the outer  loop  of  the lima~on. [] 

F o r  our  last example ,  we app ly  the cross ra t io  preserving p rope r ty  o f  the 

coord ina te  m a p  to the p r o o f  of  a theorem.  
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EXAMPLE 3.4: AN ANALYTIC PROOF OF FEUERBACH'S THEOREM. Feuerbach ' s  
theorem states that  the nine-point  circle o f  a triangle is tangent  to its incircle and 
its three excircles. We prove  the incircle case only; the excircle case is similar. 

In  Aabc,  let p be the midpoin t  o f  side bc and t the point  o f  tangency of  the 
incircle and side bc. I f  i and  n are the incentre and  nine point  centre, then the 
incircle and nine-point  circle have radii r := [ t -  i] and  R := I P -  n[, and the distance 
between their centres is d:= I n -  i I. It  now suffices to prove  that  

l[ 0% p; c, nil + l[ 0% p; c, i] - [oo, p; c, t] I : ]l oo, p; c, i] - [0% p; c, nil (2) 

since this reduces to R + r = d. 
We calculate the three cross rat ios in terms o f  f l ,=e  m and 7:=e  ic. Note  tha t  

each has the fo rm [oo, p; c, z] for some z. Apply  the coordinate  m a p  (recall f rom 
The o rem 2.1 that  P A = - - A ) ;  then the cross rat ios have the f e r m  
[ A,  -- A; 0% zA ] = [ 1, - 1; oo, zA / A] for z = i, t or  n. F r o m  Examples  2.1, 2.4 and 
3.1, 

i~ 1 - - 7  t~ 1 - -  7 1 + / ~  n A 1 - - ~ 2 + f f  2 

A l - - i f '  A 1+7  l - - i f '  A 1 + 7 2 - f l  2' 

f rom which 

2 - - 7  - / ~  1 - f l ?  1 
- , [oo, p ; e , t ]  = _ , [oo, p ; c , n ]  f l 2 - - 7 2  [ ~ ,  p; c, i] fl - -7  / ~ - 7  

N o w  we calculate: Fo r  

• - = 1 [ o o ,  p; c,  n] I = It~ 2 - 72[ -1 ,  

we get 

][ oo, p; c, i] - [oo, p; c, t][ = ~ J( I -- if)( 1 -- 7)(/}- + Y)] 

and 

11o% p; c, i] - [ o o ,  p; c, all = e [ f f +  Y - 1[ 2. 

Since the r ight -hand side o f  the identity 

f/~{(1 - / 7 ) ( 1  - 7 ) ( /7+  7)} = 1 - I / ~ +  7 - 1[ 2 
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is real, the modulus of the left hand side is either itself or its negative. Thus, since 
]7/~1 = I ei("-c'[ = 1, we have 

Tl(1  - t~)(1 - 7 ) ( t ~  + ~)1 = 1 - 1 ~ + 7  - 112. 

Multiply by ~ and rearrange to get (2). [] 

4. Miquel triangles and isogonal conjugates 

Miquel's theorem may be stated loosely as follows: for points a, b, e, s, t and u 
in Coo, if the circles hsc, cta and aub meet in a point, then so do circles ant, bsu and 
cts. (The circles may degenerate into lines and some pairs of points may coincide; 
see [7] or [8] for details.) 

a 

I t ¢ 

If  the first three circles meet at ~ ,  they become lines and we have a theorem 
about Aabc: for distinct points s, t and n on sides be, ca and ab of Aabc, circles 
aut, bsu and cts meet in a point m. The triangle A stu is called a Miquel triangle of 
point m with respect to A abc. Any nonvertex point has infinitely many Miquel 
triangles; its pedal triangle is an example. 

Miquel triangles are related to triangle coordinates through the following 
theorem. 
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t 

MIQUEL TRIANGLE THEOREM (MTST) [4, section 4]. Let Astu be a Miquel 
triangle of  the nonvertex point I n  with respect to the nondegenerate triangle Aabe. 
Then triangle Astu has shape 

A st~ = [m, a; b, c]. 

Thus from MTST, it follows that m~ = ira, a; b, c] = Ast~, i.e. the triangle 
coordinate of  any nonvertex point is the conjugate of the shape of its Miquel 
triangles. (See also [9], where invariant properties of certain geometric configurations 
were investigated using pedal triangle shapes as coordinates.) 

EXAMPLE 4.1. The Broeard points occur when each of s, t and u coincide with 
a vertex. This can happen in two ways. The Miquel triangles of each point are then 
A abe with the vertices cycled, so from MTST, they have coordinates A'  and A". 

u ~ b  

[] 

EXAMPLE 4.2. The isodynamic points of  a triangle occur as the points common 
to its three Apollonian circles, and have antisimilar equilateral Miquel triangles 
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(see [3], points 15 and 16 for further information). They thus have coordinates 
(D : = e  ~i/3 and o5. [] 

We now look at isogonal conjugates. With respect to a pair of intersecting lines, 
any two lines through the intersection point are isogonal whenever they are 
reflections in the angle bisectors of the given lines. (The angle bisectors are 
perpendicular, so both reflections give the same result.) When the given lines form 
the sides of a triangle, we have the following property: if lines through the three 
vertices of a triangle meet at a nonvertex point, then so do the lines isogonal to 
them (with respect to the pair of  sides through the same vertex). This second point 
is the isogonal conjugate of the first. The relation between a point and its isogonal 
conjugate is symmetric and bijective, with a few exceptions: 

• the isogonal conjugate of all nonvertex points on a side is the opposite vertex 
• the isogonal conjugate of  all nonvertex points on the circumcircle is 
• no nonvertex point on a side or on the circumcircle is the isogonal conjugate 

of any point in C. 

We denote the isogonal conjugate of the point z by 2, and determine its 
coordinate. 

ISOGONAL CONJUGATE FORMULA. For any nonvertex point z E C, 

Im[A,  oo; 1, zs] Az~. 
ZA = Ira[A, O; 1, ZA] 

Proof. Set ~.'=zA, fl"=zA, and M . - = ( A -  1)/(A--•) .  Since z and ~ are on 
isogonal lines through b, &cb~ = &zba (mod re) so, from Theorem 3.1, (b), the 
quotient 

[~A,bA;cA,EA] [ A , 0 ; ~ , / 3 1  / ~ - A  

~ ' - [ ~ A ,  bA;ZA, aA] -- [A,  0; ~, 1] -- M ~  

is real. Similarly, since z and 2 are on isogonal lines through c, the quotient 

c£:=[~A, cA; aA, Zs] _ [ A '  ~;  1,fl] 
[~A,  CA;z~,bA] [A,  @; cq0] A - f l  

M A  

is real. 
From cg real follows that A A ( M -  34) = MAff-21~¢~fl ,  and from ~cg real 
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follows that A~fi = A eft. Eliminate/~ to get 

Im{M} A~. 
/3 Im{aM} 

But M = [ A, oo; 1, ~] and aM = [ A, 0; 1, e], so the formula follows immediately 
upon replacing c~..=z~ and fl:=zA. [] 

EXAMPLE 4.3: THE CENTRO[D AND THE SYMMEDIAN POINT. The centroid of 
Aab¢ (its centre of gravity) is the point g:=½(a + b + c). Now 

g ~  g - b  2 ( a - b ) - ( a - c )  2 - - A  
A =  Agcb -- 1'  g - e  2(a -- c) - (a - b) 2 A -  

SO 

A - 2  
A. 

g ~  = 2 A  - 1 

The symmedian point (or Lemoine point) is the isogonal conjugate of the centroid. 
Direct calculation from the isogonal conjugate formula then gives its coordinate: 

~ - 2  ~ =  _ [ ]  
2A --1" 

(Since from MTST, the Miquel triangles of the symmedian point then have shape 
( A - 2)/(2A - 1), this justifies the claim of Example 6.3 of  [4].) 

The following corollary relates isogonal conjugates to Miquel triangles. 

COROLLARY 4.1. l f  a non-vertex point z has Miquel triangle Astu with respect 
to the base triangle, then ~ = [z, s; t, u]. 

Proof In the notation of  the proof of  the isogonal conjugate formula 

[i, a; b, c] Im{M} 
I~. (3) 

Ao] Im{~M} 

Because of  the Miquel configuration of  collinear and concyclic points, the right 
hand side of the identity 
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[z, s; t, u] [z, a; t, u] 

[ ~ ,  a; b, c][ ~ ,  s; t, u] - [ ~ ,  a; t, c][ ~ ,  a; b, u] 

is real, so since [oo, s; t, u] = [z, a; b, e] = ~ (from MTST), we have 

[z,  S; t, U] 

A~  
- -  e N. ( 4 )  

Divide (3) by (4) to show that [~, a; b, c]/[z, s; t, u] e ff~. Similarly (cycle the vertices) 
[i, b; c, a]/[z, t; u, s]e  ~, so since [~, a; h, e] is not real (no isogonal conjugates lie on 
the circumcircle), then ECRT implies that ~ = [~, a; b, e] = [z, s; t, u]. [] 

Many basic properties of isogonal conjugates can be proven with triangle 
coordinates: Corollary 4.1, for example, shows that any point is located in the 
same position relative to all its Miquel triangles. We could also discuss the anti- 
Miquel triangles of a point (any triangle for which the base triangle is a Miquel 
triangle of the point), and prove basic theorems about them (e.g. the anti-Miquel 
triangles of a point are similar to the Miquel triangles of its isogonal conjugate, 
etc.). 

5. The  theorems  of  M e n e l a u s  and Ceva  

The triangle coordinate versions of both Menelaus's theorem and Ceva's 
theorem are consequences of the following lemma. 

LEMMA 5.1. Let d, e, f, g be finite points with no three collinear. Suppose that 
lines df and eg intersect at v and lines fig and ef intersect at w (v and w may be 
infinite). Then [e, w; g, f ] = [v, fl; g, f ]. 

~ ¥  
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Proof. The following identities hold: 

[e, g; f, w] 

[v, g; f, d] 
f [ ~ ,  g; d, w] [ o % e ; f , w ]  i f w : ~  

[oo, v; d, f ] = [ ~ ,  e;g,  f ]  

[ ~ ,  g; e, d] i f w =  ~ .  

If  w ~  or, then (collinear points) [oo, g;d,  w] and [or, e; f ,w] are real. If  w =  ~ ,  
then ef  is parallel to gd, so - [ ~ ,  e; f, g]/[ 0% g; e, d] = (e - f ) / (g  - d) is real. In 
both  eases, then, the right hand side is real, so since [ or, v; d, f ] is real (collinear 
points), [e, w; f, w]/[v, g; f, d] is real. 

Similarly ( interchange d and e, and hence interchange v and w), 

[d, g; f, v] [e, f; w, g] 

[w, g; f, e] [v, f; d, g] 

is real. Since e, g, f and w are neither collinear nor  concyclic, [e; g; f, w] is not  real, 
so f rom ECRT,  [e, w; g, f ] = [v, d; g, f ]. [] 

COMPLEX MENELAUS'S THEOREM. Let s, t and u be finite, nonvertex points on 
the sides be, ca and ah of  A abe respectively. Then s, t and u are coltinear if  and only 

if  s~ tA,UA,, = - 1. 

Proof Let ~ be the point  of  intersection of  lines tu and eb. N o w  

~,~ t~ ,u~, ,  = - ( ~ / u ~ ) ( t ~ , / . ~ , , )  = - [ a ,  u; b, clIt, u; e, a]. 

a b u 

But from Lemma 5.1, [~, h; u, c] = [t, a; u, c], so [~, u; b, c] = [t, u; a, c] = 
[t, u; e, a] -s, f rom which ~AtA,uA,, = -- 1. 

I f  S, t and u are collinear, then ~ = s, f rom which sAtA,uA- = -- 1. Conversely, 
if s~tA,ua,, = - - 1 ,  then ~a = - ( t A , u ~ , , ) - I  = sA, so ~ = s, whence s, t and u are 
collinear. [] 
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(The  classical fo rm of  Menelaus ' s  theorem m a y  be found  by taking modul i  in 
the relation s~t±,uA,, = - 1 ,  expanding,  and adjusting signs as necessary.) 

The  example  which follows uses Menelaus ' s  theorem,  Miquel ' s  theorem and 
L e m m a  4.1 f rom [4], which states: 

Let  v, w, p, q and v, w, d, e be quadruples  of  concyclic or  coll inear points. 
Assume that  all points  are distinct, except that  

(a) one circle/line m a y  be tangent  to the other  at v = w 
(b) if the two are not  tangent,  then possibly v = el or w = e. 

Then [v, q; e, p]/[w, e; q, d] is real and non-zero.  

EXAMPLE 5.1. Let  A j k m  be an arbitrary triangle and e any non-vor tex  point.  

Construct on the sides o f  Aabe  triangles Apeb,  Aeqa  and A b a r  all similar to Ajkm,  
and points  s, t and u in the same position relative to each as e is to Ajkm.  Assume 

that s, t and u are distinct and not on the circumcircle o f  Aabc.  Then the circles~lines 

atu, bus and cst meet  at  a point on the circumcircle o f  Aabe.  

P r o o f  By construct ion,  we have that  A~b Ata c A,b , = A e k m A e m  j Aej  k = 1. Sup- 
pose  that  circles bus and est meet  at s and m then, f rom the lemma,  [m, b; t, u]/ 
[s, t; b, e] is real. It  then follows f rom the identity 

[m, b; t, u] 
[m, a; t, u] = Ascb Atac  Auba  - -  - - - - ,  

[s, t; b, el 

that  [m, a; t, u] is real, so m lies on all three circles. 
Miquel 's  theorem now implies that  the circles/lines aub, bsc and eta meet at 

some non-ver tex point  w. ( I f  w were a vertex, say w = a, then s would lie on the 
circumcircle o f  A abe, cont ra ry  to assumption.)  Apply  a linear fractional  t ransfor-  
ma t ion  z - ~ #  with w--, oo; then s, t and u are non-ver tex points  on the sides of  
A := Aabc  and 

Is, a; b, c][t, b; c, a][u, c; a, b] = [s, a; b, c][t, b; c, a][u, c; a, b], 

i.e. 

s~t£,u5, ,  = ( A~u A)(  At ,  c A')(  A~b~ A") = -- 1. 

F r o m  Menelaus '  theorem,  then, .~, t and fi are collinear, so since A s ' ~  is a Miquel  
triangle of  m with respect to Aa f~ ,  we have (MTST) ,  
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m~ .'= [m, a; b, c] = [m, a; b, cA] = [o% ~; i,  u] ~ ~ .  

Then (Theorem 2.3) m is on the circumcircle o f  Aabc.  [] 

This result appears to hold even when s, t or u are on the circumcircle; however  
a different p r o o f  is necessary to show that  m lies on the circumcircle. 

For  Ceva 's  theorem, some terminology: a cevian th rough a vertex o f  a triangle 
is any  line which is not  a fide, and its side point is its point  o f  intersection with the 

opposite side. The triangle coordinate  version o f  Ceva's  theorem not  only tells us 
when cevians meet at a point,  but also gives the coordinate  o f  that point. 

COMPLEX CEVA'S THEOREM (CCEV).  Suppose that cevians through a, b and c 

have side-points s, t and u respectively. Then these cevians meet at some point m ~ Co~ 

i f  and o n l y / f  sAt~,uA,, = l, in which case m~ = t~u~.  (We  include the case m = ~ ,  
when the cevkms are parallel.) 

c 

P r o o f  Suppose that  the cevians cu and bt meet at a point  m. ( I f  m is finite, then 

(Lemma .5.1) [m, u; b, c] = It, a; b, e]. I f  m is infinite (i.e. if ca and bt are parallel), 

a similar triangle a rgument  shows that  the same relation holds: alternately, since 
cross ratios are cont inuous functions o f  their arguments,  we may  take the limit as 

m ~ oo (e.g. keep a, b, c and t fixed and let m approach  oo along bt). For  either 

case, then, [m, a; b, c] = [m, u; b, c][u, a; b, c] = It, a; b, c][u, a; b, c], i.e. m~ = t~u~.  

N o w  suppose that  lines am and bc meet at some point  ~. ( I f  m = ~ ,  take am to be 
parallel to cu and bt.) As above, mA, = UA,SA,, and m~,, = s~,,t~,,, so 

A 
--  1 = m~ mA,m~,, = (s~,s~,)( t~ t~,,)(u~ u~,,) = -- (s~ t~,uA,,) - l, 

whence sAt~,u~,, = 1. 
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I f  the cevians as, bt and eu meet at m, then ~ =  s, so sAt~,u~,, = 1. Conversely, 
if s~tA,uA,, = 1, then s~ = (tA,u~,,)-I = sA, so s = s, whence the cevians meet at m. 

[] 

(As with Menelaus's theorem, the classical form of Ceva's theorem may be 
found by taking moduli in the complex form.) 

When the cevians are given by their side-points, CCEV may be used to prove 
the usual theorems about  intersecting medians, angle bisectors, etc. More generally, 
the cevians are given by other points on them, in which case we may use the 
following formulas. 

SIDE POINT FORMULAS. If  the cevian ap intersects side be of &abe at s, then 

SA 
PA Im[&,O; 1, p~] 1 

~a Im[A,  ~ ;  1, pA] A" 

Proof. For any arbitrary non-vertex z on ap, let az, ba, Cz be the feet of  the 
perpendiculars from z to sides be, ca and ab of A abe. 

a c z b 

Then (from MTST) z~ = [oo, az; bz, cz] and (Corollary 4.1 ) iA = [z, a,; ba, ca], so 

z ~ / ~  = [oo, z; h~, c,]. But all triangles Azbze z for z on ap have the same shape, so 
for z = p and z = s in particular, 

P~/~A = I r a ,  p; bp, ep] = [(30, s; bs ,  Cs] --~ ~-~/sA = sA,  

since gA = aA = 1. Thus sA = p ~ / ~ .  The second form for s~ follows immediately 
from the isogonal conjugate formula. [] 

EXAMPLE 5.2. Suppose that two isogonai cevians through a have side points e 
and f. Any point p on the first but not on a side or the circumcircle has its isogonal 
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m 

conjugate on the second, so from the side point formulae, eA = PA/PA and fA = 
O~/p~, whence e A f • = l .  Now e ~ = - a A  and f A = - - ~ A  where tr.-= 
- [ ~ ,  e, e, b] and ~ ..= - [ o o ,  f; c, b] are the signed ratios into which e and f divide 

be. Since e is real and A A  = IAI2= l a - c l 2 / l a - b l  2, we have 

la--¢llf la--cll 

In the particular case that the cevians coincide (i.e. with either of  the angle 
bisectors through a), we have e = f, ~ = a, the brackets coincide, and (5) becomes 
o-=  _+ l a -  b l / l a -  el, i.e. we get the classical theorem that the two angle bisectors 
divide the opposite side into the signed ratio of  the remaining two sides. Relation 
(5) is thus a generalization of this theorem. [] 

EXAMPLE 5.3. Let ap, bq and cr be chords of  a circle with distinct endpoints. 
Then the lines ap, bq and er are concurrent if and only if 

( p  - c ) ( q  - -  a ) ( r  - b )  = ( p  - b ) ( q  - -  c ) ( r  - a ) .  

Proof Take A abe as base triangle then, since p is on its circumcircle, ~ = 
and PA = A so, from the side point formula, the side point s of  cevian ap is given 
by sA = p s / ~ , .  Similarly, the side points t and u of  cevians bq and er satisfy 
t~, = q ~ , / A '  and uA,, =rA,,/7V' so, from CCEV, the cevians meet if and only if 
p~q~,rA, = A A ' & " = - - 1 .  Expand, simplify and rearrange to get the required 
relation. [] 

Since the length of  a chord of  a circle is proportional  to the sine of  the angle it 
subtends at the circumference, this last example may be reworked to give a proof  
of  the classical sine version of Ceva's theorem. 

Note that any point not on a side of  the triangle is the intersection of concurrent 
cevians. 

COROLLARY 5.1. For any m not on a side o f  A abe, the side points s, t and u o f  
the cevians through m are given by 

mA mA, m~,, 
sA = ~ ,  tA, = uA,, - • 

m •  l i l  zx, ' l i l  A,, 

Proof. The formulae are a direct consequence of  the side point formulae. [] 



Vol. 52, 1996 Triangles II: Complex triangle coordinates 237 

6. Further applications of Ceva's Theorem 

In this section, we look at a few less elementary consequences of  CCEV. 

EXAMPLE 6.1. Let Avwx be a Miquel triangle o f  the point m with respect to the 

triangle Aabe; then the lines f rom a, b and e through the centres o f  the circles axmw, 
hvmx and cwvm respectively meet at a point k in exactly two cases: 

(i) v, w and x are cotlinear, in which case k is on the eircumcircle 

(ii) Avwx is the pedal triangle o f  m, in which case k = m. 

f s  

7 - , . / /  \\',, \ o 

a v /  

0 , ,  a b 

Proof. I f  one o f  the lines coincides with a side, the statement is easily checked, 
so assume otherwise; we may  assume also that  w ¢ c. Set 

X - - W  ¥ - - X  W - - V  

Q.'= [oo, v; w, x], ~"= b -  c f l ' - c - a  ? : = a - b ;  

then 

7 A ~ A '  /~ A" 
- -  ~ - -  - -  - -  i t  ° fl ~ r 0 '  . ¢ (6) 

Let p be the centre o f  circle axmw. I f  w ~ a, then triangles A awp and A wap are 
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anti-similar, so [ oo, a; w, p] = [ oo, w; a, p]. Multiply by [ oo, a; e, w] = [ oo, a; e, w] to 
get 

(wp) 
[ o o ,  a; c ,  p] = - ~ . ( 7 )  

This relation still holds if the circle is tangent to side ae at w = a; it then states that 
(a - p ) / ( a  - c )  is imaginary, i.e. that radius ap is perpendicular to side av of Aabe. 
Similarly 

[oo, a ; b , p ] = -  ~ . ( 8 )  

Divide (7) and (8) and rearrange to get 

p - w  A A x -  A w  
= ~  p =  

p - w  A '  ~ - ~  ' 

from which (7) and (8) become 

(2i Im A)[oo, a; c, p] = (~--b_ b )  = w - x  (~ , )  

and 

( 2 i l m  A)[oo, a ;b ,p]  = \ a _ b j =  Iz l 2 

The side-point s of  the cevian ap is given by 

I m [ A , 0 ; 1 ,  p~] 1 Im[oo, b ;a ,p ]  1 Im[oo, a ;b ,p ]  1 
s~ = Ira[ A, oo; 1, p~] ~ -- Im[oo, e; a, p] ~ -- Im[oo, a; e, Pl ~ - '  

so we calculate that 

IA] 2 Re@/~o'(A) 1 
s~ - Re(~tQ') Z~ 

Re@/e 'A)  
Re(7/~o') 

Similarly (cycle and use (6)), the side-points t and u of the other cevians are given 
by 
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Re(aQ"/A')  Re(TQ) 
t ~ , -  A ' -  A', 

Re(a/q") Re(y A'Q) 

Re(fl/e A") A" - Re(~ A') 
uA, , -  Re(r/Q) Re(y /A)  

- -  A". 

From CCEV, we have that the cevians intersect whenever sa t~,,u~,, = JV'/~ = 1 
for JV.=Re(7/Q 'A)  Re(yQ) Re(7 A')  and ~ : = R e ( 7 / e ' )  Re(~, A'O) Re(y/A).  Direct 
calculation gives 

,.[ 17'12ImA } 
w - ~ =  - ( I A I ~ I  1 _ A I  ~ • Imq. Re{y(Q - A)}, 

so the cevians intersect at some point k if and only if either Q is real or ?(~ - A) 

is imaginary. 
I f  Q = [ oo, v; w, x] is real, then v, w and x are collinear. Furthermore, (using (6)), 

Re (a /A ' )  Re(~) A'  R e (? ) a  
t A, - A'  - 

Re(a) Re(a) Q' - Re(a) 7 

and 

Re ( f l /A" )A , ,  Re(~) A" Re(a) fl 

uA, , -  Re(r) - Re(r)  Q" Re(r)  a 

from which 

Im(7~) i Re(r) a 
tA = (tA,)" and uA = (uz~,,)' = - _. 

Re(y) a Im(afl) t 

Since kA = tauA is then real, k is on the circumcircle. 
I f  ? ( e -  A) is imaginary, then since [w, m; e, v] and [oo, c; w, a] are real and 

since 0 = [m, a; b, e] ( from MTST), the quantity 

? [w, m; c, v][o% c; w, a] = m - v  
0 - - A  b - c  

is also imaginary. Thus line my is perpendicular to side be, and similarly, lines mw 
and mx perpendicular to sides ea and ab. Then Avwx is the pedal triangle of  m, and 
the segments am, bm and cm are diameters of  the circles. These diameters lie along 
the cevians, which then intersect at k = m. [] 
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Several special points of a triangle (e.g. its Fermat points) are given by the 
intersection of cevians from each vertex to the apex of some particular triangle 
constructed on the opposite side. We consider the general case: which combinations 
of the four triangle shapes will produce concurrent cevians? 

COROLLARY CCEV-I. I f  triangles Apeb, Aqac and Arba with shapes 2, # and 
v are erected on the sides o f  Aabe, and p, q and r do not lie on a side through a, b 
or c respectively, then the cevians ap, bq and cr are concurrent i f  and only i f  

Im{(2"A')-'}. Im{(~"A") -~} lm{(v"A)-~} 
Im{A'A"} Im{/t'A} Im{v'A'} 

q 
P 

Proof. In the side point formula, put pz=~ .A;  then [A,0 ;1 ,  p~] and 
[A, oo; 1,pA] simplify to (2"A') -1 and 2 '±"  respectively, so sA = 
A-~ Im{(,U'A')-~}/Im{,t'A"}. Similar expressions result for tA, and uA,, and the 
required relations follow immediately from CCEV and the relation A A'A" = -- 1. 

[] 

An application: 

EXAMPLE 6.2. Suppose that isogonal pairs of  cevians through the vertices of  
Aabe intersect at points p, q and r as illustrated. Then the cevians ap, I~ and er are 
concurrent at some point m. 
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C 

b 

Proof. We have that &bar=  &qac=:0, &cbp = &rba=:q~ and &acq = &pcb 
=:¢. Set 7 :=e 2i°, /3 ,=e 2i* and ~ ,=e 2~°. From the angle-shape formula, 

V = A rl)a = ( e2 iaabr )" (e2 iaras )  ' =  ( f l -  1),,(~-1), ~(1--fl) 
~ - - 1  

so (using ~02 = tiff = 1) 

~(1 - / 3 )  f l  - 1 

and thus 

2i Im{(v"A)'} =-I""AI ~{,,"A--r'~} = - IAl -~( r  ') 1{~ -o~£}. 

Similarly 

1 ( ~ -  1)02 
# ' -  --? - - = ~ - ' / 2 '  and 2 i I m { / ~ A } = # ' { A - c ~ & }  

1 - -  7~  7~  - -  1 

SO 

I m { ( v " A ) - ' } =  1 = -  1 . 1--7c~ 1--fl  

Im{/~'A} IAI~,. '~ " I A I  ~ l - y  1-~f l "  

Cycle this last relation to get 

Im{(2"A') -~} 1 l-o~fl 1 - ~  
Im{v'A'} IA12 1-c~ 1- /17 
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and 

Im{(#"A") - ' }  1 1 - - / ~  1 - ~  

Im{X'A"} -- - I A " [ 2 "  1 --fl  1 - 7~' 

The product of the three right hand sides of  these relations is - 1 ,  so from CCEV-1, 
the cevian ap, bq and er are concurrent. [] 

In the special case that Apcb, Aacq and Aarb are similar to each other, 
Example 6.2 gives Theorem 4.2, (b) of  [6]. Example 6.2 has a "dual" nature: if the 
line pairs qc-rb, ra-pc and pb-qa intersect at 0, ~ and ~ respectively, then the cevians 
a0, b~ and c~ meet at the isogonal conjugate of m. 

If 0 = ~0 = ¢ = - n / 6  in Example 6.2, we get the first Napoleon point of Aabc: 
the intersection point of  the cevians from each vertex through the centre of an 
equilateral triangle constructed "outward" on the opposite side. Suppose that 
instead of  the centre of  an equilateral triangle, we chose a more general point of a 
more general triangle, and construct similar copies of  that triangle and point on the 
sides of A abc. It is easy to check that, provided we rotate the copies of this new 
triangle so that a different side of each copy lies along each side of A abc, the 
resulting 2, # and v must satisfy ,~#v = 1. The following corollary then applies. 

COROLLARY CCEV-2. On the sides o f  a variable nondegenerate triangle A abc, 
construct triangles A pcb, A qac and A rba of  shapes 2, # and v respectively. Assume 
that 2#v = 1. Then the cevians ap, bq and cr meet for  all triangles Aabc i f  and only 
i f  2'Iv, #'/2 and v'/ff are all imaginary. 

Proof  Note that the assumption 2gv = 1 implies that 

2'l~'v' = - (2"v"#")  -1. (9) 

From Corollary CCEV-1, the condition to be satisfied is 

for all shapes A. Expand the left hand side and simplify using A A' A" = -- 1 to get 

Im 2'#'v'  + ~ ).,'#'~ + ~-; )7'/~'v' + 2'/] 'F' 

1 Im{2'#'v'  + e2'A2-'#'~' + e2~B2--'f~'v' + e2iC2'fi'9'}. 
4 
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Similarly, the right hand side becomes 

{ +  1 
Im + e 2,A _ _  2"#"~" 

1 
4- e 2iB - + e 2 i c -  

2"#"v" ,,;.v,,}, 
so (using (9)) we must satisfy 

X,, ; , ,d+e 1 

l]} 
~."/~"v" = 0 

for all possible triangles with angles A, B and C. It is not difficult to check that this 
condition holds if and only if all three square brackets vanish. Using (9), these 
brackets simplify to 

Re(2'/v), 2--" Re(ju'/2) and -~;7 Re(v'//~), 
v 

so they vanish if and only if 2'Iv, /~'/2 and v'/g are all imaginary. [] 

There are two possible ways to construct rotated copies of the triangle and point 
on the sides of A abc; each gives a different result. 

EXAMPLE 6.3. Let Ajkm be any nondegenerate triangle and e any nonvertex 
point. On the sides of  a variable triangle Aabe, construct triangles Aabc, Aeba, 
and Abae all similar to Ajkm, and points p, q and r in the same position relative 
to these triangles that e is to Ajkm. Then the cevians ap, bq and er meet for all 
triangles Aabe if and only if  e is the orthocentre of  Ajkm. 

Proof. We have that 2 = [ ~ ,  e; k, m], # = [ ~ ,  e; m, j] and v = [ ~ ,  e; j, k], so 
2pv = 1. From Corollary CCEV-2, then, the cevians meet if and only if the 
quantities 

2' e - j  /a' e - k  v' e - m  
. . . .  and - - -  

v m - k '  ~. j - m '  /~ k - j  

are imaginary. This holds if and only if the lines el, ek and em are perpendicular to 
sides ink, jm and kj respectively of Ajkm, i.e. if and only if e is the orthocentre of 
AII~. [] 
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EXAMPLE 6.4. Let Ajkm be any nondegenerate triangle and e any nonvertex 
point. On the sides of  a variable triangle Aabe, construct triangles Aaeb, Aacb and 
Aaeb all similar to Ajkm, and points p, q and r in the same position relative to these 
triangles that e is to A jkm. Then the cevians ap, bq and cr meet for all triangles Aabe 
if and only i f  e is either the incentre of  Ajlun or one of  its excentres. 

Proof We have that 2 = [ c~, e; k, m], /t = [ o% e; j, k] and v = [ oo, e; m, j], so 
2/~v = 1 and 2'#'v' = - (2"v"#") - 

We first show that 2'/v,/L'[2 and v'/# are all imaginary if and only if v"/#', 2"/v' 
and #"/2' are all real with a positive product. Note that 

2' v" #' ,~" v' 
v - -  ( , V # ' V ' )  --#,, ,~ - -  ( ; / # ' v ' )  7 , # - -  

t e  

( 2'#' ') -~ 
- -  - -  - -  V , 

If )l/v, p'/2 and v'/# are all imaginary, then their product 2'#'v'  is as well, so 2"/v' 
and #"/£'  are all real, and their product ()~"v"#")/(2'p'v') = - ( 2 ' # ' v ' ) - 2  is positive. 
Conversely, if v"/#', 2"Iv' a n d / / ' / 2 '  are all real with a positive product - (U# 'v ' ) -2 ,  
then 2'/~'v' is imaginary, so 2'/v, ~'/2 and v'/# are as well. 

From Corollary CCEV-2, then, the cevians meet if and only if v"/#', )~"/v' and 
i,t"/2' are all real with a positive product. The first quantity v" / t /=  [o% j; e, m]/ 
[ ~ ,  j; k, e] is real and positive if and only if ~ejm = ~kje,  i.e. if and only if e is on 
the internal bisector through j. Similarly, v"/#' is real and negative if and only if e 
is on the external bisector through j. Analogous results hold for the angle bisectors 
through the other vertices, so v"/,u', 2"/v' and #"/2'  are all real with a positive 
product if and only if e is either on all three internal bisectors or on one internal 
bisector and two external bisectors, i.e. if and only if e is either the incentre of 
Ajkm or one of its excentres. [] 

If  Ajkm is equilateral with centre e, then e is both incentre and orthocentre, so 
both of  the last two examples specialize to give the Napoleon point. 
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