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Survey Papers 

On Wigner's theorem: Remarks, complements, comments, and corollaries 

JURG R,KTZ 

Summary. In this paper we present a unified treatment of Wigner's unitarity-antiunitarity theorem 
simultaneously in the real and the complex case. Its elementary nature, emphasized by V. Bargmann in 
1964, is underlined here by removing unnecessary hypotheses, the most important being the complete- 
ness of the inner product spaces involved. At the end, we shall obtain connections to some recent results 
in geometry. 

1. Introduction 

Wigner's theorem was first published in 1931 ([13], p. 251). In the early 1960s, 
several authors began working on Wigner's original idea of proof in order to make 
the argument rigorous (cf., e.g., [12], [7], [5]). Most recently, there was new 
movement around Wigner's theorem (cf., e.g., [11], [1], [8]). It seems to the author 
that Bargmann's paper [5] optimally succeeded in giving a rigorous proof and in 
revealing the elementary nature of the theorem. We shall take essentially Barg- 
mann's proof as the basis of our procedure till Theorem 7. The results were 
announced in [9]. 

2. General hypotheses 

T h r o u g h o u t  the  pape r  we let (X, ( . , . ) ) ,  (Y, ( . , . ) )  d e n o t e  inne r  p r o d u c t  

spaces  o v e r  K ( = ~ o r  C) wi th  dim,v X > 1, dim,r  Y > 1 a n d  n o r m  II II, 
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3. Notations and preliminaries 

For  the zero vector we write o and, for a subset A of  a vector space, link A 
denotes the linear span of  A. Fur thermore ,  ~ * : = { ~  ~ 1~;2 >0} ,  [~* := 
{2 E ~; 2 < 0}, ~+ ,= {2 6 ~; 2 > 0}, and -: C --, C is the ordinary conjugation o f  C. 

For  x, x '  ~ X, we define x '  ~ x :  ~ 3r ~ K with [z] = 1 and x '  = rx, 
(1) the ray 5c := {x' ~ X; x ' ~  x} of x (x E X), and 
(2) 5P(X):=X/..~ = {:f; x ~ X}, the set of all rays of X ([5], p. 862). 

If  x , x ' , z , z ' E X ,  x ' ~ x , z ' ~ z ,  then ]<x',z'>l=l<x,z> ] and ]]x'l] = ]]xl], so that 
(3) ~ .  f . .=l<x, z>[, ]k[:= ]]x]l (x ~k ,  z ~ f) are well-defined. 
(4) ~ (X) := {k ~ 5g(X); 1:~1 = 1 } is the set of  all unit rays of X, and the elements 

o f  the set 
(5) ~ (X) . ' =  {Kx; x ~ X\{o}} are called lines of X. 

Some authors  describe states of  a physical system by unit  rays (e.g., [5]), some by 
lines (e.g., [ 12], [7]). The equivalence of  these two kinds o f  description is established 

by the bijective mapping 
(6) qbx: ~ ( X )  ~ ( X ) ,  (1)~<(k):=linKk(k ~ ~ ( X ) )  and  by Lemma 1 below. 
For  the transition probabil i ty px(k, f) (k , f  E ~ (X)) or fix(Kx, Kz) 

(Kx, Kz ~ ~(X)) we obtain 
(7) px(YC, f) = (* .  f)z = (3) = (<x, z> .  (z, x>)/(<x,  x> • (z, z>) =fix(Kx, Kz), 

so that the preservation o f  the transition probabilities is expressed by the two 
functional equat ions (~0) and (7,) below. 

LEMMA l. (a) The solutions T, To, T of the functional equations 

(;) T: ~(X) --.~(Y). 

(;.0) To' ~ ( Z )  -- .~(r ' ) .  

(.7) ~: . (X)  ~ *(Y). 

T*.  T~ = * .  ~ (V,,  ~ ~ , ( X ) ) ,  

To*. To~ = : t .  ~ (v , ,  ~ ~ ( x ) ) ,  

ffv(T(Kx), 7~(Kz)) = fix(Kx, Kz) (VKx, Kz ~ ~ (X) )  

are in bijective correspondence by virtue of the diagram 

T 

,~ (x )  ---, J ( Y ) '  

J J 
To 

~ ( x )  --~ ~ ( Y )  

.(x) -~ .(Y). 
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(b) T surjective ~ To surjective ¢~> T surjective. 
(c) All solutions of  (~), (*o), (7~) are injeetive. 

Proof. (a) If T satisfies (~), then T[5~(X)] c ~7~(Y), and we take T~} as the 
(bilateral) restriction of T. For extending uniquely a solution T0 of (go) to a 
solution T of (g) see [5], p. 864, section 2. The rest is clear from (6) and (7). 

(b) is easily established; it separates the surjectivity question from the main 
body of the theory. 

(c) follows from the equality condition in the Cauchy Schwarz inequality ([5], 
p. 863, 1.2). q.e.d. 

By the way,/~x is the Cayley measure on metric vector spaces in the sense of [2], 
p. 4. 

Next we are going to connect ray mappings T (and therefore, by Lemma 1, also 
line mappings T) with vector mappings S: X--+ Y. 

DEFINITION 2. The mappings R: X ~  Y and S: X ~  Y are called phase-equiva- 
lent if 3z: X--*K such that [z(x)l = 1, Rx = r(x) • Sx (Vx ~ X), in other words, if 
Rx ~ Sx (Vx e X). 

LEMMA 3. (a) I f  S: X --* Y is a solution of  the .functional equation 

I(Sx, Sz)l = I(x, (Vx, x),  (,) 

then there exists a ray mapping T: ,9~(X) --* 5~( Y) satisfying ( g ) and (Sx) = TS, i.e., 
Sx  ~ T2 (Vx ~ X). We say then that T is induced by S and that S is compatible with 
T. 

(b) I f  T: 5P(X) ---} SP(y) is a solution o f (*) ,  if  R: X--} 17, S: X--* Y, and if  S is 
compatible with T, then S is" a solution of (*), and R is' compatible with T (f and only 
i f  R and S are phase-equivalent. 

(c) I f  T: 5a(X) -+ ~9~(Y) is a solution of(g),  then there exists a solution S: X--* Y 
of  (*) such that S is compatible with T. 

Proof (a) If S: X-~ Y is a solution of (*), the following properties of  S are 
quite immediate: 

(8) x x tlSx rI = rlxrl, 
(9) x, z e X ~ [ x  L z . e ~ S x  ±Sz] ,  

(10) x, z e X ~ [x, z linearly independent ~, Sx, Sz linearly independent], 
(11) x e X ,  S e K ~ S ( S x ) ~ g ~ S x ,  
(12) x , x '  ~ X , x ' ~ x  ~ S x ' ~ S x ,  
(13) S additive => S injective. 
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(10) follows from the equality criterion in the Cauchy-Schwarz inequality ([5], 
p. 866, 6.(a)). By (12), T : ~ ( X ) ~ 6 e ( Y ) i s  well-defined by T ~ , = ( S x ) ( V x  ~ X ) ,  

and by (3) and ( ,) ,  T satisfies (;,). 
(b) For  x , z ~ X  we have I<Sx, 

I(x, z)l,  which proves the first part. - R  compatible with T ¢> ( R x )  = TYc (Vx ~ X)  

¢~ ( R x )  = (Sx) (Vx ~ X)  ~ Rx  ~ Sx (Vx e X) o R and S are phase-equivalent. 
(c) For  every x ~ X, choose y from the subset T~ of Y and call it Sx. Then S 

is compatible with T and by (b) a solution of (*). q.e.d. 

REMARK 4. Lemmas l(a) and 3 require a complement: I f  To: ~ ( X )  -~ .~(Y)  is 
a solution of(go) and if S: X ~  Y satisfies S(ex) = QSx (Vx ~ X, Ve E R+) as well as 
( S x ) =  To~ (Vx x, Ilxll = 1), then we have ( S x ) =  T.;c (Vx ~ X) for the unique 
solution T: ,9~(X) ---, 5e(y)  of (~,) which extends To. The proof  is easy. 

REMARK 5. (a) Lemma 3 shows that the solutions T of  (~,) and the phase-equiv- 
alence classes of solutions of (*) are in bijective correspondence. 

(b) The very poor method of  proof of Lemma 3(c) does not guarantee at all a 
good quality of the mapping S because the elements Sx (x ~ X)  are chosen 
completely unrelatedly. 

(c) I f  Z: K-~ K denotes the identity of  K or, if K = C, the ordinary conjugation 
mapping, then the linear or conjugate-linear isometries U: X ~ Y are characterized 

by 

<Ux, Uz>=z(<x , z>)  (Vx, z ~X),  (I D 

and of course every solution of  (Iz) is a solution of (*). 
(d) The question arises whether every solution T of (;,) can be lifted into a 

"nice" solution of  (*), e.g., in the optimal case, into an isometry. Wigner's theorem 
gives a positive answer to this question. 

S 
X--- ,  Y 

5e(X) ---, 5e(Y) 
T 

There are some auxiliary statements which need explicit mention for later use: 

LEMMA 6. Let T: 5f(X)-- ,  Se(y)  be a solution of(1) .  Then we have: 

(a) I f  dimK X _> 2 and R, S: X--* Y are additive and compatible with T, then 

30 ~ K such that 101 = 1 and R = O . S. 
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(b) I f x  • X \ { o } ,  S: link {X} --, Y, ( S t )  = T~ (Vz • link {x}), then there exists a 

unique function q~x: K---, K with the properties ~0x(1) = 1 and kOx(a)l = IAI, 
S(,~x) = cp~(2). S x  (V2 • K). 

(c) I f  K = N, dim~ X = 1 and R, S: X ~ Y are additive and compatible with T, 

then R = S  or R = --S.  

(d) I f  K = C, dime X =  1 and R, S: X ~ Y are additive and compatible with T, 
then there is in general no 0 • C suck that R = 0.  S. 

(e) Lel S: X--* Y be compatible with T. Then: 

(ca) I f  S is surjective, so is T. 
(eb) I f  T is surjective, and i f  w ~ S(X), 2 ~ K implies 2w • S (X) ,  then S is 

surjective. 

(ec) I f  T is bUective, then S need not be injeetive or surjective. 

Proof. (a), (b): The proofs  given for K = C ([5], p. 866, Theorem 2; p. 864, (8), 
(Sa)) work for  K = R as well. 

(c) Let X =  ling {x}. By (b) 3~ox: N--,I~ such that ~ox(1)= 1 and ]~ox(2)[ = 
]2t, S(2x)=qox(2  ) - S x  ( V 2 • N ) .  For  any 2 , / t • N  we get ~ p x ( 2 + ~ ) S x =  
S((;~ + ~)x) = S(,~x + ux)  = S(2x)  + S(~x)  = ~ox(,~)Sx + q~x(~)Sx = [~px(2) + 
q)x(#)]Sx, and Lemma 3(b) and (8) ensure S x  ¢ o, so q~x(2 + #) = q~,(2) + q)x(/l) 
(V2,/~c[~).  Since I~0x(~t)[=12[<l ( 0 < , i < l ) ,  cp~ is of  the form q)~(2)= 
q0x(l ) ) = 2 (¥2 c ~) by a famous theorem of  Darboux  ([6]) originating from 
projective geometry,  i.e., ~o~ = ida. Therefore  S(,tx) = 2Sx  (V2 c N) and analogously 
R(~tx) = 2Rx (V2 c IR). By Lemma 3(b) R x  ~ S x ,  which means here Rx  = +_Sx, 

hence R = _+ S. 
(d) X =  Y =  C I with (x ,  z ) : = x f  (Vx, z • X) ,  S = ide ,  R the ordinary conjuga- 

tion of  C ([5], p. 863, 1.4). 
( c a ) ) )  c 5e(Y), y cp .  There exists x c X s u c h  that Sx  = y .  Thus 7"2 = ( S x )  =~ .  

- -  (eb) (For  S a (conjugate-)l inear isometry cf. [5], p. 863, Corollary). y c Y 
arbitrary.  So f' c 5°(Y), and there exists 2 c 5P(X) such that T2 = S'. For  x • 2 we 
have ( S x )  = T2 = ~, i.e., S x  ~ y, say y = zSx,  therefore by the hypothesis on S ( X )  

finally y ~ S ( X ) .  - -  (ec) X =  y = ~ l  with ( x , z ) , = x z  (Vx, z ~ X ) ,  Sx ,=]x[  

(¥x  c X). Then S x  ~ x (Vx c X), so 7'2 = ( S x )  = 2 (Vx • X) ,  i.e., S induces the 
bijective mapping T = idj(x) .  But S is neither injective nor  surjective nor  additive. 
This shows that  the special hypotheses in (13) and in (eb) are essential, q.e.d. 

4 .  T h e  m a i n  r e s u l t s  

THEOREM 7 (E. Wigner). Under our general hypotheses, let T: ~ ( X )  --, Af( Y)  be 

a solution of(;~) 7"2. T~ = 2 .  ~ (V2, ~ • 5~(X)). Then: 
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(a) There exists U: X ~  Y with the following properties: 
(aa) ( U x ) =  7"2 for  all x ~ X. 
(ab) ( U x ,  U z ) = x ( ( x , z ) )  (Vx, z e X )  where z = i d ~  ( K = ~ ) , ) = i d c  or 

Z = : (K = C), i.e., U is a linear or a conjugate-linear isometry. 
(b) I f  K = C, dime X > 2, then T uniquely indicates whether Z = idc or Z = 7. 
(c) U is surjective i f  and only i f  T is surjective. 
(d) I f  both U1 : X--* Y and U2: X ~ Y satisfy (aa) and (ab) above, then the)' are 

phase-equivalent, and, except  for  K = C, dim c X = 1, there exists a 0 ~ K 
suck that Uz = O" U1, 101 = 1. 

Proo f  [5], pp. 863-866. Specifically: (b) section 1.5; (c), (d): our Lemma 6 (ca), 
(eb); (a), (c), (d). 

COROLLARY 8. If, under our general hypotheses, S: X--* Y satisfies ( , )  
I(Sx, s ~ l  = l(x, ~>l (Vx, ~ ~ x),  then 

(a) S is phase-equivalent to a linear isometry U: X--* Y i f  K = ~. 
(b) S is a phase-equivalent to a linear or a conjugate-linear isometry U: X--+ Y i f  

K = C .  
(c) I f  S is surjective, then S is phase-equivalent to an inner product space 

isomorphism or anti-isomorphism U: X--* Y, i.e., to a unitary or an anti-uni- 

tary mapping i f  X = Y. 
(d) I f  R : X ~ Y is phase-equivalent to a linear or to a conjugate-linear isometry 

U: X--* Y, then R is a solution o f  (*). 

Proof. (a), (b): Let T: 5P(X) ~5~(Y)  be the ray mapping induced by S (Lemma 
3(a)). By Theorem 7(a) 3U: X ~  Y, a linear or conjugate-linear isometry (for 
K = [~, these two variants coincide) such that ( U x ) =  7"2 (Vx ~ X). By Lemma 
3(b), S is phase-equivalent to U. (c): Directly from Lemma 6(ca) and Theorem 7(c). 

( d ) :  I ( R x ,  R z )  I = ](Ux, uz )  I - -Ix((x ,  z)) l  = I(x, z)[  (Vx, z e x ) .  q.e.d. 

REMARK 9. Corollary 8(a) generalizes Theorem I of  [4], p. 49, and, for K = E, 
Corollary 8(c) is identical to the first fundamental theorem of projective-metric 
geometry ([10], p. 145, (10.4)). 

REMARK 10. Some proofs either of Theorem 7 or of Corollary 8 in the papers 
quoted earlier are restricted to the exclusive case K = C, to the special case X = Y, 
to bijective mappings T: 5P(X)~5e (Y)  or S: X-~ Y, and some use characteristic 
properties of Hilbert spaces such as 

- the Riesz-Fischer theorem, 
- the fact that every maximal orthonormal subset is fundamental, 
- the weak sequential compactness of every bounded subset, or 
- the closedness of the range of  an isometry. 



Vol. 52, 1996 On Wigner's theorem 7 

These properties fail to hold in non-complete inner product spaces. On the other 
hand, Bargmann's procedure is easily adapted for the general inner product space 
case. The main source of this advantage lies in working with appropriate finite 
orthonormal sets and the corresponding Bessel's identity, and in using X = 
M G M ~ only for finite-dimensional linear subspaces M of  X. This insight should 
underline the elementary nature of Wigner's theorem. 

REMARK 11. In connection with isometries U: X--, Y, the following functional 
equations are important (cf. Remark 5(c)): 

II Ux - u =  i[ = IIx - ~ II ¢ v x , :  ~ x )  and go = o, 
Re(Ux ,  Uz) = Re(x ,  z )  (Vx, z e X), 
(Ux,  Uz)  = zC(x, z ) )  (Vx, z e .g), 

I<ux, v=>l = I<x, z>l (v.+, = ~ x ) .  

( l id 
(II) 

(,) 
Clearly, (*) ~ (Ix) ~ (II) ¢* (III). Wigner's theorem just says that ( . )  ~ (Ix) 
holds up to phase-equivalence. For K = N, (II) ~ (I~d~) trivially holds if we agree 
in the convention Re: ~ --, N, Re := ida. For K = C, (II) =,- [(I~u~.) or (L)] does not 
hold as the following example shows: X =  Y = C  z with ((~1, ~2),(~1, (2)) := 
~1~1 -]- -~2~-2 (V(~l, ~2), ((1, (2) e C2), U(~I, ~2):=(~1, (2) (V(~l, ~2) e C2). This Ualso 
violates (*). This phenomenon may explain why in the proof  of Theorem 7(b) some 
effort is needed for establishing the pure linear or the pure conjugate-linear feature 
of U in the complex case. 

5. Continuous solutions of (*) 

LEMMA 12. I f  (Y, H II) is a normed K-vector space and Yk, Y e Y, y #o ,  
2 k , 2 e K  (Vke N) ,  then Yk--'Y (k-coo)  and 2kyk ~ , t y  (k ~oo)  imply ,~k ~ 2  
(~ -+ oo). 

Proof Let k e N be arbitrary. I~ l  IlY* -Y l l  + II~*Yk -;'Yll = II2(Yk - y ) l l  + 
II(~k - ~)y~ + X(yk -y ) I I  -> II(x~ - ~)y~ [I = Izk - ;~[ Ily~ II --- 0. As the left-hand side 
tends to zero, we obtain 1 ~ , -  ~1 [lY* II- ,0 (k-+ o~). Since Yk-+Y ¢ o  (k-- ,  oc), 
there is no loss of  generality in assuming Yk # o (Vk ~ N). So IlY* rl-' IlY II > 0, 
1/IIY+ II--' l/lly II (k-+ oo), and finally 

I.z~ -]Zl = (1/rly~ II) • I)Zk - -~1  Ily~ [[ +(1/ l ly[ I ) .  o = o  (k ~oo).  

THEOREM 1 3. If, under our general hypotheses, S: X --, Y is a continuous solution 
of (*)  I(Sx, Sz) l  = ](x, z)] (¥x, z ~ X), then we have: 

(a) I f  K = ~, d immX= 1, say X = l i n n  {xo} with Hxoll = a, then there exists 

yo~ Y with llyoll--1 such that S(2xo) =2yo (V2 6 ~) or S(2xo) = I,~[yo 
(v2 e ~). 



8 J. RATZ AEQ. MATH. 

(b) I f  K = ~, dime X > 2, then S is a linear isometry. 

(c) I f  K = ~, then there exists a linear or conjugate-linear isometry U: X --+ Y and 

f : X - - + ~  such that cos o f  and sin~,f  are continuous on X \ t o  } and 

S x  = e~lx)Ux (Vx e X). 
Conversely, all these mappings are continuous solutions o f  (*). 

Proof. Let S be a cont inuous solution o f  (*). By Corol lary 8(a), (b) there exists 
a linear or a conjugate-linear isometry U: X--) Y and a mapping T : X ~  K with 

(14) It(x)[ = 1 and S x  = t (x ) .  Ux (¥x  ~ X). 
Let x ~ X \ { o }  and (xk) a sequence of  elements of  X with x,  ~ x  (k --) ~ ) .  By (14), 
Sxk=r(x~ . )"  Uxk ( V k ~ )  and S x = r ( x ) .  Ux. Continui ty  of  S and U lead to 
Sxk ~ Sx,  Uxk ~ Ux (k ~ oo), and we have II Ux [I = Ilx II > 0, i.e., Ux :# 0. By 
Lemma 12 we get z ( x k ) ~  r(x) (k ~ oo). Therefore  z is cont inuous at x, and since 
x ~ X \ { o }  was arbitrary,  

(15) z is cont inuous on X \ { o } .  

(a) yo==SXo, so Ilyol[ = , 8 )  = IIxo II = 1. I f x  x i s  arbitrary,  x and xo are linearly 
dependent,  and by (10) so are S x  and Sxo, i.e., S ( X ) c l i n ~  {yo}. Ux=<~4)=  
( l / t (x ) )  - Sx  ~ lin~q {Yo} (Vx ~ X).  By Corol lary 8(a), U is ~-linear, thus there exists 

a unique ~ e ~ such that Uxo=~Yo.  [~[ = Ilyo l[ -- II yo /I = IIUxoll = IIxoll = 1, so 
o~ = +_ 1. U(2xo) = 2Uxo = 2~yo = ~(2yo) (72 e ~), i.e., 

(16) U(2xo) =~2yo  (V2 e R) with ct ~ { - 1 ,  1} fixed, 

(17) S(2xo) = (t4).(16)= z(AXo)~2yo (g2 ~ ~). 
2 = 1 in (17) yields Sxo = Z(Xo)~Yo, and since Sxo = Yo, we get 

(18) Z(Xo)C~ = 1. 
2 = - - 1  in (17) yields S ( - x o ) = Z ( - X o ) C t ( - I ) y o .  On the other hand, 

I I s ( - x o ) l l  = I I - x o l l  = 1 ,  so 
(19) S ( - x o )  =flYo with fl = - z ( - x o ) ~  ~ { - 1 ,  1}. 

Now, z ( x ) ~  { - 1 ,  1} (Vx ~ X), connectedness of  ~ * ' X o  and ~*_-xo, and (15) 
imply v(2Xo)=z(xo)  (¥2 ~ ~*) ,  z ( ) , X o ) = z ( - X o )  (V2 e ~*) .  So S ( 2 x o ) = ( , v ) =  

Z(Xo)~2yo= ~18) =,~yo ( V 2 ~ * )  and S(),Xo) = (~v) = r ( -  xo)c~2yo= ,9~ = -fi) ,yo 
(V2 ~ ~*) .  Since So = (8)= o, we have in the total S(2x0) = co(2)yo (V~. ~ ~) with 
09 = id~ or co -- [. [. - -  Conversely,  if S(),Xo) = ~o(A.)yo (¥2 ~ I~) with I[xo II = 
Ilyo[[ = 1, to =id~ or ~ o = [ . [ ,  then S is continuous,  and [(S(2xo),S(l~xo))l  = 

](tn0.)yo, co(#)Yo)l = ]~o0.) • ~o(/~) I = 12" ~[ = 1(2xo, #xo)l (V2, # ~ ~) says that  S 
satisfies ( . ) .  

(b) Since dimn X > 2, any two points of  X \ { o }  can be joined by a polygon in 
X \ { o } .  Thus X \ { o }  is connected,  and z(X\{o})  c { - 1 ,  1} and (15) imply that  z is 
constant  on X \ { o ) ,  say t (x)  = to (Vx ~ X\{o}).  So S x  = (,4) = t o U x  (Vx ~ X\{o}).  
But So = o = %" o = Zo Uo, i.e., S = zo • U with to ~ { -  1, 1 }. By Corol lary 8(a), U 
is a linear isometry, and so is S. - -  The  converse statement is valid by Remark  5(c). 
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(c) F o r  every  x e X, c h o o s e  f ( x ) ~  • such t h a t  z ( x ) =  e¢tX); f ( x )  is u n i q u e  

rood  2n. By (15),  cos  o f =  R e  z ( . )  a n d  sin o f =  I m  z ( - )  a re  c o n t i n u o u s  on  X \ { o } ,  

a n d  S x  = ~ 4 ) =  e ¢~x)Ux (Vx ~ X).  - -  Conve r se ly ,  let  U: X ~  Y, f :  X ~ R  have  the 

p r o p e r t i e s  r e q u i r e d  a n d  define S:  X ~ Y by  S x  = e ¢ ~ ) U x  (Vx ~ X).  U satisfies ( , )  

by  R e m a r k  5(c),  a n d  then  so d o e s  S. R e  e ' s /~  = cos  o f  a n d  I m  e is~ ) = sin o f  a re  

c o n t i n u o u s  on  X \ { o } ,  and  so is e ~r~). Since U is c o n t i n u o u s ,  S is c o n t i n u o u s  on  

X \ { o } .  L e t ~  E ~ *  be  a r b i t r a r y ,  x e X a n d  ]ix H < e  i m p l y  [IUxl] < ~ ,  so IlSx n <e,.  

Since So = o, S is c o n t i n u o u s  a t  o. In  the to ta l ,  S is c o n t i n u o u s  on  the w h o l e  o f  X. 

REMARK 14. C. A l s i n a  a n d  J. L. G a r c i a - R o i g  ([3], p. 214, T h e o r e m  1) p r o v e d  

the special  case  X = Y = ~" (n e ~ ,  n > 2) o f  T h e o r e m  13(b) by  a d i f ferent  m e t h o d .  
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