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The classical method of determining subgroups of a given continuous group of 
transformations, due to S. Lie, has an analytical character and therefore presupposes 
the regularity of the unknown functions. Another method in investigating the above 
mentioned problem is to solve the functional equations to which the group property 
(really the associativity alone) of the respective transformations lead. This can give 
irregular solutions or show that all solutions are regular, depending on the type of 
the equations obtained. 

In this paper we explain this method on the example of determining certain one- 
parameter subsemigroups of the affine group of transformations 

p-+ fi = oep + fl (ot v~ O ) 

in a one-dimensional space, and then we determine all homomorphisms and, in par- 
ticular, all isomorphisms between some pairs of subsemigroups thus found (cf. also 
[2], where all endomorphisms of the - two-parameter - affine group where deter- 
mined). In the semigroups we permit also ~ =0  

1. The general form of the transformations of a one-parameter subsemigroup 
would be 

p-~  p = ~ ( . )  p + f l ( . ) .  (1) 

The supposition that this set of transformations is closed under superposition means 
that 

fi = a(v)  fi + fl(v) = ~(v) o~(u) p + c~(v) f l (u)  + f i(v)  (2) 

and at the same time 
= : , ( ,o  ~) ~, + 11(,o v) (3) 

where u o v is the new parameter value resulting from the composit ion of  the parameter 
values u and v. 

Comparison of (2) and (3) leads to the system of functional equations 

(Uo v) = ~ (v) 7 (u) (4) 

/~(Uo ~) = ~(~) /~( , )  + /~(~) .  (5) 
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We will consider this rather  difficult system of functional equations only when either 
c~ or fl is injective. I f  the function ~ is injective, then s = ~ ( u )  can be introduced as new 
parameter  and, with the notat ion q$ ( s )=  fl [ ~ - I  (s)], ( l )  goes over into 

p ~ f i  = sp + c~(s) (6) 
and (4), (5) into 

(J (st) = t~ (s) + (9 (t). (7) 

If, on the other hand, fl is injective, then we introduce x=fl(v)  as new parameter  and 
denote ~ , (x )=~  [ f l - ' ( x ) ] ,  so that  (1) and (4), (5) become 

p -+ p = q, (x)  p + x (8) 

and 
~, Ix  + y~, (x)] = ~, (x) qs (y) ,  (9) 

respectively. We will restrict ourselves to t ransformat ions  of the forms (6) and (8) and 
so to the functional equations (7) and (9). 

Much of our considerat ions remains valid in more general commutat ive  fields, but  
here we will deal with reals. 

Now, it is very easy to solve equation (7). By the commutat iv i ty  of  multiplication 
we have 

t(~(s) + dp(t) = ~6(st) = q~(ts) = sc~(t) -4- ~(s) ,  

or, by choosing a constant  t = t o # 1 and denot ing y = ~(to)/(t o -  1), we have 

~(s) = ~ ( s -  1) (lO) 

which satisfies (7) for arbi t rary constant  y. 
Notice that  we have not  supposed that  (7) is satisfied for all real s, t, only that  the 

set S of (s, t) for which it is satisfied is symmetric: (s, t ) ¢ S ~ ( t ,  s ) ¢ S ( a n d t h a t t h e r e  
is a t #  1 ; but if S =  {(1, 1)} then (7) gives ~b(1)=0, so (10) is true also in this case). 
We summarize:  

T H E O R E M  1. All solutions o f  the fimetional equation (7) over a symmetric subset 
o f  the real plane, whose domains contain with each s and t also st, are given by (10) 
with arbitrary constant Y. 

Thus all one-parameter subsemigroups of  form (6) of the one-dimensional affine 
group are given by 

p ~ s p  + y ( s -  1) (11) 

where 7 is some constant. The composition (4) of parameters is of  course (s, t )~st .  
So in this case all  subsemigroups are analytic. I f  we are interested in subgroups 

then s = 0 has to be excluded. The largest subgroup is corresponding to ( -  co, ~ ) ~  {0}. 
The largest proper subgroup of this is (0, oo). The unit element is 1. 
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The result (10) means that  for/~=~be 

p ( u )  = 7 D ( u )  - 13 ,  

thus whenever ~ is injective and 7¢0,  then also fl is injeetive. If  7 = 0  we get from (1 I) 
p~sp,  that  is, subsemigroups of  the eentroaffine group. 

With equation (.9) things are much more complicated,  even i f  (9) is supposed valid 
for all pairs (x, y) of real numbers.  In this case it was recently completely solved by 
S. Wotod~ko [5], while all differentiable resp. all continuous solutions were found 
earlier ([1] and [3], respectively). All differentiable solutions are 

(x) = 0 (12) 
and 

( x )=  l + 3x (13) 

while all continuous but not differentiable solutions are of  the fo rm 

tP (x )={ lo+6X for for x>~-l/6X<<'-l/6 ( 6 < 0 )  } (14) 

o r  

} 0 ( x ) =  + d x  for x 1 > - 1 / 6  

where d in (13), (14), and (15) is an arbi t rary  constant  in ( -  o% oe), ( -  o% 0), or 
(0, oo), respectively. 

As it was shown in [3], the equat ion (9) has also non-cont inuous but  measurable 
and many non-measurable  solutions. The Dirichlet  function 

/ ;  for  rat ional  x 
(x) = for i r rat ional  x 

is an example of  a non-continuous,  but  measurable and bounded solution. This 
solution is trivial in the following sense: Equat ion (9) shows tha t  with y~ and 72 in 
the range of ~9, also their product  YlY2 will be in the range of  ~. So the range is an 
infinite set, except if ~ does not  take any values different from 0, 1, - 1. These latter 
solutions which do not  take any values different f rom 0, 1, - 1 are called trivial so- 
lutions. 

An example of  a non-bounded,  non measurable solut ion is 

4, (x)  = 1 + a (x)  

where a is an arbi t rary additive function whose values are ra t ional  and not  all zero 
on a Hamel-basis.  (As it is well known, [2], any function given arbi t rar i ly  on a Hamel-  
basis can be extended to an additive function for the reals). I f  the value of a on an 
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element  h o-¢ 0 of the Hamel-basis  is chosen to be 0, then this solution has arbi t rar i ly  
small periods,  because for any (arbitrari ly small) ra t ional  r 

~(x  + rho) = 1 + a (x  + rho) = 1 + a(x)  + ra(ho) = 1 + a(x)  = ~(x) .  

Solutions which are periodic with arbi t rar i ly  small periods are called microperiodio 
In [3] also all non trivial, non microperiodic solutions of (9) have been determined.  

These are 
~9(x)= {~ + 6x if  l + 6 x e G  } 

if 1 + 6xq~G, (16) 

where 6 is an arbi t rary constant ,  while G is an arbi t rary multiplicative subgroup of 
the mult ipl icat ion group of  real numbers  which contains elements different from 1 
and - 1. 

As the solutions [(12) and] (14), (15), (16) show, if fl is injective, even bijective, 
= ~9 fl might  not  be injective. But in (8), ~ should be different f rom 0, so we will 

consider  only solutions which are 0 at  most  in one point.  This excludes among others 
the solutions (12), (14), (15), and (16) if G # ( - o o ,  oo). 

We prove here the following Theorem (cf. [1]): 

T H E O R E M  2. The solutions o f  the functional equation (9) over the real plane, 
which are 0 at most in one point, are given by (13). 

Thus all one-parameter subsemigroups o f  the J'orm (8) of the one-dimensional affine 
group with x running through the reals and @(x)=O for at most one x are given by 

p ~ ( l  + 6 x )  p + x  (17) 

where 6 is an arbitrary constant. The composition (5) of  parameters is 

(x, y) ~ x oy  = x + y + 6xy.  

In the case of Theorem 2, we have 

~(u) = 1 + 6fl(u). 

If  6 = 0, then we get from (1) p ~ p  + x, that  is, the group of  translations. I f  6 ~ O, then, 
fl being bijeetive, also ~ is bijective. 

Proof o f  Theorem 2. Firs t  of all, by put t ing y = 0  into (9) we have 

(x) = ~, (x) ~,(o), 

so either we have (12), which is now excluded, or 

@(0) = 1. (18) 
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If O(x)= 1 for all real x, then we have (13) with 6 =0. If however there exist x 

with ~b (x) ¢ 1, (19) 

then put into (9) such an x and 

in order to get 

Because of (19) 

X 

Y = i =  ~b (x i 

X X 

But, by supposition, there exists at most one Xo such that 0(Xo)=0, so 

X 

J - ~ ( x )  = x 0  

for all x satisfying (19). By (18), Xo4=0, and writing - l /xo=6, we get 

0 (x) = 1 + 6x for all x for which 0 (x) ~a 1. (20) 

If there were x¢O for which ~,(x)= 1 and also y¢O for which 0 ( y ) =  1 +6y, then 
for such x, y equation (9) states 

O(x + y) = 1 + 6y. (21) 

But, by (20) either ~ , (x+y)=  1 + 6 ( x + y )  or O ( x + y ) =  1. In both cases, when com- 
pared with (21), we get 6=0. Thus either ~b(x)= 1 or ~b(x)=l +6x  for all x, that is 
(13) holds (by (18) also for x=0) ,  what was to be proved. The rest of the statements 
is obvious. 

It should be emphasized that Theorem 1 determines all subsemigroups of  the form 
(6) - j u s t  take (11) with s in an arbitrary real set closed under multiplication - while 
Theorem 2 determines only those subsemigroups of the form (8), where x takes all 
real values and 0 is 0 at most in one point. These are given by (17). It is easy to see, 
that (13) with 6 # 0  is the most general injective solution of (9), even (/(9) is supposed 
only on an arbitrary symmetric set. 

If we are interested in groups, then the value x =  - 1/6 has to be excluded from 
the real line, so the largest subgroup is that corresponding to ( -  oo, oe)N { -  1/6}. The 
largest proper subgroup of this is that corresponding to whichever of the intervals 
( -  oo, - 1/6), ( -  1/6, oo) contains 0. The unit element of such a subgroup corresponds 
evidently to x=0.  
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We can say moreover,  i f  a subgroup contains a whole neighborhood of  the unit 
element, then it has to contain the whole subgroup corresponding to whichever o f  the 
intervals ( -  oo, - 1/6), ( -  1/6, oo) contains 0 and thus it is either this subgroup itself 
or that corresponding to the entire ( -  0% o 0 ) ~  { -  1/c5}. In  fact, for  (17), the composi-  
t ion is, as ment ioned in Theorem 2, Xo y = x + y + 6 x y ,  while the inverse element has 
to be defined by xo x ( - ~ ) = 0 ,  that  is 

X ( _ I )  ~--- ~ X 

l + 6x 

A subgroup has to contain x (") for all integer n (x(° )=0,  x ( " + l ) = x  o x ("), n = 0 ,  1, 2 . . . . .  
x~-" )=  [x~-l)](")). The limits z of x (") as n ~  ___oo, satisfy Zo z=z .  The finite fixed 
points  of z ~ z ( 2 ) = z  o z = 2 z + 6 z  z are z = 0  and z =  - 1/6, moreover  z = 0  is a repulsive 
fixed point,  while z =  - 1/6 and also oe and - oo are at tractive fixed points  (cf. [4]). 

2. Now we turn to the determinat ion of the homomorphisms  between semigroups 
of the forms (11) and (17) (from (17) into (11) and f rom (11) into (17)). 

I f  the subgroup (17) is homomorph ic  to a subgroup (11), then x = f ( s ) ,  y = f ( t )  and 

f ( s t )  = f ( s )  + f ( t )  + 6f(s) f ( t ) .  (22) 

In the case 6 - 0  we have 

f ( s t )  = f ( s )  + f ( t ) .  (23) 

If  (23) is supposed for a set of  real, nonzero s, t (including - 1 and with s, t also st), 
then its general solution is 

f ( s )  = a ( log l s l )  (s ¢ 0) (24) 
where a is addit ive:  

a (u + v) --- a (u) + a (v). (25) 

I f  on the other  hand (23) is supposed only for positive s, t, then the general  solution 
is ([21) 

f ( s )  = a ( logs) (s > 0), (26) 

where a again satisfies (25). (The formula  (24) follows f rom (23) and (26) by observing 
f ( 1 )  =0 ,  and f ( - 1 ) = 0  by put t ing s =  t = -  1 in to  (23) and then, for s:A 0, t =  sign s 
f ( s ) = f ( [ s t )  + f ( s i g n  s ) = f ( N ) = a ( l o g  Is]): this is, why we have supposed that  t =  - 1  
is an  admissible substi tut ion in (23).) 

Now take the cases 6 5 0 .  Mult iply both sides of (22) by 6 and add 1: 

1 + # ' (s t )  = 1 + 6f(s)  + 6 f ( t )  + 62 f ( s ) f ( t )  

or with m ( s ) =  1 +6f(s ) :  
m(s t )  = re(s) m(t)  (st ¢ 0).  (27) 
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The most  general real solutions of (27) are (see [2]) 

m(s)  = 0 and m(s) = e "(l°gs) , 

if only positive x, y are considered, but  

m ( x ) = 0 ,  m ( s ) = e  "O°gbD and m(s)=e""°gtShsigns ,  

if both positive and negative s, t are considered (including - I). So 

.t(~) = - 1/a 
o r  

1 ea(logs) __  1 (s  > 0) 
f ( s )  = 3 6 

in the first case and 
1 1 

e a ( l o g  j s j )  _ _  
f ( s )  = -- 1/a, f ( s )  = 6 3 

o r  

1 1 
d0og N) s igns - (s # 0) f ( s )  = 8 3 

in the second, where a again satisfies (25). 
Thus we have proved the following Theorem. 

(28) 

(29) 

(30) 

(31) 

T H E O R E M  3. I f  subsemigroups o f  the form (1 l) contain only positive parameters 
s, then all their homomorphisms into the semigroup (17) have the .forms (26), (28) or 
(29), while i f  both positive and negative s are considered (including - 1 ) ,  then they are 
all of  the forms (24), (30) or (31), where a is an arbitrary function additive on the set 
of  logarithms o f  the absolute values o f  the parameters s. 

Of  these only (26), (29) and (31) can be injective and these ifi and only i f  the values 
of a on the Hamel-basis elements (the exponentials of  which are s-values belonging to 
the semigroup o f  transJbrmations (1 l))  are (rationally) linearly independent. I f  ht par- 
titular s in (I 1) runs through all positive or all nonzero numbers, then (26), (29) and (31) 
respectively with a as above give all isomorphisms with the group (17) on ( -  0% o o ) ~  
{ - l l a } .  

Ij" moreover f is bounded #1 a neighborhood (or on a set qfl positive measure), then 
in all these formulas a(z)  should be replaced by cz. 

(The last statements follow from well-known results on the functional equation 
(25), see e.g. [21.) 

I f  we look for homomorphisms  g of  the groups (17) into (I 1) (with s arbitrary),  
then we get in the same way 

g(x  + y + axy)  = g(x)  g(y)  
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with the general solutions 
g (x) = 0 (32) 

and g (x) = e "¢~) (33) 

in the case 6 = O, while for 6 # 0 the general solutions are 

g (x) = 0, (34) 
g(x) = e a(l°g I1 +6xl) ( 35 )  

and 
g(x) -- e "°°g I, +~1)sign(1 + 6x), (36) 

/f(17) is taken for all x in ( -  oo, oo ) ~ { -  1/3}, while all solutions are given by (34) and 
(35) tf  (17) is taken only for that one of  the intervals ( - o o ,  -1/6) ,  ( -1 /6 ,  or) which 

contains O. 
Of  these, i f  the values of a on the Hamel basis are linearly independent, then (33) in 

both cases, (36) in the case of  two intervals and (35) in the case of  one interval are 
injective, but only (36) is bijective [(33), (35) are not surjective] and so only (36) gives 
an isomorphism - the same as (31). 

In case where y6= 1, the subgroups described by (11) and (17) are not only iso- 
morphic, but, up to notations, identical. 

Theorem 3 took care also of the case where only subsemigroups of the groups (11) 
were considered, that is, essentially subsemigroups of the multiplicative group of real 
numbers. Now there can also be homo- and isomorphisms between different subsemi- 
groups of this multiplicative group. We show how functional equations work in de- 
termining them on an example. 

The nonzero rational numbers evidently form a group under multiplication. Let 
us look for homomorphisms of  this group into other subsemigroups of the multipli- 
cative semigroups of  reals. We evidently have to do with the functional equation 
[el. (27)] 

m (xy) = m (x) m (y) x, y nonzero rationals. (37) 

In order to solve this, first notice that, except for the trivial solution 

m (x) = 0, (38) 
(37) implies with y =  1 

m(1) = 1 (39) 
and, with x = y =  - 1, either 

m ( -  1 ) = 1  (40) 
o r  

m ( -  1 ) =  -- 1. (41) 

Notice also that if m(x )=0  for one x=A0 then it is always 0, i.e. we have (38) again, 
because m(z )=m(x . z / x )=m(x )m(z / x )=O for all z. 
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Now we express the values of m on the integers greater than 1 with aid of its 
values on the primes: As (37) evidently implies 

m(x ,x2  ... Xk) = m ( x , )  m(x2). . ,  m(Xk) 

and m (x k) = m (x) k , 

kl k2 k.l " ] so, for n = Pl P2 ' "  P j  (n > l, mteger, Pl . . . . .  pj primes) (42) 
re(n) m(px)k~m(p2) k2 ... m(p, )  k" . 

For positive rational r we get re(r) by observing that (37) and (39) imply 

m(1/y)  m(y)  = 1 and m(x/y)  = m(x ) /m (y ) .  
So 

\hE~ = ni (n2) (n l '  n2 positive integers). 

Finally, for negative rationals we get in the case (40) 

m - -  ~ m  = 
,12 n2 re(n2) 

and in the case (41) 

(43) 

(44) 

m - -  n2  = - m = -  r e ( n 2  ) .  ( 4 5 )  

Reciprocally, it is easy to see, that choosing the values ofm arbitrarily, but different 
from 0, on the positive primes, the functions defined by (39), (42), (43) and either (44) 
or (45) all satisfy the functional equation (37). We have yet to state that the definition 
(43) is unambiguous, because 

m \ k n z , ] = m ( k n 2 ) = m - ( k ) m ( n 2 ) = m ( n z i  = \ n 2 /  

So we have proved the following Theorem: 

THEOREM 4. The general real solution m of(37), which is not identically zero, is 
given by choosing the values of  m fbr  positive prime arguments arbitrarily different from 
zero and extending its definition by the formulas (39), (42), (43) and either (44) or (45). 
- These give thus all homomorphisms of  the multiplicative group of  rationals into other 
multiplicative subsemigroups (subgroups) o f  the multiplicative group o f  reals. 

I f  and only i f  the logarithms o f  the absolute values o f  the values o f  m chosen on the 
positive primes are linearly independent (integer coefficients) and the further definition 
o f  m happens by (39), (42), (43) and (45), then m is injective and thus an isomorphism 
onto its range. 
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Such isomorphisms evidently can not  exist if the considered second multiplicative 

group is not  countable. But by Theorem 4 this second, imagegroup also can not consist 
of  the powers of  one number or of  products o f  powers o f  af ini te number o f  integers 
(and possibly their negatives) alone, because then there would be only one resp. a finite 
number of  linearly independent numbers (in the sense of  integer coefficients) in the 

range of  loglm[ and not infinitely many (for all loglm(pj)l,  pj  running through all 

primes). 

We see that in Theorem 4 the logarithms of  the prime numbers take the role 

previously played by the Hamel  bases (they are bases for the logarithms of  the po- 

sitive integers in the sense of  integer coefficients). 

We wish to finish these remarks by stating that we did not  aim at completeness 

nor  absolute novelty, we only wanted to show how a general method works in a 

rather broad field. 
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