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On the Fundamental Approximation Theorems of D. Jackson, 

S. N. Bernstein and Theorems of M. Zamansky and S. B. Ste~kin 

P. L. BUTZER 1) and K. SCIqERER (Aachen, Germany) 

To A. M. Ostrowski on the occasion of  his 75th birthday, September 25 1968 

1. Introduction 

The direct theorems of D. JACKSON and the inverse theorems of S. N. BERNSTEIN as 
well as their generalizations by A. ZYGMUND play a fundamental role in the theory 
of approximation of periodic functions by trigonometric polynomials. Of further 
importance is an interesting theoxem by M. ZAMANSKY on derivatives of trigono- 
metric polynomials which converge uniformly towards a periodic function with a 
given order of approximation. This result has so far played a somewhat isolated role 
in approximation theory. Then there is a theorem of S. B. STECKIN on estimations 
of the convergence of the r th  derivative of these trigonometric polynomials towards 
the r th derivative of the function. 

It is the purpose of this paper to establish a converse not only to the Zamansky 
result for p o l y n o m i a l s  o f  bes t  a p p r o x i m a t i o n  (as well as for a general class 
of linear approximation processes) but also to the theorem of Sterkin. These results 
enable one to state connections between the theorems in question that do not seem 
to have been observed before. Indeed, it may (roughly) be said that the assertions of 
the theorems of Jackson, Bernstein, Zamansky and Sterkin are equivalent to another 
for polynomials of best approximation (cf. Theorem 2.2) as well as for a general 
class of linear approximation processes. The results presented will be established not 
only for C2~ or k ~  functions but also in the setting of the theory of intermediate 
spaces. The essential aim is to examine the inner structure of the classical proofs in 
order to be assured which elements can be carried over to the abstract setting. 

The contribution of the second-named author was supported by a DFG research 
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of Wisconsin, on Nov. 3, 1966. The material of See. 2 was presented at the University of Stuttgart 
on Febr. 15, 1968. 
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2. Interconnecfions Among the Fundamental Theorems 

Let usdenote a trigonometrical polynomial of degree ~<n by t . (x) and the corre- 
sponding linear space by T.. For the sake of simplicity we restrict the discussion in 
this section to the uniform norm N ftl = sup If(x)l for the elements f ~ C  2 ~. Setting 

X 

E , [ f ] =  inf l l f - t ,  fJ ( f e C 2 ~ ; n ~ N )  (2.1) 
tn E Tn 

then E o [ f ]  ~> E~ [ f ]  ~>-.-, and by the theorem of WEIERSTRASS 

lira E, I f ]  = 0. (2.2) 
n--+ c~ 

Here N denotes the set of all non-negative integers. A result of P. KIRCHBERGER as- 
serts that for eve ry fe  C: ~ and n ~N E . ( f )  is attained, i.e. there exists a t,* (x) = t,*(f; x) 

T, such that 

E, [ f ]  = I[f - t*ll. (2.3) 

Moreover, the polynomial t* of best approximation is unique. 
We first state the cited theorems in a form needed below. For f 6 C  z~ we write: 

f~Lipc~ if there is a constant M > 0  such that I f ( x + h ) - f ( x ) l < ~ M [ h l  ~ for all x; 
f e L i p *  c t i f l f ( x + h ) + f ( x - h ) - 2 f ( x ) l < < . M * l h [  ~ for all x ; f e W  if I f ( x + h ) -  
-f(x)l <~M'lh logll/hll for all x. 

THEOREM (JACKSON). I f  f e C 2 ,  and f ( r )eLip~ where 0<ct~< 1 and r e N ,  then 
E, [ f ]  = O ( n - ' -  "). 

In the course of the proof (see e.g. CHENEY [6, p. 145], MEINARDUS [11, p. 55]) 
one may derive the important inequality 

E. [ f ]  ~< (c/n) r jlf (r) ll (c = 1 + 7r2/2) (2.4) 

which is valid iff(r)~C2~. We refer to it as the J a c k s o n  i n e q u a l i t y .  

THEOREM (BERNSTEIN). I f . f e e  2 r~ and E. [ f ]  = O(n -r-~) where r e N and 0 < c ~  1, 
then f possesses continuous derivatives of  orders 1, 2 . . . .  r and 

f(r) e~Lipc~ for  0 < ~ <1  
t W for ~ = 1. 

It is to be noted that the very elegant proof by S. N. BERNSTEIN makes use of the 
well-known 'inequality of Bernstein' valid for any t.~ T.: 

1172)11 ~< n" Ilt.ll • (2 .5 )  
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The latter theorems are converses of  each other only for 0 < ~ < 1. Indeed, i f f ~ L i p  1, 
then E.[ f ]=O(n-1 ) ,  but  not  conversely as the part icular  function f ( x ) =  

~ k - 2 s i n k x  shows. However ,  in the case ~ =  1 we have (see [19]) 
k = l  

THEOREM (ZvGMUND). Let f ~C 2 ~and r ~N. Then E, I f ]  = O(n -r- 1 ) ~ f t r ) ~ L i p .  1. 

More generally, for 0 < ~ < 2, E, I f ]  = 0 (n -r-  ~) ~ ftr) e Lip* ~. 
I t  is easy to see that  

L ip l  c Lip* 1 c W  c Lip~ ( 0 < ~ <  1), 
Lip*~ = L i p s  (0 < ~ < 1). 

THEOREM (ZAMANSKY). Let f ~C2~ and tn~T ~ such that 

IIf - t,i[ < n l - t~o(n)  (n, l e N ,  1/> 1), 

where ¢p(x) is a positive strictly increasing or decreasing continuous function of x. 
Then the lth derivative of t, satisfies the inequality 

n 

Ir "~' f t. II<A~+A~n~o(n)+A3 q~(x)dx, 
1 

where A~, A2 and A3 are constants. 
For  a proof ,  see M. ZAMANSKV [17, p. 26]. 

COROLLARY 2.1. I f f e C 2 ~  is such that I l f - t ,  II = O ( n  -~) for f l>0 ,  then Ht(~)ll = 
O(nl-~)for l e N  with fl<l. 

THEOREM (STECKIN). Let f e C 2 it and t, e T, such that 

llf - t.t[ ~< F.+~ ( n ~ N ) ,  

~X3 

where F. + 1 is non-increasing with respect to n and ~ n k- 1 F. < ~ for some k ~ N. Then 
n = l  

the kth derivative o f f  exists as an element of Cz ~ and satt'sfies 

[[f(k)-- t:k)'l <~ A4 ) nkF"+' +~=,,+l ~ vk-I F~'I ( n ~ N ) ,  

A 4 being a constant. 
For  a p r o o f  see S. B. STE6S:lN [14, p. 236]. 

COROLLARY 2.2. I f  for f e C z .  holds E,  I f ]  = 0 (n- ~), where ~ > O, then f(k) ~ C2, 
and I[ f (k) _ t*(~) (/)[1 = O (n k- ~) for k < 7 and k ~ N. 

This s ta tement  may  also be derived by a theorem of  J. CZIPSZER -- G. FREUD [7] 

and its generalization by A. L. GARKAVI [9]. 
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We next state the converse to the corollary of  the Zamansky theorem in case 

t , (x)  is replaced by the polynomial t* (f ;  x) of  best approximation to f E  C 2 ~. 

THEOREM 2.1. If f ~C2= is such that 

ILt*")( / ) l l  = O(n '-~1 (0 < ~ < 1, l~N) 
then 

Ilf - t, (J')H = O(n -e )  • 

This theorem was first established by P. L. BUTZER - S. PAWELKE [4] for functions 
f b e l o n g i n g  to the Hilbert space I_ 2 = as a special instance of  a general theorem giving 
necessary and sufficient conditions upon trigonometric approximation processes such 
that  they possess the property of  the corollary to the Zamansky theorem and its 
converse. 2) In the case of  functions fbe long ing  to C2 = or l.~ =, 1 ~<p < oo, we refer the 
reader to the interesting direct proof  by G. SUNOUCHI [15] which rests upon  the 
Jackson inequality (2.4) applied to t* . ( f ;  x). We remark further that H. BERENS [1] 
has proved a counterpart  of  the Zamansky result and its converse for holomorphic  

semi-groups of bounded linear operators (see Sec. 4). 
We now come to the first fundamental  theorem which links the results o f  Za- 

mansky and its converse and of  Steekin with those of  Jackson and Bernstein. 

THEOREM 2.2. Let f e e  2 ~ and let t * ( f )  be the po@nomial of  best approximation 
to Ji The following assertions are equivalent to another for 0 < k < r + ot < l and 0 < ~ < 2 

(r, k and l e N ) :  

a) 
b) 
c) 
d) 

I)f - t* (f)ll = 0 ( n - ' - = )  ; 

f(k) e C 2 ~ and ]If (k) - t *(k) ( f  )[[ = 0 (n k-~- ~) ; 

I] t*(')(f)If = 0 (n '-~- ~) ; 

j'(r)e Lip* a.  

Proof. The implication a) ~ b) follows by Corollary 2.2 (with 7 = r +~). The fact 

that  b ) ~  c) follows immediately by 

LEMMA2.1. Le t f ( k )eCz~ .  I f  Hf(k)--t¢~)N=O(n k-r-~) for 0 < k < r + ~ t ,  then 

IltL')ll = O ( n l - r - ' ) J b r  16N with r +c~</. 
- ,  , II I t .  ] II = Indeed, apply Corollary 2.1 to the ( / - k ) t h  derivative of  t (k) giving Ik) (l-k) 

O(n l-k+(k- '-~))  for 0 <  r + ~ - k  < l - k .  
Furthermore,  the implication c ) ~ a )  is a consequence of  Theorem 2.1 (with 

fl = r +e ) .  Finally, the equivalence a)¢:-d)  is asserted by the theorems of Jackson, 

Bernstein and Zygmund.  The proof  of  the theorem is thereby complete. 

2) Note that Theorem 2.1 does not hold for arbitrary tneTn; cf. [4, p. 174f.]. 
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The next problem is to see whether Theorem 2.2 may also be formulated for 
particular trigonometric approximation processes. For a general answer to this 
question we refer to Section 4; here we consider the typical means. 

Denoting the nth partial sum of the Fourier series o f f e C 2 ~  by S,( f ;  x), thus 

f ^  (v) = (1/2 f ( x )  e -'~~ dx, S , ( f ; x ) =  ~ f ^(v) e '~x, 
v = - n  

their typical means are defined by 

R , , t ( f ; x ) =  ~ { 1 - ( [ v l / n + l ) ' } f ^ ( v ) e  'vx ( l > 0 ;  n = l , 2 , . . . ) .  
v = - n  

In case l = 1 these are the Fej4r means. Denoting the conjugate function of f by f ~ ,  
we also set 

f{r}(x) = I f ( ° ( x ) '  r even f{°}(x) = f ( x )  
i( f~)(~)(x),  r odd ' 

THEOREM 2.3. I f  f ~ C2 ~, the following assertions are equivalent for 0 < k < r + ~ < l 
and O<o~ <2 (r, k and leN): 

[If - R. , t ( f ) [I  = O(n-r-a); 
f(k)e C 2 ~ and IIf ¢k' - R(~k,~ (f)[I = O (n k-'-~) ; 

[IR~ft (f)rl = O (n t-r-~) ; 

f ( ' )  e Lip* a.  

a) 
b) 
c) 
d) 

Concerning the proof, the equivalence of the assertions a), c), d) follows by 
P. L. BUTZER -- S. PAWELKE [4] and the implication a) =~ b) by the theorem of Ste~kin. 
The fact that b) =~ c) may be derived for even l by Lemma 2.1. I f  l is odd and b) is 
valid for such 1, then it follows readily that b) is also valid for I replaced by l + 1. 
Thus again by Lemma 2.1 the assertion c) holds for l replaced by l + 1. But this is 
equivalent to d) and therefore to c). 

3. The Fundamental Theorems for Approximation and Intermediate Spaces 

In this section we treat the problems discussed in Section 2 in the case of best 
approximation in the setting of the theory of intermediate spaces. 

Let X be a Banach space and Po = {0} c P1 c ... P, c ... a sequence of subspaces 
of  X. The best approximation of order n to an e l e m e n t f ~ X  is defined by the quantity 

E n [ f ]  = inf [If - P, II ( n ~ N ) .  (3.1) 
Pn ~ Pn 
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It  is useful to introduce the notion of  an a p p r o x i m a t i o n  s p a c e  Y o f  X. Such 
a space is a Banach space with the proper ty  3) 

P . c  ¥ = X ( h e N ) .  (3.2) 

With the help of  the quantities E. I f ]  we can construct special approximat ion  spaces 
introduced by J. PEETRE [13]. 

DEFINITION : We define by Xo, q the collection of all elements f E X for which 

Itfllo, q = I]/ll + ( n ° E . [ f l )  q lll/q 1 n l  < ~ (3 .3)  

(0 real; 1 <~q < oo, usual modification for q = oo). 
One can show that  the X0,q are non-trivial approximat ion spaces under the n o r m  

I]fllo, q for 0 > 0 .  In view of  the monotonici ty  of  E, [ f ]  and a slight modification of 
the Cauchy condensat ion criterium it follows tha t  

I ~  (2"°E2,[f])~ll/q (3.4) II f II + G ~  ° 

is an equivalent no rm to [Ifl]o,q. In the following we need two assumptions on E,  I f ]  
(see also (2.2) and (2.3)): 

lira E ~ [ f ]  = 0 ( f E X ) ,  (3.5) 
n ~ o o  

and to each given f e  X and n s N there exists 4) an element p* ( f )  e P, such that  

E, [ f ]  = Ilf - P* (f)]f • (3.6) 

Generalizing the notions of  the Jackson and Bernstein inequalities (2.4) and (2.5) 
of  Section 2 we say that  a Jackson-O'pe inequality of order ~, ~ > O, is satisfied with 
respect to the approx imat ion  space Y of  X if 

E , I - f ]  ~ Cn-~l l f l lx  ( n e N ;  f e V ) ,  (3.7) 

and an inequality of Bernstein-type of order cr, ~r>~O, if 

IIp.[IY ~< Dn~kl P.It 5) ( n e N ;  p , e  P,).  (3.8) 

Here,  C and D are positive constants  depending only upon  Y and or. Finally, we 

3) Here and in the following the symbol ' c '  means a continuous embedding. 
4) For questions concerning the existence of an element p,~* (f)eP~ see e.g. the recent book by 

I. SINGER: Cea mai bun~ approximare in spatii vectoriale normate prin elemente din subspatii vec- 
toriale, Bucuresti 1967 (386 pp.), and the literature cited there. 

5) Norms taken with respect to X are denoted by L i" L i, with respect to Y by H" i iv' 
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consider for 0 < t < oo and every f ~  X the function norm 

K ( t , / ;  X, Y) = inf (tIfl In + t IIf2l]¥) (3.9) 
f = f l + f 2 ,  f2~Y 

introduced by J. PEETRE [12]. It can be shown that K(t ,  f ;  X, Y) is a monotone 
continuous function in t for every f ixedfE X. 

DEFINITION : The collection of  all elements f 6 X with 

I{fIlo, q;~ = [ t - ° K ( t , f ) ] q  dt/t a/q <oo (3.10) 

is denoted by (X, Y)0,q; ~¢ (0 real; 1 <<. q< o% usual modification for q= oo). 
For 0 < 0 < 1 ,  l~<q<oo and 0~<0~<1, q=oo  the (X, Y)0,q;K are i n t e r m e d i a t e  

s p a c e s  of X and Y under the norm (3.10), i.e. Banach spaces with the property 

V = (X, V)0. q; K = X.  

We are now able to prove the following 

THEOREM 3.1. Let Y be an approximation space of  X such that the properties (3.5) 
and (3.6) are given with respect to X and the properties (3.7) and (3.8) are given with 
respect to Y with order c~. Then the following assertions are equivalent for 0 > 0  and 
1 ~<q~<oo: 

I i) 2 "o Ez. [f])q '/q < oo ; 
n 

ii) (2"(°-~)llP * . ( f )  - P2 (f)llv)q 1/q < oo ; 
n = O  

iii) I c Y ,  ~=o ~ (2"(°-~l lP*"(Z)-  fllv)ql~/q <°° (0~<~r<0) ;  

iv) ~ (2,,o-=,llp..(f)ll .qll/~ (0 < 0 < o). 

Proof: We start with the implication i) .~  ii) where no restriction is made upon ~r. 
By the Bernstein-type inequality (3.8) it follows that  

[IPz*-+~(f) - Pz*J)llv ~< D'2("+~)~IIP*.+~(f) - P*-(f)IL ~< 2"2~D2"~E2.( f ) ,  (3.1 1) 

and therefore i) =~ ii). On the other hand, using the Jackson-type inequality (3.7) we 
have 

E2.(T) ~< E2. ( f  - p*.+~ (f))  + E2. (p*.+, ( f )  - p*. ( f ) )  

~< E2-+*(f) + 2-"~ liP*-+* ( f )  - P*-(f)l[v. 
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In virtue of (3.5), 

Ez,,(f) ~< C2 ¢ ~, 2-k~[]p*~(f) -- p~-~(f)[]¥, 
k = n  

(3.12) 

whence by an inequality of Minkowski (cf. [10, p. 227]) ii)~i). 
Now the equivalence of these assertions with iii) and iv) follows rather simply. 

Indeed, by 

]tP*-(f) -- f[]¥ ~ ~ t]P*k+~(f) - P2*~(/)H¥ (3.13) 
k = n  

and 

Ilp ,,(f)ll, Y, IIp  (r) - (3.14) 
k = O  

respectively, where p 1~2 ( f ) =  0, and again by the inequality of M inkowski, iii) follows 
by ii) in case 0~<0<~ and iv) by ii) in case 0<or<0 (the inequality (3.13) is valid as 
the sum converges by ii) if cr < 0). The converse directions are obvious. 

If we examine the structure of the above proof, we see that the implication i) ~ ii) 
is a direct consequence of the Bernstein-type inequality, while for its converse there 
is needed the Jackson-type inequality and  the classical Bernstein method of repre- 
senting a function by the limit of its polynomials of best approximation. The remaining 
non-trivial conclusions ii) ~ iii) and ii) ~ iv) then follow by the Bernstein-type repre- 
sentation (3.13) and the Zamansky type representation (3.14), respectively. 

While this theorem illustrates the function of the classical methods of proof in 
the abstract setting the next theorem to be formulated presents the above statements 
in a more convenient form. 

THEOREM 3.2. Let be YI and '(2 be two approximation spaces of X such that the 
properties (3.5) and (3.6) are satisfied with respect to X and the properties (3.7) and 
(3.8) with respect to Y1 and Yz with orders ~1 and ~2, respectively. Then the following 
assertions are equivalent for 0 <~ ~1 < 0 < 62 and 1 <~ q <~ ov : 

i o~ ltl/q 
a) i ,~ t  (n°E,[ f ] )qn l  < 0o; 

b) f e Y t a n d  ( n ( ° - ~ ' ) l l p * ( f ) - f l l v , ) q  l / q < ° e ;  
n 

c) i~=~ (n (°-~2) lip, (f)H¥2) ni < oo, 

d) f ~ ( X ,  Y2)0/,~,q;K, i.e. [Ifllo/~,q;~ < 0o. 

Proof." Here we need a refinement of the above proof. First of all, we replace u 
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by a continuous parameter t by defining 

I P*( f ) ,  n ~ < t < n +  1 
P * ( f ) = i  0 , O < t < l  

Then one can easily verify that a), b) and c), respectively, are equivalent to 

a)* ( t ° E , [ f ] )  q dt/ t  1/q < oo, 

0 

( t(°- ~i)[] Pt* (f)  -- f [I vl) q dt / t  '/q < oo, b)* 

and 

c)* (t ( ° -~)  [Ip* (f)[I¥~) q dt/ t  1/q < oo, 

respectively, so that we need only prove the equivalence of the latter three assertions. 
Furthermore, as in (3.12) we can derive for 0 < t <  

E t [ f ]  ~< 2 C ~ 4 "  ~ (t2k) -° '  I[P*2k(f) -- fll¥, (3.15) 
k = O  

and 

Et[f] ~< 2C24 ~ ~ (t2k) -°2 IIP*2~(f)[IV~. 
k = O  

Using the generalized Minkowski inequality we have by (3.15) 

(3.16) 

o o  eta • 

0 0 

o o  

0 

and thus b)* implies a)*. In an analogous way we obtain the implication c)* ~ a)* 
by (3.16). For the converses, inequalities corresponding to (3.13) and (3.14) combined 
with the estimate (3.11) give 

lip* ( f )  - f 1[ ¥~ ~< 2 D 1 2 "~ ~ (t 2k) °'1 E t 2~ I f ]  (3.17) 
k = O  

and 

IlP*(f)[lv2 ~< 2D22"2 ~ ( t 2 - k )  °2 Et2-~[f ]"  
k = 0  
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The implications a)* ~ b)* and a)* =~ c)*, respectively, now follow as in Theorem 3.1. 
Finally, we remark that the equivalence a ) ~  d) has been shown in [13]. 

The assertion b) in Theorem 3.2 is a characterization of assertion a) of the 
Ste6kin type, while c) is of the Zamansky type. The former one could also be called 
of reduction type as it reduces the order of approximation. 

If we consider the case X=C2~ where P, is the class of all trigonometric poly- 
nomials of order n -  1 then we obtain by Theorem 3.2 

THEOREM 3.3. Let f ~ C2~ and k, l and r~N. The following assertions are equivalent 
f o r l ~ q ~  ~ :  

a) 

b) 

c) 

d) 

i(n('+')E.[f])qnl. <oo; 
n 

ioo 
- - f  ) ] . i  <oo  < r +  ; f l l+ll  t.*'k)(f) ' )11 "1t''". (k 

i .  =~1 (,¢'+~<-')1I t*m (f)tl)q llq<oo ( 0 < r + ~ < / ) ;  

f (r)~Lip(~,  2, q; C2,  ) (0 < ~ < 2). 

Here the equivalences a)c:-b) and a ) ~ c )  follow by the corresponding equivalences 
of Theorem 3.2 if we choose Y1 = C~za~ ) and Y2 -- ~2~.¢'m Then all conditions of Theorem 
3.2 are satisfied with o I = k ,  O ' 2 = / a n d  O=r+~. Concerning assertion b) we remark 
that the graph norm can be replaced by llt*¢k~(f)--f(k)]l (see [5], Kap. 4). This has 
already been carried out in c) since r + ~ - / < 0 .  The assertion d) is a consequence of 

(C2n ,  C(l))Oll;q; K = Lip(0, 1, q; C 2 .) (0 < 0 < I, 1 <~ q ~< oo) (3.18) 

Here the generalized Lipschitz space Lip (0, 1, q; C2~ ) is defined as the collection of 
all e lementsf~ C2~ for which 

oo 

0 

where d l f ( x )  = ,,L= o ( I )  ( - l ) " ~ f ( x + m t ) ' m  Furthermore, with 0 = r  + e and 0 < e < 2 ,  

f eL ip  (0, l, q; C2~) is equivalent tof(r)~gip (e, 2, q; C2~) and tof ( ' )eLip(e ,  1, q; C2~) 
if 0 < ~ <  1. In the case q=  co the spaces Lip (e, l, oo; C2~ ) and Lip (c~, 2, oo ; C2~ ) are 
the classical Lipschitz spaces Lip c~ and Lip* ~, respectively, of Section 2. For all these 
facts see P. L. BUTZER - H. BERENS [3] and the literature cited there. 

As Theorem 3.3 contains Theorem 2.2 for q = o% Theorem 3.2 is a generalization 
of the classical results of Jackson, Bernstein, Zamansky and Ste~kin in the case of 
best approximation to approximation and intermediate spaces. 
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Finally, we wish to stress the fact that further applications of Theorem 3.1 are 
possible if X=L~, ,  l ~ < p < ~  and X = L P ( - ~ ,  ~) ,  l ~ < p < ~ .  In the latter case we 
use as P, the class of all integral functions of finite degree <~nz, where z > 0  is fixed. 
Then all assumptions in Theorem 3.1 are fulfilled (cf. A. F. TlMAN [16], Sections 4.8 
and 5.1) and we may obtain theorems similar to Theorem 3.2. For applications to the 
n-dimensional torus see [10a]. 

4. The Fundamental Theorems for General Approximation Processes 

In this section we consider the material of the preceding section for a very general 
class of approximation processes on Banach spaces. Such a process V is defined by 
a sequence of bounded and commutative linear operators {l~,}~ on a Banach space 
X to itself having the approximation property 

lim V . ( f ) = f  ( f ~ X ) .  (4.1) 
n ~ o o  

We also need information which connects the rate of approximation of the process 
V with certain subspaces of X. Inspired by the methods in Section 3 we here assume 
that there exists a Banach space Y c X such that V satisfies the inequalities 

II v . ( f )  - f [ I  ~< Cvn-°llf[I¥ ( f ~ Y ) ,  (4.2) 

V , ( / ) e Y ,  II V,(T)]I¥ ~< Ovn°l[fl[ ( / e X )  (4.3) 

for a certain Q > 0, where Cv, Dv only depend on V, Y and Q. 
We are now able to establish a theorem analogous to Theorem 3.1 for the approxi- 

mation process V and we shall see that thereby (4.2) and (4.3) play the part of (3.7) 
and (3.8), respectively, of  Section 3. 

THEOREM 4.1. Given an approximation process V on X and a Banach subspace Y 
of  X with the properties (4.2) and (4.3). The following assertions are equivalent for 
0 < 0 < ~ ,  l~<q~<~: 

i) IllJr + i 21 (n°HV. ( I )  - i l l )  q "q < ; 

ii) 2 "o If g2 . ( f )  - V2.- ,( f ) l l )  q I/q <oo ;6) 

iii) I[fll + . (2 " ° [ I r 2 . ( f ) - f l l ) q ¢ / q < o o  

iv) I[fl[ + ~ , Z  (2"(°-Q)[[V2"(f)l[¥) q a/q < oo ; 

6) As before we define V1/s(f)=O for allfEX. 
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vi) f e ( X ,  Y)o/o,q; K, i.e. tlfllo/~,q:K < oo. 

All quantities i)-v) define equivalent norms for tlfilo/o,q; K. 
Proof: We begin with the proof of the implications ii) ~ iii) =~ iv) =~ ii). For the first 

one we observe that by (4.1) 

IIV2-(/) - f[l ~< ~ ]1 Vzu+:(T)  -- V z k ( f ) l [ ,  (4.4) 
k = n  

and apply the inequality of Minkowski. Next we use a slight modification of the 
Zamansky method of proof and have 

IIVz.(f)il¥ ~< ~ ItV2k(f) -- V2.-*(f)ltv 
k = O  

<. ~ ]IV2,(f - Vz,,-,(f))Hv + ]IV2) , - , (V2,( f ) -  f)][v 
k = O  

<~ 2"2°Dv(llf[I + ~ 2 ko i lV2 , ( f ) -  f[l) 
k = 0  

(4.5) 

using property (4.3). Then we apply the inequality of Minkowski once more. To 

complete the cyclic argument we use property (4.2) to deduce 

I] V2, ( f )  - V2.-, (f)]t / 
] lV2 , ( f ) -  V2,-~(V2,(f))II + [ l V z , ( V 2 . - l ( f ) ) -  V2,-,(f)[l J 2e Cv(Z-"°]tV2.(f)ll¥ + 2- ( . -  ~)e  I l V 2 . _ , ( f ) l l v )  " 

(4.6) 

We now establish the equivalence i)~=~ v) by proceeding analogously as in Theo- 
rem 3.1. We define 

V t ( f ) = i V " ( f ) '  n ~ < t < n + l  
i 0 , 0 < t < l  , 

and easily verify the equivalence of i) and v) with 

c~, 

0 

i)* 

and 

v)* 

0o 

0 



182 P.L. Butzer and K. Scherer AEQ. MATH, 

respectively, so that we need only prove i )*~v)*.  Combining the steps (4.4) and 
(4.6) we now have 

ilVt(f) - fit ~ 2"4QCv ~ (tzk) -Q ItV, 2~(/)11¥, 
k = 0  

and analogously to (4.5) 

llV~(f) IIv ~< 2'2eOv ~ (t2-k) q NVt2-~(f) - f l l-  
k = O  

The rest of the argument is the same as in the corresponding part of Theorem 3.1. 
Finally, we show the equivalence with vi). For every representation f=fl +fz, 

f l  EX, f2 ~Y we can estimate by (4.1) (using the uniform boundedness principle) and 
(4.2) the quantity 

II v. ( f )  - f It ~< II V,, ( f l )  - f i  fl + It 1/". ( f 2 )  - -  f211 
~< Mv Ilf~ll + Cvn -~ IIf211"< 

to obtain 
[t V.(f)  - flJ ~< max(Cv, My) K(n -~, f ;  X, Y). 

On the other hand, we have by f =  ( f -  V.(f))+ V. (f), V.(f)~Y 

K(n -°, f ;  X, Y) ~< trf - V.(f)[l + n -Q Itv.(f)N¥. 

These inequalities show that iii) and iv) are together equivalent to 

Ilfll + 2"°K(2 -"°, f ;  X, Y))q l/q <oo 
n 

and that i) and v) are equivalent to 

ilSiI + i.__Z (,," K (,,-°, S; x ,  v))" ~I'/~ < oo. 

But by the monotonicity of K ( t , / )  the latter two assertions are equivalent to 
I[fHolo,q;K being finite. This completes the proof. 

This theorem contains those results for approximation processes which corre- 
spond to the Jackson and Bernstein theorems in the case of best approximation. It 
also includes the theorem of Zamansky and its converse for approximation processes. 
Furthermore, we remark that after some small modifications Theorem 4.1 could also 
be formulated and established for an approximation process generated by a family 
of operators {Vt; 0~<t < ~}  depending upon the continuous parameter t. In particu- 
lar, if we take a holomorphic semi-group of bounded linear operators { T(t); 0 ~< t < ~ } 
with infinitesimal generator A, we have (see e. g. P. L. BUTZER - H. BERENS [3]) 

t 

T ( t ) f - f =  S T(u)Afdu and iRA T(t)fN-0(t-aN/lJ), t - } 0 + ,  so that (4.2) and (4.3) 
0 
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are satisfied with 

I IT ( t ) f  - f l l  <~ CTtNTt[D(a) ( f e D ( A ) )  
and 

[[T(t)fJlD(A) <~ Drt  -111fll ( f ~ X ) ,  

where [[fl]~(A) is the graph norm Ilfll + I[Afll. The theorem corresponding to Theo- 
rem 4.1 which can be deduced for such operators has already been shown by 
H. BERENS [1]. 

Another large class of approximation processes is that given by the so called 
'polynomial' operators, which have the property 

V , ( f ) e P ,  ( n e N ; f s X ) ,  (4.7) 

and for which an approximation space Y of X exists such that (3.8) and (4.2) are 
satisfied with a certain 0>0.  Since E , ( f ) ~ l I V , ( f ) - f l  ] for such operators, the in- 
equality (3.7) is satisfied with or= ~. On account of the inequality 

I[ r,  (f)II ¥ <<, D n e [I r ,  (f)l] <~ D Mv  n ° II f II - Dv n° [[ f II, 

which follows by (3.8) and (4.1), (4.3) is also satisfied. Thus, if V,(f)~P,  and a--0,  
(4.2) may be regarded as a stronger version of the Jackson-type inequality (3.7) 
while (4.3) is a weaker version of the Bernstein-type inequality (3.8). It follows that 
Theorem 4.1 is applicable. Under these stronger hypotheses one may also state a 
reduction theorem of the Ste6kin-type. 

We have 

THEOREM 4.2. Let there be given an approximation process V on X with (4.7) and 
two approximation spaces Y, Y~ o f  X such that (3.8) and (4.2) hold with orders 0 and 
01, respectively. The following assertions are equivalent to those of  Theorem 4.1 for 
0 < ~  <0<Q and 1 <~q<~ oo: 

vii) f e Y 1 ,  Ilfll + 2"c°-e~) l lV2.( f ) - f l [Y, )q  l / q < ° ° ;  
n 

~ (n(O_o,) 1)l/q 
viii) f e Y , ,  I]fll + t , _ ~  i l I /~,(f ) - f i lv , )qni  <o o .  

Proof." Proceeding along the lines of the proof of inequality (3.17) we may deduce 

II Vt ( f )  - f II v l ~< 2' 20' D,, v ~ (t 2k) 0' II v, 2~ ( f )  - f [I. 
k = 0  

If we set t = 2", this gives the implication iii)~vii) by the Minkowski inequality. On the 
other hand, the usual argument as in Theorem 3.1 yields i)~viii). Now to the con- 
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verses. We have by (4.1) and (3.7) for 0 < t <  o9 

E, ( i )  ~ E E,(V,:~+,( f )  - r ,~ . ( f ) )  
k=O 

<~ 2"2~'ct  -~' ~ IIg2~(f)-fll,,, 
k = O  

so that f ( to E, [f])q dt / t  is finite by viii). Analogously, if we set t = 2", (2" °E2. [ f ] )q  
0 n = 0  

is finite by vii). But by Theorem 3.2 the latter two assertions are equivalent to assertion 
vi) of Theorem 4.1, which completes the proof. 

SR "t"=° of the typical Theorem 4.2 is applicable to the approximation process t ,,zs 
means defined in Section 2 for C2~-space. (4.2) is the only condition which still has 
to be verified. In this respect see A. ZYGMUND [20] and M. ZAMANSKY [18]. Thus, if 
we take Y=C~2t~, Y1 =r'(k)~,2 n ,  where k, l e N ,  and use (3.18), the generalization of 
Theorem 2.3 is given by 

THEOREM 4.3 I f  f ~ C 2 ~, the fol lowing s tatements  are equivalent fo r  0 < k < r + ~ < l, 
0<c~<2 and 1 <~q<<.og: 

a) 

b) 

0 

d) 

I o~ 1)1t q . 
t E ( . " + : ' l l R . . , ( f ) - f l l ) ~ n l  <o9, 

g ," (,+~<-k) ~,(k) l~,lq f(k)Ecz"' t,,~ ' tn I lJX. , t ( f ) -  S<~'il)" nl < o9 ; 

ILK.,, < o 9  ; 

S~%Lip(~, 2, q; C2.). 7) 

Theorem 4.3 also holds for /~ ~ spaces, 1 ~< p < o9, and for other approximation 
processes such as the singular integrals of  Jackson, Rogosinski-Bernstein etc. 

We further remark that the singular integral of  de La Vall6e Poussin represents 
an approximation process for which Theorem 4.1 but not Theorem 4.2 is applicable 
(see [5]). Finally, we mention that there are also approximation processes generated 
by a family of  operators { V t, 0 < t < o9 } which do not belong to any one of the above 
classes although Theorem 4.1 is applicable. An example is the process of  the typical 
means for the Fourier-inversion-integral of  functions in LP( - o9, o9), 1 ~<p~< o9, 
which was recently investigated from our point of  view by H. BERENS [2]. 

7) In the case of the Fej6r means (l = 1) the equivalence of a), b) and d) was first shown by 
A. FETZER [8], using different methods. These results are employed there to prove the equivalence 
of the assertions a) and d) of Theorem 3.2 (Theorems of Jackson and Bernstein) without using the 
K-functional. 
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