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On the Fundamental Approximation Theorems of D. Jackson,
S. N. Bernstein and Theorems of M. Zamansky and S. B. Stec¢kin

P. L. Burzir?) and K. SCHERER (Aachen, Germany)

To A. M. Ostrowski on the occasion of his 75th birthday, September 25 1968

1. Introduction

The direct theorems of D. JACksoN and the inverse theorems of S. N. BERNSTEIN as
well as their generalizations by A. ZyaMUND play a fundamental role in the theory
of approximation of periodic functions by trigonometric polynomials. Of further
importance is an interesting theortem by M. ZAMANSKY on derivatives of trigono-
metric polynomials which converge uniformly towards a periodic function with a
given order of approximation. This result has so far played a somewhat isolated role
in approximation theory. Then there is a theorem of S. B. STECKIN on estimations
of the convergence of the rth derivative of these trigonometric polynomials towards
the rth derivative of the function.

1t is the purpose of this paper to establish a converse not only to the Zamansky
result for polynomials of best approximation (as well as for a general class
of linear approximation processes) but also to the theorem of Ste¢kin. These results
enable one to state connections between the theorems in question that do not seem
to have been observed before. Indeed, it may (roughly) be said that the assertions of
the theorems of Jackson, Bernstein, Zamansky and SteCkin are equivalent to another
for polynomials of best approximation (cf. Theorem 2.2) as well as for a general
class of linear approximation processes. The results presented will be established not
only for C,, or L}, functions but also in the setting of the theory of intermediate
spaces. The essential aim is to examine the inner structure of the classical proofs in
order to be assured which elements can be carried over to the abstract setting.
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on Febr. 15, 1968.

Received: May 13, 1968



Fundamental Approximation Theorems of D. Jackson and S. Bernstein 171

2. Interconnections Among the Fundamental Theorems

Let us denote a trigonometrical polynomial of degree < by #,(x) and the corre-
sponding linear space by T,. For the sake of simplicity we restrict the discussion in
this section to the uniform norm | /{ =sup| f(x)| for the elements feC,,. Setting

X

En [f] = inf ”f - ln” (.fecln; nEN) (2‘1)
theTn
then Ey[f]>E,[f]>--, and by the theorem of WEIERSTRASS
lim E,[f]=0. (2.2)

Here N denotes the set of all non-negative integers. A result of P. KIRCHBERGER as-
serts that for every f€C, , and neN E,(f)is attained, i.e. there exists a .} (x)=1}(f; x)
€T, such that

E.[f1=Iif -6l (2.3)

Moreover, the polynomial ¢ of best approximation is unique.

We first state the cited theorems in a form needed below. For feC,_ we write:
SeLipa if there is a constant M >0 such that |f(x+h)—f(x)|<M|A|* for all x;
feLip* aif|f(x+h)+f(x=h)=2f(x)|<M*h* for all x ;feW if |f(x+h)—
—f(x)I<M’|h log|1/h)] for all x.

THEOREM (JACKkSON). If feC,, and f®PeLipa where 0<a<l and reN, then
E[f]=0("""%)

In the course of the proof (see e.g. CHENEY [6, p. 145], MEINARDUS [11, p. 55])
one may derive the important inequality

E,[f1<(e/n)If71  (c=1+7%2) (2.4)
which is valid if f®eC,,. We refer to it as the Jackson inequality.

THEOREM (BERNSTEIN). If f€C, . and E,[f1=0(n"""%) where reN and 0<ax]l,
then f possesses continuous derivatives of orders 1,2, ... r and

e (Lipa for 0<a<l
2W for o=1.

It is to be noted that the very elegant proof by S. N. BERNSTEIN makes use of the
well-known ‘inequality of Bernstein’ valid for any t,€T,:

It < "] (2.5)
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The latter theorems are converses of each other only for 0<a < 1. Indeed, if feLipl,
then E,[f]=0(n""'), but not conversely as the particular function f(x)=

Y’ k™ ?sinkx shows. However, in the case a=1 we have (see [19])
k=1

THEOREM (ZYGMUND). Let feC, .and reN.ThenE,[ f]=0(n""" )< f"eLip*1.
More generally, for 0<a<2, E,[f]=0(n"""") < fPeLip*a.
It is easy to see that
Lipl cLip*1 cWcLipae (O<a<l),
Lip*« = Lipa O<a<1).

THEOREM (ZAMANSKY). Let feC,, and t,eT, such that
If =t <n''o(n) (n,leN,I>1),

where @(x) is a positive strictly increasing or decreasing continuous function of x.
Then the Ith derivative of t, satisfies the inequality

n

01 < Ay + Aznp() + A [ 0()dx.
1
where A, A, and A5 are constants.

For a proof, see M. ZaAMANSKY [17, p. 26].

COROLLARY 2.1. If feC,, is such that | f—t,||=0(n"*?) for B>0, then |1Q|=
O(n' %) for leN with <.

THEOREM (STECKIN). Let feC, . and t,eT, such that

”f_tn“<Fn+1 (HEN),

o0
where F,, , is non-increasing with respect to n and y, n*~' F, < oo for some keN. Then
n=1

the kth derivative of f exists as an element of C, , and satisfies

1 — ] <A F 4 Y, ¥R

( v=n+1 S
A, being a constant.
For a proof see S. B. STECKIN [14, p. 236].

(neN),

COROLLARY 2.2. If for feC,, holds E,[f]=0(n""?), where y>0, then f¥eC,,
and|| f® —t¥O(£))| =0 "7) for k<7 and keN.

This statement may also be derived by a theorem of J, Czipszer — G. FREUD {7]
and its generalization by A. L. GARKAVI [9].
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We next state the converse to the corollary of the Zamansky theorem in case
t,(x) is replaced by the polynomial ¢ (f; x) of best approximation to f€C, .

THEOREM 2.1. If feC, , is such that

1EO(N =00 (O<B<lleN)
then

I~ (NIl =0@"".

This theorem was first established by P. L. BUTZER — S. PAWELKE [4] for functions
£ belonging to the Hilbert space L3, as a special instance of a general theorem giving
necessary and sufficient conditions upon trigonometric approximation processes such
that they possess the property of the corollary to the Zamansky theorem and its
converse.2) In the case of functions f belonging to C,, or L}, 1 <p< oo, we refer the
reader to the interesting direct proof by G. SunoucH! [15] which rests upon the
Jackson inequality (2.4) applied to 13.(f; x). We remark further that H. BERENS [1]
has proved a counterpart of the Zamansky result and its converse for holomorphic
semi-groups of bounded linear operators (see Sec. 4).

We now come to the first fundamental theorem which links the results of Za-
mansky and its converse and of Ste¢kin with those of Jackson and Bernstein.

THEOREM 2.2. Let feC,, and let t(f) be the polynomial of best approximation
to f. The following assertions are equivalent to another for 0<k<r+a<land 0<a<2
(r, k and leN):

a) If =t (Dl =0m""");
b) JPeC, and | f* — FO(N) =0 7Y
c) X Q) = 0(n'™"7%);
d) fPeLip*a.

Proof. The implication a) = b) follows by Corollary 2.2 (with y=r +a). The fact
that b) = c) follows immediately by

Lemma 2.1, Let f®eC,,. If IIf®—t®|=00*"""") for O<k<r+a, then
P =0 %) for IeN with r +a<l.

Indeed, apply Corollary 2.1 to the (/—k)th derivative of 70, giving || [#,"]¢7" | =
O(n*~**&=r=a) for O<r+a—k<I—k.

Furthermore, the implication c)=-a) is a consequence of Theorem 2.1 (with
p=r+a). Finally, the equivalence a)<d) is asserted by the theorems of Jackson,
Bernstein and Zygmund. The proof of the theorem is thereby complete.

2) Note that Theore;n Z.i Eoes?ét hold for arbitrary t,€T»; cf. [4, p. 174f.].
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The next problem is to see whether Theorem 2.2 may also be formulated for
particular trigonometric approximation processes. For a general answer to this
question we refer to Section 4; here we consider the typical means.

Denoting the nth partial sum of the Fourier series of feC, , by S,(f; x), thus

vV=—n

Su(f3x) = z" fres, f'\(")=(1/2ﬂ)ff(x)e'”"dx,

their typical means are defined by

n

R, (fix)= ¥ {1—(Min+ }frme’™ (>0, n=1,2,..).
In case /=1 these are the Fejér means. Denoting the conjugate function of f by f~,
we also set

{fO(x), r even

f{r)(x) = ((fN)(’)(x), rodd’ f{o}(x) = f(x)

THEOREM 2.3. If f€C, ,, the following assertions are equivalent for 0<k<r+a<l
and 0<a <2 (r, k and IeN):

a) If = Ry i (D =0(n""77);
b) FPeCyrand |f% — R (NI =0 (%),
c) IR =0(n' ™77
d) fPeLip*a.

Concerning the proof, the equivalence of the assertions a), c), d) follows by
P.L.BUTZER — S. PAWELKE [4] and the implication a)=> b) by the theorem of Ste&kin.
The fact that b)=>c) may be derived for even / by Lemma 2.1. If / is odd and b) is
valid for such /, then it follows readily that b) is also valid for / replaced by I+ 1.
Thus again by Lemma 2.1 the assertion c) holds for / replaced by /+1. But this is
equivalent to d) and therefore to c).

3. The Fundamental Theorems for Approximation and Intermediate Spaces

In this section we treat the problems discussed in Section 2 in the case of best
approximation in the setting of the theory of intermediate spaces.

Let X be a Banach space and Py={0}=P;c---P,=--- a sequence of subspaces
of X. The best approximation of order # to an element e X is defined by the quantity

E,[f]= inf |f —pJl (neN). (ERY)

Prn€Pn
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It is useful to introduce the notion of an approximation space Y of X. Such
a space is a Banach space with the property3)

P,.cY=X (neN). (3.2)

With the help of the quantities E, [ f] we can construct special approximation spaces
introduced by J. PEETRE [13].

DEFINITION: We define by X, , the collection of all elements feX for which

)
)

i w1
I flto,q =11 +§ ) (nBE,.[fJ)"n 1< (3.3)
n=1
(0 real; 1 <q< 0, usual modification for q= o).
One can show that the X, , are non-trivial approximation spaces under the norm
I/ 1lg,4 for 6>0. In view of the monotonicity of E,[ /] and a slight modification of
the Cauchy condensation criterium it follows that

\
(

is an equivalent norm to || fl, ,. In the following we need two assumptions on E, [ f]
(see also (2.2) and (2.3)):

I+ i (2" Exn[£])" %”" (3.4

ImE,[f]=0 (feX), (3.5)

n— o

and to each given fe X and ne N there exists*) an element p, (f) e P, such that

E,[f1=1f-pi (O} (3.6)

Generalizing the notions of the Jackson and Bernstein inequalities (2.4) and (2.5)
of Section 2 we say that a Jackson-type inequality of order o, = 0, is satisfied with
respect to the approximation space Y of X if

E,[f1<Cn™°lfly (neN; feY), (3.7
and an inequality of Bernstein-type of order ¢, 620, if

Ipaly <Dnl pi°)  (neN; p,eP,). (3.8)
Here, C and D are positive constants depending only upon Y and o¢. Finally, we

3) Here and in the following the symbol ‘<’ means a continuous embedding.

4) For questions concerning the existence of an element pr*(f) Py see e.g. the recent book by
1. SINGER: Cea mai bund approximare in spatii vectoriale normate prin elemente din subspatii vec-
toriale, Bucuresti 1967 (386 pp.), and the literature cited there.

5) Norms taken with respect to X are denoted by ||+ !', with respect to Y by ||+ ]y.
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consider for 0 <t< oo and every fe X the function norm

Ktf; X, Y)= inf (fil+2lfally) (3.9)
S=f1+f2,f2€Y

introduced by J. PEETRE [I12]. It can be shown that K(¢, f; X, Y) is a monotone
continuous function in ¢ for every fixed fe X.

DerNITION: The collection of all elements fe X with

If o, gk = f[t"’K(z,f)]q dt/t 11 < o0 (3.10)
0

is denoted by (X, Y)y .. x (0 real; 1<q< o0, usual modification for q= ).
For 0<f<1, 1<g< and 0<0<1, g=c0 the (X, Y),,.x are intermediate
spaces of X and Y under the norm (3.10), i.e. Banach spaces with the property

Y (X, Yk = X.
We are now able to prove the following

THEOREM 3.1. Let Y be an approximation space of X such that the properties (3.5)
and (3.6) are given with respect to X and the properties (3.7) and (3.8) are given with
respect to Y with order o. Then the following assertions are equivalent for 0>0 and
1<g<w:

!

i) §"§0(2"°E2n[f])"3”“<oo;

) ﬁ 2 Np5 () - v ‘(f)|1Y)"§“"<oo;

ii) %i(z"“’ ? o3 (f) - fnY)‘fg”uoo (0<o<0);
iv VT @I < 0<0<0)

Proof: We start with the implication i) <> ii) where no restriction is made upon o.
By the Bernstein-type inequality (3.8) it follows that

1pZn+1(f) = P3lly < D277 D7 pZacs (f) = P3a(F)) S2:2° D27 Esu(f), (3.11)

and therefore i) = ii). On the other hand, using the Jackson-type inequality (3.7) we
have

Egn(f = Ponet(f)) + Ean(93ns1 (f) — P3:(F))

Ez(f) <
< Egnes (f) + 27" p3ns 1 (f) = P53 (Nlly-
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In virtue of (3.5),
En(f)<C2° k; 27 p3(f) = P31 ()lly (3.12)

whence by an inequality of Minkowski (cf. [10, p. 227]) ii)=i).

Now the equivalence of these assertions with iii) and iv) follows rather simply.
Indeed, by

1p3:(f) — flly < lepzw(f) pa(fly (3-13)

and

”Pz"(f)HY Z ”sz(f) sz 1(f)|1Y’ (3.14)

respectively, where p,’}‘z (/)=0, and again by the inequality of Minkowski, iii) follows
by ii) in case 0<8<g and iv) by ii) in case 0 <o <0 (the inequality (3.13) is valid as
the sum converges by ii) if 6 <#). The converse directions are obvious.

If we examine the structure of the above proof, we see that the implication i) = ii)
is a direct consequence of the Bernstein-type inequality, while for its converse there
is needed the Jackson-type inequality and the classical Bernstein method of repre-
senting a function by the limit of its polynomials of best approximation. The remaining
non-trivial conclusions ii) = iii) and ii) = iv) then follow by the Bernstein-type repre-
sentation (3.13) and the Zamansky type representation (3.14), respectively.

While this theorem illustrates the function of the classical methods of proof in
the abstract setting the next theorem to be formulated presents the above statements
in a more convenient form.

THEOREM 3.2. Let be Y, and Y, be two approximation spaces of X such that the
properties (3.5) and (3.6) are satisfied with respect to X and the properties (3.7) and
(3.8) with respect to Y, and X , with orders o, and o,, respectively. Then the following
assertions are equivalent for 0< o, <8<0, and 1 <q<o0:

2 5 om0
< |
b) Fe¥,and) E (0 IR Tl <o
9 ; ¥ (1" () lif <o
d) fe(X, YZ)G/Uz,q;K’ ie. [flloos qx < 0.

Proof: Here we need a refinement of the above proof. First of all, we replace u
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by a continuous parameter ¢ by defining

% gpn(f) n<t<n+1
=07 0<i<t

Then one can easily verify that a), b) and c), respectively, are equivalent to

ay* Jer Ly e <o,

b)* f (=D p*(f) — flly)" dtfe 111 < oo,
and °

o)* f (1= | pF (Nl ) dtjt e < oo,

0

respectively, so that we need only prove the equivalence of the latter three assertions.
Furthermore, as in (3.12) we can derive for 0 <t< oo

Elfl1<26.47 X (1297 Ipf5 (1) = S, (3.15)
and
E[/1<2C47 T (1297 Ipfa(Nlvs- (3.16)

Using the generalized Minkowski inequality we have by (3.15)

3.!)‘(19& [f1° dt/t%llq €2C, 4™ kizo gf (t"(tZ")'a‘ IpFse(f) — fliy ) dt/tiuq

2C 4‘”

f (P (f) — flly,)* dt/ts”q

and thus b)* implies a)*. In an analogous way we obtain the implication c)* = a)*
by (3.16). For the converses, inequalities corresponding to (3.13) and (3.14) combined
with the estimate (3.11) give

197 () = S, <2D,2° 3 (2 Bl G.17)

and

197 (Dl 20327 3 (1277 Epal]-
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The implications a)* = b)* and a)* = ¢)*, respectively, now follow as in Theorem 3.1.
Finally, we remark that the equivalence a)<d) has been shown in [13].

The assertion b) in Theorem 3.2 is a characterization of assertion a) of the
Steckin type, while ¢) is of the Zamansky type. The former one could also be called
of reduction type as it reduces the order of approximation.

If we consider the case X=C,, where P, is the class of all trigonometric poly-
nomials of order n—1 then we obtain by Theorem 3.2

THEOREM 3.3. Let fe€C, andk,Iand reN. The following assertions are equivalent
for 1€g<w:

9 EECTEUY <

b) 3 2 [ 0 (o () = FI+1 559 (F) — F2NY ii”" <o (k<r+a);
c) : i (" O () i%”" <o (O<r+a<l);

d) fPelip(x,2,4;C,,) (0<a<?2).

Here the equivalences a)<>b) and a)<>c) follow by the corresponding equivalences
of Theorem 3.2 if we choose Y; =C% and Y, =CY). Then all conditions of Theorem
3.2 are satisfied with o, =k, ¢,=/ and §=r+o«. Concerning assertion b) we remark
that the graph norm can be replaced by ||7, (/) —f®|| (see [5], Kap. 4). This has
already been carried out in ¢) since r+a—/<0. The assertion d) is a consequence of

Cm C Vi k=Lip(0,,g;:C,) (0<0<I,1<g<®) (3.18)
n)6/l; q;

Here the generalized Lipschitz space Lip (6, /, ¢; C,,) is defined as the collection of
all elements f'e C,, for which

:f (0014 £ (D" dt/ti”" <o (0<0<l1<qg<w),

1
where 4 f(x)= Y <l> (=1)" f(x+mt). Furthermore, with 0=r+o and 0<a<2,

m=0 m

feLip (0, 1, q; C,,)is equivalent to fPeLip («, 2, q; C,,)and tofeLip(x, 1, ¢; C,,)
if 0<a<1. In the case g= co the spaces Lip (%, 1, c0; C,,) and Lip (o, 2, o0; C,,) are
the classical Lipschitz spaces Lip o and Lip* o, respectively, of Section 2. For all these
facts see P. L. Burzer — H. BEReNs [3] and the literature cited there.

As Theorem 3.3 contains Theorem 2.2 for g= 00, Theorem 3.2 is a generalization
of the classical results of Jackson, Bernstein, Zamansky and Steckin in the case of
best approximation to approximation and intermediate spaces.
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Finally, we wish to stress the fact that further applications of Theorem 3.1 are
possible if X=L3,, 1<p<o and X=L"(— o0, w0), I<p<oo. In the latter case we
use as P, the class of all integral functions of finite degree <nt, where 7>0 is fixed.
Then all assumptions in Theorem 3.1 are fulfilled (cf. A. F. TIMAN [16], Sections 4.8
and 5.1) and we may obtain theorems similar to Theorem 3.2. For applications to the
n-dimensional torus see [10a].

4. The Fundamental Theorems for General Approximation Processes

In this section we consider the material of the preceding section for a very general
class of approximation processes on Banach spaces. Such a process V is defined by
a sequence of bounded and commutative linear operators {V,}§ on a Banach space
X to itself having the approximation property

lim V,(f)=f (feX). (@.1)
n-* oo
We also need information which connects the rate of approximation of the process
V with certain subspaces of X. Inspired by the methods in Section 3 we here assume
that there exists a Banach space Y < X such that V satisfies the inequalities

WVa(f)—fl<Cvn™lfly  (feY), (4.2)
VoY, IVi(HIy<Dvrflfll (feX) (4.3)

for a certain o>0, where Cy, Dy only depend on V, Y and g.

We are now able to establish a theorem analogous to Theorem 3.1 for the approxi-
mation process V and we shall see that thereby (4.2) and (4.3) play the part of (3.7)
and (3.8), respectively, of Section 3.

THEOREM 4.1. Given an approximation process V on X and a Banach subspace Y
of X with the properties (4.2) and (4.3). The following assertions are equivalent for
0<f<g, 1€g<o0:

i) A+

M

(0 10) = 1 e <o

£
it
-

ii)

=

o~

@ [Vyn(f) = V- n(f)ll)“;”q<oo ‘)

i 111+ z @ 1 Van (f) - fn)qi”q <o
iv) e+ ? izo (2n(o OV, (f)”Y)qgl/q <

6) As before we define I}IIZ(f }=0 for all feX.
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V) HfH+3<i(nw”WWKfWquuq<w;

n=

VI) fE(X, Y)B/g, a; Ko Le. ”f”G/Q,q:K <.

All quantities i)-v) define equivalent norms for | fll¢/g.4: k-
Proof: We begin with the proof of the implications ii)=-1ii) = iv)=-ii). For the first
one we observe that by (4.1)

Vor(1) = F1€ T Vaor () = V() (44

and apply the inequality of Minkowski. Next we use a slight modification of the
Zamansky method of proof and have

IWVan(F)ily < X Wi (f) = V- (H)lly

|
s

k

M:

IVar(f = Vs (Pl + War=s (Vo () = )y (4.5)

<
k=0

<2-22Dy(If +k='zlo 2V (f) ~ f1)

using property (4.3). Then we apply the inequality of Minkowski once more. To
complete the cyclic argument we use property (4.2) to deduce

1Vau(f) = Vau-1r ()N
< WVan(f) — Vzn-l(Vzn(f))H + | Vzrl(Vzn—l(f)) — Va1 ()N (4.6)
<20Cy 27"V (F)lly + 27 7 Van- (F)ly)-

We now establish the equivalence i)<>v) by proceeding analogously as in Theo-
rem 3.1, We define
_\V.(f), m<t<n+1
V'(f)_( 0, O<t<i ,

and easily verify the equivalence of i) and v) with

D* U(t"lth(f)—fll)" d‘/lg”"«”

v)* iFll+ U(t“”‘” IV (H)lly)* d’/t;"" <o,
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respectively, so that we need only prove i)* <>v)*. Combining the steps (4.4) and
(4.6) we now have

V() = fli<2:4Cy B (1297 1V (v
and analogously to (4.5)

V(1) ly <220 Dy i (127 [Vsa (1) = £

The rest of the argument is the same as in the corresponding part of Theorem 3.1.
Finally, we show the equivalence with vi). For every representation f=f, +f5,
fieX, f,€Y we can estimate by (4.1) (using the uniform boundedness principle) and
(4.2) the quantity
V() = FI < UVA(f1) = full + 1V f2) — £
<

Myl fill + Cyvn 2l faly
to obtain

” Vn(f) - f” < maX(CV’ MV) K(n_ga f; X’ Y)
On the other hand, we have by f=(f—V,()+V,(f), V.()eY
K@™% i X, )< f = Va(Ol + 021V (Nly -

These inequalities show that iii) and iv) are together equivalent to

171 +§ i(znoK(f”", i X, Y))qil/q <

and that i) and v) are equivalent to
© 1
A+ ? Y (K7 f; X, Y)Y n;”“ <o,
n=1

But by the monotonicity of K(z,f) the latter two assertions are equivalent to
[ fllgso,q;x being finite. This completes the proof.

This theorem contains those results for approximation processes which corre-
spond to the Jackson and Bernstein theorems in the case of best approximation. It
also includes the theorem of Zamansky and its converse for approximation processes.
Furthermore, we remark that after some small modifications Theorem 4.1 could also
be formulated and established for an approximation process generated by a family
of operators {V;; 0<t <o} depending upon the continuous parameter ¢. In particu-
lar, if we take a holomorphic semi-group of bounded linear operators {7(¢); 0<t< 0}
with infinitesimal generator 4, we have (see e. g. P. L. ButzER — H. BERENS [3])

T(t)f-f:f T (u)Afduand |AT(t)f]|=0(t"1|f]), ¢~ 0+, so that (4.2) and (4.3)
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are satisfied with

ITOf = fI<Crtlifllpw, (feD(4))

and
ITOfllowy <Dt HIfI (feX),

where || /154 1s the graph norm | /]| + 4 /. The theorem corresponding to Theo-
rem 4.1 which can be deduced for such operators has already been shown by
H. Berens [1].

Another large class of approximation processes is that given by the so called
‘polynomial’ operators, which have the property

V.(f)eP, (neN;feX), 4.7)

and for which an approximation space Y of X exists such that (3.8) and (4.2) are
satisfied with a certain ¢>0. Since E,(f)<||V,(f)—S| for such operators, the in-
equality (3.7) is satisfied with 0 =g. On account of the inequality

IVa(Dly S D V,(HI < DMyn® || f] = Dyn® i f1,

which follows by (3.8) and (4.1), (4.3) is also satisfied. Thus, if V,(f)eP, and o=,
(4.2) may be regarded as a stronger version of the Jackson-type inequality (3.7)
while (4.3) is a weaker version of the Bernstein-type inequality (3.8). It follows that
Theorem 4.1 is applicable. Under these stronger hypotheses one may also state a
reduction theorem of the Steckin-type.

We have

THEOREM 4.2. Let there be given an approximation process V on X with (4.7) and
two approximation spaces Y, Y, of X such that (3.8) and (4.2) hold with orders 9 and
01, tespectively. The following assertions are equivalent to those of Theorem 4.1 for
O<g,<l<pand 1<g<o:

vii) feYy, Ifl+ Zn;)(znw‘gl) IVan () —flln)”i”q <
i 1
vii feYi 11+, 3 (n“"@')nv;.<f)-fnn)"n§1/4<oo.

Proof: Proceeding along the lines of the proof of inequality (3.17) we may deduce

V)~ Fl, <22 Dy 3 (2 WVoanlF) = 1.

If we set £ =2", this gives the implication iii}=-vii) by the Minkowski inequality. On the
other hand, the usual argument as in Theorem 3.1 yields i)=viii). Now to the con-
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verses. We have by (4.1) and (3.7) for 0<t< 0

E() < 3 Bz (1) = Hia()

<220 3 Wil = f .

so that | (t°E, [ f])?dt/tis finite by viii). Analogously, if we set r=2", ¥ (2"°E,,[f])"
] n=0

is finite by vii). But by Theorem 3.2 the latter two assertions are equivalent to assertion
vi) of Theorem 4.1, which completes the proof.

Theorem 4.2 is applicable to the approximation process {R, "=0 of the typical
means defined in Section 2 for C, ,-space. (4.2) is the only condition which still has
to be verified. In this respect see A. ZyGMUND [20] and M. ZaMaNsKY [18]. Thus, if
we take Y=C%), Y,=C%¥ where k, leN, and use (3.18), the generalization of
Theorem 2.3 is given by

THeOREM 4.3 If feC, ., the following statements are equivalent for 0<k < r +a<l,
O<a<2and 1€g<o0:

© , 1
a) ; ;1 ("R, (f) ~f||)"n€”" <w;
b) fPec, ; i (n"TTRIR(S) = £ ,11;’ <o}
g < r+a—1 ! q 1)1 q .
9 LI IR (1 <o0
d) fPeLip(x,2,4;C;0).7)

Theorem 4.3 also holds for L}, spaces, 1< p< oo, and for other approximation
processes such as the singular integrals of Jackson, Rogosinski-Bernstein etc.

We further remark that the singular integral of de La Vallée Poussin represents
an approximation process for which Theorem 4.1 but not Theorem 4.2 is applicable
(see [S]). Finally, we mention that there are also approximation processes generated
by a family of operators {¥,; 0 << o0} which do not belong to any one of the above
classes although Theorem 4.1 is applicable. An example is the process of the typical
means for the Fourier-inversion-integral of functions in L?(—o0,), 1<p< 0,
which was recently investigated from our point of view by H. BERENS [2].

7) In the case of the Fejér means (/= 1) the equivalence of a), b) and d) was first shown by
A. FerzER [8], using different methods. These results are employed there to prove the equivalence
of the assertions a) and d) of Theorem 3.2 (Theorems of Jackson and Bernstein) without using the
K-functional.
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