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On the General Solution of a Functional Equation in the Domain of
Distributions

I. FeENYO (Rostock, Germany)

To Professor A. M. Ostrowski in honour of the 15th anniversary of his birthday

1. At a conference on functional equations in Zakopane (Poland) in 1967,
M. Hosszu posed the following problem: what is the most general solution of the
functional equation

Sty—xp)+ fx) =)+ f () )

in the field of measurable functions? Hosszl solved equation (1) under the assump-
tion of differentiability.
The aim of this paper is to answer the question as originally posed. We will give
the most general solution of (1) in the domain of distributions.
Let us introduce the following notations.
A;: the linear space of L. Schwartz test functions of k variables;
Ay the linear space of distributions on 4;;
D' =ddt"; D\=70"|0x"; Dy=0"[0y" (r=1,2,...);
D®:  the identity operator;
Ay (@)={h:hed; and D'"h=0 for x=u, r=0,1,2,...};
y() ={h:hed(x) and ag¢supp A} (i.c. there exists a neighborhood of « in which 4
vanishes identically);
A3(): gedi{w)iff ged, and D{D%g=0along the straight line x=a(n,m=0,1,2,...);
J(@): gedl(®)iff ged, and DiD%g=0 along the straight line y=a (n,m=0,1,2,...);
Cp:  the linear space of all infinitely differentiable functions of k variables (with
arbitrary support), all derivatives of which are everywhere continuous;

I L (L) () = f f(x ) dx, (12f><x)='f f(x ) dy.

2. We define the following mapping of A; onto 4, denoted by T;:
T, ={4,— 4,y ()Y (1 —1); y(t)ed,}.
T, is linear and continuous for the topology of A]. For distributions we define
T, ={41—A4:T,(V) Yy =V-T(y); Vedl, yed,}.
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If V=f(¢) (i.e. the distribution V is generated by the function f(¢)), then
L =r W= [ rOut-nd= [ ra-0uar,

which means that T,(f) is the regular distribution corresponding to the function
tis f(1=1).
Since
DT, (V)¢ =— T, (V) DY =~ V-T (DY) = V-DT,(¢) =
- DV -T,(y) =— T, (DV)-y
holds for every yred,, we have
DT, (V) =— T,(DV). e

A similar transformation denoted by T; is defined for test functions of two varia-
bles in the following way:

Ty={4,=4;:0(x, )= ol —x, 1 —y); 0(x, y)ed,},
and the definition of the transformation T, for distributions (of two variables) is:
Ty = {4y 43 T, (V)9 = V-Ty(0); Vedy, pedy}.
As previously, if V=/(x, y), then
Tl(f)(xsy):f(l - X, 1 —y)
If a(x, Y)eC3 and Ved),, then
Ty(aV) = T,(a) T, (V), 3)
because
T () T, (V) o =T,(V) Toa(2) o =V -To(T2(a) 9) = V-aT,(¢) =
=aVT,(¢)=T:(aV) ¢, (ped,).

Since T;(2)e C5 the product T,(«) T, (V) is of course defined.
Furthermore
DiTz(V)=— T,(D;V) (i= 1,2) 4)

holds. The proof of (4) is the same as that of (2).

3. Let us now consider the following mapping of 43(0) resp. 43(0) into 4,
denoted by p:

p= {co(x, ) Io <p<u, ;) I%EI =¥ (1); o(x, Y)EA’ZC(O)}
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resp.

+

p={<p(x, y)- J <p<~£, v>%=¢(t);¢(x, J’)eAzy(O)}

-

We shall also use the notation ¢ (t)=p(¢) (2).

PROPOSITION 1. p(@)=yed, for every peAd5(0)uw 43(0).
Proof. The proof is based on the fact that
L&(x,y)ed, (k=1,2) for &(x,y)ed,.
Let us now consider a function e.g. ¢ (x, y)e45(0); we show that
| t
o] go(u, ~> =&(u,)ed3(0) (2(0,1)=0).
u u

Since ¢(x, y) vanishes in infinite order for x—0,

-Qlu,—
u u

is bounded, and as for positive and negative values of u,

1<t>
— (P u 5 P
u u

has a derivative of any order with respect to u which converges to zero for u—0,
@ (u, t) has a derivative of any order with respect to u (and also with respect to ¢).
Since the support of ¢ is bounded let
suppp(x,y)c(—asx=<a)x(-a<y=<a) (a>0).

If |u|>a, @ (u, t)=0 for arbitrary ¢; on the other hand if |¢t]>a* and at the same time
lul < a,

t|  a?
>»>—=a,
then w4
o) =—o(u')=0
wt)=—olu,~|=
ul P\ u
and hence

supp®(u,t)c(—asusa)x(—a’>st<a?).

Because of these two facts @ (u, t)e45(0) and therefore

o0

(1,0) () = j go(’)%d

— o0

The same argument shows that p(p)e 4, for ped3(0).
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The mapping p is linear, but it is also continuous with respect to the sequential
topology introduced in the space of test functions. As this fact will not be used in
our considerations, we will not give the proof here.

4. With help of the mapping p we introduce now an operation defined for every
distribution Ved] associates with every Ve4| a functional P(V) on 43(0)n 43(0):

P(V)@=V-p(p), (ped3(0)n45(0).

P(V) is a linear (and, as can be proved, also a continuous) functional on the space
A5(0)~ 43(0). For such functionals we define the derivatives similarly as for distribu-
tions.

PROPOSITION 2.
D,P(V)-@o=yP(DV)¢ and D,P(V) @=xP(DV)p (@ed3(0)n 45(0))
&)

Proof. Tt will suffice to prove one of the formulas (5); the other can be proved
in the same way.
By the definition of the derivative of a functional over a subspace of 4, we have

D,P(V) o=~ P(V) Dyp =— V'P(Dz‘P)’ (90545(0)“4%(0))-

On the other hand we have

T d I d
p(Dyp) = f Dyo <”> ;) qul =D J uqo(u, t;) |Mu| = Dp(xp(x, y))

and thus can write
D,P(V) ¢ =— V-p(Dyp)=— V- -Dp(xp(x, y)) = DV p(xe(x, y)) =
P(DV)-xp(x,y)=xP(DV) ¢(x,y). Q.ed.

It is important to remark that in the case V'=f(¢) for every ¢(x, y)e43(0) the
following relation holds:

Jple) = ] f() ple)di = T f(® T QD(U,%)I?Idt

aw

f ff(xy)fp(x, y)dx dy.

—o0 o0

This means that the functional P(f) corresponds to the functional on 45(0) n43(0)

P(f)-o
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generated by f(xp). (Of course the previous argument can be repeated with a test-
function of the class 43(0).)
PROPOSITION 3. Let a(t)eC¥Y, then

P(aV)=P(a) P(V) (Ved)).
Proof. As

a(t) p(@) = p(a(xy) @(x,¥))  (ped3(0)u 45(0))
it follows that

P(aV)- ¢ =aV-p(p) =V -ap(e) =V p(a(xy) ¢(x, y)) =
P(V)a(xy)o(x,y)=a(xy) P(V) o =P(e) P(V)p. Q.ed.

The following rule will be useful:

PROPOSITION 4.
D,D,P(V)=D,D,P(V)=P(DtDV). (Ved)) (6)
Proof. By proposition 3 and (5)
D,D,P(V)=D;xP(DV)= P(DV)+ xD,P(DV)= P(DV) + xyP(D*V)
= P(DV) + P(t) P(D*V) = P(DV) + P(tD*V) = P(DV + tD*V) = P(Dt DV).
Q.e.d.
5. We shall need a further transformation M, on 4] defined as follows:

M = T,PT,,
more detailed:
MV)=T,{P[T,(V)]}. (Ved)

The following rules hold:
DMV)=(1~y)M(DV) and D,M(V)=(1-x) M(DV). ([Ved)) (1)
In fact, we have by (2), (3), (4) and (5):

DM (V) = — T,(D,P(T,(V))) = — T, (yP(DT,(V))) = T, (yP(T; (DV)))
=1 =) T(P(T,(DV))) = (1 = y) M(DV). Qed.

Also the following simple relation will be useful:
DD,M(V)=D,D,M(V)=T,P(Dt DT, (V)). (Ved)) ®)

Using (6) and (4), we get (8) by direct verification.
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In view of the remarks made in 2. and 4. we see that for V'=f(¢) the mapping M
is given by

fO= =1 =)0 =-y)=f(x+y-xy).

6. The mapping S is a mapping from 4] x 4] into A4, defined as follows ({1],
p. 385)
S(U, VYo=U'Lp+V-1,0. (U,Ved|;ped,)

It is easy to prove
D,D,S(U,V)=D,D,S(U,V)=0. (U,Ved)) )

In the special case U=f(t), V=g(¢) (/, g are functions which generate distribu-
tions) we see directly

S(f (1), g(1) = f(x)+g(»).

7. Let us now consider instead of (1) the following distributional functional
equation:
M(F)+ P(F)=S(F,F) (10)

in which F is an unknown distribution of one variable. Because of our previous
remarks on the meaning of the operators M, P, S we recognize that in the case
F=f(t), (10) goes over into (}).

The aim of our investigations is to give the most general solution of (10) in the
domain of distributions.

The right-hand side of (10) is a distribution (of two variables), i.e. a linear and
continuous functional on the space 4,, while the left-hand side is only defined on the
subspace

[43(0) n 43(0)] n [45(1) n 43(1)].

From that we conclude: if there exists a distribution Fed| which satisfies (10), then
for this distribution the functional M (F)+ P(F) can be extended uniquely from the
space

[43(0) 0 45(0)] N [43 (1)~ 43 (1)]
to 4,, i.e. to a distribution.

8. Let us now assume that (10) has a solution F. If we operate with DyD, on
both sides of (10), we get after considering (6), (8) and (9):
P(Dt DF) + T,(P(Dt DT, (F))) = 0. (1)
Introducing the following notations

DtDF=U and DtDT,(F)=V
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we can write for (11)
P(U)=—T,P(V). (12)

Because of (4) and (5), partial differentiation of (12) yields
D,P(U) = yP(DU) = — D, T,(P(V)) = T, (yP(DV))
D,P(U)=xP(DU) =— D,T,(P(V)) = V,(xP(DV)).
By combining these two equations
0=xT,(yP(DV))— yT,(xP(DV)) = T, [(1 — x) yP(DV) — x(1 — y) P(DV)]

=T [(y —x) P(DV)].
is obtained, and from this
(y=—x)P(DV)=0 (13)
follows.

9. In order to solve the equation (13) we use the following approximation theorem.

PROPOSITION 5. If x(1)e'(0)n A4, (1) is a given testfunction, then there exists
a family of functions @,(x, y)eA3(0)u 43(0) for which

41
p((x =y o.(x, y) > x(®). (e-0)

Proof. It is no restriction of generality if we suppose that y(¢)=0 for <0, because
every function of y(0) can be written in the form y(¢)+y(¢) where x(¢)=0 for t<0
and Y (t)=0 for =0 and x(¢), ¥ (¢)ey(0).

Consider e.g. a function ¢(x, y)e45(0) for which ¢(x, y)=0, if x<0. Then

p(x=y) o(x, )= T (u —%><p<u,t;)% =J(u —§>¢<u,;> ‘i“ _

- o0

+ o0 + o +eo
= f (" —e o, e )dv= f e’p(v, 1 —v)dv — f p(v,t—v)e " dv
(t=¢", (e, eN=p (&, n)).
Instead of x(¢) we introduce
(1)
o(t)= "

which is, of course, also a y(0) function. Let the interval 0<a<¢=<pf contain the
support of @&(t). Then &(e")=a(r) is a 4;-test function whose support lies in the
interval loga<t<logp. Another test function k,(f)e4; may now be defined in the
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following way:
T@HElog)  for e TP <L e

e
(1) = {() elsewhere

With the help of @(f) and k,(¢) we construct the function
@.(x, y) = 0 (x) 1,(y).

We see at once that ¢,(x, y)e43(0) and ¢,(x, »)=0 for x<0. Therefore we can write
according to (14)

p((x = y) o.(x, y)) = I (u - L) (,,e<,,,, L) ‘f’u” -

= T e’®(v) Rt — v) dv — ¢ T e”'d(v) k(1 — v) dv.

Let now ¢—0, then after a well-known theorem ([2] p. 142)

K

f '@ (v) k,(t — v) dv 4 ed () = tw (1)

and

1 1
J. e 'O (v) K (t —v)dv 3 e 'd (1) =, w(1),
and therefore

P((x = ¥) 0.(x, 1) 5 t0(1) = 0 (1) = (1 — 1) (1) = 1(1).

The same argument applies to ¥ (#)ey(0), ¥ (1)=0 for £=0. Hence our assertion is
valid for every y(0)-test function of the type under consideration.

10. Returning to equation (13), we assert

PROPOSITION 6. The support of the distribution W=DV cannot be larger than
the set {x=0, x=1}.
Proof. For an arbitrary ¢ (x, y)eA43(0)u 43(0), we have after (13)

(x=y)PW)o=PW)(x—=y)o(x,y)=W-p[(x - y)o(x, y)] =0.

If x(+)eI'(0) and vanishes in infinite order in f=1, then from proposition 5 it follows
that
W-x=0.
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This shows that the support of W is concentrated in (—~«, @)U {1} for any a (0<a<1).
Therefore supp W C{0} u {1}.
The proposition just proved can be interpreted as follows: W is a distribution of
the form
W =R, + R, (15)

where R, is a distribution concentrated at the point i (i=0, 1).
Now we show that W=0. By (15) W has the following form:

W=20+A,0" ++ ppyd; + u;0; +---

when A, A4,...; Ho» Hq, ... are constant coeflicients.

In order to prove that all these coefficients vanish, we consider a polynomial
B(y) of sufficiently high degree that D"B(y)=0fory=0and y=1, r=0,1,2,.., k-1,
k+1,... and D*B(y)=1 for y=0, D*B(y)=0 for y=1. Extend B(y) outside the
interval (0, 1) in such a way that we obtain a test function b(y)ed,. Let a=a(x)ey(0)
be another test function such that

{°  (suppa xsuppb)n{y=x}=0

+ o

a
2° H%Q:l- du #0.
For N
@(x, y)=a(x)b(y),
o (x, y)eA;(0) and
P(W)-0 =p lu—(r%du. (16)

b~ <)

But on the other hand, (13) implies P(W) - ¢ =0 for every test function vanishing at
the points of the line y = x. Therefore from (16) p, =0 follows. A similar construction
can be made also for every 4, and so the assertion is proved.

11. Since W=DV=0, V=K (a constant), and by the definition of V'

V =Dt DT, (F) =K.
Hence
T,(F)= Kt + L log|t| + MY (t) + N (L, M, N = constants)

and therefore
F=K(1—-t)+Llogll —tj+ MY(L - 1)+ N an

(Y (¢) is the Heaviside function).



Vol. 3, 1969 A Functional Equation in the Domain of Distributions 245

Thus we have proved, if the equation (10) has at all a solution (in the domain of
distributions) it can only be of the form (17), which is a locally integrable function.
But for distributions generated by locally integrable functions, (10) goes over
into (1). Substituting (17) into (1) we see that (17) is a solution of (1) (resp. of (10)) for
every value of x and y if and only if L=0 and M =0. Thus we have proved the
following

THEOREM 1. The most general solution of the distributional functional equation
(10) is the distribution generated by a function of the form F(t)=kt+m, where k and m
are arbitrary constants. The same class of functions represents the most general locally
integrable solution of (1).

12. The functional equation (1) can be generalized to

fx+y—xp)+g(xy)=h(x)+k(y), (18)

where f, g, h and k are unknown functions. (18) corresponds to the distributional
functional equation
M(F)+ P(G)=S(H, K) (19)

in which F, G, H, K are unknown distributions of one variable.
If we assume that there exist distributions satisfying (19), we obtain by the same
method as in 7. the following relation:

P(Dt DF) + T,(P(Dt DT, (G))) =0,
and introducing the notations

DtDF=U and DtDT(G)=V

we obtain equation (12) which leads to (13). Therefore ¥'=C (a constant), hence G
is a distribution generated by a function of the form

G=p(1=1)+ B, logll — 1| +BY(1— 1)+ B, (20)

(B, are constants).
Since V is a constant, the relation (12) implies

P(U)=L (L = constant).
By (5) we deduce
yP(DU)=0 and xP(DU)=0
whence
(y-x)P(DU)=0

which yields as in 10. DU=0, i.e. U=M (=constant), and from the definition of U
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we obtain
F=ot+ayloglt] +a3Y () + ey 2n

(o, oy, a3, o, are constants).

Let us substitute (20) and (21) in the left-hand side of (I18) (as for distributions
generated by locally integrable functions the equation (19) goes over into (18)),
we getl)
ap (X +y —xy) + oy loglx + y — xy| +ag + B, (1 —xy) + By loglxyl + B3,  (22)
The partial derivative of (22) with respect to y is
(L=x)+ T+ fy
ol —-x)+o,— -- - - —fx -.
1 2 x + Y — Xy i 2 y
We see that the above expression depends only on x if and only if «,=f,=0 and
therefore (22) reduces to

ay(x+y)—(a,+ ) xy+o,
which can be written in the form A (x)+k (y) if and only if o, + 8, =0. So we proved the
THEOREM 2. The general solution of (18) resp. (19) in the domain of distributions
consists of distributions generated by the following type of functions
f(W=at+m, gt)=at+l, h(t)=at+r, k(t)=at+s
if m+l=r+s hold.

The idea used for the solution of (1) and (18) is also suitable to treat the functional
equation

F(ri+rax +r3y 4+ raxy) +g(sy + spx + 539 + sgxy) = h(x) + k(y).

By operations similar to the 75, P and M-transformations the last functional equation
can be rewritten into a distributional functional equation which can be solved with a
similar method as above. These considerations will appear in a later paper.
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1) The term containing Y(¢) is omitted, because equation (18) is homogeneous, and Y is not a
solution of (18).




