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Introduction 

Nijenhuis operators have been introduced into the theory of integrable systems in 
the work of Magri, Gelfand and Dorfman (see the book [4]) and, under the name of 
hereditary operators, in that of Fuchssteiner and Fokas. Poisson-Nijenhuis struc- 
tures were defined by Magri and Morosi in 1984 [15] in their study of completely 
integrable systems. There is a compatibility condition between the Poisson struc- 
ture and the Nijenhuis structure that is expressed by the vanishing of a rather 
complicated tensorial expression. In this Letter, we shall prove that this condition 
can be expressed in a very simple way, using the notion of a Lie bialgebroid [14, 7, 
12]. A Lie bialgebroid is a pair of vector bundles in duality, each of which is a Lie 
algebroid, such that the differential defined by one of them on the exterior algebra 
of its dual is a derivation of the Schouten bracket. Here we show that a Poisson 
structure and a Nijenhuis structure constitute a Poisson-Nijenhuis structure if and 
only if the following condition is satisfied: the cotangent and tangent bundles are a 
Lie bialgebroid when equipped, respectively, with the bracket of 1-forms defined 
by the Poisson structure, and with the deformed bracket of vector fields defined by 
the Nijenhuis structure. 

Let me add three 'historical' remarks. This result was first conjectured by Magri 
during a conversation that we held at the time of the Semestre Symplectique at the 
Centre Emile Borel. Secondly, the Lie bracket of differential 1-forms on a Poisson 
manifold, defining the Lie-algebroid structure of its cotangent bundle, was defined 
by Fuchssteiner in an article of 1982 [6] which is not often cited, though it is 
certainly one of the first papers to mention this important definition. Thirdly, as A. 
Weinstein has shown [18, 19], Sophus Lie's book [11] contains a comprehensive 
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theory of Poisson manifolds under the name of function groups, including, among 
many results, a proof of the contravariant form of the Jacobi identity, a proof of 
the duality between Lie algebra structures and linear Poisson structures on vector 
spaces, the notions of distinguished functions (Casimir functions) and polar groups 
(dual pairs), and the existence of canonical coordinates. Moreover, Carathrodory, 
in his book [2], proves explicitly the tensorial character of the Poisson bivector and 
gives a rather complete account of this theory, based on a short article by Lie [10] 
that appeared even earlier than the famous Theorie der Transformationsgruppen, 
Part II, of 1890. 

1. Lie Algebroids, Schouten Brackets and Differentials 

It is well known that whenever a vector bundle 7r: A --+ M is a Lie algebroid (see, 
e.g., [16, 13]), the following structures are defined: 

(i) a differential d on the graded vector space F(AA*) of sections of the exterior 
algebra bundle AA* of the dual vector bundle of A (by this, we mean that the 
linear map d is a derivation of degree 1 and of square 0 of the associative, 
graded commutative algebra (I'(AA*), A)), 

(ii) a graded Lie bracket, called the Schouten bracket, on the graded vector space 
of sections of the exterior algebra bundle AA. 

We recall that, by definition, a Gerstenhaber algebra (A = ~iezA i, A, [, ]) is an 
associative, graded commutative algebra, with a graded Lie bracket, with respect 
to the grading shifted by 1 such that, for each element a in A i, [a, ] is a derivation 
of degree i + 1 of the graded commutative algebra (A = ~)iezA i, A). 

The Schouten bracket is the unique Gerstenhaber bracket on F(AA) extending 
the Lie bracket, [ ,  ], on 1-'A defined by the Lie algebroid structure of A, and we 
denote it by the same symbol. 

EXAMPLE 1.1. For any smooth manifold M,  the tangent bundle TM, equipped 
with the Lie bracket of vector fields, is a Lie algebroid (with the identity mapping as 
anchor). The bracket on 1-'(A(TM)) is the Schouten bracket of fields of multivectors 
(whence, the name in the more general situation). The associated differential on 
F (A(T*M))  is the de Rham differential of forms. 

EXAMPLE 1.2. Let P be a Poisson structure on a manifold M,  i.e., a field of 
bivectors such that [P, P] = 0. We denote by the same letter the vector-bundle 
morphism P :  T*M --~ TM, defned  by (~, P a )  = P ( a , ~ )  for all differential 
1-forms t~ and ~. To each Poisson structure P on M there corresponds a Lie 
algebroid structure [3] on the cotangent bundle T*M of M,  with anchor/9,  and a 
Lie bracket, [, ]p, satisfying 

[d f ,  dg]p = d{f ,  g}, (1.1) 
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for all functions f and g on M, where {, } is the Poisson bracket of functions defined 
by the Poisson structure P .  The associated bracket on F(A(T*M))  is the Koszul 
bracket [9] of differential forms, and the associated differential on F (A(TM))  is 
the Lichnerowicz-Poisson differential, d e  = [P, ], where [, ] denotes the Schouten 
bracket of fields of multivectors, defined on any smooth manifold. (See [8] and 
references therein.) Moreover, P is a Lie algebroid morphism from ( T ' M ,  [, ]p) 
to (TM,[,  ]). 

EXAMPLE 1.3. Now let M be a manifold with a Nijenhuis structure, N,  i.e., there 
is a field, N,  of (1,1)-tensors on M with vanishing Nijenhuis torsion. Recall that 
the Nijenhuis torsion of a (1,1)-tensor N is the vector-valued 2-form T(N) defined 
by 

T(N)(X, Y) = [NX, NY] - N([NX, Y] + [X, NY]) + N2[X, Y]. (1.2) 

It was proved in [8] that a Nijenhuis structure defines a new Lie algebroid structure 
on TM, with anchor N :  T M  --+ T M  and bracket [, ]U, defined by 

[X, Y]N = [NX, Y] + IX, NY] - U[X, Y], (1.3) 

for all vector fields X and Y. Moreover, N is a Lie algebroid morphism from 
(TM, [, ]N) to (TM, [, ]). We shall denote by tN the transpose of N,  which is a 
vector-bundle morphism of T*M into itself. 

The associated differential on F(A(T*M))  is 

dN = [iN, d], (1.4) 

where [, ] is the graded commutator, d is the de Rham differential, and iN denotes 
the derivation of degree 0 defined by 

P 

( iNa)(XI, . . . ,  Xp) = ~ a ( X l , . . . ,  NXi , . . . ,  Xp), (1.5) 
i = l  

for a differential p-form a.  

Our aim is to show that, when the Poisson structure P and the Nijenhuis 
structure N satisfy the compatibility condition of a Poisson-Nijenhuis structure 
in the sense of [15] and [8], the Lie algebroid structures thus defined on T M  and 
T*M constitute in fact a Lie bialgebroid structure in the sense of [14] and that, 
moreover, the converse holds. We thus obtain a formulation of the compatibility of 
a Poisson and a Nijenhuis structure that is the simplest that we have found in the 
literature [1, 17], and had eluded previous attempts to characterize PN-structures. 

2. Lie Bialgebroids 

We now assume that dual vector bundles E and E* are both Lie algebroids. On 
F(AE)  are defined both the Schouten bracket [, ] associated with the Lie algebroid 
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structure of E and the differential d, associated with the Lie algebroid structure 
of E*. Dually, on F(AE*) are defined both the Schouten bracket [, ], associated 
with the Lie algebroid structure of E* and the differential d associated with the Lie 
algebroid structure of E. It is natural to impose, as a compatibility condition for 
the Lie algebroid structures of E and E*, that d, be a derivation of the graded Lie 
algebra (F (AE), [, ]) In fact, if E and E* are Lie algebras (a particular case of Lie 
algebroids, where the base manifold reduces to a point), this condition reduces to 
Drinfeld's cocycle condition for the pair (E, E*) to be a Lie bialgebra [5]. In this 
case, the compatibility condition is known to be self-dual, and this fact is true in 
the more general situation of Lie algebroids. In fact, 

PROPOSITION 2.1. Let (E, E*) be a pair of Lie algebroids in duality. Then the 
differential d is a derivation of (F(AE*), [, ],) if and only if the differential d, is 
a derivation of (F(AE), [, ]). 

This proposition justifies the following definition, which we proposed in [7] 
where we also proved that it is equivalent to the original definition of Mackenzie 
and Xu [ 14]. 

DEFINITION 2.2. A Lie bialgebroid is a pair (E, E* ) of Lie algebroids in duality 
such that the differential d, is a derivation of (F(AE), [, ]). 

Mackenzie and Xu [ 14] have shown that the Lie bialgebroids are the infinitesimal 
objects of Poisson groupoids. 

EXAMPLE 2.3. If (M, P)  is a Poisson manifold, then (TM, T ' M ) ,  where T M  is 
equipped with the Lie bracket and T*M is equipped with the Lie algebroid bracket 
[, ]p (Example 1.2) is a Lie bialgebroid. In fact, we know that the differential d,, 
which we have denoted de above, is equal to [P, ] and therefore is a derivation of 
the Schouten bracket of fields of multivectors. It is also well known [9] that d is a 
derivation of the bracket [, ]e. 

3. Another Example of Lie Bialgebroids: PN Manifolds 

We shall now show that Poisson-Nijenhuis manifolds constitute another class 
of examples of Lie bialgebroids. We first recall various formulas from Poisson 
geometry. Let (M, P)  be a Poisson manifold. Then for f E C a (M), a E F (T* M), 

[~, y]p = ce~y  = (dL P~) = e(,~, dy), 

[~, dy]p = -[d~, Y]e + d[~, f]e ,  

Ida, df]p = d[~,  df]p = - d [ d a ,  f]p. 

(3.1) 

(3.2) 

(3.3) 
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As a particular case of either (3.1) or (3.2), we recover 

[d f ,  dg]p = d ( P ( d f ,  dg)) = d{f ,  g}. (1.1) 

If we now assume that (M, N)  is a Nijenhuis manifold, then 

d N f  = t N d f ,  (3.4) 

dNO~ = iN da - d(tNce), (3.5) 

dN(df )  = d( tN d f ) .  (3.6) 

DEFINITION 3.1. A Poisson structure P and a Nijenhuis structure N on a manifold 
are called compatible if 

N P  = p t N  (3.7) 

and C(P, N) = 0, where 

C(P, N)(a , /3)  = [a,/3]NP - -  ([tNa,/3]P + [a, tNfl]p - tN[a,/3]p), (3.8) 

for all o~,/3 E F (T*M) .  When M is a manifold equipped with a Poisson structure, 
P ,  and a Nijenhuis structure, N,  which are compatible, the manifold is called a 
Poisson-Nijenhuis manifold, or a PN-manifold.  

Our main result is the following. 

PROPOSITION 3.2. Let M be a manifold equipped with a Poisson structure, P, 
and a Nijenhuis structure, N. The following properties are equivalent: 

(i) P and N are compatible, 
(ii) the Lichnerowicz-Poisson differential dp is a derivation of  the graded Lie 

bracket[, ]N on F(A(TM)) ,  
(iii) the differential dN is a derivation of  the graded Lie bracket[, ]p on r (A(T*  M)) ,  
(iv) the vector bundle T M  equipped with the Lie algebrold bracket [, ]g  and the 

vector bundle T * M  equipped with the Lie algebroid bracket [, ]p constitute 
a Lie bialgebrold. 

Proof The equivalence of (ii) and (iii) follows from Proposition 2.1, while the 
equivalence of (ii) and (iv) is precisely the definition of a Lie bialgebroid. We shall 
prove that (i) and (iii) are equivalent. For a a differential p-form and/3 a differential 
form on M,  let us set 

A ( a ,  fl) = d N  [o~,/3] p --  [dN or,/3] p --  ( - -  l )p+ l  [o~, dN/3] p .  (3.9) 
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We have to prove that A vanishes if and only if P and N are compatible. We shall 
first consider the case where a and/3 are both functions, which we denote by f and 
g. Then, by (3.4) and (3.1), 

A(f ,g)  = dN[f,g]p -- [dNf, g]p + [f, dNg]p 
= - [ t N  d f ,  g]p + [f, tN  dg]p 

= - (dg ,  P tN  df)  - (df, P t N  dg) 

= (df, ( N P  - P t N )  dg). 

Thus, the vanishing of A on functions is equivalent to condition (3.7). Let us now 
compute A(df ,  g) using (3.4), (3.5), and again (3.1), (1.1) and the fact that d is a 
derivation of [, ]p. 

A(df ,  g) -- dN[df, g]p - [dNdf, g]p - [d f ,  dNg]p 
= tN[df, dg]p + [d(tNdf),g]p - [ d f , t N  dg]p 

= tN[df ,  dg]p - [tN d f ,  dg]p - [df , tN dg]p + d[tN d f ,  g]p 

= C(P, N)(d f ,  dg) - [df, dg]Np + d(dg, P t N d f )  

= C(P, N)(d f ,  dg) - d((dg, N P  d f )  - (dg, P t N  d f ) )  

= C(P, N)(d f ,  dg) - d(d9, ( N P  - P tN) d f )  

= C(P,N)(d f ,  dg) + d(A(f,g)).  

We now consider A evaluated on exact 1-forms d f ,  dg. By (1.1), (3.5) and (3.3), 
we find that 

A(df ,  dg) = dN[df, dg]p - [dNd f,  dg]p - [d f ,  dN dg]p 
= d(tN[df, dg]p - [ d t N  df, dg]p - [df, d tN dg]p 

= -d( tN[df ,  dg]p) + d[tN df, dg]p q- d[df, t N dg]p 

= - d ( C ( P ,  N) (d f ,  dg)) - d[df, dg]Np 

= - d ( C ( P ,  N) (d f ,  dg)), 

since [d f ,  dg]Np = d(dg, N P  dr) .  To conclude, we need only prove that 

A(df ,  h dg) = hA(dr, dg) + A(df,  h) A dg, 

for all functions f ,  g and h. This is proved by a direct computation, and we have 
shown that A -- 0 if and only if N and P are compatible. 

CONSEQUENCES 3.3. Once the compatibility of a Poisson and a Nijenhuis 
structure has been expressed in terms of a Lie bialgebroid structure, we obtain new 
proofs of the properties of PN,manifolds to be found in [15, 8, 17]. 

COROLLARY 3.4. If  the Poisson bivector P and the Nijenhuis tensor N are 
compatible, then N P  is a Poisson bivector. 
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Proof. We use Proposition 3.4 of [7] (see also Proposition 3.6 of [14]) which 
states that there is a Poisson bracket on M,  induced by the Lie bialgebroid structure 
of ( T M ,  T ' M ) ,  given by (dNf,  dpg), for functions f and g on M.  To conclude, we 
only have to remark that the bracket {,  }NP defined by the bivector N P  coincides 
with this bracket, since 

(dNf, dp9) = [dNf , g]p = [tN d f,  g]p ---- (d9, p t N  d f)  

= N P ( d f ,  dg) = {f, g}NP. 

Similarly, as a consequence of Corollary 3.5 in [14] or of formula (6) in [7], we 
obtain 

dN{f ,  g}NP = [dNf, dNg]p, 

whence 

tN[d f ,  dg]Np = [tN d f ,  t N  dg]p, 

where [ ,  ]NP is the Koszul bracket of differential forms defined by the Poisson 
bivector N P .  This property implies that t N  is a Lie algebra morphism, mapping 
bracket[, ]NP of differential 1-forms into bracket[ ,  ]p. 

Also, from formula (6*) in [7], we obtain 

dp{ f , g} NP = - [dP  f , dpg]N , 

and therefore, using d p f  = - P ( d f ) ,  

P [ d f  , dg]Np = [P dr, P dg]N, 

which implies that P is a Lie algebra morphism, mapping bracket [ , ]NP of 
differential 1-forms to bracket [, ]N of vector fields. 
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