
I(~o, ~ ) ~ - -  :o)~1, ),<1. (56) 
- - k ' :  o L ~ k  7u (I~) e 

2r3), 1 - -  Ne -2k:~ % 

L~ 2 

I(~o, ~ ) ~  ,_--:cr % 5 1 ,  ~. = 1 .  

which were obtained earlier by Sobolev in [3]. 
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STATISTICAL DESCRIPTION OF RADIATION FIELDS ON THE BASIS OF 

THE INVARIANCE PRINCIPLE. I. ~AN NUMBER OF SCATTERINOS 

IN A ~DIUM ILLUMINATED FROM WITHOUT 

A. G. Nikogosyan 

A new approach to the determination of the mean number of scatterings 
is proposed on the basis of Ambartsumyan's invariance principle and 
systematic use of the method of generating functions. The average 
quantities found in the paper refer to the case when the medium is 
illuminated from without. Photons that perish in the medium during 

diffusion and photons that escape from the medium are considered 

separately. It is shown that the approach can yield the dependence 
of the mean number of scatterings on the characteristics of the 

original photon and can be used under very general assumptions about 
the elementary scattering event. The case of complete frequency re- 

distribution with allowance for absorption in the continuum is 

studied in detail as an illustration. The ideas developed in the 
paper can in principle be used to determine any of the other dis- 

crete random variables giving a statistical description of a radia- 
tion field. 

i. Introduction 

The main problem that is usually posed in a study of photon diffusion in a medium 
is that of determining the radiation intensity at each point of the medium as a function 
of the frequency, direction, and other characteristics of the radiation. But for many 
reasons, quantities that give a statistical description of the scattering process are 
of no little interest. In our oDinion, the importance of such a description is due in 

B y u r a k a n  A s t r o p h y s i c a l  O b s e r v a t o r y .  T r a n s l a t e d  f rom A s t r o f i z i k a ,  V o l .  21 ,  No. 5 ,  
pp .  3 2 3 - 3 4 1 ,  S e p t e m b e r - O c t o b e r ,  1984 .  O r i g i n a l  a r t i c l e  s u b m i t t e d  November  i ,  1983;  
a c c e p t e d  f o r  p u b l i c a t i o n  A p r i l  3, 1984.  
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the first place to the fact that to a large degree it facilitates better understanding 
of the physical essence of a number of effects predicted by the mathematical solution 

of the problem. On the other hand, the statistical investigation of multiple scatter- 
ing makes it possible to determine a number of important physical characteristics of 

the medium such as the mean radiation density, the mean degree of excitation of the 
atoms, and so forth. The theoretical significance of such an investigation is also 
considerable. Note also that the problem of finding the radiative regime in a medium 
can ultimately also be regarded as a stochastic problem requiring the determination 

of the statistical mean of some random variable. 

Among the various quantities that give a statistical description of a radiation 

field, most attention in the literature has been devoted to the determination of the 

number of scatterings undergone by photons diffusing in a medium. Pioneering here 

was Ambartsumyan's work [i], in which he proposed for the mean number of scatterings 

per photon in some beam the formula 

N = ~,a In ~a;., 

where I is the radiation intensity, and ~ is the probability of reemission of a photon 

in an elementary interaction event with atoms of the medium, The mean number of photon 

scatterings was subsequently estimated by many authors for different special cases, 

though the general treatment of the problem was given by Sobolev in a series of papers 
[2-5]. In particular, so far as we know, it was in these papers that the mean number 

of scatterings was calculated separately for photons that escape as a result of dif- 
fusion outward and photons that "perish" (i.e., undergo true absorption) in the~medium 

during diffusion. We note here that the expression (1) is valid for estimating the 

mean number of scatterings only for moving photons (and not ones that have perlished)~ 

so that (i) will apply to the group of photons that leave the medium. 

For some cases (coherent scattering, completely incoherent scattering), Sobolev 
[2-5] obtained simple relations that make it possible to determine the mean number of 

scatterings undergone by the photons that perish in the medium as well as by all photons 

irrespective of their subsequent "fate." However, these relations; like the physical 
arguments which provide their basis, cease to hold when allowance is made for absorption 
and emission in the continuum. Nor has there yet been a comprehensive study of the more 

complicated cases when the scattering is anisotropic or subject to general laws of 
redistribution with respect to the frequency and direction (a first such attempt was 

made in the recent paper [6] of Arutyunyan and the present author). Very important too 
is the statistical description of scattering in its dependence on the initial character- 

istics of the photon, for example, the frequency, direction of motion~ etc. These 

questions are the subject of detailed discussion in the present series of papers~ 
But this is not the most important thing. Our guiding principle in the series ~ is the 

development of a general approach to the determination of various quantities valid under 

fairly general assumptionsabout the individual scattering event, the distribution of 
the primary energy sources, and the ~eometry of the medium. Our agproach is based on 
Ambartsumyan's invariance principle and systematic use of the method of generating and 

characteristic functions (according as the particular random variable is discrete or 

continuous), which, as is well known [7, 8], is a powerful t0ol in the study of 
probabilistic processes. In such an approach, using simple and standard procedures, 

we can obtain for the quantities in which we are interested equations whose s~udy 
is particularly important in complicated cases in which the problem of finding the 

radiation field itself can be solved only numerically. 

The first two papers of the series are devoted to determining the mean number of 
scatterings. In what follows, we shall consider a quantity that is of interest from the 
point of view of applications -- the mean time a photon remains in the medium. The find- 
ing of this time is a separate problem, and it is only in ~he case of coherent scatter- 
ing that it essentially reduces to determination of the mean number of scatterings. 
It is also intended to generalize the results to a medium of finite optical thickness~ 
Calculations will be made that show the extent to which the statistical mean values are 

influenced by different redistribution laws. 

( i )  
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2. A u x i l i ~ y  E q u a t i o n s  

We i n t r o d u c e  t h e  q u a n t i t i e s  n e e d e d  i n  t h e  f o l l o w i n g  e ~ o s i t i o n .  We s h a l l  be  
c o n s i d e r i n g  t h e  f a i r l y  g e n e r a l  c a s e  f o r  w h i c h  t h e  medium i s  t h r e e  d i m e n s i o n a l  ~ d  t h e  
s c a t t e r i n g  i s  a c c o m p ~ i e d  by  a r e d i s t r i b u t i o n  w i t h  r e s p e c t  t o  t h e  f r e q u e n c i e s  and  
d i r e c t i o n s .  

Suppose  a p h o t o n  o f  d i m e n s i o n l e s s - f r e q u e n c y  x i s  i n f i n i t e  on  a s e m i - i n f i n i t e  
p l ~ e - p a r a l l e l  medium a t  ~ g l e  cos  - 1  q.  We d e n o t e  by  q ' p ( x ' ,  ~ ' ;  x ,  ~ ) ~ ' d q '  t h e  
p r o b a b i l i t y  t h a t  as  a r e s u l t  o f  m u l t i p l e  s c a t t e r i n g s  a p h o t o n  w i t h  f r e q u e n c y  i n  t h e  
i n t e r v a l  ( x ' ,  x '  + d x ' )  l e a v e s  t h e  medium i n  t h e  d i r e c t i o n  q '  i n  t h e  s o l i d  a n g l e  
2 ~ d q ' .  We d e n o t e  t h e  a n a l o g o u s  r e f l e c t i o n  p r o b a b i l i t y ,  b u t  f o r  a p h o t o n  t h a t  has  
u n d e r g o n e  a d e f i n i t e  number  n o f  s c a t t e r i n g s ,  by  q ' P n d X ' d q ' .  

U s i n g  t h e  i n v a r i a n c e  p r i n c i p l e  f o r  t h e  f u n c t i o n  p ,  wh ich  i s  u s u a l l y  c a l l e d  
the reflection function, we obtain 

[v(x)  ~ ' + v ( x ) ~ ] p ( x ,  ~ ;  x, ~) = r ( x ' ,  - - ~ ' ;  x, ~ ) +  - -  I . / I 

k 

, " ' ' x " , ~ " ) r ( x " , ~ " ; x , ~ ) ~ m  ~ ids"  r (x ' ,~ ' ;  x", ~ ) p ( x " , ~ ; x , ~ ) d x " + ~ /  d~" ~(x,  ~,'; 
, /  
0 - - ~  O - - - . ~  

~5'2d~ p ( x ' , ~ { ; x " , ~ ) d x "  d~" r ( x " , ~ " ; x ' " , -  ~ '")p(x" ' ,~l '" ;x , 'q)dx '" ,  (2) 
,) 

0 _ _ ~  0 _ _ ~  

where v(x)  = ~(x) + 6, ~(x) is  the a b s o ~ t i o n  c o e f f i c i e n t  p r o f i l e ,  8 is  the r a t i o  of 
the continuum a b s o ~ t i o n  c o e f f i c i e n t  to the l i ne -cen te r  a b s o r p t i o n : c o e f f i c i e n t ,  and, 
finally, r(x', q'; x, q) is the frequency and direction redistribution function averaged 

over the azimuth. In all cases of astrophysical interest, the function r can be expressed 
a bilinear expansion (see [9, I0]). Thus, if the frequency ~d direction redistribution 

effects are due solely to the thermal motion of the atoms, then 

1 
r(x' ,  x, "f) . . . .  exp[--(x2 + x '2--2xx '  cosT)/sine;']= 

|: r. sin 

cos ~ak (x) ck (,x'), (3)  
k = O  

where  ~ i s  t h e  s c a t t e r i n g  a n g l e ,  % ( x ) =  (ry42~r"l/ff!)-lexp(--x~')Hk(x), and  Hk(X) i s  t h e  
H e r m i t e  p o l y n o m i a l  o f  d e g r e e  k .  

As was shown i n  [ 9 ] ,  t h e  r e d i s t r i b u t i o n  f u n c t i o n  a v e r a g e d  o v e r  t h e  a z i m u t h  i s  
g i v e n  i n  t h i s  c a s e  by 

r(xr' ~l; x' "~)=17~ r(xr' x' ~)dT -- ~' ri(xr' x) Pi('t/) (4)  

0 

where  P i ( q )  i s  t h e  L e g e n d r e  p o l y n o m i a l  o f  d e g r e e  i and  

~; (x', ~) = ~, c~ ~ (~') ~.~ (.), (5) 

and c~ = 0 i f  k + i is odd and c~ = (2i  + 1)k 

I f  we now u s e  t h e  e x p a n s i o n s  (4)  and  

! / ( k -  i ) ! ! ( k  + i + 1) I!  i f  k + i i s  e v e n .  

( 5 ) ,  t h e n  f rom (2) we o b t a i n  

3, c o  r  

" ' ~ ' ( x ' ,  (x, [v(x) ,,' + v(x') -,,,]p(x', ~ ; ~ ,  7) = ( -  I);, 2 c ~ , ~  ( 6 )  

where  t h e  f u n c t i o n s  ~ i k ( X ,  q ) ,  wh ich  a r e  t h e  
f u n c t i o n  i n  t h e  g e n e r a l  t h e o r y  o f  i n c o h e r e n t  
tem o f  f u n c t i o n a l  e q u a t i o n s  

~ik (x, ~) = 

a n a l o g s  of  A m b a r t s u m y a n ' s  w e l l - k n o w n  
s c a t t e r i n g ,  a r e  d e t e r m i n e d  f rom t h e  s y s -  

P~(~)~(x)+ 
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2 i = o  ~ = ,  ~ . . v ( x ) ~ ' + v ( x ' ) ~  

It should be noted that these, like the other relations given in the present sec- 
tion, can, although applicable to the specific case of a purely Doppler law of redis- 

tribution with respect to the frequencies and directions, still be used for other re- 
distribution laws after some slight modifications that are not of a fundamental nature. 

On the other hand, these relations embrace a fairly large class of problems, since they 
readily permit transition to different special cases corresponding to simpler scatter- 

ing mechanisms. Indeed, in many practical applications the function r(x', q'; x~ ~) 
can be represented in the form 

r = po ('4, ," x). 

( 7 )  

(8) 

where r(x', x) is understood as the redistribution function averaged over the directions 

and p0(q,, ~) as the phase function averaged over the azimuth. Then, for example~ to 

go over to the case of anisotropic coherent scattering it is sufficient to use the rela- 
tion (8) and set r(x' , x) = ~(x)6(x -- x') in the equations obtained below. 

It is well known that 

oe 

pc "3 = Y, ".,P, P, (0, 

where z i are the coefficients of the expansion of the phase function in Legendre poly~ 

nomials. As is shown in [9-11], the frequency redistribution function averaged over 

the directions also admits a bilinear expansion. 

Isotropic scattering in the approximation of complete frequency redistribution 
will be the case most frequently encountered in what follows, Then instead of (8) we 
have r(x', B'; x, ~) - a(x')a0(x), and'the system (7) degenerates into a single equa- 

tion for the function ~0(x, n): 

I cc 

)" ~ ~ ~'O(X" ~:)(Xz)(XO(X:)dX:" 0 =  o0,) + y Wo(X, 0 a-,,' w 

0 - - 0 0  

It is easy to show (see [12]) that the ratio r q)/a0(x) depends only on the 
combination z = q/v(x), so that, denoting H(z) -- ~0(x, q)/~0(x), we obtain instead of 

(9) 
I13 

Z" C. <zr. 1__~.z, ) H(z:)dz:'z~- Z '---~: 
0 

w h e r e  
o o  

= 2A .F ' A =  -~:2, G ( z )  " W~(x ') d x  , 

.~(.-) 

(9) 

(i0) 

x(z) = 0 if z ~ 1 and x(z) is determined from the condition a(x(z)) = l/z, if z > i. 

Returning to the reflection function p introduced above, we note that on the 

basis of the probabilistic meaning ascribed to it we can interpret 

' L ,  

(11) 

in two ways (here in all that follows, the asterisk identifies quantities corresponding 
to the fluxes of photons that emerge outward as a result of scatterings; the suffix 
0 will be used for the analogous quantities for photons that perish in the medium). 
On the one hand, R.(x, q) is the profile of the line produced by illumination of a semi-in- 
finite atmosphere with continuum radiation of unit intensity; on the other, it can be re- 
garded as the probability of reflection from the medium of a photon having on incidence 

frequency x and moving at angle cos -I n to the normal. 

Besides the reflection function, an important function in what follows is 

5 3 0  



Y(T, x ' ,  n ' ;  x, q ) ,  which can be interpreted as the probability of emergence from depth 

T for a photon that moves in the direction ~' and has frequency x'. For the analogous 

probability calculated for an absorbed photon, we retain the usual literature notation 

p(~, x' ~' , ; x, q). It is assumed here, as usual, that the optical depth T, calculated 

for the central frequency of the line, increases from the boundary into the medium and 

that the angles are measured from the direction of the outer normal to the surface of 
the medium. 

By the reciprocity principle for optical phenomena, the function Y can also 
be given a somewhat different probabilistic meaning, namely, Y(7, x, --~; x', --q') 

dx'dn' can be regarded as the probability that a photon incident on the medium in the 

direction --U with frequency x intersects as a result of multiple scattering the plane 
parallel to the boundary of the medium at depth T moving in the direction --q' within 

the solid angle 2wdn' and having frequency in the interval (x', x' + dx'). In the 
following exposition, we shall, for convenience, use the notation Y(T, x, --O; x', --~') 

Y(T, x, q; x', n') and assume that in Y the angles are measured from the direction 
of the inner normal to the surface of the medium. 

Application of the invariance principle leads to the following equation for 
the function Y: 

Of(~ ,  x, ~; x ' ,  ~') + v ( x ) ~ ( ~ ,  x, ~; , ,  0 ' ) =  

X,  

where 

c o  

�9 p ( O , x ' , ~ , ' ; x , ~ ) = r ( x , 5 ' ; x ,  .~)+~ d'(' r (x ' , v / ;x ' , - -~")?(x" , ' ( ' ;  x ,~)dx' ,  
A 

As b o u n d a r y  c o n d i t i o n  we h a v e  Y(O, x, ~; x ' ,  v / ) = ~ ( x - - x ' ) ~ ( ~ _ _ ~ ' ) , i f  ~ '  > 0 and  Y(O, x, r~; x ' ,  
~,) .= ] ~ i ? ( x  r, _=~{; x, ~1), i f  rl' ~ O. As i n  t h e  c a s e  o f  t h e  r e f l e c t i o n  f u n c t i o n ,  we s h a l l ,  
i f  the event whose probability is characterized by Y occurs after n scatterings 
append  t o  i t  t h e  s u b s c r i p t  n .  

3. Mean Number o f  S c a t t e r i n g s  o f  a P h o t o n  i n  a 

Medium I l l u m i n a t e d  f rom W i t h o u t  

We begin our study of the finding of one of the most important statistical 
characteristics of a radiation field, the mean number of scatterings, by considering 
the simpler problem in which it is assumed that the medium is illuminated from without. 

L e t  a s t r e a m  o f  p h o t o n s  o f  f r e q u e n c y  x be  i n c i d e n t  on a p l a n e - p a r a l l e l  s e m i -  
i n f i n i t e  a t m o s p h e r e  a t  a n g l e  cos - 1  ~. We s h a l l  c o n s i d e r  l a t e r  t h e  p h o t o n s  t h a t  as 
a r e s u l t  o f  m u l t i p l e  s c a t t e r i n g  u n d e r g o  p r o c e s s e s  o f  t r u e  a b s o r p t i o n  and p e r i s h  i n  
t h e  medium; f i r s t ,  we c o n s i d e r  t h e  p h o t o n s  t h a t  i n  t h e  c o u r s e  o f  d i f f u s i o n  emerge  
f rom t h e  medium.  More p r e c i s e l y ,  we s h a l l  b e  i n t e r e s t e d  i n  o n l y  a c e r t a i n  f r a c t i o n  
o f  them,  n a m e l y ,  t h e  p h o t o n s  t h a t  a r e  d i f f u s e l y  r e f l e c t e d  f rom t h e  medium a f t e r  a 
definite number n of scatterings. This fraction, as we recall, is determined by 
the function Pn" Using the invariance principle, to find Pn we obtain the equations 

k 

1 

T [v (x) ~" + v (x') "~1 P2 (x', , /; x, -~) = ~ d,~" r (x', ~'; x", ,f') p, (x", 0"; x, "9 dx" + 

~' ~ d~}" S Pz (x ' ,  ~'; x", ~") r (x", ~'; x ,  v~) dx"; 

(12) 

(13) 
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i co 

1 oo  O . _ c o  ! 

~' dvl" x' x" ; ~" ; " " ' ' ~._~ ( , ~'; "(9 r (x", x, ~) ax -~ "~,'l _ ,t~," ) ~ (x' ,  "(; x", ~!) • 

dx" fd~tt' ~ r(x",'~'t; x'U, --v{"),n_k_l(xt't, "t~"; x, ~)dx"~, ( ~ , 2 )  
0 ~ 0 o  

We introduce the generating function 

(i~) 

W(x', ~"; =, ~; s)= ~ p. (x', ~'; =, ~)~", 

where s is a p~eter. Since ?, ~0 and ~ p, = 2, the function W is at least defined for 

s satisfying Isl ~ I. For Isl <i, the generating function is infinitely differentiable 
with respect to s. It is also obvious that W(x', ~'; x, ~; I) ~(x',~', x, ~). Using Eqs. (14) 
we can readily obtain for the generating function the equation 

2 [ V ( x ) ~ , + ~ ( X , ) ~ ]  W ( x ' , ~ ' ;  x, ~; S) = r ( x ' ,  - -~ ' ;  x, ~) + 
),s 

t �9 , 

For the d e t e r m i n a t i o n  of  the mean number o f  s c a t t e r i n g s ,  an i n t e r e s t i n ~  q u ~ t i t y  
is the function v(x', ~'; x, ~)= O~'(x', ~'; x', ~; s)/Osls=i. Indeed, it fellows from the phys- 
ical meaning of the qu~tities introduced above that the ratio \~/p gives the req~red mean 
number of scatterings for photons reflected by the medium in the direction ~' within 
the solid angle 2~dq' ~d in the interval of frequencies (x', x' + ~') under the ~n- 
dition that the original photon moved at angle cos -1 q and had frequency x~ Differentiat- 
ing (15) with respect to s and setting s = I, we obtain for ~(x', q'; x, ~) the linear 
equation 

~(x', ~'; x, ~ ) =  ~(x', ~'; x, ~)+ . [~(x)~ '  + v (x9  ~] -~ X 
1 

0 - - ~  

~' ~ d~" ~ (x ~) p (0, x", ~"; x, ~),  (x", ~"; x ' ,  ~') ~ "  �9 (i6) 

0 - - ~  

Since Eq. (15) explicitly contains a product of the parameters s ~d ~, i~ is 
readily concluded that Eq. (16) can also be obtained by differentiating (15) ~e~ by 

term with respect to A ~d then multiplying both sides by A. Therefore, when we 
~e considering diffusely reflected photons (and only then) the two procedures 
involving differentiation with respect to s or ~ are identical. Further, it c~ be 
concluded that to find the me~ number of scatterings there is no need for a preliminary 
determination of the intensity of the reflected radiation, as is usually done; focal 
~fferentiation with respect to A makes it possible to obtain a separate equation for 
the required quantity. ~at we have said acquires Darticul~ importance in co~licated 
problems in which it is impossible to obtain a closed e~ression for the intensity of 
the emergent radiation. Thus, in the general case of incoherent scattering, when the 
redistribution function is represented by a bilinear e~slon, we obtain from (16), 
taking into account (4) and (5), 
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[v(x)~" +v(x')~,]~(x' ,  ~', x, ~,)= 

), ~O CO 

- ~ -  ~ o ( - -  l y  ~ c~% k (x, ~) ~;k (x', if) [1 + f ~  (x, ~) + f,k (.x', ~')], (17) 

w h e r e  flk (x, "q) = ),C)]n~il, (x, "~)/c)'A. The d e t e r m i n a t i o n  o f  v ( x '  , n '  ; x ,  ~) r e d u c e s  t o  s o l v i n g  
f o r  ~ k ( x ,  q ) = f i t ( x ,  ,3)~.k(x, ~) t h e  s y s t e m  o f  l i n e a r  e q u a t i o n s  

% ( x ,  ~) = ~ (x, ~) - P: (~) %(x) + 

1 oo 

(18) 
- ~=o -= .  ~ v ( x ) ~ ' + v ( x ' )  

0 

I n  t h e  g e n e r a l  e a s e ,  Eq.  (18)  c a n  b e  s o l v e d  i t e r a t i v e l y  ~ ( x ,  "~)-----~,t,(x, "q)-- P,(~)a~ (x) 
b e i n g  n a t u r a l l y  c h o s e n  as t h e  z e r o t h  a p p r o x i m a t i o n .  I t  i s  p a r t i c u l a r l y  c o n v e n i e n t  t o  
c o n s t r u c t  t h e  f u n c t i o n  v ( x ' ,  ~ ' ;  x ,  ~) a t  t h e  same t i m e  as  s o l v i n g  t h e  s y s t e m  o f  f u n c -  
t i o n a l  e q u a t i o n s  ( 7 ) .  

I n  t h e  c a s e  o f  c o m p l e t e  f r e q u e n c y  r e d i s t r i b u t i o n ,  (17)  s i m p l i f i e s  a p p r e c i a b l y  
t o  

v(x',  if; x, ~)/O(x', if; x, ~ ) = l  ~- f (z ) -[- . f (z% (19)  

w h e r e  f (z)  = ),din ~o (x, vi)/dk =),alnH(z)/8),,  and H ( z )  . is t h e  s o l u t i o n  o f  Eq .  ( 1 0 ) .  h r e l a t i o n  
a n a l o g o u s  t o  (19)  b u t  f o r  c o h e r e n t  s c a t t e r i n g  and ~ = 0 was o b t a i n e d  f o r  t h e  f i r s t  t i m e  
by S o b o l e v  i n  [ 3 ] .  We s e e  t h a t  i n  t h e  c a s e  c o n s i d e r e d  t h e  r a t i o  v/O i s  a s y m m e t r i c  
f u n c t i o n  w i t h  r e s p e c t  t o  t h e  p a i r s  o f  a r g u m e n t s  x ,  ~ and x ' ,  ~ ' .  At  t h e  same t i m e ,  
t h e  r a t i o  can  be  e x p r e s s e d  s o l e l y  i n  t e r m s  o f  t h e  f u n c t i o n  f ( z )  o f  a s i n g l e  v a r i a b l e ,  
this function satisfying, as follows from (19), the equation 

i ( " )  f ( z ) : H ( z ) - - l . - F z  G 1 - - ~ z '  O(z, z ' ) f ( z " ) d z ' ,  ( 2 0 )  

0 

w h e r e  p(z, z')=(),/2)H(z)H(z')/(z+z'). F o r  f ( z ) t I ( z )  = ~3H(z ) /OX i t  i s  a l s o  p o s s i b l e  t o  
write down a singular equation obtained from the corresponding equation for H(z). l low- 
ever, we give here the explicit expression for f(z): 

�9 ( Z~ ) "g/ f ( z )  = ~ - -  ~--~{ F ( z ' ,  '~, ~)G dz',  ( 2 1 )  

2 ( 1 - ~ )  "z j 1--~z' z+z '  
0 

where 

seatterings of photons that leave the medium. 
to know the quantities 

�9 -~; g(: , ,  ~)---- 

1/2 oo 

z ~ G - -  - -  k - - - - )~A d x .  
1 - - ~ z '  z e - z  '~' v (x )  

0 - -OO 

The f u n c t i o n  v ( x ' ,  ~ ' ;  x ,  ~) c o n t a i n s  a l l  t h e  i n f o r m a t i o n  c o n c e r n i n g  t h e  n u m b e r  o f  
However, in practice it is often sufficient 

f r,'d~' ,J (x' ,  "(; x, ~) dx'  d~ ~ (x' ,  "i', x, ~) dx 
,.1 

0 

0 - - r  0 - - c ' ~  

I t  i s  r e a d i l y  s e e n  t h a t  N . ( x ,  n) g i v e s  t h e  mean number  o f  s c a t t e r i n g s  u n d e r g o n e  by  p h o t o n s  
o f  f r e q u e n c y  x t h a t  e n t e r  t h e  medium i n  t h e  d i r e c t i o n  n and s u b s e q u e n t l y  e m e r g e  f r o m  i t .  
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On the other hand, one could have the aim of determining the mean number of seatterings 
that issue in photons of frequency x' emerging from the medium in the direction r~'. 
This number is characterized by the function N~(x, ~). 
give only some particular results relating to N.(x, ~); 

tion of N.(x, q). 

I n t r o d u c i n g  t h e  n o t a t i o n  

~, (x,  ~) =~,'~R* (x, -4) 
~. 

we o b t a i n  on the  b a s i s  o f  Eq. (16) 
] ~0o 

where 

1 

k vl~ d.4 ' 
-5 

0 

For brevity, in what follows we 
we concentrate on the Cal:cula- 

' i  f l~'dr," - , , "~ ( x , ~ ; x ,  q d x ' ,  
t l  
0 - - o o  

. # ,  1 a (x') p (o, x', n, x, ,i,) ~, (x', ~'),tx' -4- l ,  ,,x, ~,). 

l ,  (x, ~i) = v (x) R ,  (x, ~) + ",l ~ d,i' v (x') r~ (x', d; x, ,D &'  - -  
, J  

'iI< ;i j d 4 '  1 - -  ~ (x ' )  + ~ (x ' ,  ~'; x ,  ~,) dx" + 

( x ,  ~}; x ' ,  ~/) d x '  d'ff' r (x', - -  "4'; x", ~q")/~. (x", "q") dx"; 

We shall return to (22) below, giving in the meanwhile the values of N. and N, for some 

s p e c i a l  c a s e s .  

In  t he  a p p r o x i m a t i o n  o f  c o m p l e t e l y  i n c o h e r e n t  s c a t t e r i n g  ( s e e ,  f o r  e x a m p l e ,  ~t2]') 

(22) 

R,  (x, ~) = ~, (x) / 1 - 7..-i- y ,3<,., (z, .% ~ 13r~ (x, ~.l . (23) 

where 
l/:s 

.f -~oo0,,~)= Go i ~z 
U 

ll~ co 

6;0 ~ dz' Go (z) = 2,4 ~. (x) ~'x. o>(z,~,, ~ ) = z .  I--~=' z T z  
0 x ~ )  

N a g i r n e r  [13] has  t a b u l a t e d  Y 0 0 ( / ,  8) and ~ ( z ,  l ,  B) f o r  d i f f e r e n t  v a l u e s  of  t h e  
a r g u m e n t s .  I t  i s  o b v i o u s  t h a t  i n  t h e  g i v e n  c a s e  t h e  f u n c t i o n s  N, and N, w i t 1  a l s o  
depend only onthe combination z = q/v(x). Then, from (19) and the definition of N,(x, q) 

w e  obtain '2-- k 

1 +/(:)- ,, . t - S ( z ) + ~ [ . ( z ,  ~, ~)---roo(~., ~)] 
2 ~ I - - ) ,  

N .  (~) --- I +/(z) - -  
1 - - H ( z )  1 - -k - t -  -ff ~[~(z ,  k, ~)-- %o():, ,8)] 

w h e r e  

Similarly 

S( ) " "  
"~oo- (,,, ~) = Go 1 -z~z H(=) / (= ) .d~;  <o(z, )., ~ ) = = , .  6:o. 1 - - t~= ' /  = + = '  

0 0 

N. (z) = : + /(z) +J(z, ~., ~)/~ (z, 7., ~j. 

(24) 

(25) 

For 8 = O, Eq. (24) simplifies to 
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G(z')F(z' ,  x, ~) z,dz, 
Z ~ Z  ~ 

N, (z) : f.(o,,I--f(z) H(z) = 0 _ , (26)  
H(o~) - -  H(z) r 

t , ~ . .  , , , z ' d z '  ' G  (z ) - ' - / ( z  ) - , 

Z-'FZ 
U 

where  we h a v e  u s e d  t h e  equ_ati__on f o r  t h e  H f u n c t i o n  ( 1 0 ) ,  t h e  e x p r e s s i o n  ( 2 3 ) ,  and  h a v e  
a l s o  n o t e d  t h a t  H(oo) = 1 / / 1  -- ~ and  f(oo) : ~ / 2 ( 1  -- ~ ) .  

We now t u r n  t o  t h e  s t a t i s t i c s  o f  t h e  number  o f  s c a t t e r i n g s  o f  t h e  p h o t o n s  t h a t  
perish in the medium in the course of diffusion. If once more we consider photons of 

:frequency x incident on the semi-infinite medium at angle cos -I q, then the probability 

of their perishing as a result of a definite number n of scatterings (the absorption 

event is also regarded as a scattering) will obviously be given by 

= C . . . .  q. (x, 7) / T ~  <,tx ) ax ~._~ (~, x, -.,; x ,  ~i') <s:, (27)  
~ ) 1 " i  I 
0 - - c o  0 

where  u (x) = (1 -- ),) ~. (x) q- 7. 

Use o f  t h e  i n v a r i a n c e  p r i n c i p l e  makes i t  p o s s i b l e  t o  w r i t e  down e q u a t i o n s ,  
a n a l o g o u s  t o  ( 1 2 ) ,  f o r  t h e  f u n c t i o n s  Yn; i n  t u r n ,  t h e y  l e a d  t o  t h e  f o l l o w i n g  e q u a -  
t i o n  f o r  t h e  g e n e r a t i n g  f u n c t i o n  o f  t h e  q u a n t i t i e s  qn (X,  ~ ) :  

(~) q(~, 7; s )=  

3 s d~' u 
t~ 

- ~ -  s d~' ,' (x ,  ~; x' ,  ~l') Q (x' ,  "4 ; s)  dx' +- 
0 - - ~  

(x') lr/(x', ~,'; x, "~; s),tx" + su(x) + 

j Q(x', ~,; r(x',  73 x", W(x", x, ~; s)dx". (2a) 
O" - -  cr 0 - -  o o  

On t h e  b a s i s  o f  t h e  p r o b a b i l i s t i c  m e a n i n g  of  R 0 ( x ,  q) = Q(x,  q; 1 ) ,  we c a n  r e a d i l y  
c o n c l u d e  t h a t  R 0 ( x ,  ~) + R . ( x ,  ~) = 1, s i n c e  a p h o t o n  i n c i d e n t  f rom w i t h o u t  mus t  e i t h e r  
be  r e f l e c t e d  by  t h e  medium o r  be  a b s o r b e d  i n  i t .  The f u n c t i o n  Y h a v i n g  t h o s e  two i n t e r p r e t a -  
t i o n s ,  R0(x  , ~) can  a l s o  be  r e g a r d e d  as t h e  p r o f i l e  o f  t h e  a b s o r p t i o n  l i n e  f o r m e d  i n  an 
i s o t h e r m a l  a t m o s p h e r e  i f  t h e  power  o f  t h e  p r i m a r y  s o u r c e s  i s  u ( x ) .  From (28)  i n  p a r t i c u l a r  
t h e r e  f o l l o w s  an  e q u a t i o n  f o r  t h e  f u n c t i o n  R 0( x ,  ~) ( s e e  a l s o  [ 1 4 ] ) :  

v (x) Ro (x, ~) :)d~'C ~ (x ' )  p (o, x', -~'; x, 4) t~o (x', ~,/) dx'  § 

0 1 ~  o o  

, J  i,i 

~) - - o o  

Obviously, the mean number of scatterings N0(x, ~) of the absorbed photons 

can be represented in the form N0(x , -~)=vo(x , ~)/R0(x , "6), where "~o(x, ~)= 0Q(x, "~; s)/dsI~=r 
Using Eq. (28), we obtain for ~0(x, ~) 

~(~)~o(X, -~,): f r  I ~(~')p(O, ~',-,,': ~, ~)~o(~', ~')d.,-' +'o(X, ~,), (30) 
u 

- - o o  
whe r e  

/ i  

lo( , (x, - . , )+ . ,  7'; x, + 
i J  

2 7 d~,' ~(x, ~,; ~', V) d~' d ,~"  , - (x ,  - - - ( ;  ~", "4")Ro(x, ",,,)dx". 
0 __~,~ o -- 8 
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Besides the functions N,(x, q)  and No(X , n), we introduce 

= A'. (~, ~) R. (x. -,,) + No(x, ~) Ro (x, % ~: N( x, ~) ,, (31 )  

which is readily seen to be the mean number of scatterings for a photon that possesses 
frequency x and is incident on the medium at angle cos -I n irrespective of whether or 
not it is subsequently absorbed in the medium or leaves it. Instead of finding vo(x~ 

q), we write down an equation for the function (N(x, q) ) whose free term is simpler than 
lo(x, .q). Indeed, adding Eqs. (22) and (30), we obtain 

" = [ j d ~ '  ~(x')p (o, x ,  ,,'; x, -,~)~ N ( x ' ,  -() d x ' ~  v (~) : g ( x ,  ~) / ' - ' 
u - -8  

1 oo ,~ v (~) + ~ I tiT,' v (x9 0 (x',  -,{; x, ~) d~'. (32)  
0 - - 0 ~  

If p(x', q'; x', q) is known, Eq. (32) can be regarded as an integral equation with 

kernel a(x')p(O, x', q'; x, q) for the function (N(x, O)}. We have seen above that 
the function Ho(X , q) also satisfies an equation of this type. As was shown in [14]~ 
the problem of finding the intensity of the emergent radiation for different distribu- 

tions of the primary energy sources also reduces to the solution of an equation with 

kernel a(x')p(O, x', q'; x, q). Referring the reader to [14] for the details of the 

solution of equations of the type (32) for different scattering mechanisms, we mention 

here merely that the route to the solution proposed there is based on a representation 

of the kernel in the form 

�9 oo c~ 

(x') p (0, x', ~'; x, ~) = *---v2 ,% P~ ( ' ( )  ~ c,~ %(~ ' )  %,(x, % (a3) 

which follows from the bilinear expansion of the redistribution function (4) and Eqs~ 
(6) and (13). Generally speaking, the use of the expansion (33) makes it possible 

to reduce the problem of solving an integral equation of the form (32) to the solu- 

tion of an infinite system of algebraic equations. In some of the simplest cases, 
the solution, expressed in terms of ~ functions, can be found in closed form. 

We consider in more detail the determination of (N(x, q) }. Once found, we 

can if necessary also use (Sl) to determine No(X, ~) (we assume R.(x, q) and Ro(X , 
q) are known). However, we first draw an important conclusion by comparing Eqs. (29 )  
and  ( 3 2 ) .  We s e e  t h a t  f o r  ~ = 0 ( a n d  o n l y  t h e n )  

( N ( x ,  ~) > = Ro(x, ~)/(1 --),),  

a r e s u l t  t h a t  was o b t a i n e d  b y  p h y s i c a l  a r g u m e n t s  by  S o b o l e v  [2]  i n  t h e  s i m p l e s t  c a s e  
o f  i s o t r o p i e  c o m p l e t e l y  i n c o h e r e n t  s c a t t e r i n g .  

Now s u p p o s e  8 ~ O. Then  by  s i m p l e  s u b t r a c t i o n  o f  (29 )  f r o m  (32)  we r e a d i l y  
c o n c l u d e  t h a t  t h e  d i f f e r e n c e  o f  ( N ( x ,  q ) )  and  Ho(X , q) s a t i s f i e s  an i n t e g r a l  e q u a t i o n  
d i f f e r e n t  f r o m  t h e  o r i g i n a l  e q u a t i o n s  o n l y  i n  t h e  f r e e  t e r m ,  now ),~lJ~00(x, ~). U s i n g  
t h e  e x p a n s i o n  ( 3 3 ) ,  t o  d e t e r m i n e  ( N ( x ,  q) ) we h a v e  

), [ 1 ~176 ~' ] 
The constants Jnk in (35) are determined from the system of algebraic equations 

7. oo oo 

�9 . . . ~ .  cn,7 nlr .~--) 7r 
J,tn = ~ k6,rn Jn~ V " ~,m'  

k~n 

where 

g;~ = 2P ,  (-,~) en ~.~ (~, ~) - - % ( ~ )  d~. 
v (x) 

0 - - 0 0  

(34 )  

(35) 

(36) 
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I n  p a r t i c u l a r ,  i n  t h e  c a s e  o f  c o m p l e t e  f r e q u e n c y  r e d i s t r i b u t i o n  (35)  i s  r e p l a c e d  
by 

( N(x,  r,) ) :Ro(X , ~)+ ~ a(X) H(z),  (37)  
V 1 -.-~, v (x) 

o r ,  with a l l o w a n c e  f o r  ( 2 3 ) ,  f i n a l l y  

< N(x,  ~) >= ~ + - - H ( ~ )  1 ~ . 
v(x)  v(x)  [ / I  - -~  ~ ' 

The function 

J v (x)  

i n  (38)  i s  w e l l  known i n  t h e  t h e o r y  o f  r a d i a t i v e  t r a n s f e r  i n  a l i n e  w i t h  c o n t i n u u m  a b s o r p -  
t i o n .  T h i s  f u n c t i o n  has  b e e n  t a b u l a t e d  f o r  d i f f e r e n t  p r o f i l e s  o f  t h e  a b s o r p t i o n  c o e f -  
f i c i e n t .  

I t  f o l l o w s  i n  p a r t i c u l a r  f rom (38)  t h a t  as  x ~  ~ ,  < N ( x ,  ~)> ~ 1 .  F o r  B = O, as  
one  w o u l d  e x p e c t  and  as i s  r e a d i l y  v e r i f i e d ,  (38)  goes  o v e r  i n t o  t h e  p r e v i o u s l y  o b t a i n e d  
( 3 4 ) .  

The e x p r e s s i o n s  o b t a i n e d  i n  t h i s  p a p e r  make i t  p o s s i b l e  t o  c a l c u l a t e  t h e  mean 
number  o f  s c a t t e r i n g s  f o r  p h o t o n s  t h a t  l e a v e  t h e  medium and  h a v e  d e f i n i t e  f r e q u e n c y  and  
d i r e c t i o n  of  m o t i o n .  Of c o u r s e ,  i f  t h e  e x t e r n a l  r a d i a t i o n  s o u r c e s  have  c e r Z a i n  a n g u l a r  
and  s p e c t r a l  d i s t r i b u t i o n s ,  t h e  o b t a i n e d  e x p r e s s i o n s  m u s t  be  a v e r a g e d  o v e r  t h e s e .  
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