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which were obtained earlier by Sobolev in [3].
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STATISTICAL DESCRIPTION OF RADIATION FIELDS ON THE BASIS OF
THE INVARIANCE PRINCIPLE. I. MEAN NUMBER OF SCATTERINGS
IN A MEDIUM ILLUMINATED FROM WITHOUT

A. G. Nikogosyan

A new approach to the determination of the mean number of scatterings
is proposed on the basis of Ambartsumyan’s invariance principle and
systematic use of the method of generating functions. The average
quantities found in the paper refer to the case when the medium is
illuminated from without. Photons that perish in the medium during
diffusion and photons that escape from the medium are considered
separately. It is shown that the approach can yield the dependence
of the mean number of scatterings on the characteristics of the
original photon and can be used under very general assumptions about
the elementary scattering event. The case of complete frequency re-
distribution with allowance for absorption in the continuum is
studied in detail as an illustration. The ideas developed in the
paper can in principle be used to determine any of the other dis-
crete random variables giving a statistical description of a radia-
tion field.

1. Introduction

The main problem that is usually posed in a study of photon diffusion in a medium
is that of determining the radiation intensity at each point of the medium as a function
of the frequency, direction, and other characteristics of the radiation. But for many
reasons, quantities that give a statistical description of the scattering process are
of no little interest. In our opinion, the importance of such a description is due in
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the first place to the fact that to a large degree it facilitates better understanding
of the physical essence of a number of effects predicted by the mathematical solution
of the problem. On the other hand, the statistical investigation of multiple scatter-
ing makes it possible to determine a number of important physical characteristics of
the medium such as the mean radiation density, the mean degree of excitation of the
atoms, and so forth. The theoretical significance of such an investigation is also
considerable. Note also that the problem of finding the radiative regime in a medium
can ultimately also be regarded as a stochastic problem regquiring the determination

of the statistical mean of some random variable.

Among the various gquantities that give a statistical description of a radiation
field, most attention in the literature has been devoted to the determimation of the
number of scatterings undergone by photons diffusing in a medium. Pioneering here
was Ambartsumyan’s work [1], in which he proposed for the mean number of scatterings
per photon in some beam the formula

N =1d1n Jjo),

where I is the radiation intensity, and A is the probability of reemission of a photon
in an elementary interaction event with atoms of the medium. The mean number of photon
scatterings was subsequently estimated by many authors for different special cases,
though the general treatment of the problem was given by Sobolev in a series of papers
[2-5]. 1In particular, so far as we know, it was in these papers that the mean number
of scatterings was calculated separately for photons that escape as a result of dif~
fusion outward and photons that "perish" (i.e., undergo true absorption) in the medium
during diffusion. We note here that the expression (1) is valid for estimating the
mean number of scatterings only for moving photons (and not ones that have nerighed),
so that (1) will apply to the group of photons that leave the medium.

For some cases (coherent scattering, completely incoherent scattering), Sobolev
[2-5] obtained simple relations that make it possible to determine the mean number of
scatterings undergone by the photons that perish in the medium as well as by all photeuns
irrespective of their subsequent "fate." However, these relations, like the physical
arguments which provide their basis, cease to hold when allowance is made for absorption
and emission in the continuum. Nor has there yet been a comprehensive study of the more
complicated cases when the scattering is anisotropic or subject to general laws of
redistribution with respect to the frequency and direction (a2 first such attempt was
made in the recent paper [6] of Arutyunyan and the present author). Very important toc
is the statistical description of scattering in its dependence on the initial character-
istics of the photon, for example, the frequency, direction of motion, etc. These
questions are the subject of detailed discussion in the present series of papers.
But this is not the most important thing. Our guiding vrinciple in the serieg is the
development of a general approach to the determination of various quantities valid under
fairly general assumptions about the individual scattering event, the distripution of
the primary energy sources, and the geometry of the medium. Our approach is based on
Ambartsumyan’s invariance principle and systematic use of the method of generating and
characteristic functions (according as the particular random variable is discrete or
continuous), which, as is well known [7, 8], is a powerful tool in the study of
probabilistic processes. In such an approach, using simple and standard procedures,
we can obtain for the gquantities in which we are interested equations whose study
is particularly important in complicated cases in which the problem of finding the
radiation field itself can be solved only numerically.

The first two papers of the series are devoted to determining the mean number of
scatterings. In what follows, we shall consider a guantity that is of interest from the
point of view of applications — the mean time a photon remains in the medium. The find-
ing of this time is a separate problem, and it is only in the case of coherent scatter-
ing that it essentially reduces to determination of the mean number of scatterings.

It is also intended to generalize the results to a medium of finite optical thickness.
Calculations will be made that show the extent to which the statistical mean values are
influenced by different redistribution laws.
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2. Auxiliary Equations

We introduce the quantities needed in the following exposition. We shall be
considering the fairly general case for which the medium is three dimensional and the
scattering is accompanied by a redistribution with respect to the frequencies and
directions.

Suppose a photon of dimensionless. frequency x is infinite on a semi-infinite
plane-parallel medium at angle cos_1 n. We denote by n'p(x', n'; x, n)dx'dn' the
probability that as a result of multiple scatterings a photon with frequency in the
interval (x', x' + dx') leaves the medium in the direction n' in the solid angle
27dn'. We denote the analogous reflection probability, but for a photon that has
undergone a definite number n of scatterings, by n'ppdx'dn’

Using the invariance principle for the function p, which is usually called
the reflection function, we obtain

—%[v () 7 + o) ale (e, 75 x 1) =1 (5 — 75 % 7+

1 o0
n

~ A
o A (T ” Y N v, ; ”
nl;d’t jr(“’ lyx) ’llP(x,’ux:“’l)dx \le J(.‘C, ",x:‘ﬁ)r(x:ﬂ,x,’ﬂ)dx -+
o/ v
—_ 4]

ét——“:S

==
1 oo 1 oo
L] el .l
" [ " won, I ~r e e, ) e
Tl’l dr, jP(x,W,X;G)dx” \d 5’(-’5,711" » T 7 )P(x » 4 ’x’Q)d’t b (2)
]
§
0 —o0 -— 00

where v(x) = a(x) + B, a(x) is the absorption coefficient profile, 8 is the ratio of

the continuum absorption coefficient to the line-center absorption coefficient, and,
finally, r(x', n'; x, n) is the frequency and direction redistribution function averaged
over the azimuth. In all cases of astrophysical interest, the function r can be expressed
as a bilinear expansion (see [9, 10]). Thus, if the frequency and direction redistribution
effects are due solely to the thermal motion of the atoms, then

1 ,
r{x, x, 1) =—= exp[— (x* 4+ x"2 — 2xx’ cos 7)/sin®y]=
V= siny

Y cos* 1, (x) g, (x), (3)
k=0

where v is the scattering angle, ak(x)==(ﬁ”42HQL/ZU“Iexp(——xzyﬁh(x), and Hy (x) is the
Hermite polynomial of degree k.

As was shown in [9], the redistribution function averaged over the azimuth is
given in this case by

r(x', 7 x, 4 =———5r(x X, {)dp = Er(x x) P (') P (1), &3]

where Pi(n) is the Legendre polynomial of degree i and

(x x) ch k(x)g' (X) (5

b |
and ci =0 if k + i is odd and ci = (21 + )k!/(k — )Mk +1i1+ 1) if k + i is even.
If we now use the expansions (4) and (5), then from (2) we obtain
[v () + o) ueles 775 2 % =——2(—l) L i (x', 1) ey (%, ), (6)
z——O Rei

where the functions ¥;x(x, n), which are the analogs of Ambartsumyan’s well-known ¢
function in the general theory of incoherent scattering, are determined from the sys-
tem of functional equations

(Pik(xr %) = P; () L7 (x)+
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It should be noted that these, like the other relations given in the present sec~
tion, can, although applicable to the specific case of a purely Dopuler law of redis-
tribution with respect to the frequencies and directions, still be used for other re-
distribution laws after some slight modifications that are not of a fundamental nature.
On the other hand, these relations embrace a fairly large class of problems, since they
readily permit transition to different special cases corresponding to simpler scatter-
ing mechanisms. Indeed, in many practical applicationsg the function r(x', n’; %, n)
can be represented in the form

r(x', s x, w) = p° (0, M r(x, x), (8)

where r(x', x) is understood as the redistribution function averaged over the directions
and pO(n', n) as the phase function averaged over the azimuth. Then, for example, to

go over to the case of anisotropic coherent scattering it is sufficient to use the rela-
tion (8) and set r(x', x) = a(x)8(x — x') in the equations obtained below.

It is well known that

oc
P (Y5 m) =Y #Pi(n) Pi (),
i=0
where », are the coefficients of the expansion of the phase function in Legendre poly-
nomials. As is shown in [9-11], the frequency redistribution function averaged over
the directions also admits a bilinear expansion.

Isotropic scattering in the approximation of complete frequency redistribution
will be the case most frequently encountered in what follows, Then instead of (8) we
have r(x', n'; x, n) = a(x")og(x), and the system (7) degenerates into a single equa~
tion for the function Yg(x, n):

n) = x — 7 1 ¥, _____~_ﬂ3___ : ’
20, 1) = 0(x) + = 702 (e ojd jw(xww(x,) % () d. (9)

It is easy to show (see [12]) that the ratio Pg(x, n)/ag(x) depends only on the
combination z = n/v{(x), so that, denoting H(z) = ¢o(x, n)/ao(x), we obtain instead of
9
13
)3 ) / ’ 4
H() =1+ 2 2H(2) (G(—J—)H €1 gy, (10)
2 1—82' Jz4-2

where

G(z)=24 | a*(x) dx’, A==,
Ra
x(z) = 0 if z S 1 and x(z) is determined from the condition a(x(z)) = 1/z, if =z > 1.

Returning to the reflection function p introduced above, we note thai on the
basis of the probabilistic meaning ascribed to it we can interpret
1 o0
4
R (x, n)-z\r.’d-n’ ( o (X' w5 x, m)dx’ (11)
he S
in two ways (here in all that follows, the asterisk identifies quantities corresponding
to the fluxes of photons that emerge outward as a result of scatterings; the suffix
0 will be used for the amalogous quantities for photons that perish in the medium).
On the one hand, Ry(x, n) is the profile of the line produced by illumination of a semi-in-
finite atmosphere with continuum radiation of unit intemnsity; on the other, it cam be re-
garded as the probability of reflection from the medium of a photon having on incidence
frequency x and moving at angle cos” ~ n to the normal.

Besides the reflection function, an important functiom in what follows is
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Y(t, x*, n'; x, n), which can be interpreted as the probability of emergence. from depth
T for a photon that moves in the direction n' and has frequency x'. For the analogous
probability calculated for an absorbed photon, we retain the usual literature notation
»{1t, x', n'; %, n). It is assumed here, as usual, that the optical depth 71, calculated
for the central frequency of the line, increases from the boundary into the medium and
that the angles are measured from the direction of the outer normal to the surface of
the medium.

By the reciprocity principle for optical phenomena, the function Y can also
be given a somewhat different probabilistic meaning, namely, Y¥(1, X, —n; %', —n'}
dx'dn' can be regarded as the probability that a photon incident on the medium in the
direction —n with frequency x intersects as a result of multiple scattering the plane
parallel to the boundary of the medium at depth T moving in the direction —n' within
the solid angle 27dn’ and having frequency in the interval (x', x' + dx'). In the
following exposition, we shall, for convenience, use the notation Y(1, %X, —n; X', —-n")
= Y(t, %, n; x', n') and assume that in Y the angles are measured from the direction
of the inner normal to the surface of the medium.

Application of the invariance principle leads to the following equation for
the function Y:

MARCE TSR SRS O B

ot
1 %)
Sd"‘” 5 a(x")p(0, x, %"; x, ) Y (5, x", "5 x', ) dx”, (12)
0
where
2 foe]
I
! a(x)p (0, ', 5 x, M) = r(x, 7; x, *z)+”5 j rix', s &, — ) e(x", 1" x, M) dx”, (13)

As boundary condition we have Y (0, x, v; X/, 7;)—3(x——x)o(71——-q) if n' > 0 and Y(O x, 15 x,
1) =|7"]p(x’, —7; x, ), if n' S<O. As in the case of the reflection function, we shall,

if the event whose probability is characterized by Y occurs after n scatterings

append to it the subscript n.

3. Mean Number of Scatterings of a Photon in a

Medium Illuminated from Without

We begin our study of the finding of one of the most important statistical
characteristics of a radiation field, the mean number of scatterings, by considering
the simpler problem in which it is assumed that the medium is illuminated from without.

Let a stream of photons of frequency x be incident on a plane-parallel semi-
infinite atmosphere at angle cos” ~ n. We shall consider later the photons that as
a result of multiple scattering undergo processes of true absorption and perish in
the medium; first, we consider the photons that in the course of diffusion emerge
from the medium. More precisely, we shall be interested in only a certain fraction
of them, namely, the photons that are diffusely reflected from the medium after a
definite number n of scatterings. This fraction, as we recall, is determined by
the function On- Using the invariance principle, to find Pp We obtain the equations

~2~["0 () + o {xYnle (', s %, Q) =r(x, — 75 x, 1);
2 + o () e (s 5 % fz)-—*ydn"‘) P (s s 2 )y (s 5 % ) X

hcanll <]

Jdn Sh(x W5 %", ) r (&7, 05 x, ) dx”;
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We introduce the generating function

[+ ]
W (x's 15 x5 8) = ¥ o, (x", 75 x, 1) 57,
nw=l
[ ]
where s is a parameter. Since ¢, >0 and 2 P, =
n=1
s satisfying [s[’< 1. For !sl <1, the generating function is infinitely differentiable
with respect to s. It is also obvious that W(x’, v x, % 1)=05(x",7; x, m}. Using Eqs. (14),
we can readily obtain for the generating function the equation

7, the function W is at least defined for

¥

2 .
°.—‘ o7 +o( )W, x, 2 s)=r(x, — 5% 1)+
1

Svdﬂ”j‘ T(X:"l,x 71”) W(x,v,,x, Y s)dT”+7I ydn”jv W(xz.’fsx’ 7[,5)"(.&’,7111': "l)ﬁ’x”

e g o0 1 o —®
n
,q,n jdnll ‘ W(x , "I] ; ’ .’”’ s) dx” s‘dn”/ r(x”’ ,’1”; xll/, —_ ..q///) W(x’”’ ,q”l; x’ .Ii;' s) dxv"i/. (15)
1] _—oo é —00

For the determination of the mean number of scatterings, an interesting gquantity
is the function v(x', 7 x, ) =W (x', v; x’, n,sﬂdsL _;+ Indeed, it follows from the phys-
ical meaning of the quantities introduced above that the ratio v/p gives the reguired mean
number of scatterings for photons reflected by the medium in the direction n' within
the solid angle 27dn' and in the interval of frequencies (x', x' + dx') under the con-
dition that the original photon moved at angle cos"1 n and had frequency x. Differentiat-
ing (15) with respect to s and setting s = 1, we obtain for v(x', n'; %, n) the linesr
equation

v(x, s o m) = (x5 ) o ()0 o) X

[ﬁ jv‘dn’" g a(x")p(0, x", 7" X'y W)v(x", W5 %, n) dx” -

1 oK
'f/j dv” ( a(x") p (0, x", s x, v (x", 7"; ¥, v')d<” } (16)
0 g !

Since Eq. (15) explicitly contains a product of the parameters s and X, it is
readily concluded that Eq. (16) can also be obtained by differentiating (15} term by
term with respect to A and then multiplying both sides by A. Therefore, when we
are considering diffusely reflected photons (and only then) the two procedures
involving differentiation with respect to s or A are identical. Further, it can be
concluded that to find the mean number of scatterings there is no need for a preliminary
determination of the intensity of the reflected radiation, as is usually done; formal
differentiation with respect to A makes it possible to obtain a separafe equation for
the required quantity. What we have said acquires particular importance in complicated
problems in which it is impossible to obtain a closed expression for the intensity of
the emergent radiation. Thus, in the general case of incoherent scattering, when the
redistribution function is represented by a bilinear expansion, we obtain from (i8},
taking into account (4) and (5),
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fo(x)7 +o(x)v(x, 7, x, 1) =

;~ pY —l)ikg.cw,-k(x, M (s W)L+ fr (x5 ) + Fp (s )], an

where f, (x,n)._}dln¢k(x,nV0A The determination of v(x', n'; x, n) reduces to solving
for &k(x,q)——f#(x,j)?*(x, 7) the system of linear equations

(‘P;k(x) 71) = Qi (x, 71) — P (72 % (JC) +

"an (x’ ‘) ¥ nm (x » M )’+S°nm (x » 7 )4,’"" (x’ 7]) ak(x,) dx’. (18)
v(x)1 +o(x)n

A
5= pc"ijd j
- Zo
In the general case, Eq. (18) can be solved iteratively ¢, (x, %) = ¢, (x, 1) — Pi(n)0, (x)
being naturally chosen as the zeroth approximation. It is particularly convenient to
construct the function v(x', n'; x, n) at the same time as solving the system of func-
tional equations (7).

In the case of complete frequency redistribution, (17) simplifies apnreciably
to
v, 0 e (x5 x, ) =14 f(2) +f(2), (19)

where f(z) =)0Ing,(x, 7)/0h=130In H(z)/0), and H(z) is the solution of Eq. (10). A relation
analogous to (19) but for coherent scattering and B = O was obtained for the first time
by Sobolev in [3]. We see that in the case considered the ratio v/p is a symmetric
function with respect to the pairs of arguments x, n and x', n’. At the same time,

the ratio can be expressed solely in terms of the function £(z) of a single variable,
this function satisfying, as follows from (19), the equation

18

flo) = H(Z)—~1—1-2j G(l z )p<z, ) () d, (20)

where ((z, 2') = (M2) H(z) H(2')(z+ z'). For £(z)H(z) = A\3H(z)/9) it is also possible to
write down a singular equation obtained from the corresponding equation for H(z). How-
ever, we give here the explicit expression for f(z):

f(z)= —2‘(1—;_—_):)—-“%3?1‘_'(2', A p)G(T-:;ﬂ;)i_d_::, (21)
where
Fie B =1 4306, 3)12+[ —2-0(1—:$—)}“ U, 8)=
¢ ! 2’ K o2 (x
[o(2) st T [ 2

The function v(x', n'; X, n) contains all the information concerning the number of
scatterings of photons that leave the medium. However, in practice it is often sufficient
to know the quantities

1 00
fﬁ’dn’ j v(x', s x, 1) dx’ jvd‘fz 5V(x’, 7y x, 7)dx
oJ
5 K ~
Ny (x, m) = - : 5 N (3, )= -
j wdq S p(x’, 15 x, M) dx’ [dn S p(x’s 7 x, 1) dx
[ —c0 g —00

It is readily seen that N, (X, n) gives the mean number of scatterings undergone by photons
of frequency x that enter the medium in the direction n and subsequently emerge from it.



On the other hand, one could have the aim of determining the mean number cof scatterings
that issue in photons of frequency X' emerging from the medium in the direction n'

This number is characterized by the function ﬁ*(x, ny. For brevity, in what follows we
give only some particular results relating to ﬁ*(X, ny; we conceéntrate on the calcula-~
tion of N, (x, n).

Introducing the notation
1

o0

R Py s 7 4 s

Ve (x, M)=1—2= (x 1) gndn j\'(x,ﬁ;x, 7} dx’,
-— Q0

6
we obtain on the basis of Eq. (16)

v (x) vy (x, 1) =Edﬁ' 5 a(x")p(0, x', 45 %, Ny ve (&, W)dx" + L {x, %), (22)
1]

where

1 [+5)
Ly (5, ) = 0(2) Ra (5, 1) 47 d'jv(:c)p(x W5 x, 7)dx’ —
0 oo

o0 —0

1 o0
I8 , ,
1 (d ! j [<1~—~>“(X')+3] v(xX', 75 x, q)dx' +
¢ 2 .
1
P— -qj\d-f\ 5‘ -v(x’ .q' ” v, ) d dﬂ'” j‘ r(x’, — ,qr'; xl!’ ,erl) R* (xr/’ 71/() dx",

We shall return to (22) below, giving in the meanwhile the values of N, and ﬁ* for sonme

special cases.

In the approximation of completely incoherent scattering (see, for example, {i2}])

o {x Py
Rote =28 Hn | ) 1 =Tk e e, 9 L1 o) @3)
where "
K
»B)=1\G, —Z z) dz;
Yoo 0 B) f (g Hee)
13 , Hi' ﬁ
w(zh B) = zbS‘GO (-1_—%6;'_) z—{—zz)' dz’ Gy(2) =24 ja(x) dx.
>(2)

Nagirner [13] has tabulated ygg(A, B) and w(z, A, 8) for different values of the
arguments. It is obvious that in the given case the functions N, and N, will also
depend only on the combination z = n/v(x). Then, from (19) and the defimition of Ng{(x, n)

we obtain ~ 3
1+f&}———f==rH&)+——ﬁwﬁ,A 3) — et 3]
N.(2)=1+4f(z)— 2 II/*,N - 2 (24)
1= H@ V134 520061 9 — 100 B
where
18 L3 , H(V ()
o B) = - iz & o z , zZ)f (2
oo (s B) Ojco(l_p VH@ Grds 5 B zb§co(1_gz,} ==
Similarly
Ny(2) =1+ f(2) +o(z h B)fo (2, 4 3). (25)

For B = 0, Eq. (24) simplifies to
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j“c(z')F(z’, j, 8) 29
_ _f(o) —f(2) _ & Tt
N (2) = H(o) — H(z2) Hiz) =" 28

3' (/) H() 22 "zz

where we have used the equation for the H function (10), the expression (23), and have
also noted that H(®) = 1/¥1 — & and £(0) = A/2(1 — )).

We now turn to the statistics of the number of scatterings of the photons that
perish in the medium in the course of diffusion. TIf once more we consider photons of
:frequency X incident on the semi-infinite medium at angle cos~1 n, then the probability
of their perishing as a result of a definite number n of scatterings (the absorption
event is also regarded as a scattering) will obviously be given by

1 o0 [eo]
g,(x, ) = L&TI 5 u(x’) dx’y}',._w:, x, 5 x, 1) d=, 27
7
0 — 0

where uf{x)=(1—7)a(x)+ P.

Use of the invariance principle makes it possible to write down equations,
analogous to (12), for the functions Y,; in turn, they lead to the following equa-
tion for the generating function of the quantities qp{(x, n):

v(x) Q(x, % S)———-sjdn gr(x, i ox', ) Q(x/, 15 s) dx’+

f g u(x) W (x', v x, 55 s} dx’ + su(x) +

o
1 — 1 o)
7 r s (' ” ’ ’ ” ” ” " ”
rh dr/ JQ(x 73 s) dx Jdn r(x, ws X", — ") W(x", 75 x, w5 s)dx". (28)
o —o0 0 —o0

On the basis of the probabilistic meaning of Rp(x, n) = AUx, n; 1), we can readily

conclude that Ro(x, n) + Ry(x, n) = 1, since a photon incident from without must either
be reflected by the medium or be absorbed in it. The function Y having those two interpreta-
tions, Rg(x, n) can also be regarded as the profile of the absorption line formed in an

isothermal atmosphere if the power of the primary sources is u(x). From (28) in particular
there follows an equation for the function Ry(x, n) (see also [14]):

1
v (x) Ro (x, 7) =jdr/ j (x)p (0, X'y 75 x, 1) Ry (xs ') di’ —
¢
u(x)-}~ Y;j\d'f)' \S‘ u (x,) p (x/: 71/; X, 7)) dx’. (29)
i}

Obviously, the mean number of scatterings Np(x, 1) of the absorbed photons
can be represented in the form Ny(x, 7) = v(x, %)/Ro(x, %), where v (x, 1) = 0Q(x, % s)/ds]

s=1"
Using Eq. (28), we obtain for vo(x, n)
1 o0
DGl D= |dr | () p(0, <, 7 x w0 (e, W) dr Lo, ), (30)
& d
0 —

where
7 >
sl

lo(X) 7)) = ‘U(X) Ro (x, /‘)"i' % j‘d.’]’ J u(x')v(x’, ‘f),; X, Yl)dx, +

1 ac 19 oo 0
I3 {*
PR Yd"/ j\ v{x, % x', ') dx’ \dﬂ" g r{x, — 75 X7 7)) Ro(x", 07) dx”.
5 e i e
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Besides the functions Ny {(x, n) and No(x, n), we introduce

CNQx, M) > = Ny (x, ) Ry (x5 1)+ Nolx, m) Ry (%, %), (31

which is reddily seen to be the mean number of scatterings for a photon that possesses
frequency x and is incident on the medium at angle cos~1 q irrespective of whether or
not it is subsequently absorbed in the medium or leaves it. Instead of finding Vg%,
n), we write down an equation for the function (N(x n) ’ whose free term is simpler than
1g(x, n). Indeed, adding Eqs. (22) and (30), we obtain

o(x)  N(x, 7)) = 5 d S 2(x)p 0, % 75 5 9 N(, 7)) de' +
0

18
"

v{x}+ 7 \dﬂ' g vlx')a{x, 7 x, 1) dx’. (32)
5 —00

If p(x', n'; x', n) is known, Eq. (32) can be regarded as an integral equation with
kernel a(x')p(0, x', n'; x, n) for the function (N(x, n) ). We have seen above that
the function Ro(x, n) also satisfies an equation of this type. As was shown in {14},
the problem of finding the intensity of the emergent radiation for different distribu-
tions of the primary energy sources also reduces to the solution of an equation with
kernel a(x')p(0, x', n'; X, n). Referring the reader to [14] for the details of the
solution of equations of the type (32) for different scattering mechanisms, we mention
here merely that the route to the solution proposed there is based on a representation
of the kernel in the form

a(x') p (0, X'y W5 x, m) = %f‘_ Pi() ¥ 6oy () oy (xy m), (33)
i=0 Re=d

which follows from the bilinear expansion of the redistribution functiom (4) and Egs.
(6) and (13). Generally speaking, the use of the expansion (33) makes it possible
to reduce the problem of solving an integral equation of the form (32) to the solu~
tion of an infinite system of algebraic equations. In some of the simplest cases,
the solution, expressed in terms of ¢ functions, can be found in closed form.

We consider in more detail the determination of {N(x, n)’). Once found, we
can if necessary also use (31) to determine Ny(x, n) (we assume Rx(x, n) and Rg(x,
n) are known). However, we first draw an important conclusion by comparing Eqgqs. (29)
and (32). We see that for B = 0 (and only then)

{N(x, 1) > = Ro(x, /(1 —14}, (34)

a result that was obtained by physical arguments by Sobolev [2] in the simplest case
of isotropic completely incoherent scattering.

Now suppose B # 0. Then by simple subtraction of (28) from (32) we readily
conclude that the difference of {(N(x, n)) and Ro(x, n) satisfies an integral equation
different from the original equations only in the free term, now ialfpy(x, 7). Using
the expansion (33), to determine {N(x, n)’ we have

N 1] @ = .
(N(x 1> = Ry, n)+—~[:'/4?oo (e )+ % 3 ot (0 n)}- (35)
v(x) [ 2 2o
The constants jup in (35) are determined from the system of algebraic equations
. I3
Jon = Z 2 i gim e T 180, (36)
n=0 k=n

where
1 oo (%)
G .tx
gk = §P(.)dn5 9 o M) 20 g,
o (x)

0
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In particular, in the case of complete frequency redistribution (35) is replaced
by

(NG 1) = Ry, 1) + —tee 2 B ), 37

Vl v (x)

or, with allowance for (23), finally

—_F Oy {144@@) oz A 8 — o (i BY) 38
<N(x’ D v(x) 1 v(x) (z) l/;_::)\ 2 1[ {4 8 Too(’ s)l (38)

The function
3(B) = A f———“"‘) dx
v {(x)

in (38) is well known in the theory of radiative transfer in a line with continuum absorp-
tion. This function has been tabulated for different profiles of the absorption coef-
ficient.

It follows in particular from (38) that as x — o, {(N{x, 1)>—1. For B = 0, as
one would expect and as is readily verified, (38) goes over into the previously obtained
(34).

The expressions obtained in this paper make it possible to calculate the mean
number of scatterings for photons that leave the medium and have definite frequency and
direction of motion. Of course, if the external radiation sources. have certain.angular
and spectral distributions, the obtained expressions must be averaged over these.
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