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The general public views mathematical knowledge as precise, rigorous, and certain. As 
Kline (1980) says, "Whenever someone wants an example of certitude and exactness of 
reasoning, he appeals to mathematics" (p. 4). This view of mathematical knowledge plays 
a large role in mathematics' public image: "As it is commonly perceived, mathematics 
is the least creative of subjects: A dead, unchanging body of facts and techniques handed 
down from the ancients, tolerating no room for inquiry, every question bearing one and 
only one answer, an answer that is already known by someone" (Goldenberg, 1989, p. 170). 

These views influence school practice. In schools, mathematics is seen as different from 
other subjects. It is presented as the subject of certainty where there are single right answers 
which the teacher and text know and which students must learn how to produce. 

The views of mathematics knowledge and of mathematics presented above are over- 
simplifications of philosophical rationalism. While they reflect certain truths about 
mathematics, they misrepresent mathematicians' reports of other aspects of mathematical 
experience --  its social dynamics, creativity, and intellectual beauty. As a result, mathemati- 
cians and historians of mathematics have criticized rationalist philosophers for not accurately 
reflecting the uncertainty, irrationality, intuition, and exploration which characterize the 
everyday lives of mathematicians. Recently, some philosophers have responded with new 
accounts of mathematical knowledge designed to reflect more accurately the practice of 
mathematics. 

These developments in the philosophy of mathematics are presented below as a prologue 
for the presentation of an innovative approach to teaching geometry which was designed 
with these new views of mathematics in mind. 

R a t i o n a l i s t  V i e w s  o f  M a t h e m a t i c s  

Scheffler (1965) characterizes the view of mathematics which underlies the rationalist 
epistemological tradition. 

Mathematical truths are general and necessary, and may be established by deductive chains 
linking them with self-evident basic truths. Demonstration forges the chains, intuition discloses 
the basic truths. Intuition, moreover, guarantees each link in the chain of demonstration. 
Whoever understands a mathematical truth knows it to be necessary and not contingent on 
facts of nature. (p. 2) 

Lakatos (1986) suggests that theories that are characterized this way are Euclidean theories, 
beyond the deductive method they begin with 

• . . an indubitable truth-injection at the top (a finite conjunction of axioms) -- so that truth, 
flowing down from the top through the safe truth-preserving channels of valid inferences, in- 
undates the whole system. (p. 33) 

For the rationalist, mathematical truths, both the axioms and derived truths, are a priori. 
As Scheffler (1965) explains, mathematics for the rationalist is not dependent on nature. 
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A diagram may well be used to illustrate a geometrical theorem, but it cannot be construed 
as evidence for the theorem. Should precise measurement of the diagram show that it failed 
to embody the relations asserted by the theorem, the latter would not be falsified. We should 
rather say that the physical diagram was only an approximation or a suggestion of the truth 
embodied in the theorem. (p. 3) 

Finally, mathematics is different from science because 

mathematicians do not need laboratories or experiments; they conduct no surveys and collect 
no statistics. They work with pencil and paper only, and yet they arrive at the firmest of all 
truths, incapable of being overthrown by experience. (p. 3) 

Impact on Education and Educational Research 

The rationalist view of mathematics has had a strong impact on the way teachers and students 
think of the mathematics taught in school. Interpretations of this view suggest: mathematics 
is different than other subjects; mathematics is the subject of certainty where one's com- 
mon sense, one's storehouse of experiences in the world, is irrelevant; mathematics is where 
there are single right answers which the teacher and the textbook know to be correct beyond 
a shadow of a doubt. 

Even the mathematics education reformer and champion of mathematical creativity, 
George Polya, seems to promote these views when he outlines the difference between 
demonstrative and plausible reasoning. In his words, "Demonstrative reasoning is safe, 
beyond controversy, and final. Plausible reasoning is hazardous, controversial, and pro- 
visional" (1980, p. 99). 

The view that the method of deductive proof privileges mathematical knowledge with 
a certainty found nowhere else has also had an effect on research on students' understan- 
ding of the deductive method; it has shaped research questions and influenced the inter- 
pretation of results. In Fischbein's view, "[A] formal proof offers an absolute guarantee 
to a mathematical statement. Even a single practical check is superfluous" (1982, p. 17). ~ 
Thus, when checking high school students' understanding of deductive proofs, he presents 
students with a particular deductive proof and asks whether they believe that further em- 
pirical checks are necessary. 

The effect of this view can also be seen in Williams's (1979) research. Without suggesting 
that it may be difficult to decide whether or not a given proof is valid or whether the theorem 
is stated in an overly general way, Williams states "the generalization principle" for deductive 
proofs: "If  P(x) is a statement function which is proven for any arbitrary but fixed value 
of the variable x belonging to some domain D, then P(x) is proven for all x in D" (p. 45). 
Thus, in geometry, after seeing a proof and its associated diagram, he expects that students 
should be certain that the statement holds for any figure satisfying the givens. Since in 
his research students do not exhibit this kind of certainty, he argues that students do not 
understand this principle. 

Challenges to Rationalist-Views of Mathematics 

Evolutions in mathematics - -  the creation or discovery of non-Euclidean geometries and 
the foundational crises of the 20th century --  have posed serious challenges to those claiming 
that mathematical knowledge is certain. The severity of these challenges is indicated by 
the title of Morris Kline's (1980) book Mathematics: The Loss of Certainty. 

Non-Euclidean geometries challenge the view of geometry as a Euclidean theory. No 
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longer can the Euclidean axioms be viewed as true on the basis of intuition; contradictory 
sets of axioms lead to geometries that also seem to be "true" and can be used to describe 
the world. Thus, to use Lakatos's phrase, the development of non-Euclidean geometries 
deprived Euclidean geometry of its "truth-injection from the top." Tiffs development sug- 
gests conceptions that describe the truth of deduced, mathematical conclusions as con- 
tingent on the truth of the axioms. To parody Lakatos's description of a Euclidean system, 
since the axioms are no longer certain and a particular proof may be invalid, uncertainty 
inundates the whole system. Uncertainty flows down from the top through the theoretically 
safe and truth-preserving channels of valid inferences, which, to be realistic, are possibly 
invalid, to guarantee that the conclusions are not much more uncertain than the axioms. 

Since the foundational crises, the certainty of mathematics has also come under attack 
from mathematicians who suggest that philosophers have "pretend[ed] not to notice the 
gap between preaching and practice" (Hersh, 1986, p. 20). These critics argue that 
mathematical practice creates or discovers "knowledge" which is neither precise, rigorous, 
nor certain. 

While holding a rationalist view of proof, Polya (1954) suggests that the rationalist view 
of mathematics does not sufficiently emphasize the "inductive" thinking and verification 
or plausible reasoning that mathematicians use when deriving their conjectures and dreaming 
up their attempts at deductive proofs. 

To a mathematician, who is active in research, mathematics may appear sometimes as a guessing 
game: you have to guess a mathematical theorem before you prove it, you have to guess the 
idea of the [deductive] proof before you carry through the details . . . .  The result of the 
mathematician's creative work is demonstrative reasoning, a [deductive] proof, but the [deduc- 
tive] proof is discovered by plausible reasoning, by guessing. (p. 158) 

Reuben Hersh (1986) enlarges the scope of Polya's critique by suggesting that philosophical 
descriptions of what a proof is are also insufficient. He observes that "an interpersonally 
verifiable notion of [a] 'correct [deductive] proof' exists at the intuitive level of the work- 
ing mathemat ic ian, . .  [which] is not very similar to the model of [a] formal proof in which 
correctness can always be verified as a mechanical procedure" (p. 20). 

Hersh argues that mathematicians' attempts at deductive proofs are intuitive; to unders- 
tand proofs, the reader has to supply meaning to the statements. Proofs are meant to com- 
municate with others who share a similar background and cannot claim validity until others 
have checked them because "until you have checked with other people, you can never be 
quite sure you haven't overlooked something" (p, 19). Even then, the attempted deductive 
proof may not be complete, "because we have not yet seen the counterexample that would 
make us aware of the possibility of doubting it [the proof]" (p. 19). 2 

Gila Hanna (1983) makes a similar point about mathematical practice when she suggests 
that the following five criteria would all rank higher on a rank order of criteria for the 
admissibility of a candidate theorem than the existence of an attempt at a rigorous proof 
which could be verified by a mechanical procedure (an option which a philosopher might 
propose). 

1. They [mathematicians] understand the [candidate] theorem, the concepts embodied in it, 
its logical antecedents, and its implications. There is nothing to suggest it [the candidate theorem] 
is not true; 
2. The [candidate] theorem is significant enough to have implications in one or more branches 
of mathematics (and is thus important and useful enough to warrant detailed study and analysis); 
3. The [candidate] theorem is consistent with the body of accepted mathematical results; 
4. The author has an unimpeachable reputation as an expert in the subject matter of the [can- 
didate] theorem; 
5. There is a convincing mathematical argument for it (rigorous or otherwise), of a type they 
have encountered before. (p. 70) 
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Hersh is not content with the gap he sees between practice and the ideal. He suggests 
accepting this gap might mean "that we really ought to (if we only had the time and energy) 
write our ]attempts at deductive] proofs in a form that could be checked by a computing 
machine" (p. 21). He finds such a proposal to be arguable, because certainty would remain 
elusive: "the doubtfulness of the [attempt at a deductive] proof would then be replaced 
by the doubtfulness of the coding and programming" (p. 21). 3 

Historians of mathematics also critique the view of mathematics as certain. On one level, 
this critique suggests that throughout history attempts at mathematical proofs have turned 
out to be mistaken and invalid, therefore mathematical knowledge is in reality not certain. 
Critics of this school point to articles published in mathematical journals, such as "False 
Lemmas in Herbrand" which appeared in the Proceedings of the American Mathematical 
Society or "Fidelity in Mathematical Discourse" published in the American Mathematical 
Monthly which contains a discussion of errors in mathematical publications (Hersh, 1986, 
pp. 19-20). They also point out errors which involve mathematicians with considerable 
reputations or problems of great notoriety which according to Davis (1986) occur about 
every 20 years. 4 

Perhaps the most eloquent exposition of the fact that attempted mathematical proo£s have 
turned out to be flawed is the imaginary classroom dialogue presented in Lakatos's (1976) 
Proofs and Refutations. As the title indicates, Lakatos sees an analogy between Popper's 
conjectures and refutations in science and the logic of attempts at deductive proofs and 
refutations in mathematics. Implicit in this view is the notion that historically attempted 
deductive proofs turn out to be invalid or incomplete. As the footnotes to the dialogue in- 
dicate, the logic of attempts at deductive proofs and refutations does indeed characterize 
the development of the classification of polyhedra and Euler's conjecture about the rela- 
tionship between their vertices, edges, and faces. 

Yet, in an essay titled "Is Mathematical Truth Time-Dependent?", Judith Grabiner (1986) 
takes the argument that particular deductive proofs can turn out to be invalid or incomplete 
to another level. She shows that between the 18th and 19th centuries there was "a revolu- 
tion in thought which changed mathematicians' views about the nature of mathematical 
truth" (p. 202). As a result, the definition of what constitutes a "deductive proof" changed. 

She argues that in the 18th century, 

the primary emphasis was on getting results. All mathematicians know many of the results 
from this period . . . .  But the chances are good that these results were originally obtained 
in ways utterly different from the ways we prove them today... .  Mathematicians [in the 18th 
century] placed great reliance on the power of symbols. Finite methods were routinely ex- 
tended to infinite processes. Discussions of the foundations were not the basic concern. 
(pp. 203-205) 

In contrast, during the 19th century analysts "gave rigorous, inequality-based treatments 
of limit, convergence, and continuity, and demanded rigorous proofs of the theorems about 
these concepts. We know what these proofs were like; we still use them" (p. 205). 

Gila Hanna (1983) updates Grabiner's argument by showing that "there is no consensus 
today among mathematicians as to what constitutes an acceptable [attempt at a deductive] 
proof" (p. 29). She illustrates this point by presenting the controversy between intuitionists 
and other mathematicians about the legitimacy of non-constructive proofs for existential 
statements about a set of objects with an infinite number of members. Intuitionists challenge 
the law of the excluded middle, one of the laws of inference that other mathematicians 
use in their attempts to write deductive proofs. 

Philosophers' definitions of a deductive proof do not specify the laws of inference to 
be used. Both Grabiner's and Hanna's arguments suggest that beyond the evaluation of par- 
ticular attempts at a deductive proof, mathematicians have disagreed, and continue to 



18 DANIEL CHAZAN 

disagree, about the use of particular laws of inference in attempts at deductive proofs. Clearly, 
disagreement about, and change in, the accepted laws of inference will result in 
disagreements in judging particular attempts at deductive proofs. Thus, their arguments 
provide one more reason for suggesting that, contrary to the view of the general public 
expressed at the beginning of this paper, mathematical knowledge should not be considered 
to be certain, beyond all shadow of a doubt. 

Recent Philosophical Responses 

Some philosophers have begun to formulate a philosophy of mathematics in which 
mathematical knowledge does not consist of a priori truths.5 The two philosophers described 
below might be labelled as empiricists or pragmatists instead of rationalists; they consider 
mathematics to be a quasi-empirical science. 

Lakatos (1986) suggests that mathematics, like the sciences, is a quasi-empirical theory. 
Such theories have their "crucial truth value injection" at the bottom. However, 

the important logical flow in such quasi-empirical theories is not the transmission of truth but rather 
the retransmission of falsity -- from special theorems at the bottom ("basic statements") up towards 
the set of ax ioms. . ,  a quasi-empirical theory -- at best -- [can claim] to be well-corroborated, 
but always conjectural. (pp. 33-34) 

Putnam (1986) also argues for a quasi-empirical view of mathematics and suggests a 
mechanism for the refutation of mathematical statements. He suggests that in mathematics 
the "basic statements" used to test theories "are themselves the product of deductive proof 
or calculation rather than being 'observation reports' in the usual sense" (p. 51). In his 
view, acceptable grounds for considering a conjecture as "verified" include "[that] exten- 
sive searches with electronic computers have failed to find a counterexample - -  many 
'theorems' have been proved with its aid, and none of these has been disproved, the conse- 
quences of the hypothesis are plausible and of far-reaching significance, etc.. "' (pp. 51-52). 

However, in his view, in mathematics, the method of deductive proof and the method 
of quasi-empirical verification live side by side. "[The method of deductive] proof has the 
great advantage of not increasing the risk of contradiction, where the introduction of new 
axioms or new objects does increase the risk of contradiction, at least until a relative inter- 
pretation of the new theory in some already accepted theory is found" (p. 63). 

Relevance for Pedagogy 

The academic critiques of rationalism raise interesting points, but it is not immediately 
evident that these critiques are relevant to mathematics education. After all, though 
mathematical knowledge in general may be uncertain, surely school mathematics - -  
arithmetic, geometry, algebra --  is certain. These fields of mathematics have been around 
a long time; there has been time to check results, time for counter-examples to appear. 
Why should schools represent mathematical knowledge as provisional or uncertain? This 
question can be further sharpened by thinking about the types of students found in a typical 
classroom. For the moment, let us assume that those preparing to be college math majors 
should be learning something of the practices of mathematicians, but how about those with 
little interest in theoretical aspects of mathematics, students who may rarely even use 
mathematics as a tool in their future employment. Are there reasons to present mathematical 
knowledge as uncertain to such students? 
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While this question raises many avenues for discussion, such as the importance of develop- 
ing students' sceptical faculties (a traditional goal of rationalists everywhere but in 
mathematics), I would like to suggest one possible ramification of presenting mathematical 
knowledge as uncertain. Such a stance has the possibility of empowering students by changing 
their view of the subject, making mathematics seem less mysterious and otherworldly, an 
arena where one can figure something out. With the large numbers of students who are 
"anxious" about mathematics or find that mathematics makes little or no "sense;' such 
possibilities seems worth exploring. 

How would a change in educators' philosophy of mathematics have this effect? If a quasi- 
empirical view is taken, students no longer need to ignore their common sense, their ex- 
periences. Student exploration can become a central aspect of teaching. With the advent 
of microcomputer programs which support students' exploration of visual representations 
of mathematics and with a willingness to accept as provisionally true statements for which 
exploration reveals no counter-examples, students' creation of mathematical statements based 
on exploration becomes a feasible and legitimate classroom activity. Students can also de- 
mand that mathematical theory correspond with their experiences in the world. They can 
ask their teacher for an accounting of any differences between their views based on their 
experiences and accepted mathematical theories. 

An Illustration: An Approach to Teaching Geometry 

Even if the argument presented above is convincing, the question still remains, "Is it possible 
to design and implement such approaches to teaching mathematics that are practical and 
reasonable for teachers to use in schools?" In an effort to answer this question in the affir- 
mative, I will outline an alternative approach to teaching high school geometry. Typically, 
the high school Euclidean geometry course is students' first exposure to the use of deduc- 
tive proofs; it is the place currently reserved in the curriculum for an introduction to what 
mathematicians do. Moise (1975) argues that geometry has this role because "it seems to 
be the only mathematical subject that young students can understand and work with in 
approximately the same way as a mathematician" (p. 477). Also, software has been developed 
recently to enable students to explore geometric constructions. 6 

I will outline this alternative approach by highlighting four ways in which such an ap- 
proach differs from traditional instruction: inclusion of exploration and conjecturing; presen- 
tation of demonstrative reasoning as explanatory; treatment of proving as a social activity; 
and emphasis on deductive proofs as part of an exploratory process, not its end point. 

In traditional geometry instruction, students are given true statements and are asked to 
write proofs for these statements. It is clear to students that the statements are true (other- 
wise they would not be asked to prove them) and that their teacher knows how to prove 
them. In contrast, microcomputer software, like the Geometric Supposers, can be used 
in an exploratory approach where teachers pose problems to students and ask them to in- 
vestigate a given geometric construction and make conjectures about all the particular draw- 
ings which can be created by this construction. These student-generated conjectures are 
then the statements which students are asked to prove. 7 Students' statements may or may 
not be true; a teacher may not necessarily be familiar with them, let alone know how to 
prove them. Such an approach asks students to distinguish between Polya's plausible and 
demonstrative reasoning and use both of these kinds of reasoning in the mathematics 
classroom. 8 

Traditional geometry instruction also holds that the existence of a valid deductive proof 
determines whether or not a statement is true. In the alternative approach that I am sug- 
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gesting, students can use quasi-empirical verification, they can accept as true statements 
for which they can find no counter-examples. In order to present an alternative rationale 
for proving deductively, when deductive proofs are introduced, their explanatory role can 
be emphasized, that is, the insight which they provide about why a statement is true. 9 This 
sort of insight cannot be provided by the measurement of examples which the Supposers 
support. After reading a proof, students can be asked whether they now know something 
that they didn't know after their exploration. They can also be asked to explain in their 
own words why the theorem is true. 

Traditional geometry instruction also downplays any social role in the determination of 
the validity of a proof; the teacher and textbook are the arbiters of validity. In the alter- 
native approach that I am suggesting, one criterion for the validity of a proof is that it have 
no counter-examples. When deductive proofs are first introduced, there could be less of 
an emphasis on having students write proofs and more emphasis on critiquing proofs. 
Students can be asked to try to find counter-examples to textbook proofs and to expose 
assumptions not presented in the proof, l° 

There is another important criterion, agreement of the social group, which is emphasiz- 
ed in an approach which Fawcett (1938) describes. The proofs which he presented in class 
did not confer the status of "theorem" on a statement unless the class unanimously agreed 
that the proof was a good one. Students were encouraged to question the steps of a proof 
as well as the validity of its conclusion. Thus, to integrate this aspect with the rest of the 
approach which I am suggesting, when students explore a construction and begin to write 
their own proofs for the conjectures they have developed, the class can decide whether 
they think a given proof is valid or not. The role of the teacher can be downplayed. With 
such an approach, it is crucial that teachers are willing to admit an invalid proof or a proof 
of an incorrect statement, if they are unable to convince students by judiciously criticizing 
the proof or by providing a counter-example. 

The social nature of postulates can also be emphasized with a similar strategy. Students 
can be encouraged to suggest postulates to the group. If a student convinces the class to 
accept a postulate, the statement remains as a postulate until proven from other postulates 
or unless students questions its truth or its usefulness in proving other statements. H This 
approach to statements which seem to be true, but which cannot be proven, can also make 
the concept of a "lemma" a useful one. Students can order a set of conjectures that they 
have developed about a construction and taking one as true, prove the rest. If later they 
can prove this one conjecture, it can be a lemma in their presentation of the proofs of the 
others. If not, they can decide to keep it as a postulate. Allowing students to introduce 
as many postulates as they want can also be used to raise the issue of the aesthetic of 
parsimony. 

Finally, traditional geometry instruction presents proving as a final goal. In contrast, 
in the proposed alternative approach, there could be an emphasis on proof as a part of 
a mathematical process and not its end point. Having completed a proof, students can con- 
tinue to explore. They can be asked: What have we just proven? For what geometrical ob- 
jects does it hold? Can it be generalized? Are there some less general, but interesting, 
results that hold as a consequence of this theorem? Based on the steps of this proof, what 
else is true for this construction? These questions can help students raise interesting avenues 
for further empirical exploration. 

Conclusion 

The approach described above was designed by taking seriously a quasi-empirical view 
of mathematical practice. It asks students to learn mathematics by working like mathemati- 
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cians. However, I am not suggesting that this view of mathematical practice is the correct 
view, and I do not believe that students should always learn a subject by working like the 
experts in that area. My reason for designing an approach in which students work like 
mathematicians (as their practice is described by one philosophical school) is a pedagogical 
one; I believe that many students will profit from an approach to learning mathematics 
which values the conclusions they arrive at based on their experiences, an approach which 
doesn't hide the uncertainty and social dimensions of mathematical practice. Quasi-empirical 
views of mathematics help me, as an educator, design coherent approaches to teaching 
mathematics which incorporate student exploration. 

One common saw about teaching is that it is easier to teach as one has been taught than 
to take on a new approach which one has never seen demonstrated. Is it possible to imple- 
ment the approach described above? What would it take? Clearly, such an approach re- 
quires a tremendous amount of a teacher. To carry out this approach, a teacher must be 
an explorer of geometry who is able to model the kind of exploration which is desired. 
In addition, the teacher must be familiar enough with geometry to be able to produce counter- 
examples to students' incorrect statements, to see connections between a list of student con- 
jectures about a construction, and to raise provocative questions to help students continue 
their explorations. This approach also requires a teacher who is adept at facilitating classroom 
discussion, creating a feeling that the class is a community of learners, and encouraging 
students to take risks publicly. This teacher must also be convinced that student explora- 
tion is a pedagogically useful activity and have a coherent framework for introducing such 
exploration into the mathematics classroom. Together these requirements outline a for- 
midable task for pre-service and in-service teacher training, especially since there is no 
well-developed lore of teaching hints and strategies for creating mathematics classes that 
are communities of inquirers. 

But while the task is daunting, there are some positive signs. With the availability of 
exploratory software for the mathematics classroom, many teachers have begun to take 
students to a computer lab for empirical work with geometric constructions and graphs 
of functions and equations. ~2 In some cases, classroom discussion of students' findings 
have become a regular part of mathematics courses. 13 

Yet, there is still a long way to go. Even some who are advocating, creating, publishing, 
and teaching exploratory approaches to mathematical subjects still hold views of mathematics 
and of the role of proof in mathematics which do not legitimize or provide a rationale for 
student exploration. It is important that educators continue discussion about the role of 
exploration in mathematics and pedagogical rationales for commitment to student 
exploration. 

No~s 

1. In the context of Fischbein's paper, it seems that he is speaking about a particular deductive proof. 

2. Some of these points are made eloquently in a set of dialogues written by Davis and Hersh called 
"The Ideal Mathematician" (in Davis & Hersh, 1981). 

3. Recent attempts at deductive proofs involving the use of computers, the four co!our problem, and 
the non-existence of a finite projective plane of Order 10, have made this proposal relevant to actual 
practice. They raise the question "Is an attempt at a math proof a proof if no one can check it?" 
(See "Is a Math Proof," 1988.) The question can be asked on two levels, the practical and the ideal, 
as Will arguments of this type be accepted by mathematicians'? and How is such practice related 
to philosophical definitions of a deductive proof?. 

4. In 1986, for example, there was substantial controversy over an attempt at deductive proof for 
Poincart's conjecture in topology ("One of Math's," 1986) and more recently an attempted proof 
of Fermat's Last Theorem turned out to be incorrect ("Joy of Math," 1988). 



22 DANIEL CHAZAN 

5. While I highlight the views of Lakatos and Putnam, other philosophers of a similar bent include 
Quine, wittgenstein, Lehman, Kitcher, and Peirce. 

6. Examples of such software are the Geometric Supposer, developed by Education Development 
Center; Cabri Geometre, developed by a team at Universit~ Joseph Fourier in Grenoble; and The 
Visual Sketchpad, part of Swarthmore's Visual Geometry Project. 

7. For a more elaborate description of this approach, see Chazan and Houde (1989). For the role 
of the microcomputer software, see Schwartz and Yerushalmy (in press). 

8. For a study of students' struggles with this discrimination, see Chazan (1989). 

9. Hanna (1989) distinguishes between proofs that prove and proofs that explain. Most proofs in a 
high school geometry course are of the latter type. This does not mean that all students understand 
these proofs, but that in contrast to existence proofs, these proofs seek to provide information. 

10. High school geometry textbook proofs frequently have shortcomings. For example, the textbook 
proof used by Chazan (1989, p. 89), which is the first proof presented in the text, assumes that the 
figures are in a plane and that the segments are connected A to D and B to C with B and C on the 
same side of AD. The conclusion would not hold if the given were true and the points connected 
in a different order. Similarly, many computer tutors for geometric proofs rely on the diagrams to 
convey part of the givens. 

U. It may turn out that different students want to take different statements as postulates. Such alter- 
natives could be explored to emphasize that one can choose which statements to take as postulates 
(and definitions as  well). 

12. For example, the Geometric Supposer is being used nationwide by members of the Urban 
Mathematics Collaboratives, by members of a group supported by Sunburst Communications, and 
by members of the Council of Presidential Awardees. 

13. Over a four-year period, the Harvard Educational Technology Center studied a group of Boston- 
area teachers using such an approach with Geometric Supposers. This experience is described in 
a series of ETC technical reports. 
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