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grams. We propose an alternative representation for s-expressions that facilitates the 
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wi th  "snapshots" of programs during the restructuring process, and some preliminary 
performance results of the execution of object codes produced by the compiler. 
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1 I n t r o d u c t i o n  

1.1 Mot iva t ion  and Approach  

Lisp figures prominently among programming languages, in part because 
it is, by the standards of our discipline, an old language, and therefore 
enjoys what  little respect time affords the creations of engineering; in part  
because it is fundamental ly  elegant and powerful, as is Church's lambda 
calculus [16], upon which it is loosely based; and in part  because of the 
singular flexibility of its central da ta  structure, the list. The drawbacks 
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of Lisp programming, in particular the problems of dynamic binding of 
variables and of the proliferation of dialects, have been addressed, and 
seem in large part to have been alleviated by promulgation of the Scheme 
[41] and Common Lisp [6] standards. Its expressive strength, and its wide 
portability insure that Lisp will remain a popular programming language, 
or, at the very least, will exert a potent influence over future language 
designs. 

At the same time, parallelism in the architecture of computer systems has 
become commonplace. There is little doubt that it offers the most direct 
route to very high rates of computation. Machines such as the Alliant FX/8 
[2], the BBN Butterfly [1], and the Thinking Machines Connection Machine 
[27], have made parallel processing commercially viable, and few ideas in 
science have more enduring impact than those that make their originators 
wealthy. 

The collision of the forces of software engineering and those of parallel 
architecture has brought forth any number of alternative solutions to the 
problem of programming these new machines. At the risk of drawing ar- 
tificial boundaries, we may divide these solutions into those which would 
do the work of parallelization automatically, and those which would leave 
such work to the programmer. This criterion is artificial in that there are 
probably no systems of parallel programming which leave every detail of 
parallel execution to the programmer, and likewise none (or few) which 
require no effort beyond that needed to develop the same program for a 
sequential machine. We may likewise characterize an approach by the class 
of machines to which it is applicable. Again, there is probably no approach 
which is uniformly effective, across all parallel architectures, nor one which 
has nothing to offer beyond its applicability to a single machine. 

Nevertheless, to proceed as though these distinctions were hard and fast, 
the solution proposed in this paper is fully automatic, and applicable to 
shared-memory multiprocessors, such as IBM's RP3 [40], Alliant's FX/8 
[2], or the Cedar machine of the University of Illinois [30]. In short, we 
propose the design of an optimizing compiler to produce an object code 
for a shared-memory multiprocessor from a sequential Scheme program. 
Except where stated explicitly in the text, no restrictions are ptaced upon 
the program. 

Our compilation strategy will have two large components: interprocedural 
analysis and program restructuring. The goal of interprocedural analysis 
will be to collect information concerning interprocedurally visible side-effects 
and the lifetimes of dynamically instantiated objects. We introduce proce- 
dure strings as a framework in which to reason about side-effects and object 
lifetimes at run-time, and stack configurations, an abstraction of procedure 
strings, as a framework in which to reason about side-effects and object life- 
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times at compile-time. In terms of these structures we specify a system of 
interprocedural analysis as an abstract interpretation of Scheme programs, 
prove its correctness, and show that  it is a powerful basis for the dependence 
analysis and memory management of Scheme programs. 

Our discussion then takes something of a sharp turn, and we introduce 
the system of program transformation used to parallelize Scheme programs 
automatically in Parcel [4], the compiler and run-time system in which the 
ideas of this paper have been implemented. Having collected interproce- 
dural information, and having used it to assess the interprocedural depen- 
dence structure of the computat ion at hand, and the lifetimes of the objects 
created during the computation,  the Parcel compiler turns to each proce- 
dure of the program being compiled, and restructures it into two versions: 
one parallel, one sequential. The run-time system we have constructed 
to complement the compiler makes use of these two versions to achieve 
good utilization of processors without excessive overhead. We introduce 
the transformations of exit-loop translation and recursion splitting to treat 
the iterative and recursive control structures found commonly in Lisp and 
Scheme programs. We illustrate these transformations with "snapshots" 
of programs taken during the compilation process. The Parcel run-time 
system makes use of an unusual representation for s-expressions that  facil- 
itates the parallel creation and access of lists, and allows the fast solution 
of recurrence relations over list data. We show how the Parcel compiler 
extracts and recognizes such recurrence relations, and illustrate the rep- 
resentation and its properties. We present some preliminary performance 
results of object codes produced by the Parcel compiler and executed on 
an Alliant FX/8,  under the Parcel run-time system. Finally, we compare 
this work with that  of researchers in related areas. 

1.2 The Input Language: Scheme 

The language accepted by the Parcel compiler is Scheme, as defined in 
[41]. What  makes Scheme appropriate as the input language to our com- 
piler? First, it is a small language, with semantics that  are clear and simple. 
This is valuable when writing a conventional compiler; it is utterly invalu- 
able when writing a compiler that  performs detailed analysis and radical 
transformation of an input program. Each transformation is an opportu- 
nity to violate the semantics of a program; if those semantics are simple, 
then a proof of its correctness will be more manageable and believable. 

Second, it is a language of powerful and general constructs. We can be 
sure that  techniques that  are effective when applied to Scheme will find 
applications, often in a restricted or specialized sense, to other languages. 
(We will point such applications out from time to time.) 
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Third, much useful computat ion can be performed in Scheme without 
the use of side-effects. We will see that side-effects are largely a matter  
of perspective, and that  there is no reason to throw up our hands simply 
because a function modifies free variables or compound data. Nonetheless, 
code that  is laden with side-effects will certainly be more difficult to par- 
allelize than code that  is not. For this reason a language that encourages 
programming without side-effects is appropriate as input to a parallelizing 
compiler. 1 

The language accepted by most restructuring compilers is Fortran [39]. 
What advantages does Scheme offer over Fortran? It might be thought 
that  the flexibility of dynamically allocated storage and pointers would 
impede the dependence analysis, and thus the automatic parallelization of 
a program. In fact, we might argue that  the contrary is the case, for a 
somewhat subtle reason. A Fortran program begins running with all of 
the storage upon which it will operate declared statically. 2 This means 
that  as execution proceeds deeper into the calling tree, data that  is being 
read and written is ever more likely to have been previously written, and 
to be subsequently read. There is no mechanism for allocating storage 
whose lifetime is restricted to a subtree of the calling tree. 3 By contrast, a 
Scheme program may (and typically does) allocate storage at all points of 
a computation, and by static analysis we may discern that  a dynamically 
allocated object is limited, in lifetime, to a particular subcomputation. 
Such restricted lifetime is the stuff of parallelism, as well as the stuff of 
efficient memory management,  as we will see in section 2. 

Finally, the reader who is familiar with conventional implementations of 
Scheme, particularly those based upon continuation-passing style conver- 
sion (CPS conversion) should put aside assumptions concerning the imple- 
mentat ion of Scheme's features, particularly concerning the environment, 
procedure calling and returning, and first-class continuations. For example, 
we will speak of the objects created by invocation of c a l l / c c  (continua- 

l i t  is interesting that while the Scheme definition leaves the order of evaluation of 
the arguments to a procedure application unspecified, this is no help in parallelization, 
as the simple example ~[(f ( se t !  x (1+ x)) ( se t !  x (1+ x)))~ shows. The arguments 
to f may be evaluated in any order (with the same outcome) but not simultaneously, 
because of race conditions. Since such effects may occur remotely, non-trivial automatic 
parallelization seems to require interprocedural information. 

2This is true of most implementations of Fortran, although it is not mandated by the 
standard. 

3This is a bit simple-minded. In fact, parallelizing compilers for Fortran expand 
scalar variables into vectors or arrays as a matter of course, and for precisely this reason. 
However, the more complex a data structure becomes (scalar variables are the limiting 
case of simplicity of structure) the more difficult it becomes to expand it; we would argue 
that the penalty for failing to do so is lower in Lisp than in Fortran, since much dynamic 
allocation of storage occurs in the course of a Lisp program. 
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tions) as distinct from those created by evaluation of lambda expressions 
(closures). In some implementations of Scheme, there is no distinction be- 
tween these objects, because first-class continuations are implemented as 
lexical closures; nevertheless, we will find it useful to distinguish these two 
types. 

It will be important  for us to speak precisely about identifiers, variables, 
and bindings. Here, identifier will be used to mean a textual object, such 
as x or car,  which is writ ten by a programmer. A variable (which has 
an identifier), may be a formal parameter or local variable of a lambda 
expression, or global (defined outside all user lambda expressions). In the 
expression (lambda (x y) (lambda (x) ( s e t  ! y z ) ) ) ,  there are three 
formal parameters and one free variable; two of the formal parameters 
have the same identifier (x). The free variable (whose identifier is z) may 
be global, or may be a formal parameter or local variable of a lambda 
expression which surrounds this expression. By a variable binding we will 
mean the association of a variable with a location in memory. In terms of 
our example, if the outer lambda expression is applied to two values, two 
memory locations will be set aside for the instances of its formal parameters. 
We say that  the variables are bound to these locations. These locations will 
initially contain the values to which the function was applied; if the inner 
lambda expression is subsequently applied, the value of y will be altered 
(it will be assigned but not rebound). Identifiers and variables exist at 
compile-time, whereas bindings exist at run-time. 

2 T h e  I n t e r p r o c e d u r a l  A n a l y s i s  o f  S c h e m e  P r o g r a m s  

2.1 M o t i v a t i o n s  

Abstract interpretation [17, 18] and dataflow analysis [26, 14] share the 
goal of deriving information from a program text that  is at once specific 
enough to permit the efficient implementation of the computat ion it ex- 
presses, and general enough to be valid in every state in which the program 
may be executed. The advantage of the former is in viewing this process as 
an abstraction of a denotational definition of the program: exact properties 
which hold for an instance of the program over a particular input data set, 
are reflected in the abstract domain as less exact properties which hold over 
many input data sets. The advantage of the latter is its operational na- 
ture: the conditions for optimization frequently depend upon mechanical 
or structural qualities of the computat ion which are most easily gleaned 
from, for example, the program's control flow graph. In this section we will 
borrow ideas from both. Our goal is the formulation of an interprocedural 
dataflow analysis framework for Scheme programs, but this framework will 
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be derived through a series of alternate semantics for the language (some 
concrete, some abstract) whose formal properties will give us confidence 
that  the analysis provides sensible information. 

2.1.1 Side-Effects and Dependence Analysis 

Before creating a program analysis framework, it is well to have ques- 
tions in mind whose answers justify the expense of analysis. In our case, 
the first objective is the automatic parallelization of Scheme programs by 
a restructuring compiler, and in particular, the automatic  extraction of 
high-level (or coarse-grained) parallelism from programs: parallelism which 
results in the concurrent execution of lengthy, interprocedurally involved 
subcomputations.  Par t  of this compilation process is the dependence analy- 
sis [12, 13, 45] of the program: in order for restructuring and parallelization 
to proceed, the precedence constraints of the original computat ion must be 
discovered. Specifically, we wish to construct for each procedure applica- 
tion in the program, a set which identifies the mutable objects (variables, 
cons cells, vectors, etc.) that  may be modified (written) during the subcom- 
putat ion that  is initiated by the application and terminated by its return. 
Likewise, we wish to construct a set which identifies the objects that  may be 
used (read) during the subcomputation.  We will refer to these as def and 
use sets, respectively. Ideally, these sets would include only those objects 
that  are relevant from the caller's point of view. We require that  they  have 
a reasonable and useful interpretat ion in light of the irregular, non-local 
control flow made possible by c a l l / c c .  

Our use for these sets will, as mentioned above, be in inferring the depen- 
dence structure of a computation,  in order that  high-level parallelism may 
be extracted from it. 4 We will intersect the use and def sets of two pro- 
cedure invocations to discover any dependence constraints between them. 
We must therefore err, in our estimation of side-effects, in favor of adding 
too many objects to a use or def set. That  is, our program transforma- 
tions will be legal only in the absence of certain dependences. We must 
therefore arrange that,  if such dependences might exist at run-time, they 
are represented in our def and use sets at compile-time. 

2.1.2 Object Lifetimes and Memory Management 

The second major  application of our program analysis framework is to 
the memory management of Scheme programs, whether  sequential or par- 
allelized. For instance, much of the effort of implementing Scheme effi- 

4If our only concern was the identification of fine-grained parallelism, we could restrict 
our attention to "innermost" computations which do not cross procedure boundaries; such 
is the approach of most vectorizing compilers, which therefore do not depend so heavily 
upon interprocedural analysis. 
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cient ly is spent  in the careful handl ing  of first-class closures and  continu- 
at ions.  Thei r  general i ty  means  tha t ,  in the  absence of in format ion  prov- 
ing otherwise,  a variable t h a t  m a y  be cap tu red  by lexical closure mus t  be 
heap-al located,  to provide for the  event in which it is referenced af ter  the  
procedure  by which it is b o u n d  has t e rmina ted .  5 This  difficulty, known 
as the  upward funarg problem [8], pales by contras t  to the implicat ions of 
call/cc. A continuation, when applied, reactivates all procedure instances 
that were active ("on the stack") at its creation. This application may oc- 
cur after these procedures have been exited normally, with the consequence 
that any variables needed for their resumption must be given space in the 
heap (and subsequently reclaimed). Yet, as when they are captured by 
closures in continuation passing style [5, 29] or by continuations used as 
non-local exits ("throws"), it is frequently the case that variables need not 
be heap-allocated; the dimculty is simply in anticipating the lifetime of the 
closure or continuation, in comparison to the lifetimes of the variable bind- 
ings it captures. 6 Because the notions of object lifetime and dependence 
are so nearly related, we may as easily turn our analysis of side-effects to 
the problem of allocating variables on a stack, when their lifetimes per- 
mit. This  leads to a simple and efficient implementation of closures and 
continuations at run- t ime.  

A closely re la ted  problem depends,  as well, upon  ant ic ipa t ing  the life- 
t imes of objects:  t h a t  of their  placement within a hierarchical memory. 
Suppose t h a t  the  machine  for which we are compil ing has not  a single 
shared  me mory  visible to all processors, bu t  ins tead  a hierarchy of shared  
memory,  wi th  the  p rope r ty  t h a t  locat ions which are lower (nearer to the  
processors) in the  hierarchy are visible to fewer processors, bu t  less cost ly 
to access, t h a n  locat ions which are higher  in the hierarchy. Dur ing  the  
execut ion  of the  code p roduced  by our compiler,  objects  will be a l located 
s imul taneous ly  by m a n y  processors. Each such object  must  be a l located as 
low in the  h ierarchy as possible for the sake of access t ime,  bu t  high enough  
to ensure its visibil i ty to all processors making  use of it. 7 This  m a y  be seen 

5This is too strongly stated. It need only be the case that such a variable appear to 
have been heap-allocated, that provision be made for reference to it subsequent to the 
termination of the procedure that binds it. There is no end of run-time devices to effect 
this appearance. 

6In the case of continuation passing style, closures representing continuations are 
passed downward, as parameters. As long as these closures are only applied, captured in 
other downward closures, or passed as parameters to further procedure applications, they 
cannot outlive the procedure instances that bind the free variables they contain, cal l /co,  
of course, is a mechanism by which the user can gain access to these continuation objects, 
and having done so he will straightaway store one in a global variable and ruin everything. 

7Clearly, such placement depends as much upon the processor allocation and schedul- 
ing discipline used in executing a parallel program, as upon the anticipated lifetimes of 
the objects being allocated. We will make our assumptions explicit when we define the 



192 WILLIAMS LUDWELL HARRISON III 

as a variation on the heap versus stack problem above, in which instead 
of two choices of an area from which to allocate, there is a spectrum from 
least expense / shortest lifetime to greatest expense / longest lifetime. We 
will consider the problem in this latter form until, in subsection 2.15, we 
treat the problem which interests us more directly. 

2.1.3 Folding Procedural Constants and Merging Contours 

Another significant optimization made possible by the analysis described 
below is the folding of procedural constants. For instance, we may expand 
applications of intrinsic procedures in-line (sometimes called open coding), 
when it is determined that a variable in the operator position of an applica- 
tion has as its only value an intrinsic procedure. This is, in general, made 
impossible by Scheme's semantics, which allow that the global variable car, 
for example, may be assigned the value of cdr during a procedure invoca- 
tion, with the result of changing the behavior of all users of the variable 
from that point. By couching this as a constant propagation problem [46], 
we are able to detect both those applications of an intrinsic function that 
are made from the top-level variable by the same name, as well as those 
that occur as the result of parameter passing or assignment to a different 
variable; and we are able to do so without alteration to the semantics of 
the language, s 

As we will see in section 3, the analysis described below can also be ap- 
plied to the problem of contour merging, or more generally, of expanding 
user procedures in-line. This has the effect of eliminating needless proce- 
dure calls, and of making the computation performed by a program more 
visible to the compiler. 

2.2 Overv iew of  our  Approach 

We will develop solutions to the above problems in several steps. First, we 
propose an alternate semantics for Scheme, nearly related to the standard 
semantics, which introduces the procedure string, a device for recording 
the interprocedural behavior of a running program. The straightforward 
abstraction of this semantics leads to abstract domains containing higher- 
order objects (functions) over reflexive domains, whereas our purpose re- 
quires a more concrete compile-time representation of the values assumed 
by variables. We therefore modify the semantics such that its abstraction 
results in domains which are both finite and non-reflexive. 

problem more sharply, at the end of this section. 
SThis optimization is less dependent upon the specifics of our analysis than are the 

other optimizations mentioned above. It is a by-product of any method of constant 
propagation over procedural domains that retains enough information to determine when 
intrinsic functions are being applied. 



ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 193 

Second, we propose an optimal solution to each of the problems described 
above (identification of side-effects, stack-allocation of variables, and place- 
ment of data within a hierarchical memory) in terms of procedure strings, 
similar in spirit to the MIN algorithm for page replacement: a solution that  
is unobtainable, because it requires foresight and pertains only to a single 
instance of the program (that is, to the particular input data set used to 
build the procedure strings). 

Procedure strings are an infinite set, and are exact in a way that  makes 
them unsuitable for use in static analysis. Our third step, then, is to ab- 
stract procedure strings into stack configurations, a finite set each member 
of which represents an infinite set of procedure strings, yet contains enough 
information to be useful in static analysis. We formulate conservative so- 
lutions to each of the above problems in terms of stack configurations. 

Fourth, we present an abstract semantics based on stack configurations. 
We show that the abstraction preserves the meaning of the program and the 
procedure strings it describes. The beauty of a carefully chosen abstract 
domain is that  operations upon its members, while preserving the mean- 
ing of analogous operations upon members of the concrete domain, occur 
within the abstract domain. When the abstract domains and the operations 
upon them are sufficiently simple, the abstract semantics give rise to a prac- 
tical dataflow analysis algorithm. We show how the abstraction we have 
constructed may be adapted for both flow-sensitive and flow-insensitive 
datafiow analyses. 

Fifth, we note that our construction of stack configurations in the ab- 
stract semantics, while correct, causes unnecessary information loss. We 
show that this is corrected by a simple shift of perspective. 

For the sake of simplicity, the presentation to this point assumes a subset 
of Scheme that includes no mutable compound data objects (lists, vectors, 
etc.) In concluding our discussion of interprocedural analysis, we extend 
the technique to accommodate such data. 

In the end, we are left with a framework for program analysis that allows 
us to evaluate the lifetimes of, and side-effects upon all forms of dynamically 
allocated objects provided in Scheme, from variables captured by lexical 
closures and continuations, to mutable cons cells and user structures. This 
has a most significant consequence for automatic parallelization: it permits 
the extraction of parallelism from procedures that are invoked at all levels 
of the calling tree of a program, from the lowest (innermost) computations 
to the highest (outermost), for the reason that a side-effect upon an object x 
that occurs (directly) within a procedure f need not "pollute" all procedures 
that call f (directly or indirectly), but is limited in visibility according to the 
lifetime of x. Also, the framework permits us to speak, at compile time, of 
distinct instances of dynamically allocated objects that arise from a single 
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lexical construct. That is, we may distinguish several instances of cons cells 
that result from a single piece of program text, or of several instances of a 
particular bound variable. We will see that this gives a sharpness to the 
analysis that is absent from conventional techniques for alias analysis. We 
will likewise see that discovering restrictions upon the lifetimes of objects 
is useful in placing them within a memory system, whether on the stack of 
a sequential Scheme evaluator, or in the hierarchical shared memory of a 
multiprocessor executing automatically parallelized programs. 

As will become clear as the discussion progresses, the techniques de- 
scribed in this section may be applied in a straightforward manner to other 
procedural languages; they are particularly appropriate for languages such 
as C and Pascal, which make use of recursion and manipulate dynamically 
allocated storage. In fact, because most programming languages in wide 
use lack such radically general features as Scheme's first-class procedures 
and continuations, the methodology illustrated in this section may be ap- 
plied to such languages, in large part as a specialization of the concrete 
and abstract semantics given below. As an extension of the work described 
in this paper, we are implementing a compiler which accepts a variety of 
source languages 

2.3 N o t a t i o n a l  C o n v e n t i o n s  

In this subsection we review the notation of lambda calculus and the 
terminology of domains that is used in the discussion which follows. Our 
notation is consistent with that in [44, 11], and the reader who is unfamiliar 
with the concepts reviewed below will find a thorough introduction in those 
texts. 

We will make heavy use of the lambda calculus [16] in the discussion 
below. There are, in essence, just two kinds of expressions in the lambda 
calculus: abstractions and applications. An expression of the form )~a.e is 
called an abstraction, and denotes a function of a single argument a, whose 
body is e. An expression of the form ele2 denotes the application of the 
function el to an argument e2. el has type A ~ B, e2 has type A, and ele2 
has type B for some domains A and B (we will characterize these domains 
shortly). Parentheses may be used to group subexpressions, so that (ele2), 
(el)e2 and el(e2) are equivalent ways of writing the application of el to 
e2. All of our functions will be curried (that is, will have exactly one 
argument). Function application is left associative, so that abcd should be 
read as (((ab)c)d). 

By a domain D we mean a set upon which is imposed a chain-complete 
partial order, denoted by _ED. That is, D has a distinguished least ele- 
ment J-D, and every non-decreasing chain xl _ED x2 E_D '-" with xi E D 
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has a least upper bound (LUB) in D, wri t ten Xl UD X2 UD "'" LJD Xn or 
UD{Xl ,Xh, . . . ,xn} .  D may have a distinguished greatest element TD 
as well. We write x ~D Y to denote ordering among members  of D. 
D1 +. • • +Dn denotes the separated sum of D1 through Dn; that  is, the bot- 
tom element ZDI+...+D~ of Di  +" • • + D n  is is less than each of "±D1 through 
-I-DR. While every member  of this sum (other than  its bo t tom element) has 
the form (di,i} where di E Di, we omit coercions between Di  + .." + Dn 
and its subdomains ( that  is, t reat  di E Di as a member  of Di  + . . .  + Dn), 
where they are clear from context. The partial order within Di  + .  • • + Dn 
is implied by the partial  orders ~D1,...,--EDn. If di ~Di+...+Dn dj where 
di, dj E Di + ' " +  Dn then either dl = ±Dl+...+Dn or di, d# E Dk, for 
1 <__ k < n, and di ~Dk dj. Di x .. .  x Dn denotes the non-strict product  
of Di  through Dn. The bo t tom element ±Dix"'xDn : (±Di,' ' ' ,±Dn}, 
and is distinct from (dl,...,dn} where ±Di EDi di for some 1 < i < n. As 
when summing domains, the partial  order within Di  x -. .  x Dn is implied 
by ~Di,'",~Dn" If (dl,...,dn} ~Dix...xDn (el,...,en), then di EDi ei for 
all 1 < i < n. D ~ E denotes the domain of continuous functions from 
D to E.  The bo t tom element of D ~ E is )~d.-l-E, and S _D- ,~  g if 
( fx )  EE (gx) for all x E D. The notat ion D* ---* E represents the sum 
E + (D -~ E)  + (D ---, D ~ E ) . . . .  Occasionally we will have need to 
enumerate  a function (that is, to represent it directly as a subset of the 
Cartesian product  A x B). In such a case we will write {ai ~ bi, a2 
b2 , . . . ,  an ~ bn} where ai, a 2 , . . . ,  a~ E A, bi, bh, . . . ,  bn E B, and fa i  = bi 
for l < i < n .  

We write f[y/x] to represent the function that  is everywhere identi- 
cal to f ,  except at x, where its value is y. We write S[y//x] to denote 
f [ ( f x )  U y/x], the function everywhere identical to f ,  except at x, where 
its value is consistent with, but  possibly greater than  Sx. (Whenever we 
use this notation, the least upper bound ( fx )  U y will exist.) It follows, of 
course, that  f E f[y / /x]  regardless of the value of y. Syntactic objects will 
be surrounded in double brackets, as in I ( s e t  ! x y)~ 

2.4 A b s t r a c t  I n t e r p r e t a t i o n  

In this subsection, we review as much of the theory of abstract  inter- 
pretat ion as is needed to follow the main lines of our construction, with 
the goal of defining terms and giving the reader an intuitive feel for our 
approach. See [17, 18, 28] for a more complete introduction to the topic. 

How is abstract  interpretat ion relevant to the writing of a compiler? We 
have, at the outset of our task, a host of techniques for implementing the 
various features of the source language. Some of these techniques are of 
such generality that  they may be legally employed under all circumstances. 
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Others are more efficient than the most general techniques, but may be 
employed only under special circumstances. Practical considerations aside, 
the obvious method of compilation would be to execute a program over all 
possible input data sets, and note which of the special conditions needed 
to trigger an optimization are satisfied by every instance of the program. 
We would then compile the optimization, where permitted, into the object 
code, in full confidence that  our translation would be a legal one. Since this 
is impossible, we settle instead for an approximation to the above process. 
Abstract interpretation provides such an approximation. 

We begin, then, with an concrete semantics for our language, a definition 
that  gives precise, mathematical  meaning to programs in the language. 
The abstraction of such a semantics normally proceeds in several steps. 
First, we select domains for abstraction. These may be domains that  are 
visible within the programming language (such as integers or symbols), or 
domains that  are used only within the language definition (domains over 
which the semantic functions, or their auxiliary functions, are defined). For 
each such domain we create a corresponding abstract domain, and define 
an abstraction map which carries members of the concrete domain into 
members of the corresponding abstract domain. In this paper, such a map 
is written as AbsD, where D is the concrete domain being abstracted, and 

has type D --,/9, where/9 is the corresponding abstract domain. 

Because abstract domains may be smaller than their concrete counter- 
parts, such maps need not be one-one. That is, many members of an con- 
crete domain may be mapped onto a single element of the corresponding 

abstract domain. We think of each member ~ of an abstract domain/9 as 
equivalent to (or representative of) a subset of the corresponding concrete 
domain D. In order greatly to simplify the mathematics of the abstraction, 

we require that every d E/9 signify an ideal of D. If an ideal includes an 
element a E D, then it includes every element b E D such that b _E/9 a. 
Furthermore, if it contains a chain al _D a2 _ED "-', then it includes the 
least upper bound of the chain. In the jargon of power domain theory, 
the members of our abstract domains are downwardly closed and upwardly 
complete. 9 This construction is known as the Hoare power domain [43], and 
allows us to use the natural ordering of subsets (according to inclusion) as 
the partial ordering in the abstract domains; we will return to this momen- 
tarily. A thorough discussion of Hoare power domains and their properties 

9Because each ideal includes the bottom element of the concrete domain, when viewed 
as a set of possibilities the ideal suggests that the bottom element is a possibility. This 
means, for example, that when our concrete domain is a function space whose bottom ele- 
ment represents non-termination or undefinedness, we cannot exclude non-termination or 
undefinedness as a possibility. We can, however, discern the case in which undefinedness 
is the only possibility. 
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is found in [43, 15]. 

A function that  maps each member  of an abstract  domain onto the ideal it 
represents (of the corresponding concrete domain), is called a concretization 
map. In this paper, such a map is denoted by COnCD, where D is an abstract  

domain, and will have t y p e / 9  --~ P(D),  where P(D) is the power domain 
of D (in our case, the set of ideals of D). Given an abstraction map AbsD, 
we may define the corresponding concretization map as 

Conc b = Ad.{d ] AbsDd U_ b d}. 

The definition says that  d represents the set of all elements of D whose 
abstractions are consistent with el. Likewise, given a concretization map 
Conch, we may define the corresponding abstraction map as 

Abs D - Ad. N b {d I d E Concf)d}. 

This definition says tha t  the abstraction of d is the least ideal represented 
in /9 that  contains d. Since the members of a Hoare power domain are 
partially ordered by inclusion, when we write (i --b b, we will mean that  

Concbgt C Concbt); and if we define the partial ordering 5 ---b ~ differently, 

we must prove that  our definition is equivalent to Concbgt C_ C°ncbb" 
Having abstracted the primitive domains of our semantics, and having 

made precise what  these abstractions represent, we abstract functions over 
the primitive types. The functions we abstract  are those used to give mean- 
ing to the programming language. Our abstractions of these functions must 
preserve the meaning of the corresponding concrete functions. There are 
many senses in which meaning can be preserved. In this case, we mean 
that  the result of projecting operands onto abstract domains, and applying 
an abstract  function, must be a member  of an abstract domain (that is, 
an ideal of the concrete domain) that  contains the result of applying the 
concrete function, and projecting the concrete result onto the abstract  do- 
main. Perhaps it is helpful to think of this is as follows. The members of 
our abstract  domains represent sets of values, for example, the values that  
may be assumed by a user variable, or the values that  may be re turned by 
an auxiliary function applied within our semantic functions. We wish for 
an abstract  interpretat ion of the program to inform us of all possible values 
that  may be assumed by the user variable, or all possible values that  may 
be re turned by the auxiliary function. We must arrange to err in favor of 
overestimation of such sets. In light of this choice, the s ta tement  2 E~  ?) 
may be read as saying that  x is consistent with, but is more precise than  
~). That  is, all possibilities suggested by 2 are suggested by ?) as well, but 
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~) may suggest possibilities not suggested by 5. In terms of subsets of the 
concrete domain D, Conc b 2 C Conc D ft. 

We need to pause to make as clear as possible the distinction between 
the partial ordering among members of an abstract  domain, and the partial  
ordering among members of the corresponding concrete domain. In each of 
our concrete domains there is a distinguished element _1_ (bot tom) which is 
less than every other element in the domain, according to the partial order 
of the domain. For instance, the b o t t o m  element in the domain of values 
that  may be computed by a program is undefinedness (non-termination 
or error). In information content, this value is consistent with any bet ter  
defined value (such as the integer 5), but  it less informative. This much 
should be familiar to the reader, from introductory semantics. 

Here's the rub. I f / )  is an abstract  domain as we have defined it above, 
and if D is the corresponding concrete domain, then every member  o f / 9  
contains the b o t t o m  element of D, -J-D (since ever member  o f /9  is an ideal 
of D).  But  we have said that  if 2 -----D Y, then 2 is at least as informative 
as ~. Clearly the smallest ideal that  can be produced by Abs D is {-l-D}, 
which by our pronouncements  is at once the most informative member  of 
/~,10 and the set containing only the least informative member  of D. This 
is a paradox in appearance only. To know that  a program never terminates 
is a special case of knowing that  some of its s ta tements  (here, the final 
s ta tement  among them) never execute. This is enormously informative, 
since we may give whatever translation we like to code that  goes unused. 
In the lattice of functions ordered by information content, the function 
that  never terminates is the least informative, and is consistent with every 
other function (it returns the same value as every other function, when it 
terminates).  In the lattice of conditions that  enable optimization, that  a 
piece of code never executes is as strong and specific a condition as possible. 
Our conclusions are the same when _k represents error. We assume that  
the program being compiled is correct, since we will certainly be unable to 
give a meaningful translation to a meaningless program. Therefore, when 
error appears as a possible outcome of the execution of a s tatement,  the 
consistent assumption is that  the possibility is apparent only, that  one of 
the other outcomes occurs in reality. When error appears to the be only 
outcome, the consistent assumption is that  the s tatement  is never executed. 
Therefore it is of no consequence that  the b o t t o m  element is overloaded with 
the meanings non-termination, error, etc. In all cases, the assumption of 
a correct input program leads us to treat the undefined value consistently 

1°In [43], larger elements of the Hoare powerdomain /) are regarded as more infor- 
mative, for the reason that they represent better defined elements of D. Prom our per- 
spective, however, a larger element represents more possibilities; in the extreme, every 
member of D is a possibility, and this gives us no leverage in aptimization. 
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(as non-execution).  

Given an abstract  semantics for the language, it remains only to create 
(via the abst ract ion maps)  a representat ion of the initial states from which 
execution of the program may proceed, and to evaluate the p rogram in this 
abstract  state, using the abstract  semantics. By observation of this evalu- 
ation, we may answer the questions, albeit wi th  reduced accuracy, tha t  we 
wished to ask about  the execution of the program over all possible sets of 
input  data,  using the concrete semantics. The formal correspondence be- 
tween the concrete and the abstract  guarantees tha t  the answers we obtain,  
if in terpreted properly, will be consistent with the best  (most informative) 
answers possible, to these questions. 

2.5 C o n c r e t e  S e m a n t i c s  

2.5.1 The Language £ 

We will begin by t reat ing a simple variant of Scheme (call it £) ,  which 
is described by the following grammar .  

/2 ::= Stmt  + 
S tru t : := I ( s e t !  V ( V + ))  

I ~ ( s e t !  V ( lambda ( V* ) < V* > Strut + ) )  ] 
I [ ( s e t !  V ( c a l l / c c  V ))  ] 
I [ ( i f  V ( goto N ) ( goto N ))  ] 
I I ( r e t u r n  V ) ] 
] ~ ( end ) ] 

V ::= identifier 
N ::= s ta tement  index 

A program in £ consists of a sequence of s ta tements ,  the last of which is 
an end form. Each procedure i n / :  has, in addi t ion to its pa ramete r  list, a 
list (surrounded by angle brackets) of local variables. The  local variables 
are bound  to locations when the procedure is applied, but  have undefined 
values unti l  they are assigned. We will assume tha t  any literal da ta  needed 
by a p rogram are held in global variables in the initial state. Similarly, 
intrinsic procedures  are held in global variables in the initial state. These 
include an identify function for effecting assignment  from one variable to 
another .  A procedure applicat ion in L: is "fiat" (the operator  and arguments  
must  be variables), and its re turn  value is s tored into a variable (the value 
may  go unused).  Not accidentally, this resembles the t radi t ional  quadruple 
representa t ion used in opt imizing compilers [10]. Likewise, an i f  form in £ 
functions only as a branch,  and an explicit r e t u r n  form is used for normal  
exit from a procedure.  Finally, c a l l / c c  is t rea ted  as a special form, not 



200 WILLIAMS LUDWELL HARRISON III 

(define sum-of-squares (lambda~ (m n k) 
(if (= m n) 

(* m m) 
( s u m - o f - s q u a r e s  (1+ m) 

n 

(lambda# (x) (+ x (* m m ) ) ) ) ) ) )  

Figure 1: A Sample Scheme Program 

as a variable, n It is a simple mat te r  to rewrite a Scheme program in a 
form that  resembles 1;. Parcel effects such a t ransformation while parsing 
its input. 

We assume that  as part  of the process of translation from Scheme to 
L, variables are renamed,  so that  distinct variables have distinct iden- 
tifiers. Wi th  each lambda expression (lambdaa (xi • .. Xm) <Xm+l • "" Xn> 
S.il "'" Sin) of the program is associated a distinct index a E A. We write 
Aa for the a th lambda expression of the program. Likewise, with each 
s ta tement  Si  of the program is associated the distinct index i E N, and the 
successor function S u c c  : N --, N defines the flow of control between state- 
ments, in the absence of explicit branches. (The s tructure of £, including 
its numbered,  flat expressions and the addition of explicit end and r e t u r n  
forms, is intended to make more natural  the adaptat ion of its semantics for 
dataflow analysis.) 

An example of a Scheme program, and the corresponding program in/2, 
is given in Figures 1 and 2. In the latter, every s ta tement  is subscripted 
by its s ta tement  index. In this case, the successor function is defined as 
follov~s: Succ  I = Z N ,  S u c c  2 : 10, Succ  10 = -l-N, Succ  3 = 5, Succ  5 = 6, 
Succ  6 = 7, S u c c  4 = 7, Succ  7 = A-N, Succ  8 = 9, Succ  9 = 11, and 
S u c c  11 = i N .  ,~a (when rewri t ten in/2) has five local variables, and AZ 
has two. The successor function is not defined for s ta tement  10 (an i f  form) 
because the s ta tement  that  follows it in execution order is determined by 
the branch that  is taken (either to s ta tement  3 or s ta tement  4), and not by 
the successor function. Nor is the successor function defined for either of 
the r e t u r n  forms in the example. The variable s u m - o f - s q u a r e s  is assumed 
to be bound at the global level. 

nGiven  call/cc as a special form, one may write (set! my-call/cc (lambda (f) 
( c a l l / c c  f ) ) ) ,  to achieve the effect of the variable c a l l / c c  as it is defined in Scheme. 
The value of this variable (my-cal l /cc)  can be passed as an argument to a procedure, 
for example, while the "value" of a special form cannot be. 
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(set ! sum-of-squares 
(set! tl (= m n))2 
(if tl (go 3) (go 
(set! t3 ( l+ m))3 
( se t !  t4  (lambda# 

( se t !  t lO (* m 
( se t !  t l l  (+ x 

(lambdaG (m n k) 

4))10 

(x) <tiO t l l >  
m)) 8 
tlo))9 

( r e t u r n  t11)11) )s 
( se t !  t5  ( sum-of-squares  t3 n t4))6 
( se t  ! t5  (* m m))4 
( r e t u r n  t5)7 )l 

<tl t2 t3 t4 tS> 

Figure 2: The Sample Program Rewritten in/2 

2.5.2 Procedure Strings 

Consider a program A consisting of Aa, A/~ and A~. We will associate 
a procedure string Pi with every state qi of an execution of A. Let the 
procedure string p0 that corresponds to the initial state q0 of A be c (empty). 
We will append the term c~ d, ~d or ,,/d to the current procedure string 
whenever As, Aft or A.~ is applied, respectively, and we will append the 
term a ~, flu or 7 ~ to the current procedure string whenever control returns 
from As, A/~ or A.y respectively. 

Suppose the first procedure application which occurs during execution is 
of Aa, and let ql be the state which results. Then pl = a d  Suppose next 
that AZ is applied, and that q2 results. Then p2 = ad/3 d. The superscripts in 
ad/3d indicate that control has moved downward into As, and subsequently 
downward into AZ. At this point, let control return to As, resulting in 
q3. We indicate by P3 = ad/3d/3~ that control has moved upward from 
AZ. Now let consecutive applications of A~, A~ and .~  result in q6 in 
which p6 = adl3d/3uadTdc~d. We may read the history of A's interprocedural 
behavior to this point from P6: there have been three applications of As, 
and one each of AZ and A,. Apparently AZ is no longer active, whereas the 
other procedure instances are still active. 

Now suppose that As has bound variables x and y. Between states qo 
and q6 there were three instances of As (and thus three instances of x and 
y), corresponding to the procedure strings Pl - -  o~d, P4 = c~d/~d/~ uc~d and 
P6 = c~d/3dfluad~/dad of the states that follow each application of A~. We will 
use the procedure string of the state at its point of creation to distinguish 
one instance of x from another, and likewise for instances of y. We will not 
confuse instances of x with instances of y, since the aliasing [14] of variables 
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is impossible in Scheme. 12 Thus, every state q will contain a function that  
maps each variable that  is lexically visible in q to the procedure string of 
the state in which the variable was bound. We will call this procedure 
string the birth date of the variable. The environment of q will be a map 
from a variable and its birth date, to the current value of that  instance of 
the variable. 

Before formalizing these observations in a definition of/2, we must  decide 
how to describe the effect of continuations on procedure strings. We were 
able to discern, above, by inspection of a procedure string, what interproce- 
dural movements had led to the state corresponding to the string, and what  
procedures were active in that  state.  13 We must formalize this analysis, for 
we require that  the same be true of a procedure string that  results from the 
application of a continuation. Let us define a function N e t  : P ~ P which 
deletes every pair of the form a d a  u from its argument, until no further such 
deletions are possible. For example, 

N e t  old /~d ",/d ~/u /~u oL d'~d a d : N e t  oe d /3d /3u o~d"/d ol d ----- ot d oL d"[d oz d. 

Intuitively, N e t  p represents all "unmatched" procedure activations and 
deactivations in p. We say that  a procedure string p is balanced if N e t p  = e 
(and thus N e t  is a function that  deletes all balanced substrings from its 
argument).  Now we may make our observation about  active procedures 
precise. The active procedures in a s tate q may be read directly from 
N e t  p, where p is the procedure string corresponding to q. For instance, 
N e t  P6 = adad~/dotal, and we observed above that  in s tate q6 there were 
three active instances of Aa and one of A.~. 

Suppose that  we are given procedure string p, and are asked to form 
another procedure string q such that  p + q is balanced (where + represents 
concatenation).  By the definition of Net ,  we seek q such that  N e t ( p + q )  = e. 
In other words, q must contain a "match" for every unmatched term of 
N e t  p. Clearly there are many strings q which satisfy this requirement, 
because adding a balanced substring to any such q produces another. Let 
us imagine that  there is a function Inv  : P --~ P so that  Inv  p is the 
shortest procedure string such that  p + ( I n v p )  is balanced. If, for example, 
p = adf3d/~uTd , then Inv  p = ~/uau. This definition of Inv  is sensible only if 
p is a procedure string accumulated from the initial s tate of the program. 
If, for example, p is an arbi trary substring of the procedure string of a 

12Aliasing may arise in Scheme, however, from operations upon cons cells and user- 
defined structures; and an effect very much like aliasing may arise by the use of closures~ 
and assignments to the free variables they capture. Such aliasing is accommodated neatly 
within our framework for side-effect analysis, as we will see in subsection 2.14. 

13Operationally, these correspond to the procedure instances that are "on the stack" 
at the point in question. 
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state during execution, it will not (in general) be "invertible". Consider 
p : o~u/3d"/d; there is no procedure string which, when appended to p, will 
result in a balanced procedure string, because the leading c~ u term in p can 
be balanced only by a corresponding ~d term to its left. The action of Inv 
upon an arbitrary p will be to reverse Net p, and "invert" each of the d's 
and u's in the result. If p = olu]3d"f d, then Inv p = Vufluc~ d. We will prove 
below that  when p has an "inverse", that  these two definitions of Inv p are 
equivalent. 

Now consider a continuation k which is formed in a state q to which the 
corresponding procedure string is p, and applied in a state qt to which the 
corresponding procedure string is p~. Let qt~ be the state that  results after 
the application of k, and let p~r be the procedure string that  corresponds to 
q' .  What  should be the value of p"? Applying k has the effect of exiting 
any procedures that  were not active at q but are at q~, and re-activating 
any procedures that  were active at q but  are not at q~. The string p~ - p 
(where x - y  is the suffix of x not contained in y) describes all activity which 
occurred between q and q'. It follows that  Inv (p ' -p )  is the (shortest) string 
which "undoes" the net effect of that  activity. Therefore p" = p~+Inv(p~-p) 
seems to be the procedure string we want. As a record of interprocedural 
activity, it indicates that  we progressed to state q /  at which point k was 
applied, causing the net effect of all movements made between k's formation 
in q and its application in q' to be undone. We will prove that  this is the 
desired value of p ' ,  below. 

2.5.3 A Semantics for t2 in Terms o/Procedure Strings 

As a first step toward our program analysis framework, we will construct 
a semantics for 12 in terms of procedure strings. It is our immediate goal to 
create a definition of the language which will allow us to formulate optimal 
solutions to the problems, defined in subsection 2.1, which motivate us in 
this section. 

The domain definitions for our first semantics for 12 are presented in 
Figure 3. 

N is the domain of statement indices, over which the function Succ is 
defined. The primitive domains P,  N, A, Int, and Bool are fiat domains 
with distinguished least elements i F ,  I N  -kA, -Lint, and _l_Boot respectively, 
whose non-bot tom members are incomparable. It is important  to remark 
that  the definition of P in Figure 3 does not delimit the set of procedure 
strings that  arise from program executions, nor even the substrings of such 
procedure strings. The definitions implies, for example, that ad/3 u E P ,  
whereas such a (sub)string could not arise from a program execution. The 
subset of P with which we are concerned will be defined via some theorems 
in the discussion below. 
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P = (Ad ] A~) * (procedure strings) 
B = V --* P (birth date maps) 
E = V x P ~ D (environments) 
C = Q ~ D* --, Q (closures) 
K = Q ~ D ~ Q (continuations) 
D = C + K + P r i m O p  + I n t  + Bool (values) 
Q = N x P x B x E x K (states) 

Figure 3: Domain Definitions for $1 and $1 

The s tructure of the compound domains B, E,  C, K,  D and Q are as 
described in subsection 2.3. A state q E Q is a 5-tuple of a s ta tement  index, 
a procedure string, a map from lexically visible variables to their birth 
dates, an environment,  and a continuation. An environment is a map from a 
variable and its birth date  to the current value of the variable. Closures and 
continuations are similar to one another  in structure and effect. A closure 
is a function from a state (the state in which the closure is applied) and a 
set of values (its actual parameters) to a new state (the state from which 
execution proceeds within the body of the applied lambda expression). A 
continuation is a function from a state (the state in which it is applied) and 
a value (the argument  to the continuation, which becomes the value of the 
expression which created the continuation), to a new state (the state from 
which execution proceeds following return from the initiating expression). 

Continuations do not play quite so pervasive a role here as in most formal 
definitions of Scheme. We make use of the continuation component of a 
state only when crossing procedure boundaries (i.e., when entering or leav- 
ing a procedure, or when applying a continuation created with c a l l / c c ) .  
The sequencing of control within a procedure (for example, when evalu- 
ating an i f  form) depends upon s ta tement  indices, and does not involve 
continuations directly. This is because we wish to collect information con- 
cerning interprocedural flow of control and data, and it serves us to this 
end to isolate such information within the semantics. Pu t  another  way, 
procedure strings are unaffected by intraprocedural  movements of control. 

Int and Bool represent integers and booleans, and PrimOp is the do- 
main of primitive operators over these types. We take the meaning of the 
members of these domains for granted. The semantic functions defined 
in Figures 4 and 5 are $1 (for step) and E1 (for evaI). 31 maps each 
state onto its successor; it describes a single step of evaluation, gl  simply 
composes applications of $1. The state q/ that  results from executing a 
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program in an initial s tate q0 is the least fixed point !4 of g l  tha t  satisfies 
qf  = g lqo  = g l q f .  An expression of the form 

expr  o 

where X 1 = expr  1 

x2 = expr  2 

and Xn = expr  n 

should be understood as meaning roughly the same as 

( l e t *  ((Xl expr  1) 
(x2 expr  2) 

(Xn exprn)  ) 
expr o) 

in Scheme, so tha t  xl  may appear in e x p r 2 . . ,  exprn,  x2 may appear in 
expr  3 . . .  exprn,  etc., and any of xl through xn may appear in expr  o. 

Consider the definition of $1 in the case that  Si is an i f  expression. 
The definition says tha t  the state S lq  which results from a single step of 
evaluation in state q, is the state whose procedure string is p (the same as 
tha t  of q), whose s ta tement  index is either m or n, depending upon the 
value of the variable x,  and whose b (map from variables to birth dates), 
e (environment) and k (contimlation) components are the same as those of 
q. The other cases within the definition are read similarly. Before looking 
at this definition in more detail, let's consider the function £1. 

$1 is the only recursive definition in this semantics. We could write 
it as the least fixed point of a functional, and show that  the fixed point 
exists, but  such reasoning is more relevant to a discussion of denotat ionat  
semantics per se. 15 See [43, 44, 11]. Here we simply accept the recursive 
definition, and resort to theorem-making when it is necessary to validate 
something novel to our approach. 

T h e o r e m  1 gl  preserves  the s tandard s e m a n t i c s  of  £ .  

14The reason for defining evaluation in this way will be clear when we make these 
semantics the basis of an iterative data flow algorithm which converges to a fixed point. 

15Besides, the purist will find much to object to in our definition of/2. For instance, 
the function Succ is dependent entirely upon the structure of a particular program, and 
yet it occurs free within the definition of $1. The point is that we have, from the outset, 
made concessions to our intended use for this semantics, as a stepping stone toward a 
practical framework of program analysis. 
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Let  q = <i,p,b,e,k> 6 Q. T h e n  8 1  : Q -~ Q is defined, according to the  
form of s t a t e m e n t  Si, as follows. 

Si---- [(set! x (f YI'"Ym))[ =~ 
$1q = e<[f[, b~fl)q(e<[yl], b[yl[>) . . .  (e<[ym~, b[ym~>) 

[(set! x (call/cc f))] 
$1q = e([f]], b[f]}qA.sAd.<Succ i,p' + Inv(p' - p), b, e'[d/([x~, b[xl>], k)) 
where s = < ( , / ,  b ~, #, U) (state at application of the continuation) 

s~ = [(set! f (lambdaa (XI"''X m) <Xm+l"''Xn> Sj . . .  ) ) I  =:> 
S~q = <S~c~ i, ~, b, e[e/<[~[, bill>[, k> 
where c = ArAdz . . .  Adm. 

J, 
p' + a d, 
b[p' + ~ g [ x d ] . . .  [p' + ~d/[x~[], 
e'[dl/<[xz],p' + ad>] .. .  [dm/(~xm],/  + ad>], 
AsAd.<Succ i',p" + Inv(p" - p'), b', e"[d/<[y], b[y[>], U)) 

where r = <i',p', b', e', U) (state at application of the closure) 
s = <i",p", b", e", k") (state at r e t u r n  from the application) 

and Si, = [ ( s e t !  y . . .  )] 

S i =  [ ( i f  x (goto m) (goto n) )  [ 
$tq  = <if e<z, bx) = true then m else n,p ,b ,e ,k)  

= ~(return x)] =~ 
S l q  = kq(e<[x~,bM>) 

Si = [(end) 1 =~ 
Slq = q 

Figure  4: The  Semant ic  Funct ion  ,91 

$1 : Q --* Q - Aq. Let q' = S lq  
in if q' = q then  q else Elq '  

Figure  5: The  Semant ic  Funct ion  g l  
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S k e t c h  o f  p roof :  $1 differs materially from a standard semantics [41] 
only in its representation of the environment (store). We may define a 
conventional store by the following correspondence. Let E (the domain of 
environments) correspond to the standard domain of stores, and let the 
product  V × P (variables and their birth dates) correspond to locations 
within stores. We must show that  every instance of every bound variable is 
assigned a unique location in the store. Since a location is a pair (v, p) of a 
variable and its birth date, it is impossible for £1 to assign a single location 
to instances of distinct variables. We must therefore show that  separate 
instances of a single bound variable are assigned distinct locations in the 
store. To do so it is sufficient to show that every state in which the variable 
is bound has a distinct procedure string. Let x be a bound variable of An, 
and let qj and qk be distinct states in which )~ is applied. Without  loss 
of generality, assume j < k. By the definition of $1 in the case of closure 
formation, the birth dates of the instances of x corresponding to qj and 
qk are pj + a d and Pk + a d. Since the procedure string of each state is a 
prefix of the procedure string of its successor, pj +c~ d is a prefix ofpk. Thus 
p j  "~ Ot d and Pk + a d are distinct. [] 

For the purpose of showing preservation of a s tandard semantics, we need 
only prove that  our method of identifying variable instances by their birth 
dates is equivalent to the "NewLoc" function used in a standard semantics 
to generate unique locations within a store. There is, however, far more 
information in the birth date of a variable instance than is needed to dis- 
tinguish it from other instances of the same variable. We will characterize 
that  information in a series of theorems, shortly. We must first decide if 
the semantics we have proposed is a suitable basis upon which to construct 
a framework of static program analysis. 

2.5.4 Abstraction in the Face of Reflexivity 

We have now a concrete definition of t:, that  constructs procedure strings 
as it evaluates a program. We suspect (and will show it to be so shortly) 
that  these procedure strings are ideal for answering our questions about 
side-effects and object lifetimes. Recalling our outline of abstract interpre- 
tat ion from subsection 2.4, the next step is the abstraction of this semantics, 
with the hope of observing the (abstract counterparts of the) procedure 
strings accumulated during abstract evaluation. 

We turn  to the domain definitions of Figure 3, looking for primitive 
(first-order) domains to abstract. The choices are P (procedure strings), 
N (statement numbers), Int and Bool (integers and booleans). If we were 
to abstract each of these domains completely away (that is, map each to 
an abstract domain of a single element), we would be left with a domain 
of values (the abstraction of D) which would contain higher-order objects, 
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namely primitive operators, closures, and continuations. We will suppose, 
for the moment, that the problem of primitive operators in the domain of 
values could be overcome with little difficulty. In the case of continuations 
and closures, however, we would be left to ponder the functions (from states 
and values to new states) in our abstract domain of values. 

If an analysis of a program is performed, and the result is a function, 
then in a sense the analysis has not been completed: there is a measure of 
uncertainty left, embodied in the parameters of the function. This uncer- 
tainty is resolved by applying the function to values (that is, by eliminating 
the degree of freedom represented by the parameters). There seem to be 
two choices here. We could attempt, at compile time, to enumerate the 
function (that is, construct a representation of the function as a subset of 
the Cartestian product of its domain and its range). This would entail the 
application of the function to every value in its domain. But the functions 
representing closures and continuations are defined over reflexive domains; 
this process would result, in general, in yet further functions in the same 
domains. In short, there need be no finite enumeration of such a function, 
in terms of primitive domains, even when the primitive domains are them- 
selves finite. Another choice is to suspend the resolution of uncertainty 
until run time, by making of the function a test to be compiled into the 
object code. To draw upon a problem to which abstract interpretation 
has traditionally been applied, if we analyze the strictness of a function f ,  
and our analysis returns to us a function, which expresses the strictness 
of f in terms of the strictness of its parameters, we might compile this 
decision-making function into the object code, and use it at run-time to 
select between alternative means of evaluating an application of f .  This 
approach is suggested in [28]. 

We choose instead to return to the concrete semantics upon which the 
abstract are based, and seek a representation for the domain of values that 
leads to abstractions which are more amenable to compile-time examina- 
tion. Such representations are bit-vectors of reaching definitions, sets of 
aliased variables, upper and lower bounds upon the values of integer vari- 
ables, etc. When we have made such an attempt, and find that still we lack 
sufficient information to produce an acceptably efficient translation of the 
program, then we may consider such devices as compiling multiple versions 
of the program, and spending additional running time deciding between 
versions. 

2.5.5 Modified Domain Definitions for £ 

The difficulty we encountered in our first attempt at abstraction resulted 
from the reflexivity of the domain D of values, and this reflexivity was 
introduced by our representation of closures and continuations. Let us look 
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closely at the way they are used, to see how they might be represented 
differently. There are several states which are relevant to the formation 
and application of a closure: the state q in which it is formed, the state 
r in which it is applied, the state s from which the application returns, 
and the state t from which execution proceeds, following the return. By 
examination of the rule within 81 for the formation of a closure, we see that  
the only information imparted to the closure from s ta te  q is the variable 
bir th date  map b. This accords with intuition: to form a lexical closure 
we need only know which lambda expression is the object of closure, and 
the bindings of its free variables at the point of closure. Any additional 
information needed to apply the closure, or to re turn from its application, 
may be (indeed, must be) garnered at the points of application and return. 
This suggests tha t  we represent a closure as a member  of the product  
A x B, of lambda expression indices and variable bir th date  maps. The 
most serious difficulties this creates are in the restoration of the bir th date 
map b, the s ta tement  index i, and the continuation k following the re turn 
from a closure application. All but  the continuation k will be bundled into 
the continuation of the state which immediately follows the application. 
(If we were to put  k into this continuation, then we would not have rid 
ourselves of the reflexivity of D.) The restoration of k will be effected by a 
function r, which is passed through the sequence of states, but is not in D, 
of type P --* K.  It will be the bir th date of a procedure instance 16 that  is 
used to restore its continuation, whenever control returns to the instance. 
The continuation of every procedure instance will contain the birth date  
of its caller; at the point of return,  this birth date will be passed to r, 
which will re turn the continuation of the caller. To effect this linking of 
continuations, we will make the birth date of the current procedure instance 
a component  of every state. (The members  of R = P ~ K will be called 
restoration functions.) 

We turn  now to the rule, within the definition of 81, for the formation 
of a continuation (the c a l l / c c  rule). The continuation which is passed to 
the argument  of c a l l / c c  is the function 

~s~d.(Suee i , F  + Inv(F - p), b, e'[d/([x~, b[x~)], k). 

The information which is imparted to this continuation from the state q 
in which it is created, is the procedure string p, the s ta tement  number 
i, the birth date map b, and the continuation k of the current procedure 
instance. All of these components of the continuation are used to construct  
the state which results from application of the continuation. The procedure 
string p and s ta tement  index i are first-order values, and so are unlikely 

16Recall that the birth date of a procedure instance is the procedure string of the first 
state in which the instance is active. 
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P = (Ad I AU) * (procedure strings) 
B = V ~ P (birth date maps) 
E = V × P ~ D (environments) 
C = A × B (closures) 
K = N × B × P × P (continuations) 
D = C + K + P r i m O p  + I n t  + Bool (values) 
R = P --~ K (restoration functions) 
Q = N × P × B x E x K × P × R  (states) 

Figure 6: Domain Definitions for $2 and g2 

to cause any real difficulty. Although b is a function, its type is simply 
V ~ P,  so that  its inclusion in the continuation causes no reflexivity in 
D. We described above the mechanism by which continuations will be 
linked. The birth date o of the procedure instance in which the c a l l / c c  
expression is evaluated is included in the continuation it creates. At the 
same time, a restoration function is constructed ( that  is, accumulated as 
the state sequence progresses) which returns k when applied to o. This 
function will be used to restore k in the state which follows application of the 
continuation. A continuation will therefore be a member  of N × B × P × P 
of the form (i, b, p, o). 

The new domain definitions, based upon these observations, are given in 
Figure 6. A member  ( i , p , b , e , k , o , r )  of the domain Q of states is now a 
7-tuple of a s ta tement  index i; a procedure string p; a birth date map b; 
an environment e; a continuation k; a procedure instance birth date o; and 
a restoration function r. The important  change from Figure 3 is that  the 
domains are no longer reflexive. 

2.5.6 A Modified Semantics for  L 

A modified semantics for L is presented in Figures 7 8, and 9. The 
auxiliary function Container : N -~ A is defined such that  Containeri  = (~, 
where As is the lambda expression (immediately) containing s ta tement  Si. 
The semantic functions S2 and $2 are exactly analogous to S1 and $1. 
The bulk of the activity, in this definition of L, is in the application of 
closures and continuations, ra ther  than  in their formation. This reflects 
the fact tha t  they  are no longer represented by functions which contain all 
of the actions to be taken at the points of closure, application, and return.  
Instead, those actions have migrated to the appropriate points within the 
semantic functions. Examinat ion of the definition of 82 reveals that  this is 
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Let q = ( i ,p,b,e,k ,o,r)  E Q. Then 82 : Q --* Q is defined as follows: 

Si = [ ( s e t !  x (f  
if e([f],  b~f]> 
then S2q = < 

Y l " "  Ym ) ) ]  or Si = [ ( s e t  ! X ( c a l l / c c  f ) ) l  =~ 
= <a, 59 e c 
J, 
p-~- O~ d, 
b'[p + ~ d / [ z d ] . . .  [p + ~d/[znl], 
e', 
(i,b,p,o>, 
P + c~ d, 
r[k/o]> 

w h e r e A ~ =  [(lambda ( Z l ' " Z m )  <Zm+l""Zn> S j ' " ) ~  
and e I = i f S i = [ ( s e t !  x (f  Yl""Ym))~ 

then e [e<[[yl], b[yl]>/([z~]],p + ad>] ... 
[e([ym], b[ym]> / <[zm], p + ad>] 

else e [<i,b,p,o>/<[~d,p + ~d>] 
else if e<[f],b[f[) = <j,b',F, ol> e K 
then $2q = <Succ j , p +  Inv(p-p'),b' ,e' ,ro' ,o' ,r[k/o]> 

where Sj = [ ( s e t !  z ( c a l l / c c  g) ) ]  
and e ' = i f S i =  [ ( s e t !  x (f  Yl))] 

then e[e<[y~], b[y~])/([z~, b'[z]>] 
else e[(i,b,p,o>/([z],b'[z]>] 

Figure 7: The Semantic Function 82 (part 1 of 2) 

more a cosmetic than a substantive change. 

Consider the case within 82 of evaluation of a r e t u r n  expression. In 
both  81 and $2 the actions to be taken in this case are embodied in the 
continuation k of a procedure instance; but while in 81, the continuation 
was (textually) part of the closure whose application initiated the procedure 
instance, in S2 it is a 4-tuple created at the point of application. The birth 
date of the procedure instance to which control is returning is the fourth 
component  of the continuation of the current state. As promised, this 
birth date is used to retrieve the continuation in effect upon return, via the 
restoration function r. The construction of procedure strings within $2 is 
exactly as in 81. 

Before proving the equivalence of the definitions of g l  and g2, let us 
write some theorems which characterize the procedure strings constructed 
during evaluation. It is intended that  each of these theorems have a simple, 
intuitive interpretation in terms of the interprocedural behavior of a pro- 
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Si = [(set! f (lambdaa (Xl."Xm) <Xm+l"'Xn> .." ))I =~ 
S2q = (Succ i , p ,b , e [ (a ,b ) / ( [ f l , b [ f ] ) ] , k ,o , r  > 

S~ = [(if x (goto m) (goto n))~ =~ 
S2q = ( if e([x],b[x~) = true then m else n , p , b , e , k , o , r )  

Si = [ ( r e t u r n  x)] =~ 
S2q = (Succj, p + I n v ( p -  p'),b',e[e([x~,b~x]>/(~y],b'[y])],ro',o',r) 
w h e r e S j =  [ ( s e t !  y . . - ) ]  
and k = (j, b', p', o') 

Si= [(end)]=~ 
S2q = q 

Figure 8: The Semantic Function $2 (part 2 of 2) 

$ 2 : Q ~ Q - = A q .  Let q ' = S 2 q  
in if qt = q then q else C2q' 

Figure 9: The Semantic Function £2 
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gram, and that  it illuminate a salient characteristic of procedure strings. 
While it will be proved using the semantics of g2, each holds in the case of 
g l ,  and the analogous proof is nearly identical to that  for £2. 

T h e o r e m  2 Let q = ( i ,p ,  b, e, k, o, r) be a state during the evaluation of  a 
program by g2. Then  there exists a procedure string u such that 

N e t ( p  + u) = ~. 

Proof." The theorem says that  every procedure string which corresponds 
to a state during evaluation may be extended to a balanced procedure 
string. Its proof is by induction on the number of states in the sequence 
described by the evaluation. In the initial state, p = (, and N e t ( p  + ~) = c 
trivially. Assume that  the theorem is true for sequences of n or fewer 
states, let q be the n th state in the sequence of an evaluation, and let 
qr = 82q = (i~,p t, b', e', k t, # , r t ) .  If p~ = p, then the theorem holds trivially 
by induction. If pP = p + a d, then  pt is extensible to a balanced procedure 
string by induction, since N e t ( p  ~ + a u) = Net  p and p is extensible to a 
balanced procedure string. Else, p~ = p + Inv (p  - p") ,  where p" is a prefix 
of p. Suppose that  p~ cannot be extended to a balanced procedure string. 
Then  

N e t ( p  + I n v ( p - p " ) )  . . . .  a u . . .  for some a E A. 

This a u must be within I n v ( p - p P O ,  since if N e t p  . . . .  a u , . .  then p is not 
extensible to a balanced string (since the matching a d must be found to the 
left of aU), contradicting the induction hypothesis. Therefore I n v ( p -  p")  
has the form X -1 + a u + y - l ,  and N e t ( p  - p")  = Y + ce d -P X (where 
X -1 = I n v  X ) .  Since 

N e t ( p  + Inv (p  - p") )  = Ne t (p"  + N e t ( p  - p")  + Inv (p  - p" ) )  

and since the a d within N e t ( p -  p~) does not annihilate the a u within 
Inv (p  - p") ,  X must have the form R + flu + S. (The pair f u f d  within 

N e t ( N e t ( p  - p")  + Inv (p  - p") )  

prevents the annihilation of the matched pair adau. )  Then N e t ( p  - pH) = 

Y + a d ~- R ~- flu _]_ S. Since a d can be annihilated only by an a u to the 
right of S, 

Net  p = N e t ( p "  + (p - p")  ) . . . .  Ot d -~- R -Jr f u  _~_ S.  

Since f u  can only be annihilated by a fd  to the left of ad, p is not extensible 
to a balanced procedure string, a contradiction of the induction hypothesis. 
Therefore p~ is extensible to a balanced procedure string. [] 
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We say that  a procedure string p is d-monotonic if p E (Ad) *, and that  
p is ud-bitonic if p E (AU)*(Ad) *. We define u-monotonic  and du-bitonic 
similarly. Of course, every d-monotonic or u-monotonic string is trivially 
ud-bitonic as well. If p is ud-bitonic, then Inv p is also ud-bitonic. (Why?) 

C o r o l l a r y  1 Let q = (i ,p,  b, e, k, o, r) be a state during the evaluation of a 
program by $2. Then Ne t  p is d-monotonic.  

P r o o f :  By Theorem 2, p is extensible to a balanced procedure string. 
Suppose that  Net  p is not d-monotonic. Then Net  p . . . .  a u.  •., and p is 
not extensible to a balanced procedure string, since a matching OLd must 
be found to the left of a ~', to be annihilated by Net ,  a contradiction of 
Theorem 2. [] 

C o r o l l a r y  2 Let q = ( i , p , b , e , k , o , r )  and q' = ( i l , p ' , b ' , e ' , k ' , o ' , r  ') be 
states during the evaluation of a program by $2, such that q~ precedes q. 
Then N e t ( p -  # )  is ud-bitonie. 

P r o o f :  By Theorem 2, pl and p are extensible to balanced procedure 
strings. Suppose that  N e t ( p -  # )  is not ud-bitonic. Then 

Net (p  - p') . . . .  c~d [3 u " " " 

Since a d can be annihilated only by an c~ u to the right of/3 u, 

Net  p . . . .  ~ d t3u " " 

Since t3 u can be annihilated only by a/~d to the left of ad, p is not extensible 
to a balanced procedure string, a contradiction. [] 

Given a ud-bitonic procedure string p, we will sometimes wish to refer 
to its u-monotonic prefix, or its d-monotonic suffix. We will denote these 
as UpRun p and DownRun  p respectively; they satisfy 

p = UpRun p + DownRun  p 

for any ud-bitonic p. Corollary 2 then says that  the net effect of the inter- 
procedural flow of control between any two states during evaluation may 
be summarized as a sequence of procedure deactivations (a u-monotonic 
prefix), followed by a sequence of procedure (re)activations (a d-monotonic 
su~x). 

T h e o r e m  3 Let q = ( i , p ,  b, e, k, o, r)  be a state during the evaluation of a 
program by g2, and let pl be a prefix of p. Then 

Ne t (p  + Inv(p  - p') ) = Net  p'. 



ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 215 

P r o o f :  By Corollaries 1 and 2, N e t p  and N e t p  ~ are d-monotonic, while 
N e t ( p - p ' )  and I n v ( p - p ' )  are ud-bitonic. Since p = p' + ( p - p ' )  and N e t p  
is d-bitonic, 

Net  p' = p"  + D o w n R u n (  I n v ( p  - p')  ) for some p" E P 

( that  is, the suffix of N e t p  ~ must annihilate U p R u n ( N e t ( p  - p ' ) ) . )  We have 

N e t ( p  + I n v ( p  - p')  ) = Ne t (p '  + (p - p')  + Inv (p  - p')  ) 
= Ne t (p '  + N e t ( p  - p')  + I n v ( p  - p ' ) )  
= Ne t (p"  + D o w n R u n ( I n v ( p  - p ' ) )  

+ U p R u n ( N e t ( p  - p ' ) )  
+ D o w n R u n ( N e t ( p  - p ' ) )  
+ U p R u n ( I n v ( p  - p '))  
+ D o w n R u n (  I n v ( p  - p')  ) ) 

= N e t ( p "  + D o w n R u n ( I n v ( p  - p ' ) ) )  
= Ne t  p~ 

[] 

T h e o r e m  4 Let q = ( i ,p ,  b, e, k, o, r) be a state during the evaluation of  a 
program by $2. Then  

Ne t  p = Ne t  o 

P r o o f :  By induction on the number n of steps in the evaluation. In 
the initial state p = o = e, and the theorem is satisfied trivially. Assume 
tha t  it holds for evaluations of n or fewer states, let q be the n th state of 
evaluation, and let q~ = (i~, p ~, b ~, e ~, k ~, d ,  r ~) = S2q. There are two cases in 
which p ~ p~. 

• p~ = p + Ot d. In this case (the application of a closure) o ~ = p~, and 
the theorem is satisfied. 

p~ = p + Inv  (p -- P~O. Here p~ is the procedure string of the state 
which results from a continuation application or a procedure return. 
In either case, the continuation k = (i ~,b",p",or~ I being applied 17 
satisfies N e t p "  = N e t o  ~ by induction. By the definition of $2, o ~ = o ~, 
since o t is the birth date of the procedure instance to which control is 
returning, and tha t  is the procedure instance in which k was formed. 
By Theorem 3, N e t ( p  + Inv (p  - p" ) )  = Ne t  p~, and we have tha t  
Net  p~ = Ne t  p~ = Ne t  o ~ = Net  o ~. 

17In the case of a return form, k is the 5th component of the state from which control 
is returning. 
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[] 

Theorems 3 and 4 are the justification for our interpretation of Net p as 
a listing of the procedures that  are active ("on the stack") in the state to 
which p is the corresponding procedure string. They  conjoin to demonstra te  
that  whenever control returns to a procedure instance, Net applied to the 
current procedure string will reveal that  the same procedures are active as 
when the procedure instance was born (that is, the same as Net applied to 
the birth date of the procedure instance). 

To show equivalence between $1 and £2, we will show that  there is a 
straightforward, component-wise correspondence between the states that  
occur during an evaluation under 31, and the states that  occur during the 
same evaluation under £2. 

T h e o r e m  5 £1 and £2 are equivalent definitions of £. 

S k e t c h  o f  p roof :  By induction upon the length of a sequence of states. 
We will show an example of the reasoning, in the case of the rule for ap- 
plication of a continuation. Assume that  the program is evaluated from 
equivalent initial states, and that  the theorem holds for sequences of no 
more than n states. We will show equivalence in the first five components 
of analogous states, since the final components (birth date and continua- 
tion restoration function) of the states of $2 are material  only their effect 
upon the first five. Let ql = (i l ,pl ,  bl, el, k!) be the n th  state during eval- 
uation under 31, and let q2 = (i2,p2, b2, e2, k2, o, r) be the n th state during 
evaluation under £2. Let ql ~ = (il~,pl ~, bl ~, el ~, kl/) be the state which sat- 
isfies ql ~ = £1 ql, and let q2 ~ = (i2~,p2 ~, b2 ~, e2 ~, k2 ~, o ~, r ~) be the state which 
satisfies q2 ~ = £2 q2. 

By the rules within 81 for the formation and application of a continua- 
tion, we have that  pl ~ = Pl + Inv(pl -p~) ,  where p" is the procedure string 
of the state in which the continuation was formed. (The procedure string 
p" is captured within the lambda expression which represents the continu- 
ation, in the state of its formation.) Similarly, il ~ = Succ i ' ,  where i" is the 
s ta tement  index of the state in which the continuation was formed. (Again, 
this s ta tement  index is captured by the lambda expression which represents 
the continuation.) bl ~ = b', where b" is the variable birth date map of the 
state in which the continuation was formed. (This map, too, is captured at 
the point of the continuation's creation.) e l ' =  el[d/([x], b[x~}], where d is 
the value passed as the argument  to the continuation, and x is the variable 
which receives the value of the originating c a l l / c c  expression. Finally, 
kl ~ = k ' ,  the continuation of the state in which the c a l l / c c  expression 
was evaluated. 

By the rules within $2 for the formation and application of a continua- 
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tion, we have that  p21 = P2 + Inv(p2 - p " )  = pl ~, where p" is the procedure 
string of the state in which the continuation was formed. (The procedure 
string p" is the third component of the continuation.) i2 ~ = Succ i" = il I, 
where i" is the statement index of the state in which the continuation was 
formed. (i" is the first component of the continuation.) b2 / = b" = bl/, 
the b component of the state in which the continuation was formed (the 
second component of the continuation), e 2 ' =  e2[d/(Ix], b"[x]/], where d is 
the value passed as the argument to the continuation, and x is the variable 
which receives the value of the originating c a l l / c c  expression. The birth 
date map used to update the receiving environment is equal to bl 1, and it 
follows that  the same location within each environment will be modified fol- 
lowing return of the c a l l / c c  expression, and e2' = el' .  Finally, k2' = ro", 
where o", the fourth component of the continuation, is the birth date of 
the procedure instance in which the c a l ! / c c  expression was evaluated. By 
the definition of 82, r was updated to return the continuation of the state 
in which the c a l l / c c  expression was evaluated, the analogue of kl ' .  [] 

2.6 O p t i m a l  S o l u t i o n s  in T e r m s  o f  P r o c e d u r e  S t r i ng s  

At this point, we have a definition of £: (over non-reflexive domains) that  
constructs a sequence of procedure strings as it evaluates a program. Our 
goal is to build approximations to these procedure strings at compile time, 
and to use these approximations to guide the optimizer. In this subsection 
we show that  procedure strings are an ideal form of information concerning 
side-effects and object lifetimes. Having done so, we will return to the 
semantics of the last subsection, and form from them an abstraction based 
upon an approximation to procedure strings. 

Before proceeding, let us recall the basics of dependence analysis. The 
traditional types of dependence are flow-, anti-, and output-dependence. A 
dependence arises when two subcomputat ions $1 and $2 (where $1 precedes 
$2 in time) each access a single location in memory, and at least one of 
them modifies the location. A flow-dependence arises when $1 writes and 
$2 reads the location. An anti-dependence arises when $1 reads and $2 
writes the location. An output-dependence arises when $1 writes, and $2 
overwrites the location. No constraint upon execution order is implied if $1 
reads, and $2 also reads the location. See [47, 12, 13] for dependence testing 
between statements within a single procedure, in array-based languages; 
see [45] for dependence testing in the presence of subroutine calls, in array- 
based languages. 
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2.6.1 Side-Effects, in Terms of Procedure Strings 

Suppose we are asked to determine what side-effects a subcomputat ion 
S has, and that  we have at our disposal all of the states of the program, 
before, during and after S. First we must determine what is meant by a 
side-effect. We will adopt a somewhat unusual perspective, summarized in 
the following definition. 

D e f i n i t i o n  1 A subcomputation S has a side-effect upon a mutable object 
X if X exists prior to S, and S makes a reference to (use or modification 
of) X.  

There is much to explain in this definition. Why do we include uses (and 
not merely modifications) in our definition of side-effects? What,  in light 
of the non-local control flow made possible by c a l l / c c ,  is the duration of 
S? That  is, when does S begin and end, given that procedures may be 
arbitrarily exited and re-entered by the use of continuations? Why do we 
distinguish objects which predate S from those created during S? We will 
argue that  this definition, while somewhat unfamiliar, describes the essence 
of side-effects, and is the appropriate definition for our purpose. 

First, by our definition of flow-, anti-, and output-dependences above, 
we see that  side-effects give rise to dependence only when at least one of 
the side-effects is a modification. Nevertheless, because every dependence 
involves two references, one of which may be a use (and not a modification), 
to be made the basis of an interprocedural dependence test, our definition 
of side-effects must regard quantities that  are read, as well as those that  
are written, during each subcomputation. 

The construction of procedure strings in E1 and C2 gives a concrete mean- 
ing to the duration of a subcomputation. Where no continuations are in- 
volved, we mean by the duration of a subcomputat ion S, the time between 
the procedure application which initiates S, and the return from that  ap- 
plication. Suppose that  S is initiated normally, by application of a closure, 
but that  during S a continuation is applied which was created prior to S, 
and has therefore the effect of exiting S entirely. Let p be the procedure 
string of the state in which the continuation is applied, and let p~ be the 
procedure string of the state in which the continuation was formed. By the 
definition of 32, the procedure string of the state following application of 
the continuation is p + Inv(p - p~). Recall from the discussion preceding 
Theorem 3 that  the suffix I n v ( p -  p~) describes (first) the exit of any pro- 
cedures which are active at application of the continuation, but not at the 
point of the its creation, and (second) the re-activation of any procedures 
which were active at the continuation's creation, but not at the point of its 
application. This is the natural interpretation of a ud-bitonic string, such 
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as Inv  (p_pl): a sequence of procedure deactivations, followed by a sequence 
of procedure (re)activations. In short, we have taken great pains to insure 
that  interpreting the sequence of procedure strings of an evaluation just 
as though continuations were not present (that is, only in terms of normal 
procedure entrance and exit) is sensible and intuitive. When a procedure 
string contains a term of the form (~, we know that an instance of ~ has 
been exited, whether by continuation or normal return; and when it con- 
tains a d, we know that  an instance of Aa has been (re)activated, whether 
by application of a closure of As, or by a continuation which was formed 
when an instance of ~ was active, and applied after that  instance of ~ 
terminated. We will define the duration of a subcomputat ion then, by the 
balanced procedure string which is delimited by its initiation and termina- 
tion. To repeat, its initiation may correspond to a fresh closure application, 
or to the reactivation of a previously exited procedure instance, and its ter- 
mination may correspond to a normal return or to a non-local exit effected 
by application of a continuation. The distinction is made unimportant  by 
the construction of procedure strings. (We include the procedure appli- 
cation that  initiates it, if any, in a subcomputation.  We likewise include 
the assignment to the variable which captures its return value, if any, in a 
subcomputation.)  

Why does Definition 1 distinguish objects which are referenced during 
S, and existed prior to S, from those which are referenced during S, but 
were created during S? The creation of a new object X during S implies, of 
itself, no dependence to S from the surrounding computation, or vice versa. 
Furthermore, any modifications that  occur to X during S are invisible from 
without S. 

This explanation may fail to put the matter  to rest. Let X be created 
(and possibly modified) during S, and used after the conclusion of S. Sup- 
pose we grant that  there are no visible side-effects to X during S; but if 
this estimation of side-effects becomes the basis for our dependence testing, 
are we not obliged to include a modification of X among the side-effects of 
S, in order to recognize the dependence from S to the use of X? The point 
is that  for such a dependence to exist, X must be accessed following S, and 
such an access must begin with a location which is known both to S and 
the subsequent computation,  such as the variable which receives the return 
value of S, or another variable which serves as a point of communication 
between S and the surrounding computation.  By identifying such points 
of communication, we find the "roots" of all dependences which originate 
from S. We will prove that  all such points of communication are locations 
which exist prior to S. We assume, in the proof below, that  we may distin- 
guish the object X, in which we are interested, from all other values in the 
environment. That  is, we will not be concerned with the trivial objection 
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that  X may be "communicated" from within S by simply recomputing its 
value, or by arranging that  X be a constant  whose value is known outside 
of S, etc: such devices do not give rise to dependence. To communicate 
X from within S, we assume that  a chain of memory accesses must occur 
from the point of its computat ion to the point of its use. We will write 
qi to mean the i th  state in the sequence described by the evaluation of a 
program under g2. 

T h e o r e m  6 Let S be a subcomputation, defined by a balanced procedure 
string s, during the evaluation of a program by g2, let X E D be an object 
computed during S, and let qi be a state, subsequent to the termination of 
S, in which a variable x is accessed, such that x has the value X .  Then 
there is a state qj, j < i, also subsequent to the termination of S, in which a 
variable y is accessed, such that y is bound prior to S, y is modified during 
S, and either i = j and x = y, or there is a dependence from the access of 
y in qj to the access of x in qi. 

P r o o f :  By induction on the number  n of states between the termination 
of S and q~. Let n = 0. Then qi is the state which follows the termination 
of S immediately. In this case, no procedures are applied (and thus no 
variables are bound)  between the termination of S and qi- Suppose that  
x is bound during S, and let Aa be the binding lambda expression. Since 
s is balanced, the binding instance of As terminates during S. But  x is 
in the lexical environment of qi. Therefore x is captured by a closure or 
continuation c during S, which is applied between the termination of S and 
q~. This is impossible, since qi is the first state following the termination 
of S. Therefore x is bound prior to S, and since X is computed after the 
binding of x, x is assigned the value of X during S. Letting x = y and 
i = j ,  the theorem is satisfied for n = 0. 

Now assume the theorem holds when there are n or fewer states between 
the termination of S and qi, n > 1. Let qi, as defined in the theorem, be 
the rt  th  state following the termination of S. Let qb be the state in which 
x is bound,  and let As be the binding lambda expression. There are three 
cases. 

. x is bound prior to S. Since qb precedes S, and since X is computed  
during S, x must be assigned after being bound. If this assignment 
occurs during S, then the theorem follows at once, by letting x = y 
and i = j .  Otherwise, the assignment occurs in a s tate qk between 
the termination of S and qi. However, this assignment involves an 
access to a variable z whose value is X,  since by the definition of 
$2, the value of every expression is either passed from a variable as 
the argument to a continuation, or to a r e t u r n  form. By induction, 
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. 

there exists a state qj, j < k < i, subsequent to the termination of 
S, in which a variable y is accessed such that  y is bound prior to S, 
y is modified during S, and either j = k and y = z or there is a 
dependence from the access of y in qj to the access of z in qk. There 
is a dependence from the the access of z in state qk to the assignment 
to x in state qi, and therefore by the transit ivity of dependence, there 
is a dependence from the access of y in qj to the access of x in qi. 

x is bound  during S. Because s is balanced, the binding instance of 
As terminates during S. But  x is in the lexical environment of qi. 
It is therefore captured by a closure or continuation c E D during 
S, which is applied between the terminat ion of S and qi. Let qk be 
the state in which this application occurs, and let z be the variable 
in the operator  posit ion of the application. By induction, there is a 
state qj, j <_ k < i, subsequent to the terminat ion of S, in which a 
variable y is accessed, such that  y was modified during S, and either 
j = k and y = z or there is a dependence from the access of y in qj 
to the access of z in qk. There is a dependence from the application 
of c in qk to the access of x in qi, and therefore by the transit ivity of 
dependence, there is a dependence from the access of y in qj to the 
access of x in qi. 

x is bound after the termination of S. Since x has the value X in qi, 
x is either assigned this value after its binding, or bound with X as 
its initial value. In either case, the assignment or binding procedure 
application necessitates an access to a variable whose value is X,  and 
the theorem holds by the argument of transit ivity made in cases 1 
and 2 above. 

[] 

All dependences of a computa t ion  must be honored is by our restructur-  
ing compiler. Given a subcompnta t ion  S, there are several ways in which 
dependences may arise due to S. Let R be the entire computa t ion  preceding 
S, and T the entire computa t ion  which follows S. Any dependence from R 
to S obviously involves an object  that  exists prior to S. A dependence from 
S to T may involve an object  that  exists prior to S, or an object  created 
during S. The remarkable fact proved in Theorem 6 is that  any dependence 
from S to T that  involves an object  created during S results (by transitiv- 
ity) from a dependence that  involves (only) an object  that  exists prior to S! 
By enforcing each "primary" dependence by which a "secondary" depen- 
dence is transitively induced, we guarantee enforcement of the secondary 

lSMore precisely, they must appear to be honored. We will see, when we consider the 
restructuring phase of compilation, that the distinction is sometimes useful. 
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dependence.  (See [36] for a thorough discussion of dependence enforcement 
via synchronization.)  Thus  we need only regard dependences to and from 
S tha t  involve objects tha t  exist prior to S. Definition 1, then,  accords 
with the requirements  of dependence analysis. 

Having arrived at a satisfactory definition of a side-effect, let us cast the 
definition in terms of procedure strings. 

T h e o r e m  7 Let ± be an instance of the variable x, let the procedure string 
Pb be the date of its birth (in state qb), and let Pr be the procedure string of 
a state qr in which a reference to ± takes place. Then Net(pr --Pb) contains 
a term of the form a d if and only if the instance Aa of Aa corresponding to 
this term has a side-effect upon ~. 

Proof." 

If. Suppose tha t  A'~ has a side-effect upon  ±. Then  by Definition 1, A'~ 
is active at q~, and therefore Netpr . . . .  a d . . .  where O~ d corresponds 
to the activation (or reactivation, by applicat ion of a continuation) of 
A'~. Further,  since the corresponding a ~ must  be found to the right 
of this a d, we have tha t  Net(p~ -Pb)  . . . .  o l d . . .  

Only if. Suppose tha t  Net(pr-pb)  contains a t e rm of the form a d, and 
let As be the instance of A~ tha t  is applied in state q.~ tha t  corresponds 
to the term. Then  ± was bound  prior to qa, and As was active at q.~ 
( that  is, the matching  a ~ t e rm which denotes the deact ivat ion of Aa 
is absent from Pr). By Definition 1, A'a has a side-effect upon  ±. 

[] 

The  string Pr - Pb is a record of the interprocedural  movements  between 
the point at which ~ is bound  and a point  at which it is referenced. Ac- 
cording to the discussion above, if the net effect of that  movement  has 
been downward into an instance As of As, then  A'a has a side-effect upon  i ,  
since ± existed prior to A'~'s activation (or reactivation),  and was referenced 
while A'~ was still active. The  side-effect tha t  Theorem 7 at t r ibutes  to the 
procedure instance As is visible to the procedure which invokes Aa. Let the 
invoking procedure instance be A~. If A6, too, has a side-effect as a result 
of the reference to ± at p~, then  it, too, will be represented in Net(p~ - Pb) 
as a t e rm ~d. (This depends entirely upon  the movements  tha t  ± describes 
with respect to A~.) This gives us a perfect test for side-effects, in the sense 
that  we may state exactly which procedure instances have side-effects as a 
result of each variable reference tha t  occurs during execution. 
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As a special case of Theorem 20, we may have that  a = 5 (that is, the 
routine within which x is referenced directly may have a side-effect as a 
result of the reference), and even that  a = f .  In order to have A'~ = I" 8 
where '~8 is the instance of "~8 that  binds ~, it must be that  I" 8 is deactivated, 
and reactivated by application of a continuation created while it was active, 
and that  ± is captured by a closure or continuation while ~'Z is active (so 

that  ± describes a movement whose net shape, with respect to )~'8, is first 
upward, then downward). 

2.6.2 Stack Allocation, in Terms of  Procedure Strings 

Now let us turn  to the problem of allocating variable instances on a stack. 

T h e o r e m  8 Let ~ be a procedure which binds a variable x, let Pb be the 

birth date of  an instance )~8 of  ~ ,  let ± be the instance of  x bound by ~8, 
and let p~ be the procedure string of  a state qr in which a reference is made 
to ±. Then Net(p~--Pb)  contains a term f u ,  i f  and only i f  )~ 8 is deactivated 
before ic is referenced in q~. 

P r o o f :  

• If. Suppose that  ~'~ is deactivated before 2 is referenced in the 
state whose procedure string is Pr. Then pr = Pb + (P~ -- Pb), where 
Pb . . . .  f d ,  and p~ - Pb = " " " f u  .. where this matching f d f u  pair 
corresponds to the activation and deactivation of )~8" Therefore 

Net(pr  -- pb) . . . .  f u  . 

as desired. 

Only if. Recall that  the active procedures in qr are read from the 
string Net  p~. The theorem says, then, that  if Net(pr  - Pb) contains 
the term f~, then p~ contains the balanced substring, which begins 
with fd  and ends with f u  that  corresponds to the subcomputat ion 
initiated by the binding instance of )~Z. (This balanced substring is 
deleted from Net  p~.) By the rule within $2 for closure application, 
Pb ends in fd.  Thus, if Net(p~ - Pb) contains f~,  then it must begin 
with f~  (to balance the procedure string of the entire computation).  
Therefore if Net(p~ - Pb) contains f l u  then in Pr the fd in which Pb 
ends will be matched by the first unmatched flu in Pr - Pb. By our 
interpretation of Netp~, this means that  the instance of A8 that  binds 
± bas been deactivated before qr. 
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[] 

Assuming the stack frame associated with a procedure instance is over- 
written when the instance is exited, any variables it binds that are ref- 
erenced following its exit must be allocated in the heap. If, however, we 
examine all references to its bound variables, and find that all occur prior 
to deactivation of the procedure instance, then the variables may be bound 
to locations on the stack. Actually, to emphasize the impracticality of this 
test in its current form, we should write, "then the variables could have 
been bound to locations on the stack." This test is similar to the optimal 
MIN algorithm for page replacement in virtual memory management: it 
requires foresight. Nevertheless, we can put it to very practical use, since 
a data flow analysis based upon it will have a sort of "blurry" foresight. 

Suppose that a procedure instance A'Z is deactivated, and reactivated 
by application of a continuation, and that all references to the variable 
instances it binds occur while the procedure instance is active (that is, 
following its reactivation, but prior to any further deactivations). In this 
case, its bound variables must be heap-allocated, since they are referenced 
after the procedure instance is deactivated. The reader may verify that the 
initial deactivation of ~'~ is revealed by Theorem 8, and therefore that the 
need to heap-allocate activation records of procedure instances which are 
re-activated by application of first-class continuations is recognized by the 
theorem. 

2.6.3 Generalized Hierarchical Allocation and Deallocation 

We may easily extend the result of the last subsection to accommodate a 
richer selection of areas from which to allocate than the two-fold distinction 
between stack and heap. In the extreme, we are led to the following tactic 
for storage management. With each procedure instance we associate a list 
of objects to be deallocated upon its exit. When allocating an object, we 
add it to the "to be deallocated" list of the nearest procedure instance 
which will outlive all references to the object. (In the worst case, this will 
be the topmost procedure instance, the root of the stack.) For each object, 
then, we must find the maximum rn over all references to the object, of the 
number of procedure instances, of those active at the point of the object's 
creation, that are exited before the point of reference. We place the object 
on the deallocation list found m procedure instances "above" the procedure 
instance in which it is created. 

Let ± be an instance of the variable x that is bound in state qb, and let 
qr be a state in which ± is referenced. Let Pb and Pr be the procedure 
strings corresponding to qb and qr, respectively. As in the case of stack 
allocation, we will consider the procedure string Net(p~ -Pb) .  Every term 
in Net(p~ - Pb) of the form au denotes the exit of an instance of As, which 
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(define fact (lambdaG (n k) 
(if (= n O) 

(k I) 
(fact (I- n) 

( lambda~ (m) (k (* n m))))))) 
(fact I0 ( lambda~ (x) x)) 

Figure 10: Example of Stack-Allocated Variables 

instance was active in qb. (Since the balancing Ol d iS not found in Pr - Pb, 
it must be in Pb.) The number of such terms (summing over all a 6 A) 
is the count of procedure instances, of those active at qb, that  are outlived 
by ± between qb and qr inclusive. Let the maximum of this count, over 
all references to :~ (that  is, over all states qr in which i is referenced) 
be m. We may place ± on the deallocation list associated with the mth 
procedure instances above the procedure instance active in qb, knowing 
that  the deallocation list is associated with a procedure instance that  is 
not outlived by ±. 

Actually, we are not proposing this seriously as a storage management 
strategy; it is instead a simple motivation for the very nearly related prob- 
lem of placing dynamically allocated objects within a hierarchical shared 
memory. We will return to the problem in which we have genuine interest 
in subsection 2.15. 

2.6.4 Examples  of Side-Effects  and Object L i fe t imes  

Consider first the example of Figure 10. The factorial function is shown, 
writ ten in cont inuat ion  passing style (we will have more to say about this 
style below). The local variables of Aa (n and k) are captured by the closure 
of A~, which is clearly a downward funarg. Suppose, as per the example, 
that  the expression ( f a c t  10 (lambda,~ (x) x))  is evaluated, and let Pb 
be the birth date of one of the instances of n during the evaluation, and 
Pr be the procedure string of the state in which this same instance of n is 
referenced, within AZ. Then we have that  

(one or more terms), 

Pb -= oJ  . . . Oz d 

Pr = o J  . . • o ~ d ~  d . . . / ~ d ,  

and 
Net (pT  - Pb) = ~ " "  ~ d Z d . .  . /~d. 

Since this holds for all choices of Pb and Pr, the instances of n may be 
stack-allocated by Theorem 8. The same is true of the instances of k. 
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(define accum-fn ( lambda~ (x) 
( lambdaz (y) (set! x (+ x y)) x))) 

(define apply-to-range ( lambde b (io hi fn) 
(if (= io hi) 

(fn io) 
(begin (fn Io) 

(apply-to-range (i+ io) hi fn))))) 
(define sum-of-integers ( lambda~ (m n) 

(apply-to-range m n (accum-fn 0)))) 
(define list-of-sums ( lambda~ (ii 12) 

(if (null? ii) 
#f 
(cons (sum-of-integers (car ii) (car 12)) 

(list-of-sums (cdr ii) (cdr 12)))))) 

Figure 11: Example of Side-Effects and Object Lifetimes 

Now consider the example of Figure 11. The procedure accum-fn returns 
a procedure (an instance of AZ) that  captures a state variable (an instance 
of x). When AZ is applied, its argument is added to x, and the accumulated 
sum is returned, a p p l y - t o - r a n g e  applies a procedure (its third argument) 
to every integer between lo  and hi ,  inclusive, s u m - o f - i n t e g e r s  first cre- 
ates an accumulating function with a call to accum-fn, and then invokes 
a p p l y - t o - r a n g e  to sum the integers in the range of m to n, inclusive. Fi- 
nally, list-of-sums takes two lists of integers, applies sum-of-integers 
to the corresponding members of the lists, and forms a list of these sums. 

Let us begin by considering an invocation of As (that is, of accum-fn).  
An instance ± of x is born by this invocation; let its birth date be Pb. 

Suppose that,  by subsequent application of the return value of As, ± is 
referenced in a state whose procedure string is Pr. We will have that  

N e t  (Pr - Pb) . . . .  °lu " " , 

which by Theorem 8 implies that  ± cannot be stack-allocated. Aa has no 
side-effects, for the reason that it is not active when ± is referenced. That  
is, N e t ( p ~  - P b )  will never contain a term of the form c~ d. 

Now consider an application of s u m - o f - i n t e g e r s .  The first action taken 
is to invoke accum-fn; as above, let the instance of x that  is created be ±, 
and its birth date be PD. The instance A'Z of AZ that  is returned by accum-fn 
is passed to A~ ( a pp l y - t o - r a nge ) ,  where it is applied repeatedly, causing 
references to ±. Let Pr be the procedure string of the state in which one 
such reference occurs. We have that  

N e t ( p r  - Pb) . . . .  ~ d .  . ", 
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and therefore that the active instance of h~ has a side-effect upon ±. The 
active instance of hz (sum-of-integers) has no such side-effect, because 
Net(pr - Pb) contains no term of the form ~d (no term involving )% at all, 
in fact). 

Finally, consider an application of hE. We have seen that  s u m - o f - i n t e g e r s  
has no side-effects, and therefore each recursive instance of h~ is indepen- 
dent of the others (aside from the formation of the list of results). In 
short, the state variables (instances of x) that are created to form each 
sum within l i s t - o f - s u m s ,  are invisible to the caller of s u m - o f - i n t e g e r s .  
There is therefore a potential for high-level parallelism in this computation; 
we would hope to construct a framework of program analysis that  would 
reveal this parallelism. 

We saw above that  an instance ± of x (the variable bound by ha) cannot 
be stack-allocated, for the reason that  references are made to it after the 
termination of the binding instance of ha. This was reflected as a term au 
in the string Net(pr--Pb) that  summarizes the activity between the binding 
of i and a reference to it. However, it is easy to see that  this is the only 
term denoting upward movement, within Net(pr -Pb), and therefore that  
± may be deallocated upon exit of the instance of h~ which creates it (by 
an invocation of ha). 

2.6.5 Some Observations 

It is interesting to juxtapose the results of this subsection concerning side- 
effects with those concerning heap-allocation. Theorems 7 and 8 lead us 
to the conclusion that  downward movements give rise to side-effects, while 
upward movements give rise to heap-allocation. This is interesting because 
upward movements (as manifest in the upward funarg problem) are perhaps 
the central issue in the sequential implementation of a language with first- 
class procedures (that is, upward movements prevent the evaluation of such 
a language by a simple stack mechanism); but Theorem 7 suggests that  
downward movements (of mutable objects) may be among the central issues 
in the parallel implementation of such languages, for (by Theorem 6) all 
interprocedural dependences arise from such downward movements. 

To digress, there is a pronounced shortcoming of Fortran, as a language 
for parallel processing, that  is set in sharp relief by these theorems. In 
Fortran, all storage is allocated, effectively, at the global level; in terms of 
procedure strings, we would say that  every such object has a birth date 
of c (the empty procedure string). Therefore, every reference to such an 
object (assuming it is a mutable object, such as a scalar variable or array 
element) will, by Definition 1, induce a side-effect in every procedure that  
is active when the reference is made. Now, we could sharpen our definition 
of dependence, so that  each re-definition of the object is viewed, in effect, 
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as a separate instantiation of the object; this approach is taken in [19]. Put  
another way, by examination of the definitions and uses of a scalar variable, 
we may discover that  the single name may be replaced by several variables, 
whose lifetimes are mutually disjoint. Having done so, we may discover that  
the side-effects upon the resultant (newly introduced) variables have more 
restricted visibility than those upon the original. Indeed, any dependence 
test may be sharpened by giving it a measure of flow-sensitivity. The 
point being made here is that  the visibility of a side-effect upon an object 
is circumscribed by the lifetime of the object; in the case of the statically 
allocated storage of Fortran, all objects have the maximum possible lifetime. 
This is reflected in Theorem 7, by the fact that  a statically allocated object 
describes a downward movement through every procedure that  is active 
when it is referenced. 

2.7 S t ack  C o n f i g u r a t i o n s  

The construction of a useful abstraction is a practical matter,  constrained 
by opposing requirements: to restrict information content so that  the ab- 
stract domain may be represented and manipulated efficiently by a com- 
puter, on the one hand, and to preserve information content so that  when 
applied to real programs, the resulting analysis is sufficiently powerful to 
yield appreciable performance improvements, on the other. The first step 
in the abstraction of procedure strings, then, is to separate the information 
they contain into the essential and the inessential; our abstraction should 
dispose, as much as possible, only of the latter. Turning to the examples 
of dependence analysis, stack-allocation, and hierarchical storage manage- 
ment, we see, of the solutions we have proposed to these problems, that  

• each makes use of a difference of two strings, 

• each makes use of strings which have been reduced by the N e t  oper- 
ator, and 

• none depends upon the order of elements within the strings (once 
reduced by the N e t  operator). 

The structure of our abstraction will take advantage of the second and third 
of these points, whereas to take advantage of the first point (indeed, to 
render our abstraction satisfactory in accuracy) will require an alteration 
to the way procedure strings are constructed in the semantics. We will 
return to this point. 

We need two auxiliary functions, Trace : P ---, A --~ P and D i r  : P 

A --* A before we can define the abstraction map itself. Let p E P and 
E A (p ~ _[_p and c~ ~ -l-h). Trace p a  is the result of deleting all terms 
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from p other than  a d or a u. Let A = {~,d, d d + , u ,  u u + , u + d + } .  The six 
members of A are tokens representing the regular expressions ~, d, dd +, u, 
uu  + and u+d + respectively. The function Dir,  when applied to a procedure 
string p and a lambda expression index a, returns a member of A, according 
to the structure of Net (  Trace pa) .  It is defined as 

Dir  =_ ApAa. Let Net(Trace pa  ) = az l  a x2 . . . (~x~ 
in case X l X 2 ' ' ' X  n E c : £ 

d :  d 
dd + : d d +  
u :  U 

UU + : a n  + 

u+d + : u + d  + 

Intuitively, the function Trace extracts from a procedure string p all of 
the information concerning a single procedure An; the function Net  when 
applied to the result, produces a string which summarizes the net move- 
ments described by p, with respect to An. The function Dir (for direction) 
then characterizes this movement as one of six types. By Corollary 2, the 
procedure strings to which we will apply Trace and Dir are ud-bitonic, 
and it is easy to see that  the disjoint union of the six regular languages 
represented by the members of A is the language u'd*. 

We want to summarize the net movements made with respect to each 
lambda expression, in the abstraction of a procedure string; this means 
isolating all those terms within' the string that  pertain to a single lambda 
expression, and applying the Net  operator to the result, as in the definition 
of Dir.  It is possible to proceed in the opposite order, by first applying Net  
and afterwards isolating all terms pertaining to a single lambda expression. 
It will be useful to be sure that  the outcome is independent of the order in 
which we proceed. 

T h e o r e m  9 Let  Pl and P2 be the procedure strings of two states during the 
evaluation of a program under C2, where Pl is a prefix of p2. Then 

Ne t (  Trace(p2 - p l ) a )  = Trace(Net(p2 - p l ) ) a .  

P r o o f i  Suppose the theorem is false. Then it must be that  

Net (Trace (Ne t (p2  - p l  )a)  ) ¢ Trace(Net(p2 - pl) )a ;  

that  is, that  further annihilation of matching ada  u pairs is possible within 
Net(p2 - P l ) ,  once the terms within it that  are unrelated to a are deleted. 
Therefore Pl must be of the form . . .  a d + X + a u . . .  where X is an un- 
balanced string. But then Pl cannot be extended to a balanced procedure 
string, contradicting Theorem 2. [] 
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As a special case of this theorem, we may let Pl = e, so that  the result 
applies to all procedure strings tha t  correspond to states during evaluation. 
Intuitively, the theorem says tha t  the net movements  described by a proce- 
dure string with respect to one lambda expression are independent  of the 
net movements  it describes, wi th  respect to other lambda expressions. 

A stack configuration is a member  of the s e t / 5  = A ~ 2 A of maps from 
lambda  expression indices to subsets of A. The  abstract ion map  Absp is 
defined as 

Absp - Ap.Act.ifp = _kp or ct = -LA then  {} else {Dirpct}. 

Notice tha t  if a lambda expression A# is not represented in a procedure 
string p 7~ _Lp, then  p's image i n / 5  will map  ~ to {c}. 

The  image in /5 of a (fully defined) procedure string maps each (fully 
defined) lambda expression index onto a singleton subset of A; if project ion 
from P t o / 5  were the only means of construct ing stack configurations, then  
they would be bet ter  defined as members  of A ~ A (with A extended to 
include a b o t t o m  element).  We will more often, however, arrive at stack 
configurations via functions tha t  operate upon  other stack configurations, 
and these will give rise to stack configurations with less information than  
those tha t  result from project ion from the concrete domain  of procedure 
strings. The  least upper  bound  operator  Up is defined simply as 

Up =  #ACAct.(# ct) u ct) 

and the partial  order ___# among members  o f /5  is defined as 

_Ep-- ct) c_ ct) vct e A. 

(Up and ___# have been defined as functions of type /5 ---, /5 ~ /5 and 

/5 --*/5 --+ Bool respectively, a l though we will write t hem as infix operators,  
as is traditional.)  

We should be certain tha t  our handling of the b o t t o m  element I p  of P 
is sensible. It is abstracted to the element Act.{} in /5 .  By the discussion 
of concretization maps in subsection 2.4, 

Concp(Absp_Lp) = {P l Abspp r_p Act.{}} = {J_p} 

since any procedure string p ¢ _Lp is abstracted to a stack configuration 
tha t  maps every fully defined lambda expression index to a non-empty  
subset of 2/'. Therefore the b o t t o m  element of P is abstracted to the 
b o t t o m  element of /5 ,  as expected. Since the domain  of procedure strings 
is flat, it follows tha t  Absp is (trivially) monotonic  and continuous. 
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We can be quite precise about the information loss that  occurs during 
this abstraction. First, if two procedure strings have the same Net value, 
they are indistinguishable after abstraction. Second, if a procedure string 
that  has been reduced by the Net operator, is a permutat ion of another 
that  is likewise reduced by the Net operator, then they will be indistin- 
guishable after abstraction. Finally, if two procedure strings are equivalent 
according to the above criteria, and in addition, the regular expressions that  
describe the contributions of each lambda expression to one of the strings, 
are equivalent to the corresponding regular expressions for the other (or, 
more exactly, the corresponding regular expressions are equivalent modulo 
the six classes defined by A), then the two strings are indistinguishable 
after abstraction. 

2.8 The Abstract ion of Operations Over Procedure S t r i n g s  

There are several operations upon procedure strings which must be ab- 
stracted to stack configurations, in a way that preserves the meaning of 
procedure strings. To be precise, if f : P ~ P ~ . . .  --~ P is an n-ary 
function from procedure strings to procedure strings, then an abstraction 
] :/5 ~ / 5  __... .  ~ / 5  of f must satisfy 

Absp(fpl . . .pn) Ep f(AbspPx)...  (Absppn) (1) 

or, equivalently 

fPi ...Pn E Concp(f(AbspPl)... (Absppn)). (2) 

In words, the projection on to /5  of the result of applying f to arguments, 
should be represented by (contained in the concretization of) the result of 
first projecting the arguments onto/5 ,  and then applying ] .  The direction 
of inclusion is important:  we will begin abstract interpretation by project- 
ing some initial values onto abstract domains; afterwards we will operate 
entirely within the abstract domains, by applying the abstractions of func- 
tions. To be meaning-preserving, the (concretization of the) result must 
contain all possible outcomes in the concrete domain. 

Let's begin with the abstraction of Net and Inv. Net may be abstracted 
to the identify function 

A f e t  - 

since, as we observed above, Absp(Net p) = Abspp. The abstraction of 
Inv is also very simple. There is a symmetry among the members of A, 
which is induced by the Inv operator. For example, if Dir pa  = u, then 
Dir(Invp)a = d; if Dirpa = d d  +, then Dir(Invp)a = u u  +. The converse 
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of each of these equations is true as well: if Dirpa = d, then Dir(Invp)a = 
u, and so on. By way of example, suppose that  p =/3uad~ d. Then 15a = 

^ 

{d} and 15/3 = { u + d  +} where 15 = Abspp. On the other hand, if p' = 
Absp(Invp), then pta  = {u} and pt/~ = {u+d+}.  Let us write 51 ~ 52 
when 

(Dir pa = 51) ~ (nir(Inv p)a = 52) 

and 
(nir  qa = 52) ~ (nir(Inv q)a = 61) 

for all p, q E P,  where 61, 62 E A. It is easy to see that  d ~-~ u, dd+  +-~ u u  +, 
u + d  + ~ u + d  +, and e ~ e. We may therefore abstract  the function Inv to 
the function 

= 1 61 62, 52 15 }. 
It follows, by explicit construction, that  Absp(Inv p) = Inv(Abspp). The 
abstractions of Net and Inv are maximal in that  they satisfy the require- 
ment posed by Equation 1 as strongly as possible (by equality instead of 
mere inclusion). 

There are two more operations over procedure strings that  must be ab- 
s tracted to stack configurations: + and - .  We begin with the former; the 
abstraction of the lat ter  is then easily derived. Let us look at concate- 
nation in terms of members of A. If 15 is a stack configuration such that  
15a = {d}, then it represents procedure strings whose Net values contain 
one term (a d) that  pertains to A~. Likewise, if ~ is a stack configuration 
such that  ~(~ = {u}, then it represents procedure strings whose Net values 
contain only the te rm a u that  pertains to A~. Therefore the Net value of 
the concatenation of two procedure strings p E Concp15 and q E ConepO, 
will contain no terms of the form OLd o r  O~ u (because the matching ada u pair 
within the concatenation will be annihilated by Net). In terms of stack con- 
figurations, (15 ~ O)a = {e}, where ® is the abstraction of concatenation we 
have yet to define. 

There is an implicit assumption here that  p describes a legitimate evalu- 
ation sequence, and that  q describes a legitimate sequel to that  evaluation 
sequence. This is the sensible assumption, since the only concatenation we 
are interested in abstracting is that  by which a procedure string is length- 
ened during computation.  Alternatively, we may cast this assumption into 
the terms of Theorem 9: if we extract  the terms pertinent to A~ from p + q, 
we have c~da u, which is certainly annihilated by Net. Theorem 9 then tells 
us that  when p + q describes an evaluation sequence, that  Net(p + q) will 
contain no a terms, since Net( Trace(p + q)(~) is empty. Therefore, of all 
procedure strings represented by 15 and ~, in the abstraction of concate- 
nation we regard only those pairs p, q such that  p + q is extensible to a 
balanced string. 
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Let us define the function Cat : A -* A ---, 2 A according to the following 
table: 

[ c~t II ~ I d I dd+ t ~ I ~u+ 1 ~+d+ I 
e {e} {d} {dd + } {u} {uu + } {u+d + } 
d {d} {dd +} {dd +} {e} {u, uu +} {d, dd+,u+d +} 
dd + {dd + } {ad + } {dd + } {d,dd ÷ } {e, d, dd+, u, uu + } {d, dd+, u+d + } 
u {u} {u+d + } {u+d + } {uu + } {uu + } {u+d + } 
uu + {uu + } {u+d + } {u+d + } {uu + } {uu + } (u+d + } 
u+d + {u+d +} {u+d +} {u+d +} {u, uu+,u+d +} {u, uu+,u+d +} {u+d +} 

The table should be read as follows. The value of Cat61~2 is found at 
the intersubsection of the row that  is headed by 51 and the column that  is 
headed by 52. The following theorem describes the meaning of Cat. 

T h e o r e m  10 Let 51 = Di rp la  and 52 = Dirp2a, f o rpbp2  E P, pl ,p2  7 ~ 
-J-p. Then Dir(pl + p2)a E Cat 5152. 

P r o o f :  By enumerat ion of the possible forms of Net(Trace pla) and 
Net(Trace p2a). We give an example of the reasoning, in the case that 
Dir p la  = d d  + and Dir p2c~ = u. In this case, Net(Trace plot) has the 
form adad. . .  (two or more ad's), and Net(Trace p2a) has the form a u. 
Therefore, Pl +P2 will end in a matching aria ~ pair; this pair is annihilated 
by Net, leaving one or more a d terms in the result. The possible values of 
Dir(pl + p2)a are therefore summarized as {d, dd+} .  This set is exactly 
the value of Cat d d +  u. 

The other  values of the function Cat are verified by similar reasoning. [] 

Given Cat, a natural  abstract ion ® of concatenation of procedure strings 
is defined by 

Pl ~ P2 "-~ )~Ol. U {  Cat 5152 ] (51 E/~1o~, ~2 E p2ot} .  

We must  show that  this abst ract ion preserves the meaning of concatena- 
tion; that  is, that  it satisfies Equat ion 1. 

T h e o r e m  11 

Absp(pl + P2) U_p (Absppl) • (Abspp2), 

for all Pl,p2 E P. 

P r o o f :  Let us first consider the case where at least one of pl  or P2 is 
_Lp. Wi thou t  loss of generality, assume that  Pl = _kp. Then Pl +P2 = _Lp, 
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and Absp(pl +p2)  = 5_/5, for all a E A. Now suppose that  neither o fp l ,P2  
is undefined. We showed in Theorem 10 that  for every Pl,P2 E P, 

Dir(pl + p 2 ) a  E Cat( Dir plcO(Dir p2a ) 

for all a E A. Therefore 

(Dir(pl + p 2 ) a }  C_ Cat(DirplcO(Dirp2a ) for all c~ E A. 

By the definitions of Absp, G/5 and ®, this means that  

Absp(Pl + P2) Gp (AbspPl) ® (AbspP2), 

as desired. [] 

We may write this result in the form of Equat ion 2, as 

Pl + P2 E Conc/5((Absppl) ® (Abspp2)). 

This, in turn, implies that  Pl +P2  E Concp(191 @152) for all Pl E C0nc/5151, 
P2 E Concp152. That  is, the concatenation of two procedure strings pl and 
p2 is contained in (the concretization of) the abstract  concatenation (via 
®) of any two stack configurations fil and 152 whose concretizations contain 
pl and p2, respectively (since Absppl and Abspp2 are the least such 151 and 

We need an abstract ion of - to complement the abstract ion we have 
created for +. A natural  abstract ion (3 is given by 

= ~ . { 5  ! Cat'y6n (15La) :/: { }  for some ~y E (152a)}. 

As an example, if151a = {dd  +} and 152a = {d} then (151(3152)c~ = {d, dd+}.  
In order to appreciate the loss of information entailed by this abstraction, 
consider that  if idla = {u+d+},  then (151 (3 151)a = A. Writ ten otherwise, 
we have that  ((Abspp)(3 (Abspp))a = A whereas Trace(p-p)a = c, when- 
ever (Abspp)a = {u+d+}.  The result is the same if (Abspp)O~ = { d d + } .  
Because the operation - is central to the solutions we detailed in subsec- 
tion 2.6, this loss of information would be devastating to the effectiveness 
of the program analysis framework we are constructing, were we to make 
direct use of (3. Fortunately, by a simple shift in perspective, we can ar- 
range to extract the information we need without  making use of (3 at all. 
We will re turn to this in subsection 2.12. 

The following result verifies that  (3 is a sensible abstract ion of - .  

T h e o r e m  12 

A bsp (pl -P2) ~ /5 ( A bspPl ) (3 ( A bspp2 ) , 

for all Pl,P2 E P. 
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Proof i  In case either pi or p2 is A_p, both sides of the equation are _kp, 
and the theorem is satisfied trivially. When pi and p2 are fully defined, we 
have that 

((AbspPl) 0 (Abspp2))a 

= {5 I Cat'y~ f? (Absppi)a 7 £ {} for some 7 E (AbspP2)a}. 

By Theorem 10, 

Dirpia = Dir(p2 + (Pi - p2))a E Cat(Dirp2a)(Dir(pi - p2)a). 

This means that 

(Absppl)ct C_ Cat(Dirp2a)(Dir(pi - p2)a) for all a E A, 

(AbspPi)a C Cat((Abspp2)a)((Absp(Pi - p2))a) for all a E A, 

and therefore 

(AbspPi)a C_ {5 I Cat'y5 N ((Absppi)a) 7£ {} for some ~/E (AbspP2)a} 

which implies, by the definition of O, that 

Absp(Pi -P2)  Ep (AbspPl) e (AbspP2). 

[] 

The following result shows that stack configurations capture well the 
notion of "net" procedure strings. 

T h e o r e m  13 

Absp(Net(pl + p2)) E_p (AbspPi) @ (Abspp2) 

and 
A bsp ( Net (pi -P2))  U_ p ( A bspPl ) 0 ( A bspP2 ) , 

for aU pi,p2 E P. 

Proof :  

• I. By Theorem 11, 

Absp(pi + p2) __./5 (AbspPi) • (Abspp2), 

and by the definition of Absp, 

Absp(Pi + P2) = Absp(Net(pi + P2))- 

Therefore 

Absp(Net(pi + P2)) U_p (AbspPi) G (Abspp2). 
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• II .  By Theorem 12, 

Absp(pl - P2) E_p (AbspPl) 0 (Abspp2), 

and by the definition of Absp, 

Absp(pl - P2) = Absp( Net(pl - p2) ). 

Therefore 

Absp(Net(pl -p2))  Ep (Absppl) 0 (Abspp2). 

[] 

Theorem 13 is a most useful result, because from it follows immediately 
that  for all Pl E Concp161 and P2 E Concp162, Net(p1 -p2) E Concp(161 0162) 
(by the fact that  Absppl and Abspp2 are the least 161 and 162 such that  
pl E Conc~161 and P2 E Conc/~162). The same is true of Net(p1 +P2). There 
are many abstractions of procedure strings for which this result does not 
hold, since Net(p1 +P2)  ~ (Net pl) + (Net p2), and (Net pl) - (Net p2) is 
meaningless, in general. 

2.9 A b s t r a c t  S e m a n t i c s  

We are now ready to abstract the meaning of £, using E2 as a basis. It 
must be said at the outset that  many abstractions are possible, and are 
much the easier for our having rid the semantic domains of reflexivity. The 
conflicting goals of an abstraction are, as always, to minimize information 
content for efficiency in program analysis, on the one hand, and to maxi- 
mize information content for efficiency in program execution on the other. 
To appreciate its practicality, we must see both  the dataflow framework an 
abstraction suggests (to estimate our investment in compile time), and ex- 
amples of its behavior when applied to real Scheme programs (to estimate 
the re turn on our investment, at run time). Furthermore,  since interpro- 
cedural analysis is but  one phase of parallelizing compilation, we cannot 
judge its effectiveness in isolation from the "active" phases of the compiler, 
which make use of its results to trigger restructuring and optimization. The 
abstraction we develop below is but one point on a continuum of choices, 
and no claims are made for it now, other than that  it is correct, represen- 
tative of the possibilities, and avoids the ridiculous extremes of complete 
information loss or retention. 

The equations of the abstract  semantic domains are presented in Figure 
12; their abstraction maps are presented in Figure 13; the partial order- 
ings within the abstract  domains are defined in 14; and the LUB operators 



ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 237 

/~ = 2 1  

]~/= 2 N 

=y /5 
d 

b = d x B2 x P r i m O p  x I n t  x Bool 

=v b 

=/5 x/) x/i" 

Figure 12: Abstract  Domains for g3 

within the abstract  domains are defined in 15. In the case of the compound 
d o m a i n s / ) ,  6', /£, /9, /), R, 2r and (~ these functions are straightforward 
compositions of the corresponding functions over the primitive domains, 
as described in subsection 2.3. The partial orderings and LUB operators 
are defined as curried functions, although we will write them, in the con- 
ventional way, as infix operators. The notat ion a A b denotes the logical 
conjunction of a and b. 

A member  d E A is simply a subset of A. It is important  to make 
clear the distinction between the representation (in this case a subset of A) 
from the thing that  is represented (in this case an ideal of A). Here, the 
relationship is simple, and is given by 

Conc x _= .X&.& u {-LA}. 

This abstraction is maximal in that  every ideal of A is represented in A. 
Most of our abstractions are more abstract  than  this one. 

A member  b E /) maps a variable to an abstraction of its birth date. 
There is no information loss, during abstraction, in the domain 19 of the 
function: when considered as a subset of the product  V x/5, the cardinality 
of the map is the same, before and after abstraction. However, there is 
information loss in the range of the function, as the abstraction of procedure 
strings involves a loss of information, as described in subsection 2.7. 

An abstract  environment ~ E /) maps a variable to an abstraction of 

19Here we are using domain as the space from which a function takes its input values, 
and not the space containing the function. 
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Abs h - Aa. if a = 3-a then  {} else {a}  
Abs g =- ki. if i = I N  then  {} else {i} 
Abs B =_ Ab.)~v.Absp(bv) 
Abs C - A(a, b).(Absha, Abssb } 
A bs g =_ A ( i, b, p, o ) . ( A bsg i, A bsub, A bspp ) 
Abs D -- Ax. if x -- 3-0 then (3-0, 3-R' 3-PrimOp' 3-Int' 3-Bool} 

else if x E C then  (Abscx, 3-R, 3-P~imOp' 3-Iiu, 3-Boot) 
else if x E K then  (3335, AbsKX, 3-PrimOp' 3-Int' 3-Bool) 
else if x E P r i m O p  then  (3-~, 3-K, AbsprimOpX' "Lint' 3-Bool} 
else if x E I n t  then  (3-~, 3-K' 3-PrimOp' AbsIntx, 3-Boot) 
else if x E Bool then  (-J-5, -l-K, 3-Pri~nOp' 3-Int' AbsBoolX) 

Abs E - Ae.Av. U D {AbsD(e(v,p)) i p E P}  
Abs R - Ar.Aa. U R {AbsK(r(p + ad)) ] p E P}  
AbsQ =_ A(i, b,p, e, k, o, r}.Aa, if a ~ Container i 

then  (3-p, 3-B, 3-E, 3-R, 3-/~) 
else (Abspp, AbsBb , AbsEe, 

AbsKk, AbsRr) 

Figure  13: Abs t r ac t ion  Maps  
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EN-- £.~).~ c ) 
EX- A&.@.& c/~ 
EB--- ~6,.~&.(61v) c (&v) w e V 
Ec--- :,(o~,, ~l).A(o~, &).(O~l E~ fi~) A (61 E~ &) 
F/.~.m_ )~(~, 61,.~1}.,~(~, &,1192). (/1 ___.Et'~ ~) 

A (hi ---8 G2) 

E/~ =-~ )~(C~I, ]~1, ~,  a ,  £1).)~(6, ]g2, f2, a ,  £2}. (6 ~ ,  6)  

A (/1 ~PrimOp f2) 
A (~1 ---i~ ~2) 
A (~1 ---Boo~ f2) 

[Z~b~ ,~(b~l,J~l, e~l,/~1, r~1).)~(b~2,1-~2, ~2, k2,/-~2). (b~l E/~ b~2) 

A (4 ___~ #2) 

A (~i _% ~2) 
E6---- A,fi.~2.~.(,:/~oO Ee (~/2o0 w c A 

Figure 14: Partial Orderings 
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U~ -- Anl.ATt2.7~ 1 U ~2 

us _= :,~.~.~ u 
u ,  _= ,~l.,~6~..,~v.(61v)up (&v) 
u~ - ,~<oh, b\>.,~<o~, 6~.>:<~, u x o~, 6~ uB &> 
U/~ ------ /~(/~1, b~1,P1>.~<(2, b2,p2>.( 71 U~ i2, 

# , u , & ,  

U/) ---- A<dl, kl, ]1, 2~1, xx).A{d2, }2, f2, 2~2, x2>.( dl U d, c2, 
~1 u. ~, 
/,usA, 
21 US Z~2, 
~a u s ~2) 

U~ ~ /~e~l./~e~2.,~v.(elV ) U b (e~2 v) 
uR - ~FI.~F2.~a.(Fla) u~ (F2a) 
% - ~(p~l, 51, el, kl, F1>.~<#2, &, e2, A;2, e2>.< #1 uo ~2, 

#1 1 IS #2, 
el US e2, 
~1UB k2, 
F1 u s r~2> 

UQ - ,~g~.,~42.,~.(41~) u¢ (i2,~) 

Figure 15: LUB Operators Over the Abstract Domains 
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the values that  may be assumed by the instances of that  variable. Here, 
there is considerable loss of information during abstraction, in the domain 
of the function; all instances of a particular variable v, represented in the 
concrete semantics as pairs (v,p) where p E P,  are collapsed onto the 
single member v of the domain of the abstract function. Whatever loss 
of information occurs in abstracting members of D is compounded by the 
fact that  the values of all instances of a variable, over all executions of 
the program, are coalesced into a single abstract value in the range of an 
abstract environment. The values assumed by a variable are differentiated 
only in that  there is a separate environment for each lambda expression 
of the program, and the variable may assume different (abstract) values in 
each environment. 

The product  domains C a n d / ~  are straightforward, component-wise ab- 
stractions of the corresponding concrete domains. (We explain below why 
members o f / <  have only one component in /5 ,  in contrast to those in K, 
which have two components in P.)  

The form of a member d E /9 may be surprising. It it essentially the 
same as the representation given to a sum of domains in [43]. The idea is 
simple: d represents a set of values which may be drawn from the domains 
C, K ,  Pr imOp,  Int ,  and Bool. Each component of d represents a set of 
values from one of these domains. If d represents, for example, no integer 
values (or only the undefined integer), then its fourth component will be 
-Lint. (See the discussion in subsection 2.4 for our interpretation of bottom 
elements.) 

An (abstract) restoration map ÷ E /~ is a function from a lambda ex- 
pression index to an (abstract) continuation. The domain of this function 
looks odd, since the corresponding concrete maps have type P --+ K. In 
abstracting r E R to form ~ E/~, every procedure string p .... cz d in the 
domain of the function has been collapsed to the lambda expression index 
c~. All procedure strings over which r is defined have the form s q- c~ d for 
some c~ E A and s E P, since r maps procedure instance birth dates to 
their continuations, and by the definition of ,92 all such birth dates have 
the form ... c~ d (where),~ is the procedure being applied). The advantage 
of this abstraction is that we gather, into a single value in the range of ÷, 
the continuations of all instances of a single procedure. Since each contin- 
uation contains (an abstraction of) the statement index of the procedure 
application or c a l l / c c  expression which creates it, we will be able, after 
the analysis is complete, to construct an approximation to the calling graph 
of the program, using members of/~. That  is, the abstract continuation of 
each lambda expression will point us to the locations within the program 
at which the lambda expression may be applied. 
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An abstract state ~ E Q is a map from a lambda expression index, to 
a tuple of information, a member of the abstract domain T. We should 
understand ~ as gathering all states in which a lambda expression )~a is 
active, into a single value in the range of ~ (the value of ~ at a). There 
are several dimensions of information loss in this abstraction. First, the 
statement index of each of the gathered states is lost, so that  one cannot 
distinguish the state after statement i from that  after statement j ,  if Si 
and Sj belong to the same lambda expression. This makes our abstraction 
flow insensitive, in the language of data flow analysis, since the structure 
of control flow within each lambda expression is ignored (that is, the con- 
trol flow is approximated by assuming that  the statements of the lambda 
expression can occur in any order whatsoever). There is a second dimen- 
sion of information loss, in the abstraction of states, in that  all instances 
of a single statement will be collapsed into a single value in the range of ~: 
during execution of a program, there may be thousands of states in which 
a particular statement is active; we will summarize these states (along with 
all states in which other statements within the same lambda expression are 
executed) in a single value in the range of ~. 

We remarked in subsection 2.7 that  under our abstraction of procedure 
strings, p and o are equivalent if they have the same net value. By Theo- 
rem 4, the procedure string of a state, and the birth date of the procedure 
instance that  is active in that  state have the same net value. It is for this 
reason that  members of T contain only one component in /5  (that is, if they 
had two such components, the two would be identical). 

An abstract semantics for £, based upon these domain equations, ab- 
straction maps, partial orderings, and LUB operators is given in Figures 16, 
17 and 18. Recall from subsection 2.3 that  f[x//y] denotes the function 
fix u (fy)/y]. 

In broad outline, C3 works as follows. We begin with an abstract state 
(initially, an approximation to the set of states from which execution 

may commence). ~ is a map from lambda expression indices to members 
of T. The tuple ~a in ~b approximates all states in which a is the active 
procedure. For each statement i E N of the program, we apply $3 to i and 
to ~a, where Aa is the procedure that  contains statement i. The least upper 
bound of the set of abstract states that  results from these applications is 
joined with ~, and the result becomes the next abstract state in the sequence 
that  is described by abstract interpretation of the program. (The function 
$~ collects and joins the applications of 33). The process ends when a 
fixed point is reached; that  is, when further applications of E 3 result in no 
change in the abstract state. 

Let's visit the definition of $3 in more detail. It maps a statement number 
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Let t = (15, D, ~,/¢, ÷) , i  E N .  T h e n  83 : N ~ 20 --, Q is defined, according to 
the  form of Si, as follows. 

Si ---- [ ( s e t !  x (f  Yl'" "Ym )) ]  or Si = [ ( s e t !  x ( c a l l / c c  f ) ) [  =~ 
Saii  = 4c uO. ik 
where ~c -- UQ{A/3. if/3 ¢ a 

then ~ ^  ^ 
else (ff , b ' ~ ' / / [ z @  .. .  ~ ' / /[Zn~],2,  

<{i}, b, i5), ~[k / /Conta iner  i]) 
w h e r e A a =  [Ckambda (z~ . . .Zm)  < Z m + l ' " z n >  S j ' " ) ] ,  

and e ' = i f S i =  [ ( s e t !  x (2 Y~ ' "Ym)) ]  
then ~[~[y~/ / [z~]] . . .  [eiym]//[zm]] 
else ~[(.L~, <{i}, ~,~), 

• Lpr~op, "L~a, .L,oo~>/l['d] 

where ~[f~ = (c', k ' , . . . )  
and d = (6,/~) 

and q~k = UQ{A/3. if/3 ¢ Container j 
then 1~^ 
else <p', b', 8,  ~/3, ÷[k l l Container i]) 

wheree  r = i f S i = [ ( s e t !  x (f  y l . . . y , ~ ) ) ]  

where Sj = [ ( s e t !  

where ~[f[ = (c', k ' , . . . )  
and /~' = <3,/~', io'> 

then e[e[yll//I[z!] 
else ~[<.L c, <{i}, b,p>, 

"L pr~op, "L ~a, "L ,oo~) / /M] 
(cal l /cc g))] 

Figure  16: The  Semant ic  Func t ion  $3 (Par t  I) 
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Si = [(set ! f (lambda~ (x~.. .  Xm) <Xm+l"" Xn > "" ") ) ]  :=~ 
83it  = A/3. if Container i ~ 

then ±3 
else (15, 

~[<<{'~}, b>, ±K, ± ~ o ~ ,  ±~n~' ±~oo~>//[ftl], 

~> 

S i =  [ ( i f  x (goto m) (goto n) ) ]=~  
S3i{ = A~.if Containeri  ~ 

then^±¢ 
else t 

Si = [ ( r e tu rn  x)] =~ 
S3it = UQ { A~. if Container j ¢ 

then ~ ^  
else (p', b', ~[e[x]//M], ÷(C°ntainer j) ,  ~) 

where Sj = [ ( se t !  y ...)1 
j )} 

where ]~ = 1), bL/~> 

Figure 17: The Semantic Function $3  (Part II) 

S~ : Q, -+ Q, - AO. U(2 {$3i(~(Container i)) I i e N }  

g3: Q -+ Q -= A~. Let q' = $ ~  
in if q' _ZO ~ then { else $3(9 UQ @) 

Figure 18: The Semantic Functions S~ and E3 
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i and a tuple t = (15,/~, e, ]~, ~} E Ib to an abstract  s tate (a member  of (~). The  
most  interesting case is when Si (s ta tement  i) is a procedure applicat ion 
or an invocation of c a l l / c c .  The  definition of S3 in this case is shown 
in Figure 16. The  definition looks complex, but  it is really quite simply 
derived from $2. The  variable f contains (an abst ract ion of) the object  to 
be applied (in the case tha t  Si is a c a l l / c c  expression, to be applied to 
the current  continuation);  this abstract  object  is retrieved by writ ing ~ f ] .  
Now, ~f~ represents a set of values (an ideal in D), but there are only 
two kinds of objects that can be applied by a correct program: closures 
and continuations. 20 Therefore the final state that results from this single 
step of evaluation (that is, the state S3it) is formed by joining the abstract 
state that results from applying all of the closures represented by @Ill, 
with the abstract state that results from applying all of the continuations 
represented by ~[f]. These abstract states are called qc and qk respectively. 
Let's consider their values in turn. 

The abstraction of the closures represented by (contained in the con- 

cretization of) ~[f] is ~ = (&, b~). The value & is the set of indices of those 
lambda expressions, closures of which are possible values of f. The ab- 
stract state qc is therefore the LUB of the abstract states that result from 
the application of (closures of) each of these lambda expressions. Likewise, 

the abstraction of the continuations represented by ~[f] is ]~ = (),/~i ~r). 

The value ) is the set of those statement indices (of call/cc expressions) 
continuations of which are possible values of f. The abstract state qk is 
therefore the LUB of the abstract states that result from the application of 
each of these continuations. 

The reader may have noticed that there seems to be nothing analogous 
to the expression p + Inv (p- pl) that appeared throughout the definition of 
$2. We would expect to find (an abstraction of) such an expression in the 
cases of continuation application and procedure return, within $2. Instead, 
the stack configuration of the abstract state that results from applying an 
abstract continuation is simply i5, where 15 is the abstraction of the birth 
date of the procedure instance in which the continuation was formed. That 
is, the abstract birth date of the current procedure instance in a state that 
results from application of a continuation, and the abstract procedure string 
of that state, are the same. Again, the reason is Theorem 4, which shows 
that Netp -- Net o whenever p is a procedure string of a state, and o is the 
birth date of the procedure instance that is active in that state. By that 

2°See the discussion of bottom values in subsection 2.4. Even if we were to simulate 
the application of, say, an integer, we would simply be joining the bottom element of the 
domain (~ of abstract states, with the abstract state that results from the application of 
legitimate (applicable) values. This would have no effect on the outcome, since ±ux  -- x. 
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theorem, 
Abspo' = Abspp' = Absp(p + Inv(p - p')), 

where p~ is the procedure string of the state in which the continuation is 
formed, d is the birth date of the procedure instance within which it is 
formed, and p is the procedure string of the state in which it is applied. 

Two things are to be shown, concerning this abstract semantics: first, 
that  all evaluations terminate; second, that  the meaning of the concrete 
semantics (E2) is preserved, such that  the final state of abstract evaluation 
approximates not merely the last state(s) of concrete evaluation, but every 
state that  occurs during execution. The first of these results is needed if we 
are to write a compiler that  is guaranteed to terminate when analyzing a 
(possibly erroneous) program; the second allows us to regard the result of 
abstract interpretation as representative of run-time behavior, and suggests 
the derivation of a data flow analysis framework from the semantics. 

T h e o r e m  14 S3i is monotonic for all i E N.  

Proof." The following facts are obvious: 

1. if al E bl, a2 _E b2 , ' - ' ,  an E bn, then U{ai} E U{bi}. 

2. if al E bl,a2 E b2 , ' " , an  E_ bn, then (a l , a2 , . . .  ,an) E (bl,b2,. . .  ,bn). 

3. if f E g and x E y then f [x / / z]  E g[y//z]. 

4. if al _ bl,a2 E b2 , ' " , an  E bn, then {Cl ~ al,c2 ~-~  a2,...,Cn 
an} E {el H 51, c2 ~-+ b2, . . . ,  cn ~ b~} 

The theorem follows by decomposition of the definition of 8 3 into mono- 
tonic functions over primitive types, according to these four facts. For 
example, suppose that  

t~l E t~2, and that  

Si - -  l ( s e t !  x (f y l ' " y n ) ) ~  or ~(set!  x ( c a l l / c c  f))~.  

Let $3i[1 5 ~ ?~ = qc UQ qk, and Sait2 ,~Ii ii^ ,~" = uc ~Q uk. Then, by Fact 1 above, to show 

that 83i is monotonic it is sufficient to show that q:~ ___Q q~ and q~ _EQ -~' qk" 
(We have performed one step of decomposition.) Let us first show that  
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q:~ E- 0 @c. Following the definition of $3 in this case, let q~c = U0F and 

@ = hloG. (The members of F and G are functions in (~.) Again, by Fact 
1 above it suffices to show that 

Vg E G, 3 f  E F l f  E og .  

(This application of Fact 1 is a second step of decomposition.) By the 
definition of $3, there is one f E F for each a l  • di ,  where el[f]  = 

((dz,b~)...}, and there is one g • G for each a2 • d2, where e~2[f] = 

((d2, b?2>...}. Since e~i EE e~2, it follows from the definition of E£ that 
d l  C_ d2. Thus, for e a c h g  • G there is a function f • F such that if 
gc~ ~ _k~, then f a  ~ _l_~ (and there is at most one a such that ga ¢ _k¢ or 
f a  ~ ±~).  We apply Fact 4 to f and g, which requires that we show that 
f a  E¢ ga (and only this, since a is the only point at which f and g may 
differ in value). We continue decomposing the tuples f a  and ga in this way, 
applying Facts 2 and 3 at the next steps. The decomposition terminates 
in operations over primitive types, because the domains over which ~3 is 
defined are not reflexive. It is easily verified that these operations (such as 
@ over stack configurations) are monotonic. 

The same reasoning applies to the values q~ and q~', and to the other 
forms of Si as well. [] 

T h e o r e m  15 $~ is monotonic. 

Proof i  L e t ~ E Q ~ .  T h e n V i E N ,  

$3i(~(Container i) ) E_Q $3i(~(Container i) ) 

by Theorem 14. Therefore 

Uc2{S3i(~(Container i)) l i E N}  EQ UO{S3i(~(Container i)) l i E g } ,  

and 

[] 

T h e o r e m  16 g3~ terminates, for all ~ E Q. 

Proof :  Suppose not. ~3 is the only recursively defined function in the 
abstract semantics. Therefore ~3q describes an infinite sequence of abstract 
states (the arguments to 33 in successive recursive calls), call it ~/0, ql, . . . .  
By the definition of g3, qo E 0 ql EQ "" ", and since evaluation terminates 

if qi:F1 EQ qi, we have qo EQ qi r- 0 q2"" ". But all ascending chains in 
have finite length, a contradiction. [] 
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T h e o r e m  17 $3 is monotonic. 

P r o o f i  Let r~0 ___Q 40, and let r~0 _UQ r~l _UQ . . .  and do U_C) 41 ___Q . .-  
be the evaluation sequences described by E3r~0 and C340 respectively. By 
Theorem 16 each of these sequences is finite. Let the shorter  be extended,  
by replication of its final term, so tha t  bo th  have length n. By Theorem 15 
and the definition of E3, 

~i __0 4i 
for all 0 < i < n. Therefore 

r~n = E3~o --Q E340 = q~n. 

[] 

Evaluat ion under  E3 describes an ascending chain of abstract  states, and 
since in each of our abstract  domains ascending chains have finite length, 
C3 terminates,  even when a corresponding evaluation under  $2 will not.  
This is an essential proper ty  of an abstract  semantics, if it is to become the 
basis of an a lgor i thm for static analysis. 

It is well tha t  E3 terminates,  but  we would feel bet ter  knowing what  it 
returns,  when it does so. The  following two theorems define the sense in 
which E3 preserves the meaning of evaluation under  E2. 

T h e o r e m  18 If  q • Conco( t then 

S2q • Conco(S3i(~t( Container i))) 

where q = (i, p, b, e, k, o, r). 

P r o o f :  Let ~(Conta iner  i) = (15, b, ~, k,~), where q • ConeQ(t. By 

assumption,  p • ConcpD, b • COncBb, e • COnCE~, k • Concf~/~, o • 
Concp[~, and r • Concf~. We proceed, as in the definitions of 82 and 83, 
based upon  the form of Si. Suppose tha t  

Si----~(set!  x ( f  Yi "'" Ym))~ or ~ ( se t !  x ( c a l l / c c  g ) ) l ,  

and that 
e ( H ,  blf~) = (~, b') e C. 

Since e E Conep~, we may write (following the form of the definition of $3 
in Figure 16) 

= (c i ' , . . . )  • i )  
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where 5 = (&,/~P), a E Conc h& and b' E Conc[~b I. We consider the compo- 
nents of $2q (see the definition of $2 in Figure 7). We have that 

(i", p", b", e", k 1', o", r") E ConeQ~ 

when 
(t( Container i") = (~1,, t/', #', t~ I', ~9,) 

where p,I E Concpt~", b II E Conc[3U I, e" E COnCEe", k" E Concgtc", 0 II E 
Concpl~", and r" E ConcRWC Letting 

ql = S2q = (i",p", b", e", k", 0 II, r"} 

and 

i' = 83i(~( Container i))( Container i") = <p~", b )', el', k ~11, P'>, 

we must therefore show that the concretization of each component of [' 
contains the corresponding component of q/. 

By the definitions of $2 and $3, S = P + ad, and pit = ~ ® Absp(ad). By 
assumption, p E Concpp. By Theorem 11, we have that 

p + ~d E Conep(~ ® Absp(ad)). 

By the definitions of $2 and $3, 

b" = b'L  + Lo + 

and 
t)' = b'[~ @ Absp(ad) / /[zl~] . . . [~ ® Absp(a d) / /[zn~]. 

We know that b I E Conc[~D', and therefore by the step above, and the 

definition of f [x / /y] ,  b" E Conc[~t/'. 
Assume for the moment that 

S i =  ~(set!  x (f yi "'" Ym))~ 

By the definitions of $2 and $3, 

e l' = e[e<[y~], b[y~]>/<[z~,p + ad>] ' ' '  [e<[ym], biym~>/<~Zm],p + ad>], 

and 

By assumption, e It E Conch#', and therefore 

for 1 < i < m. Therefore, by the definition of the notation f[x/ /y] ,  e" E 
Concp#C Similar reasoning holds in the case that 
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S i =  [ ( s e t !  x ( c a l l / c c  f))~.  

By the definitions of $2 and $3, k" = ( i ,b ,p,o) ,  and k ~' = ({i},/~,~/. 
Each member of k" is contained in the concretization of the corresponding 
member of k ~". (We take ~5 as the abstraction of both p and o, since by 
Theorem 4, Net p = Net  o, and therefore Abspp = Abspo.) Therefore 

k" E Conch:k". 

By the definition of S2 o ~ = p". As above, we take p" as the abstraction 
of both the procedure string of the state that  results from this application 
of )~, and of the birth date of the new instance of A~. Again, this is 
justified by the fact that  by Theorem 4, Net p~ = Net  o", and therefore 
Abspp" = Abspo". 

Finally, by the definitions of S2 and $3, 

r" = r[k/o], 

and 
~' = ~[k / / Container i]. 

By the definition of $2, o must end in the term ~d where ~ = Container i, 
and therefore by the definition of AbsR, and our assumption that  k E 

Conc~ ,  
r[k/o] e Conc[~[k/ /  Container i]. 

We can repeat this reasoning in the case that  

e( l f ] ,b[f ] )  = ( j ,b ' ,o ' ,p '}  e K.  

The only interesting argument arises, in that  case, when proving that  

p + Inv(p - p') E Concpo', 

where o ~ is the abstraction of the birth date of the procedure instance in 
which the continuation (j, b ~, o~,p ~) is formed. By Theorem 3, 

Net(p  + Inv(p - p') ) = Net p'; 

by Theorem 4, 
Net p I = Net  o ~, 

and therefore by the definition of Absp, 

p + Inv(p - p') e Concpo'. 

Similar reasoning applies to the other forms of Si. [] 
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T h e o r e m  19 Let qo, q l , . . ,  be the sequence of states described by the eval- 
uation of E2qo. Then qi • Conco(gaqo) Vi, where qo • Conco~[o. 

P r o o f :  By induction on i. Let n be the number of applications of E3 
that occur in the evaluation of E3qo, and let qo, q l , . . - ,  q~n be the sequence of 
abstract states described by that evaluation, as guaranteed by Theorem 16. 
As a basis, we have 

S3(q0) "~ ~3(q0 L](~ ql) 

= &(c/o UQ q~ U# ... u# q'n) 
= q0 u 0 41 ~0"" uo q'~ 

and therefore qo • Conco(g3qo). 

Now assume the theorem holds for qi. Then 

By Theorem 18, 

q~ • Con%(&cio) = Con%¢~. 

qi+l E Con%(Saj(gn(Container j))) 

where qi = (j,P, b, e, k, o, r), and therefore 

qi+l • Cone~)(S~qn). 

By the definition of g3, 

Therefore 

and 

q~+l e ConcQi~ 

q~+l e ConcQ(&4o). 
[] 

Theorem 19 shows that  the abstract state that  results from evaluation 
under g3 approximates not merely the final state of evaluation (if there is 
such a final state) under C~, but every state that  occurs during evaluation 
under g2. In the terminology of [28], we have created a collecting interpre- 
tation of the program, so called because it collects information from every 
state that  occurs during execution. This collecting interpretation differs 
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significantly from that  presented in [28], however. There, the domains used 
to collect values are separated from the domains over which evaluation oc- 
curs, in order that  a power set, and not a power domain, may be used to 
represent the collected values. Here, we have made no such distinction. 
The more significant difference is that  we have eliminated reflexivity from 
the domains over which the semantic functions are defined. This allows 
us to give a concrete representation to closures and continuations, using 
which we can reason easily about certain operational properties of these 
higher-order objects. It has also allowed us to write very simple proofs of 
correctness, which do not involve infinite fixpoints. 

Notice that  Theorem 19 does not stipulate that  evaluation under g2 must 
terminate, in order that  the result of the corresponding abstract interpreta- 
tion under g3 be meaningful; we understand the abstract state g3(AbsQq) 
to represent every state that  occurs during g2q, even if g2q does not ter- 
minate. This is precisely what we would hope for, in compiling a program 
that might (intentionally) not terminate: we wish to know what s tates  may 
arise during the computation, in order that  we correctly compile that  por- 
tion of the code that  is used. (Recall from subsection 2.4 that  we regard 
a program that  does not terminate as a special case of a program that  has 
unused code; in the case of a non-terminating program, at least its final 
statement is unused.) 

2.10 Approximate Solutions in T e r m s  o f  S t ack  C o n f i g u r a t i o n s  

At this point, we know how stack configurations model procedure strings, 
and how they can be computed by abstract interpretation, in a way that  
preserves the meaning of procedure strings. In subsection 2.6 we formu- 
lated simple, and optimal solutions to a number of flow analysis problems, 
in terms of procedure strings. In this subsection we recast these into ap- 
proximate solutions to the same problems, in terms of stack configurations. 
By the nature of abstraction, we need not derive a new solution to each 
problem; rather, we "project" the old solution onto the space of stack con- 
figurations, in a way that  preserves its meaning. In each case, we begin 
with a statement of the form "X is true of the program, if and only if 
C is true of the procedure strings described by its execution." We derive 
the statement "X is true of the program, only if C is true of the stack 
configurations described by its abstract interpretation," where if C is true 
of a stack configuration 15, then C is true of all p such that  p E Concp15. 
The loss of information that  is suffered in this translation is reflected in the 
change from "if and only if," within the original statement,  to "only if," in 
the derived statement: we cannot say with certainty that  X is true of the 
program, given that  C is true of the stack configurations it describes; only 
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that X is certainly not true of the program if C is not true of the stack con- 
figurations it describes. We must therefore arrange that transformations 
and techniques that are not universally applicable are invoked only when 
the circumstances under which they are illegal have been excluded. 

2.10.1 Side-Effects, in Terms of Stack Configurations 

It is by abstraction of Theorem 7 that we may turn our abstract inter- 
pretation to the analysis of side-effects. The theorem states that if i is a 
variable instance, the birth date of which is Pb, and which is referenced in 
a state whose procedure string is pr, then a procedure instance ~'~ has a 
side-effect as a result of this reference if and only if Net  (Pr - Pb) contains 
a term of the form a d corresponding to A'~. We may cast this result into 
the realm of stack configurations by way of the following theorem. 

T h e o r e m  20 Let q~n = E3~/0 where qo E Concd2~o. I f  during the evaluation 

of E2qo there is an instance X~ of )~athat has a side-effect upon an instance 
of x, then there exists a "y E A such that 

(fir Ofib)a D {d, dd+~u+d+} ¢ {}, 

where ~[nt3 = (fib,. . .) and qn'Y = {fir , . . . ) ,  where A~ is the binder of x, and 
x is referenced (directly) within )~.~. 

Proof :  Let A'a be an instance of ha that has a side-effect upon an 
instance ± of z, let this side-effect arise from a (direct) reference to 2 within 
,~,  and let ),~ be the binder ofx. By Theorem 7, it must be that there exists 
Pb and Pr such that Net(p.~ --Pb) contains a term of the form a d, where Pb is 
the procedure string of the state in which ± is bound and Pr is the procedure 
string of a state in which i is referenced within ,~ (which reference gives rise 
to the side-effect attributed to )~). Let qb be the state whose procedure 
string (that is, whose first component) is Pb and qT be the state whose 
procedure string is Pr. By Theorem 19, qr, qb E Conc(~{f~, where q~n is as 

defined by the current theorem. Let q~n¢{ = (fib,...}, and q~no' = (Pr, . . . ) .  
By the definition of E~) and _C~, Pr E Conc(fl3r and Pb E Concofb. By 
Theorem 13, 

Net(pr - Pb) E Concp(p~r 0 fib), 
By the form of Net(pr --Pb), 

Trace( Net(pr - pb ) )a : a al . . . a ak, 

where ai = d for some 1 < i < k. By the definition of Concp, this implies 
that 

(t~ el3b)a M {d, dd+,  u + d  +} # {}. 
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[] 

Theorem 20 should be read as follows. Suppose we are given an initial 
s tate q0 and an abstract  s tate q0, the concretization of which contains q0. 
We evaluate q0 and q~0 under  g2 and g3 respectively. (Let g3q0 = qn.) 
If dur ing the evaluation of g2q0 we encounter  an instance of As that ,  by 
Definition 1, has a side-effect upon  an instance of the variable x, then  it 
must  be tha t  abstract  in terpreta t ion (the history of which is collected into 
q~n) will reveal tha t  side-effect, in the following way. If A7 is the procedure 
within which x is accessed directly (to produce the side-effect), and AZ 
is the procedure which binds x, then  (16r O 16b)a will contain one of d,  
d d +  or u + d  +, where 165 is the first component  of q~nfl, and 16r is the first 
component  of q~nT. 165 could alternatively (and equivalently) have been 
defined as/)Ix], where q~n7 = (fir, b, ~, ]% ÷), since/) maps  the free variables 
in A 7 to (abstractions of) their b i r th  dates. We will make use of this fact 
below. 

2.10.2 Stack Allocation, in Terms of Stack Configurations 

We may make a similar project ion of Theorem 8, which characterizes the 
conditions under  which a variable instance must  be heap-allocated in terms 
of procedure strings, to an analogous theorem over stack configurations. 
Theorem 8 holds tha t  if x is a variable bound  by AZ, and Pb is the procedure 
string tha t  identifies an instance ± of x, and pr is the procedure string of 
a state in which ~ is referenced, then  this reference takes place after the 
instance of AZ tha t  binds 5: has been exited, if and only if Net(pr --Pb) has a 
t e rm of the form flu. We cast this into the language of stack configurations 
as follows. 

T h e o r e m  21 Let q~n = g3qo, where qo E Conco~o. Let x be a variable 
bound by AZ. I f  during the evaluation of C2qo there is an instance ~ of x 
such that ± is referenced following the deactivation of the instance AZ of AZ 
that binds it, then there exists a 7 E A such that 

( ~  e R ) Z n  {u, uu+ ,  u + d  +} -~ {}, 

where ~/3 = (P~b,...) and qn7 = {P~,...), and x is referenced (directly) 
within A.~. 

P r o o f :  Let ~'Z be the instance of AZ tha t  binds an instance i of x, such 
tha t  ± is referenced in a state qr whose procedure string is p, ,  following 
the deact ivat ion of ~'Z. Let Pb be the bir th  date of 2. By Theorem 8, 
Net(pr - Pb) = . . . . . .  flu , where flu corresponds to the deact ivat ion of X~. 
Let A 7 be the procedure within which ± is referenced directly in q~. Let 
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(~nfl = (Pb, . . . ) ,  and let q~n~ = (Pr, . . . ) .  Then by Theorem 19, and the 
definition of EQ, Pr E Conep~r, and Pb E ConepI3b. By the definition of 
Conep and Theorem 11, 

Net(pr  - Pb) E Concp(I~r 0 fib), 

and since 
Trace( ge t (p r  - pb) )/3 = ~al ~a2 . . . ~ak 

where a / =  u for some 1 < i < k, we have that 

(fir e 16b)/3 N {u, u u  +, u+d  + } ¢ {}. 

[] 

Theorem 21 has the following intuitive interpretation. As before (in the 
case of Theorem 20), we are given a state q0, and an abstract state q0, the 
concretization of which contains q0. We evaluate ~2q0 and $3q0, and call 
the latter q~n. If during the evaluation of C2qo we encounter an instance 
of a variable x, such that ~ is referenced after the instance ~Z of AZ that 
binds it has been deactivated, then abstract interpretation will reveal this 
fact, in the following way. If )~ is the procedure within which the offensive 
reference to x takes place, then 

(A O 16b)~ n {u, u u + , u + d  +} ¢ {} 

where 15b is the first component of q~n/~, and idr is the first component of 
q~n~/. As before, 15b could equivalently have been defined as /~[x] where 
q~n~ = (P~r,/~, ~, ]¢, ÷), since /~ maps the free variables in )~ to (abstractions 
of) their birth dates. 

Theorems 20 and 21 may be applied at compile-time, by choosing (/0 
such that qo E Conc¢2~o for all possible initial states q0. In that case, 
Theorem 20 may be invoked to discover, for every procedure application 
of the program, what side-effects may occur as a result of the application. 
Likewise, Theorem 21 may be invoked to discover, for every bound variable, 
whether that variable must be heap-allocated. (In Parcel, we have taken 
the approach that if any variable bound by a lambda expression must be 
heap-allocated, then the entire activation record for that lambda expression 
will be placed in the heap, at every application of the lambda expression.) 

2.10.3 Generalized Hierarchical Allocation and Deallocation 

Finally, we revisit the discussion of subsection 2.6.3, and recast our ob- 
servations in terms of stack configurations. As before, let $2q0 describe a 
evaluation sequence from initial state qo, let ± be an instance of a variable 
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x that  is bound in state qb, and let qr be the state in which x is referenced. 
Recall that  we wished to place ± on a list of objects to be deallocated upon 
exit from a procedure instance, such that  the instance outlives 2. Our 
observation was that  if Pb is the birth date of 2, and p~ is the procedure 
string of a state in which it is referenced, then if Net(p~ - Pb) has k terms 
of the form a~ (summing over all a E A), then 2 must be placed on the 
deallocation list of the k th procedure instance above the one by which 5 is 
bound. The maximum m of k, over all Pr that  denote states in which 5 is 
referenced, points us to the innermost procedure instance that  outlives 2 
(and thus to the shortest-lived deallocation list on which it is safe to place 
5). 

We may approximate m by use of stack configurations, as follows. Let 
q~n = g3q0 where qo E Conc~2~o, and let As be the binder of x. Assigning 

a weight of 1 to u, a weight of cc to u u  + and u + d  +, and a weight of 
0 to the other members of A, we compute the maximum, over all stack 
configurations idr such that  q~n/~ = (ida,...) where x is referenced directly 
within AZ, of the weights of the subsets in the range of ~6~ O 35- Let rh be 
this maximum; it is easy to prove that  rh _> m, for any instance 2 of x. 
We interpret rh exactly as we did m: every instance 5 of x is placed on 
the deallocation list of the rrtth procedure instance above that  by which 5 
is bound. If rh is greater than  the number of active procedure instances at 
the point of 5's creation, then  5 is placed on the deallocation list of the top 
level (which is to say, 2 will never be released through this mechanism). 

The trouble with this approach is that  a single u u  + or u + d  + within 
(id~ O/}b)~ for some /~ E A, means that  every instance of 5 will be asso- 
ciated with the top level. In order, therefore, to use this as the basis of 
a practical system of storage reclamation, it would have to be augmented 
with garbage collection. We could, for example, allocate objects from a 
free list, and deallocate them (return them to the free list) according to the 
above scheme, invoking garbage collection when the free list is exhausted. 
When we had precise information in the form of procedure strings, we had 
the luxury of placing 5 on the deallocation list of the innermost procedure 
instance which would outlive 5, and we represented this instance as an in- 
teger m. The abstraction of this approach to stack configurations causes 
too great a loss of information, and m is too often approximated by ce. 

We can improve this strategy dramatically by the following observation. 
All that  is required, in the placement of ± on a deallocation list, is that  we 
find a procedure instance that  outlives ± (that is, we need not identify the 
innermost such instance). This suggests several strategies for placing the 
instances of x on deallocation lists. We could, for example, construct the 
set 

X = {fl I (l~r e fib)~ n {u ,  u u  +, u + d  +}  = {}} 
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(set! f (lambda~ (x) 
(if (null? x) 

#f 
(cons ((lambda 7 () (car x))) 

(f  ( cdr  x ) ) ) ) ) )  
(f  ' ( a  b c d))  

Figure 19: An Example of the Inaccuracy of E3 

at compile time. When x is instantiated, we traverse the active procedure 
instances from innermost to outermost,  until we find a member of X, and 
place the instance of x on the deallocation list of that  instance. We know 
with certainty that  there is an instance of AZ at every point at which x is 
instantiated, if c ~ ~b/3, since for every Pb E Concp13b, Pb is d-bitonic by 
Theorem 1, and if Trace(Net pb)/3 # ~ then Pb must take the (non-empty) 
form/3 d . . . /3  d, indicating that  at least one instance of AZ is active. 

As mentioned in subsection 2.6, we are not proposing this seriously as 
a storage management  strategy; in Parcel, a simple distinction is made 
between activation records that  can be stack-allocated, and those that  must 
be heap-allocated. Rather, this hierarchical strategy is a guise for a problem 
that  is difficult to motivate until we have seen the results of automatic 
parallelization, namely, the placement of dynamically allocated objects in 
a hierarchical shared memory. We will address a simplified version of the 
problem of storage management  in a parallel, shared memory setting in 
subsection 2.15. 

2.11 A Shift  in Perspect ive  (and in Accuracy)  

In subsection 2.7 we remarked that  our abstraction Q of the difference 
of two procedure strings entails so great a loss of information as to be 
practically useless. For example, consider Theorem 21. If Pr and fib satisfy 
dd + E firC~ and dd+  E fibS, then (fir Q Pb) O~ = /k, and it appears that  all 
instances of x must be heap-allocated. To appreciate just how devastating 
this is to the accuracy of our analysis, consider Figure 19. (For clarity, the 
example is presented in Scheme; it is rewritten in a language nearer to £ 
as in Figure 20.) 

Suppose we perform the abstract interpretation q~n -- E3~0 of the above 
program, where q0 is initial abstract state in which cons, car,  and cdr  are 
defined. (For the moment,  ignore the question of how cons is defined, or 
think of it as defined entirely in terms of closures with free variables [9].) 
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( s e t !  f (lambda~ (x) <t i  t2 t3 t5 t6 tT> 
(set ! t l  (null? X))I 
(if tl (goto 3) (goto 5))2 
(set ! t2 #f)3 
(goto 10)4 
(set! t3 (lambda~ () <t4> 

(set! t4 (car x)) 
(return t4) ))5 

(set! ts (t3))6 
(set! t6 (cdr x))7 
(set! t7 (f t6))8 
(set! t2 (cons t5 t7))9 
(return t2)10) 

(f  ' ( a  b c d))  

Figure 20: An Example of the Inaccuracy of E3, Rewrit ten in 

During evaluation of this program (under $2) there may be more than one 
instance of As active at a time. By Theorem 19, this means that  d d+  E ~ba, 
where q~na = (Pb,.. '/' Since A.y is applied directly by the instance of As 
within which it is closed, we also have dd+  E ~ra  where q~n0' = (Pr,.. .}. By 
the definition of O, we have that  (i~r Oi~b)a = A, and by Theorem 21, this 
implies that  all instances of x must be heap-allocated (which is obviously 
unnecessary in this simple example). 

Nevertheless, we are on the right track. We're interested in finding a stack 
configuration which approximates Pr - Pb for all possible values of p~ and 
Pb, and we are doing so by finding an approximation Pr to all values ofpr ,  
an approximation Pb to all values o f  pb, and approximating their differences 
directly with O. The trouble is that  ~ and ~b record far more of the history 
of the computat ion than interests us. A stack configuration contains only 
finite information; if the procedure strings Pb that  are represented by Pb 
are much longer, or more complex in structure, than the procedure strings 
Pr --Pb that  we are trying to compute, then most of the information content 
of ~ will be consumed in representing the prefixes Pb (since each string Pr 
represented by i~r takes the form Pb + (Pr -- Pb)). Then our situation will 
be not unlike that  faced when subtracting two floating point numbers of 
nearly equal value: the result will be dominated by the error inherent in 
the representation. 

The solution to this is a shift in perspective. Rather than "stamping" a 
variable instance with a fixed birth date, we will associate with each vari- 



ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 259 

able instance a stack configuration, initialized to the value ,~a.{e}, which 
will be carried along with the variable instance as it makes interprocedu- 
ral movements, and will be updated to reflect those movements. When a 
variable instance ± is referenced directly by a procedure ,Ly, the stack con- 
figuration associated with ~ will have recorded the (net) movements that 
occurred between the binding of ~ and the reference to it by ,Ly. In terms of 
the discussion above, the stack configuration that is accumulated as ± un- 
dergoes interprocedural movements (or, more precisely, as a closure which 
captures 2 undergoes interprocedural movements) is an approximation to 
the strings Pr - -  Pb in terms of which the solutions to our data flow prob- 
lems have been expressed. We will see that this method of computing the 
solutions has far greater accuracy than the naive approach embodied in g3. 

We are not altering the structure of the domains defined in Figure 12, 
and thus there is no need to redefine the partial order and LUB operators 
over the abstract domains. We are, however, changing the meaning of the 
members of the abstract domains, with respect to their concrete counter- 
parts, and this meaning is defined by the abstraction and concretization 
maps that carry us between the abstract and concrete realms. The new 
abstraction maps are presented in Figure 21. Most have changed in type, 
from their definitions under $3. We will return to this shortly. 

If (&,/~) E C is an abstract closure that captures a free variable v, then 

under g4 (the abstract semantics we are deriving by modification of $3),/~[v] 
is a record of the interprocedural movements that are described by v, from 
the point at which it is bound to the current state. (We will continue to refer 

to b as a birth date map, even though its new meaning warrants a slightly 
different name.) Likewise, a member (~, 8,15) E/~ has changed in meaning; 15 
is now a record of the interprocedural movements described by the abstract 
continuation, from the point of its formation to the current state, and 
likewise records the interprocedural movements described by the variables 
visible in the state in which the continuation was formed, from the points 
at which they are bound, to the current state. Where all movements, 
encoded as procedure strings and later as stack configurations, were absolute 
under g2 and $3 (being accumulated from the beginning of evaluation), 
under g4 they have become relative (being accumulated from the points at 
which procedures are activated during evaluation). This has the effect of 
reducing the amount of information that need be approximated by a stack 
configuration (since it records a shorter piece of the history of evaluation), 
and of simplifying the solutions to our data flow problems (since their 
solutions are computed directly by evaluation), but of complicating the 
relationship between the concrete domains of £2 and the abstract domains 
of g4. 



260 WILLIAMS LUDWELL HARRISON III 

Abs A =- )~a. if a = -l-h then {} else {c~} 
Abs g = )~i. i f / =  / N then {} else {i} 
Abs B _~ )~b.,~p.,~v.Absp(p - (bv) ) 
Abs¢ =. )~(a, b).)~p.(Absha, AbsBbp } 
Abs K =_ )~(i, b,p, o).(Absgi, AbsBbp, Abspp} 
Abs D ~/~x. if x = -l-z) then (_1_~, J-K' "J-PrifnOp~ "Lint' -]-Bool} 

else if x E C then (Abscxp,-LK, "l'P~i;,~Op, "l'Int, ±Boot} 
else if x E K then ('±5, Absgxp, ±PrimOp' lint' ±Bool) 
else if X E P r i m O p  then (_l_d, ±R,  AbsprimopX' "±z~t' ±Boot) 
else if x E In t  then ('±~, "± K , "± PrimOp' AbsIntx' ±Boot) 
else if x E Bool then ('±~, -l-K, "±P~i~op, "l'I;~t, AbsBodX) 

Abs E =- Ae.)~p.)w. U D {AbsD(e(v,p'))p l p' E P}  
gbs n =- )~r.)~p.)~a. [JR {Absg(r(P' + ad)) p I P' E P}  
AbsQ =- ik(i, b,p, e, k, o, r).)~a, if a ~ Container i 

then (±p,  ,±B, _l_E, _l_g, _1_~} 
else (Absep, AbsBbP, AbsEeP, 

AbsKkp, AbsRrp) 

Figure 21: Abstraction Maps 
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Consider Abs B. It now has type B ~ P ~ / } .  The additional parameter  
p is the procedure string of the state which contains the value b C B being 
projected. Tha t  is, p is the first component  of a state q, such that  b is 
the second component  of q, or such that  the environment of q contains a 
closure or continuation of which b is a component.  Under g3, we knew what 
members  of B were represented by a/~ E/~ ,  by simple examination of the 
structure of/~. Under g4, however, the subset of B represented by/~ is as 
much a function of the state of which it is a part,  as of its structure.  This 
is because/~ now maps a variable v to an abstract ion of Pa --Pb, where Pb 
is the bir th date of an instance of v, and p~ is the procedure string of the 
current state. In order to recover v's bir th date  (which is necessary if we are 
to concretize b), we must have a value for Pa (or rather,  we must have an 
approximation to the value of Pa). Said otherwise, the stack configuration 
of the current state may be seen as the sum of the (abstraction of the) 
bir th date of v, and the movements described by v from the point of its 
instantiation to the current state (for any v in the lexical scope of the 
current state). Given the stack configuration of the current state, and the 
stack configuration that  represents these movements, we may reconstruct  
the bir th date of v. We therefore define Conc[~ as 

)~b..~15.{b I AbsBb p KK_[~ [~, for some p E Conep15}. 

The concretization map that  corresponds to each abstraction map whose 
type has been changed by addition of a "context" parameter  p, is defined 
in exactly this way, by addition of a parameter  15, that  represents the values 
that  p may assume, during abstraction. For example, COnCE is defined as 

A@.A15.{e I AbsEeP K_E @, for some p C Concp15}. 

The usual relationship between an abstraction map Abs x and the corre- 
sponding concretization map Conc2 may be wri t ten as x E Conc2(Absxx ). 
The corresponding relation for the abstraction maps under E4 is given by 
the following theorem. The result is s tated in terms of Abs B and Conch, 
but applies directly to the other abstraction and concretization maps. 

T h e o r e m 2 2  

b E Conc[~(AbsBbp)15 for a l lp  E Concpp. 

P r o o f :  Let p E Concp15. By the definition of Abs B and COnCB, 

COncB(AbsBbp)15 = {b' I AbsBb'P' KK_~ AbsBb p for some p' E Concp15}, 
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Move~ : [~ --~ [~ ~ B - A[~.Ap.)w.([~v) ® 
Moved: d ~ P ~ d -- A(&,^D).A15.!&, MoveBb~)^ 
MoveR: [42 ~ P ---, K=_ A(i,b,~!.Ag.(i, ioveBbP~,~ ® ~ ,) 
MoveD: D ~ D --. D - A ( ~, k, f ,  ~, & ).A15. ( Moved@ , Movegk15 , ], 2, ~ ) 
Move  : k P E - ae.Ap.av.Move ( v)p 
MoveR: R P R =_ 
Move¢ : 2 --* P ---* T -- A(~,b,~,k,e).AlY.(~@p', 

MOVeBbi~, 
Movep, ~ff , 
Movegkp', 
MOVeR~P') 

Figure 22: Auxiliary Functions for E4 

and this certainly contains b itself, since p E Concp~ by choice, and 
AbsBb p Z__u AbsBb p trivially. [] 

The definitions of 84, $ i  and g4 are presented in Figures 23, 24, and 26. 
In order to localize the changes to E3, we make use of the auxiliary func- 
tions Move[~, Moved, MoveR, MoveD, Movek, MoveR, and Move 2. These 
are defined in Figure 22. Move d maps an abstract closure d and a stack 
configuration 15 to the abstract closure that results when d makes the inter- 
procedural movements described by t3. The first component of 5 (the set 
of indices of the lambda expressions whose closures are represented in d) is 
not affected by these movements; the second component (call it b), which 
under $4 maps the free variables in the abstract closure to the movements 
they have described, following their instantiation, is updated to reflect the 
movements described by 15. Move R is defined similarly. Move$ computes a 
new abstract environment, in which every object that records interproce- 
dural movements (closure and continuation) is updated, according to the 
movements implied by its second argument. 

T h e o r e m  23 /fq E Concd2O then S2q E ConcQ(84i(~( Containeri) ) ) where 
q = (i ,p,b,e,k,o,r) .  

Proof :  Let 

where AbsQqp E_d2 ~. 

~( Containeri) = (~, b, ~, k, ÷), 

By this assumption, Abspp y_p p, AbsBb p E_[~ b, 



ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 263 

Let t = 05, b, ~, k, ~), i e N. Then 84 : N -+ [b --+ (~ is defined, according to 
the form of Si, as follows. 

Si = [(set! x (f Yl""Ym ))] or Si= [(set! x (call/cc f))] ==> 
S4i{ = qc U<} q~k 

where qc -- U<} { A/~. if/5 ~& 
then ±3 
else (/3 ®/) ,  

( M o v @ ' ~ ) f ) ~ .  { d / I"  d] " " " [a~.{d/[znl], 
Moveke'p', 
Vovee < { ~}, ~,, ),~. { d >f,', 
MoveR(elk~~ Container i])p> 

where Aa = [( lambda ( z l " " z r a )  <Zm+l""  zn> 
s , . . . ) ] ,  P = Absp(~), 

and e ' = i f & =  [ ( s e t !  x (f  y , . . . y m ) ) ]  
then a[e[yd//lzd]-.- [e[ym]//[zm]] 
else el<± e, ({i}, g,, ~ -{d>,  

± erimOp' ± Int' -[- Bool> / / IZl~] 

where ~[f] = <c', k ' , . . . )  
and d = (&,/)') 

Figure 23: The Semantic Function $4 (Part I) 
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and q~k = UQ{A/3. if/3 # Containerj 
then _1_~ 
else Move~ (~, 

51 , 
2, 

~[k/ / Container i])(Inv p') 
w h e r e d = i f S i = [ ( s e t !  x (f Yl""Y,~) ) I  

then @[yl]//[z!] 
else ~[(±e, ({i}, b, ~ . { d ) ,  

±P~#~o~, ±~, ±B;o~)//M] 
where Sj = [ ( s e t !  z ( c a l l / c c  g) ) ]  

where ~[f] = (c', k ' , . . . )  
and /~' = (),/~t, ~,) 

Figure 24: The Semantic Function $4 (Part II) 
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Si = [ ( se t !  f (lambda (x~...Xm) <Xm+l '"xn> " " ) ) ]  
S4it  = )~/3. if Container i ~ /3 

then ±2  
else (ib, 

8, 
^ 

Si----[(i f  x (goto m) (goto n))~ ::~ 
84it  = )~/3. if Container i ~/3 

then^_l_~ 
else t 

Si = [ ( r e tu rn  x)] ==F 

84it  = UQ{A/3. if Containerj ~/3 
then 2~ 
else Move~(~ 

b', 

~( Container j), 

where Sj = ~(set! y ...)~ 

where k = ( ) ,b ' ,g)  

Figure 25: The Semantic Function 84 (Part III) 

8~:  (0 -~ (0 --- A~.UQ {$4i(~(Containeri))[i  C N}  

$4: Q -~ Q -= AS. Let qP = 8 ~  
in if qP ___Q ~ then ~ else $4(~ UQ qP) 

Figure 26: The Semantic Functions 8~ and $4 
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AbsEe p E_E ~, AbsKk p E_K it, and AbsRr p E_R ~. We proceed, as in the 
definitions of $2 and 84, based upon the structure of Si. Suppose that 

S i=  [ ( se t !  x (f y ~ ' " Y n ) ) ] o r  [ ( se t !  x ( c a l l / c c  f))~, 

and that 
e /H ,b l f~ )  = (~,b') e C. 

Since AbsEe p ~ k  e, we may write (following the form of $4) 

where d = (&,/~'}, ~ E Conch&, and AbsBb' p KK_B b'. We consider the 
components of S2q (see the definition of $2 in Figures 7 and 8). We have 
that 

(i", p", b", e", k", o", r"} E COnCQ~ 

when 
^ ^ ^ ^ ^ ^ 

q( Container i) = 02', b", e", k I', o", rI') 

where Abspp" Ep p", AbspbIIpI' E_[~ ~', AbsEeI'p " E ~', AbsKk"p I  ̀ E_ R t~ I', 
and AbsRr" p" E_R ~9,. Letting 

and 

ql = $2q = (i II, P", bl', efl, krl, o", r'} 

~l = SaCti((t(Container i) )( Container i") = {p~", b )l, e )l, k ~', ~,l}, 

we must show that the concretization of each component of ~l contains the 
corresponding component of qq 

By the definitions of $2 and $4, p" = p + a d, and p" = i5 @ Absp(~d), 
and by Theorem 11, we have that p" E Concpt)". 

By the definition of $2, 

b" = b'[p + L. + 

and by the definition of 84, 

i/' = ( MoveBg~)[Aa. { e} / l zd l  ... [,~.{e}/[zn~]. 

where/~' = Absp(c~d). Then by the definition of Abs B, 
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(AbsBb"(p + ad)) [z i ]=  Absp((p + a d) - b"[[zil[) 
= Absp((p  + a d) - (p + ad)) 
= A b s p ( e )  

~.{~} 

and Aa.{e} __.p b)'[zi], for 1 < i < n. 

Now let w E V, w ¢ zi, 1 < i < n. By the fact that AbsBblP E_p D ~, we 
have that  (AbsBb'p)[wl = Absp(p - b'[w]) __p /)[w]. By the definition of 
Abs B, 

(AbsBb"(p + ad))[w]= Absp((p + a d) - b"[w]]) 
= Absp((p + a d) - b'[w]). 

By the definition of $4, 

b)'[w]= ( Move[3[~' ( AbsP(ad) ) )[[w] 
= (b'[w]) ® (Absp(ad)) .  

By the definition of + and - ,  

(p + ~d) _ b ' M  = (p - b ' M )  + ~ 

and therefore 

( Abssb" (p + a d) )[w] = 
Absp( (p + a d) - b'[w])___p^/~'[w] ® Absp(a  d) 

= b"[w[ 

for all w E V, w # zi, 1 < i < n, and therefore 

b" e Co~c~O'P'. 

Assume for the moment  that Si = [ ( s e t !  x ( f  y l " ' "  Ym))], and let 

~' = ~[[y,~//lzl]]]... [[ym]//[Zm]]. 

Then, by the definition of 82, 

e" = e[e([yl ], b[yl~) / <[z~], p + ad>] -. .  
[e([ym], b[ym]} / < [Zm], p + ad)], 
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and 
d' = Move j ' (Abs , (# ) ) .  

(We must  show tha t  AbsEe"(p + a d) E/~ e)/.) We have tha t  e E COnCE~, 
and by the definition of the  nota t ion  f[x//y], we have tha t  e" E COncEeP~ 
or (AbsEe"P) E_$ # ,  since p E Concpl) by assumption.  

e'[w] = MoveD(#[w])(Absp(ad)) 

by the definition of MOVeE. 

Absp(e"(iw],s})P ED e'~w~ 

for all s, by the fact tha t  (AbsEe"p) EE e~. We consider the case in which 
e"(~w], s) is a closure, and in which it is a continuation.  

I. e"(~w], s} = (a, b) E C for some s E P, w E V. We have tha t  

AbsD(a,b}pEb $~w]. Let ~w~ = (~, . . . )  E / )  where ~ =  <&,/~>. Then  

Absc<a , b)p = <{a}, %v.Absp(p - by)) Ed <&, b>. 

This means tha t  

Absp(p - by) Ep by, for all v E V 

Absp(p - by) ~ Absp(a d) Ep [Jv ® Absp(a d) for all v E V 

Absp((p - bv) + a d) Ep [~v ~ Absp(a d) for all v E V 

Absp((p + a d) - by) Ep [~v ® Absp(a d) for all v E V 

)w.Absp( (p + a d) - by) E[~ )w.(bv ® Absp(ad) ) 

AbsBb(P + a d) E_[~ Move$b(Absp(ad)) 

and therefore 
b ~ ConcB~". 

This implies tha t  

Absc(a , b)(p + a d) E~ Move~(&, b)(Absp(ad)) 

and therefore tha t  

AbsD(a , b)(p + o~ d) E__D Moveb(#[w])(Absp(ad)). 



ANALYSIS AND PARALLI~LIZATION OF SCHEME PROGRAMS 26g 

I I .  e'@¢~,8} = (j,b,p,o} e K. We have that  AbsD(j,b',p',o')p U b e'[~¢~. 
Let ~ M  = (~,~, - . . )  wh~re ~ = O,O,P) .  The .  

AbsK(J, b',p', o')p = ( {j),  Av:Abs,(p - b'v), Absp(p - p+)} 
G R (j, b',p'}. 

This means that  

Absp(p - b%) ~-k blv, for all v ~ V 

Absp(p - b'v) ® Absp(a d) Ep [~'v ® Absp(a d) for all v E V 

Absp((p - b'v) + a d) ~p ~v • Absp(a d) for all v E V 

Absp((p + a ~) - b~v) Gp g~v ® Absp(a d) for all v E V 

Av.Absp((p + a d) - btv) U B Av.(b'v ® Absp(ad)) 

Abst~b'(p + a d) U~ Move~g'(Absp(a~)) 

and therefore 

Likewise, this means that  

Ab~e(v - p') ¢ Ab~p(~ ~) gp ~;' ® Abse(#)  

Absp((p - p') + ~d) g~ p + ab,>(c?) 

Absp((p + a d) - p') ~p p' ® Absp(ad). 

This implies tha t  

Absg(j, b',p', g ) ( p  + a d) GR M°veR(J, [/,D'}(Absp(ad)) 

and therefore that  

AbsD(J, b',p', #}(p + a d) G b MoveD(i'[w])( Abse(ad)). 
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Since we have that  

for any choice of w and s, we have that  

AbSEe"(P + ad) [-i~ M°VeEe'(Absp(ad))  = ~' 

and 
e" ~ Co~c~9'~" 

as desired. 

Next we consider the case that  Si = [ ( s e t !  x ( c a l l / c c  f ) ) ] ;  but this 
is covered by case 2 above, by letting [w] = [z]. 

By the definition of $2, k ~ = (i, b,p, o), and by the definition of $4, 

~,, = Move~:( { i }, ~, ,~o,.{ d ) ( A I, sp(,~d) ). 

It is obvious that  i E Conc£{i},  and we showed above that  

b ~ Co,~eB(Mow~(absp(o,~)))~ ". 

Certainly p - p E Concp(Aa.{~}) and therefore 

since (Aa.{c}) ® (Absp(ad))  maps/~ to {~} for all/~ ~ a, and maps a to 
{d}, by the definition of ®. Therefore 

k" e ConcK~"p". 

Finally, by the definition of $2, r ~ = r[k/o], and 

~ ' =  Move[~rr(Absp(ad)), 

where r' = ÷[k/ / (Conta iner  i)]. We are given that  r E ConcR÷~, and since 

k E ConcR]@ by assumption, 

r" E ConcR(÷[]~//( Container /)])lb. 

Let 
k' = (i', b', p', o'} = r'% 
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for some s . . . .  /3 d C P,  and let 

= ( i , ,  = ; , Z .  

By the fact that r" E ConcRr~[~, we have that i' E ConcA~, and by argu- 
ments we have made above, 

b I e COnCB(MOve[~b'(Absp(ad)))P ' 

and 

Therefore 

(p + a d) - p' e Concp(p' @ (Absp(c~d))). 

k" e ConcR(MoveRk'(Absp(ad)))p I' 

for all choices of s, and 

r" e Conci~( Move~r' ( Absp( a d) ) ) = COncRrf@ '. 

We therefore have, in the case that e([f],  bil l)  E C, the result that 

$2q E ConcQ(S4i(~( Container i) ) ). 

Similar arguments prove the theorem in the case where e([f], bill)  e K,  
and for other forms of Si. [] 

Theorem 23 is the analogue of Theorem 18, and shows that a single step 
of abstract interpretation under S4, preserves the corresponding concrete 
evaluation step under 82. To complete the proof of correctness of $4 , we 
observe simply that Theorem 19 applies directly to g4, since Sa and g4 are 
identical (modulo their respective invocations of S~ and $~). Likewise, the 
result of Theorem 14 applies to S4, because our alterations to 83 have obvi- 
ously not affected its monotonicity. We may therefore rewrite Theorems 15 
and 16 in terms of S~ and C4, and thereby show that evaluation under g4 
always terminates. (We will henceforth invoke Theorems 19, 14, 15 and 
16 with the understanding that they apply directly to ~4 and its auxiliary 
functions.) 

We're getting closer; £4 is not complete (we will improve its accuracy by 
one further modification, shortly), but it captures the essentials of program 
analysis based upon stack configurations. Let us now revisit each of our 
data flow problems, and see how their solutions are computed by g4. 
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2.11.1 Side-Effects under $4 

Theorem 6 characterizes side-effects in terms of the procedure strings 
constructed during evaluation under $2. It holds that  if ± is an instance 
of the variable x the birth date of which is Pb, and if p~ is the procedure 
string of a state in which ± is referenced, then an instance A'a of ha has a 
side-effect as a result of the reference, if and only if Net(pr - Pb) contains 
a term O~ d corresponding to A'a. 

In Theorem 20, we cast this result into the realm of stack configurations 
constructed by evaluation under $3. We must now do the same for the 
stack configurations constructed by g4. The following theorem is the key. 

T h e o r e m  24 Let qo, q l , . . ,  be the state sequence described by g2qo, let ~ = 
$4 (~o where qo • ConcQ~o, let ± be an instance of the variable x during E2qo 
whose birth date is Pb, and let ic be referenced directly within )~.~ in a state 
qr = (i,pr, b ,e ,k , r ,o ) .  Then 

Nct(pr - Pb) • Concp(b~x]) 

where ~[n~/ = (fir, b , . . . )  • T.  

P r o o f :  By Theorem 19, 

and therefore by Theorem 22, 

By the definition of AbsB, 

and therefore 

and 

pr E Concpfr 

AbsBbP, E[~ b. 

( AbsBbpr ) = )~v.Absp(pr - by) 

Absp(pr - b[x]) e Concp(b[x]) 

Absp(pr - Pb) e Concp([~[x]) 

by choice of Pb = b~xl. [] 
By this result, we may write the following simple theorem that  charac- 

terizes side-effects under E4. 
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T h e o r e m  25 Let  q~n = $4~/0 where qo E Conc(2~o. I f  during the evaluation 

of  $2qo there is an instance ~(a of  )~a that has a side-effect upon an instance 
of  x ,  then there exists a "y E A such that  

(b[x])a M {d, d d + , u + d  +} ~ {} 

where g~ f  = (P~r, b , . . . )  E T ,  and x is referenced directly wi th in/k~.  

P r o o f i  Let ~'s be an instance of As tha t  has a side-effect upon  an 
instance :;: of x, let this side-effect arise from a reference to i: (directly) 
within )~, and let Pb be the  bi r th  date  of ±. By Theorem 6, there must  
be a state qr whose procedure string is pr, in which ± is referenced directly 
by A~ (which reference gives rise to the side-effect a t t r ibu ted  to As), such 
tha t  Net(pr  --Pb) contains a t e rm O~ d corresponding to ~'a. By Theorem 20, 
qr E Conch(in, where q~n is as defined by the current  theorem. Let q~n'Y = 

(16r,/~...). Then,  by Theorem 24, 

Net(pr  - Pb) E Conep(D[x]). 

By the  form of Net (pr  - Pb), 

Trace( Ne t (pr  - pb ) )a  = a al " " " a a~, 

where a / =  d for some 1 < i < k. By the definition of Concp,  this implies 
that 

(/~x])a M {d, d d + , u + d  +} ~ {}. 

[:] 

Wha t  could be easier? At compile-t ime, we compute  q~n = $440, where 
q0 represents every initial s tate from which the program might  execute. 
Afterwards, we notice tha t  A7 makes a reference to a mutable  variable x, 
and  we wonder what  procedures  in the program might have a side-effect 
(by Definition 1) as a result of the reference. The  answer is contained in 
b~x~, where q~n~ = (Pr,/~-..) E T. If (/~x~)a contains none of d,  d d  +, or 
u + d  +, t hen  no instance of Aa has a side-effect as a result of this reference. 
If  (b[x])a contains one of d, d d  +, or u + d  + , there may be an instance of ),s 
t ha t  has a side-effect as a result of this reference. This  uncer ta inty  is the 
cost of abstract ion.  We have chosen to err in favor of over-est imation of 
side-effects, for the reason tha t  parallelizing t ransformat ions  are inhibi ted 
by side-effects, and it is always safe (correct) to inhibit  a t ransformation.  
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2.11.2 Stack-Allocation under ~4 

We may likewise translate our reasoning about the stack-allocation of 
variables into the terms of E4. The exact conditions under which a variable 
instance must be heap-allocated are given in Theorem 8. It holds that  if 

is an instance of x bound by an instance ~ of )~, where Pb is the birth 
date of ±, Pr is the procedure string of a state in which reference is made to 
~, and Net(pr --Pb) = . . .  J 3u. .  ., then ~'Z is deactivated before this reference 
takes place (and therefore i: must be allocated in the heap, assuming that  
heap and stack are the only alternatives). 

Theorem 21 is the abstraction of this result to the stack configurations 
constructed by evaluation under E3, and we repeat the exercise now, for 
the case of E4. 

T h e o r e m  26 Let qn = E4~0, where qo E Conco~o. I f  during the evaluation 
of C2qo there is an instance ± of the variable x such that ± is referenced 
following the deactivation of the instance of the procedure )~ that binds it, 
then there exists a 7 C A such that 

($Hx])Z n (u, uu+, u+d +} ¢ (]', 

where q~n7 = (fir,/~,.-.} E T, and Ix] is referenced (directly) within ),~. 

P r o o f :  Let ~'Z be the instance of AZ that  binds an instance ± of x, such 

that  ~ is referenced in a state qr, ibllowing the deactivation of ~Z. Let Pr be 
the procedure string of qr, and let Pb be the birth date of i:. By Theorem.8, 
Net(pr -Pb)  . . . .  f lu . .  ", where/~u corresponds to the deactivation of AZ. 
Let A~ be the procedure within which ± is referenced directly in qr, and let 

q~n7 = (fir,/~,..-). Then, by Theorem 24, 

- pb e Concp( [x ). 

By the form of Net(pr -Pb) ,  

Traee( Net(p~ - pb) )/~ = ~al . . . /~ak 

where ai = u for some 1 < i < k. By the definition of Concp, this implies 
that  

(b[x])/3 M {u, u u  +, u + d  + } # {}. 

O 
This suggests a simple compile-time procedure for partitioning variables 

into those that  may be instantiated on the stack, and those that  must be 
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instantiated in the heap. We perform the abstract interpretation q~n = 
&{/0, where q0 is representative of the starting states of the program being 
compiled. We then notice that A~ makes a reference to x, and we wish to 
know whether x need be heap-allocated as a result of (an instance of) this 
reference. Again, the answer is contained in/~[x], where q~n'~' = (Pr,/~-..} E 
T. If (b[x])/3 contains none of u, u u  +, or u + d  +, then for every instance 
of x, each reference to ± occurs while the instance of A~ that binds it is still 
active; this implies that all instances of x may be allocated on the stack. 
Otherwise, if (b[x])/3 contains one of u, u u  +, u + d  +, we can say only that 
there might be an instance ± that is referenced following deactivation of 
the instance of AZ that binds it. 

2.11.3 Generalized Hierarchical Storage Management 

Finally, we may repeat the abstraction of our reasoning about hierarchical 
storage management in the case of £4, exactly as we did for side-effects 
and stack allocation above. Again, the role under &of/~r O fib, where lob 
and fir mark points at which a variable x is instantiated and referenced, 
respectively, is played under 84 by/~[x], where A.y is a tambda expression 
within which x is referenced directly, and b is the second component of 
(£4{/0)% 

2.12 A d d i n g  F low-Sens i t i v i t y  to  t h e  Ana lys i s  

Let us consider the example of Figure 20 again, in light of &. Recall that 
the difficulty, under £3, is that the difference between the stack configura- 
tion that represents a reference to x within A?, and the stack configuration 
that  represents the point of x's instantiation, is so crudely approximated 
by O as to yield values near to ±p  even when the arguments to O are 
relatively accurate. We addressed this problem by eliminating the use of 
O in £4 altogether, instead computing the difference of these two stack 
configurations directly within the semantic functions. 

We have another problem, however. Let q~n = £4 ~/0 be the result of 
abstract interpretation of the program of Figure 20 under £4. Consider 
tile value d = ~[t3], where ~na = ~,/~,~,/~,~}. Let d =  {{&,/~},...}. The 
non-bottom values in Concpd are closures of ,~?, and therefore c~ = {7}. 

Let i0 t =/~P[x]. Recall that pt is a record of the interprocedural movements 
described by an instance of x, from the point of its instantiation to the 
current state. Since no interprocedural movements take place between the 
closure of ,~? and the assignment of the closure to t3 in statement $5,/~' is 
"primed" such that e E/~a.  At Ss, a recursive instance of )~ is applied, and 
the value d makes a downward movement with respect to ,~,  before being 
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(define fact (lambda (n k) 
( i f  (= n o) 

(k l)  
( f a c t  (1- n) (lambda (m) (k (* n m ) ) ) ) ) ) )  

Figure 27: Example of Overlapping Variable Lifetimes 

joined with its previous value. (Recall that  there is only one environment 
for all instances of ,~a, and at every evaluation of $5, the value of t3 in 
this environment is "raised" in the la t t ice / ) . )  Therefore d E p~a. At $10, 
a return from ,~a takes place, causing the value of d to make an upward 
movement before it is once more joined with its previous value. At this 

^ 

point, p~a contains e, d, and u. Repeating this cycle of call and return, 
we have that  i~c~ = { d d  +, d, e, u, u u  +, u + d  + } = A. Again, it appears that  
the instances of x must be heap-allocated. 

What  has gone wrong? The trouble is that  E4 is flow-insensitive. It is 
obvious from looking at the program text of Figure 20 that  the closure of 
,~ that  is applied at $6 is the very one that  is assigned into t3 at $5. This 
is missed by E4, which knows of only one instance of t3 (representing all 
the instances of t3  to that  point). At each recursive application of ,~a at 
Ss, the current (abstract) value of t3 undergoes a downward movement. 
When the next instance of $5 is evaluated, the new value of t3 does not 
overwrite the old value of t3, because $4 maintains only one environment 
per lambda expression (and thus multiple assignments to a variable must 
have the effect of raising its value in the la t t ice / ) ,  and not of overwriting 
the variable's value in the environment), but more importantly because 
there are distinct instances of t3, and while in this example each dies 
almost immediately after being assigned, in other examples it might survive 
across recursive invocations of the procedure that  binds them. Consider the 
definition of f a c t  in Figure 10 (the definition is reproduced in Figure 27 
for convenience). During the evaluation of ( f a c t  10 (lambda (x) x))  
(under E2), there are 11 instances of n and k live simultaneously (consider 
that  the first multiplication of m by n does not occur until the final call to 
f a c t  has been made). There is only one "location" in each environment 
(under E4) for the instances of n; the abstraction of the values of these 
instances are therefore joined to produce a single, representative member 
o f / ) ,  and the introduction of a new instance simply raises the lattice value; 
it cannot overwrite the value of n in the environment. 

What  is needed to give C4 a bit of flow-sensitivity? We must inform 
the abstraction of environments with the notion of multiple instances of 
variables, but we must add as little information content to the abstraction 
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= 2  A 

)V _- 2 N 

k= x#×P 
# = d x K x P r i m O p  x I n t  x Bool 
# 

=A k 
=Px/ x#xRx2 

( ~ = N ~ T  

Figure 28: Abstract Domains for E5 

as possible, since we will pay for any increase in complexity at compile- 
time. Our approach (one of many possibilities) is to parti t ion the instances 
of a variable x into 6 classes (one for each member of A), according to the 
movements they describe, from their points of instantiation, relative to the 
procedure that  binds x. If Aa is the binder of x, and p is the procedure string 
that  records the interprocedural movements described by ± (an instance 
of x) from its instantiation to the current state, then we will abstract ± 
to the pair (~x~,Dir pa) .  Just  as we used a pair ([x],p), where p e P ,  
to index the environment under 32, so we will use a pair ([x~,5}, where 
6 E A to index the environment under our modified (and last) version of 
the abstract semantics, g5- In order to achieve a measure of flow-sensitivity, 
we associate an environment with each statement,  rather than with each 
lambda expression, as in g3 and g4- The domain equations for g5 are 
presented in Figure 28. The only changes from those of Figure 12 are to 
the definitions o f / )  and (~. Under $5 we will have one environment per 
statement,  and the environment will map pairs in V x A onto abstract 
values i n / ) .  

We said, in complaining about the inaccuracy of g4 in the case of Fig- 
ure 20, that  we wished to overwrite the value of t3 rather than to join it 
with a gradually less accurate value, when forming the closures of A 7. We 
have, as yet, no justification for doing so under g5, for the act of partition- 
ing the instances of t3 into classes is, of itself, no help in this regard: if 
an equivalence class under the partit ion represents more than  one instance 
of t3, then we will still be forced to join values together, to simulate the 
action of assignment in our abstract semantics. The following theorems 
come to our rescue. 
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T h e o r e m  27  Let ± and ~ be two instances of  x, a variable bound by An, 
and let pl  and P2 be the birth dates of ~ and i~ respectively. Let Pa be the 
procedure string of a state following the instantiation of  both i~ and ~. Then 

Dir(p3 - pl  )a = Dir(p3 - p2 )a  = 

implies that Pl = P2 (and therefore that i = ~). 

P r o o f :  Le t  Dir(p3 - p l ) a  = ~ and  Dir(p3 - p 2 ) a  = e, and  suppose  t ha t  
p l ¢  p2. By  the  def in i t ion of  Dir, 

N e t (  T ace(p3 - pl) ) = N e t ( T r a c e ( p 3  - = 

Assume wi thou t  loss of  genera l i ty  t h a t  Pl is a prefix of  P2. T h e n  

Net(  Trace(p3 - p i ) a )  ---= Net(  Trace((p2 - Pl) + (P3 - p2 ) ) a )  = e 

and  therefore  
Net(Trace(p2 - p l )a)  = ~. 

But  P2 . . . .  a d, since it is the  b i r t h  da te  of  an  ins tance  of An. Th is  means  
t h a t  P2 - Pl  . . . .  a d, and  Net(  Trace(p2 - p l ) )a  ~ e, a con t rad ic t ion .  [] 

T h e o r e m  28 Let ± and ~ be two instances of x, a variable bound by An, 
and let pl and P2 be the birth date of  ± and fc respectively. Let P3 be the 
procedure string of a state following the instantiation of both i: and ~. Then 

Dir(p3 - p l )a  = Dir(p3 - p2 )a  = d 

implies that Pl = P2 (and therefore that x = f~). 

Proof . "  Le t  Dir(pa - p l ) a  = d and  Dir(p3 - p 2 ) a  = d,  and  suppose  
t h a t  p l  ~ p2. B y  the  def in i t ion of  Dir, 

Net(  Trace(p3 - p l )a )  = Net( Trace(p3 - p2)a )  = o~ d. 

Assume wi thou t  loss of genera l i ty  t ha t  Pl is a prefix of p2. T h e n  

Net(  Trace(p3 - p l ) o 0  ----  Net(  Trace((p2 - P l )  + (P3 - p 2 ) ) a )  = a d 

and  since the  a d with in  p3 - p2 is no t  ann ih i l a t ed  by  Net, 

Net(  Trace(p2 - p l ) a )  = e. 

Bu t  P2 . . . .  a d, since it is the  b i r t h  da t e  of  an  ins tance  of  An. Th is  means  
t h a t  P2 - Pl  . . . .  a d  and  Net(Trace(p2 - p l ) ) a  ~ e, a con t rad ic t ion .  [] 

These  t heo rems  can  be u n d e r s t o o d  best  wi th  the  help of the  following 
def ini t ion (for i l lus t ra t ive  purposes  only).  
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RdEnv: F, ~ V ---+ 2 A --* D 
=_ u b 15 e 

WrEnv: E ---* V ---* 2 A --* D --+/~ 

- A~.)~v.)~s.)~d.if s = {~} or s = {d} 
then  ~[d/{v, 5}] where s = {5} 
else ~[d/ /{v ,51}] . . . [d / /{V,  bk)] where s = {51 , . . . , 5k}  

Figure 29: RdEnv and WrEnv 

Absx: (V x P )  -~ P -~ (V x A) _= A{v,pb}.Apr.(V, Dir(pr --pb)a) 
where v is bound  by As. 

Abs x maps a variable instance (represented by a pair in V x P of the variable 
and its b i r th  date) and a procedure  str ing representing the context  of the 
abstract ion,  to an abstract  variable instance (a pair in V x A of the variable 
and a member  of A, tha t  summarizes  the movements  described by the 
variable instance, with  respect to the procedure by which it is bound) .  This 
abs t ract ion map  is therefore "relative" in the same way tha t  the abst ract ion 
maps for $4 were. Theorems 27 and 28 then  say tha t  for any state (let its 
procedure  str ing be pT), there is at most  one instance of x (let its b i r th  
date be Pb) such tha t  Absx([X],pb}Pr = (Ix], ~), and likewise at most  one 
instance such tha t  Absx([x~,pb)pT = (Ix], d).  

The  definitions of RdEnv and WrEnv,  used to model  the actions of read- 
ing and writ ing the environment  under  £5, are presented in Figure 2.12. 
Imagine an abstract  s tate ~ such tha t  ~i = (15,/~, ~, . . .},  and let x be assigned 
the abstract  value d at s t a tement  Si, where x is bound  by ha. The  envi- 
ronment  in effect after this assignment  is given by WrEnv ~[x]((/~x])a)d. 
While, under  £2, an instance of x is identified by its b i r th  date,  here it 
is identified by the set (/~[xl)a tha t  summarizes  its movements  from the 
point  of its ins tant ia t ion to the current  state,  wi th  respect to the procedure 
As tha t  binds it. If (/~[x])a = {d} or (/~lx~)a = {~}, then  this abstract  
instance of x represents only one concrete instance of x, for every state 
in the concret izat ion of ~, and we effect the assignment  within WrEnv by 
"overwriting" the value of ~ at ([xl, d) or (Ix], ~). Otherwise, we raise the 
lattice value of ~ at {[x~, 5) for all 5 e (/~x])a by the value d. 

The  abst ract ion maps for £5 are defined in Figure 30. The  corresponding 
concret izat ion maps are defined as described in subsection 2.11. Only the 
definitions of Abs E and AbsQ have changed from Figure 21. The  revised def- 
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Abs A =- ha.  if a = ±h then {} else {a} 
Abs N - hi. i f / =  ±N then {} else {i} 
Abs B = hb.hp.hv .Absp(p  - (by)) 
Abs c -~ h(a ,  b) .hp.(Absha,  AbsBbP ) 
Abs K - h(i, b,p, o ) . (Absy i  , AbsBbp, Abspp) 
Abs 9 =_ hx.  if x = ±D then (-1-5, -J-K, ±PrimOp' -]-Int~ ±Bool} 

else if x E C then (Absexp, -J-K, ±PrimOp' ±Int' ±Bool) 
else if x E K then (_1_5, Absgxp ,  ±PrimOp' ±Int' -J-Bool) 
else if x E P r i m O p  then (±0,  -l-R, AbsprimOp x'  -l-Znt' ±Boot) 
else if x E I n t  then (_1_5, -J-K, ±PrimOp' Abszntx, "±Bool) 
else if x E Bool  then ('±O, -J-K, ±PrimOp' ±Int' AbSBoolX) 

Abs E =_ he.hp.h(v ,  5).U[9{ AbsD(e(v ,p ' )  )V [ Oir(p  - p ' )a  = 5} 
where v is bound by ha 

Abs R - hr .hp.ha.  O R {AbsK(r(p '  + ad))p I P' E P }  
AbsQ - h ( i , b , p , e , k , o , r ) . h j ,  if i # j 

then ( ,± p , "j" [3 , "± E , ± R , "± R ) 
else (Abspp, AbsBbP, AbsEeP, 

AbsKkp,  AbsRrP} 

Figure 30: Abstraction Maps 

initions of partial orderings and LUB operators over the abstract domains 
are defined in Figure 31 and 32. Again, only the definitions of ___~, __EQ, UE, 
and O 8 have changed, and those only slightly. 

The definitions of the Move functions under E5 are presented in Fig- 
ure 33. Only Move$ has changed, but its definition is markedly different 
from that under E4, for the reason that under Eh, both the range and the 
domain of the function are, in effect, moved. If ~([x~, ~) is a value in the 
environment prior to these movements, and ~ E 15a where x is bound by 
ha, then the environment that results from moving ~ by 15 will map the 
pair (lxl, 5) to a value greater than or equal to ~{~xl, (), where 5 E Cat(~.  
Intuitively, when the environment undergoes a movement described by ib, 
then the variable instances represented in the domain of the environment 
(as pairs in V x A) make movements defined by the Cat operator, and 
the values represented in the range of the environment (as members of / ) )  
make movements defined by Move D. Suppose that (Ix], ( / i s  in the domain 
of the environment, and that x is bound by ha. (~x],() therefore repre- 
sents an equivalence class of instances of x (all those instances whose net 



ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 281 

E~= £.A}.;: c_ ) 
__.~- ~,~..~/~.& c_ 
_ ~ -  ~6,.~&.(61v) c_ (6~v) vv e v 
__E~,~_ ,~(O~1, bl).~{o~2, &).(o~ 1 ___/~ 0~2) A (b 1 ~__/~ &) 
_____./~ .'~(/~1, b~1,jo1).)~((2, &,P2} • ((1 [Z19 ~) 

A (G1 E~ b~) 

ED-- A(dl, l~l,/1,A,Xl>.A(d2, l~2, f2,~2, x2}. (c~l E 0 c~2) 
A (&_E~ t;~) 

A (Z1 EI~ t 2~2) 
A (~1 EBoo~ ~2) 

EE ~-~ )~e~l.)~#2.(4(V, (~)) mE/) (#2(V,(~)) VV C V,V(~ E A 
___~= :~ri.Ar~2.(ria) E~ (r~2a) va ~ A 
[-,f,~- )~(bi,i'i91,e1, kl,rl>.)~(b~2,i'o2, e2,/~2, r2}. (b~l ~__/~ b2) 

^ 

A (~1 ___B b2) 
A (ei ___~ e~) 
~ (~lEg ~) 
A (¢~ ___R r~) 

EQ--- A~a.A~2.Aa.(~li) E¢ (~2i) Vi E N 

Figure 31: Partial Orderings 
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u~ = ~.~.~ u 

UB ---- ~#l./~b[2.,~v.(#lV) U# (b~2 v) 
U~, -- )~(O~1, bl).~(0~2, b2).(0~1U A O~2, b~l Uj~ b~2) 
U/~ -- .~<(1, b~1,#1>.,~((2, b~2,/%2).( (1U#/(2, 

#1 11~ #2, 
#1 11/5 P2> 

LuBL, 
& u# ;~2, 

uR - ),rt.)~r~2.~.(Fla) [JK (~2a) 
u~ = ~(.~1, 6~, el, kl, ~1).~(~2, G2, e2, ~2, ~2).( #1 uc~2, 

GIU. 6:, 

kl UB /g2, 
~1 u~ r~> 

UQ - A~I.Aq~2.Ai.((~li) U~ (~2i) 

Figure 32: LUB Operators Over the Abstract Domains 
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Move[~ : [3 --, P ~ [3 ----" A/zA15.Av.(bv) ® 15 
Move~ : C --* P --* C =- A(&,b).A15.(&,Move~[~) 
MoveR: R --~ P --* K -  ~(~,~,15!.~.(~,Movej~p',15ep') 
MoveD: D --, P -+ ~ ) -  A(~,k,f,~,~).A15.(Move~15, MoveR]~,] ,~,~ ) 
i o v e ~  : E - .  P - .  k -- ~.~15.~(x, ~). U D {MoveD(~(~, 0)15 

I ~ E Cat~l for some ~ E A, 71 E/)a} 
MOVER: R ~ P ~ 1~ - A~.A15.Aa.iove~((÷~)15 
M o v e :  ~ -~ P -~ ~ =_ ~(P,&e, ~,~).~'.(~ e~', 

^ ^ 

Move[~bp', 
M o w ~ #  , 
MoveRkp', 
Move~p')  

Figure 33: Movement Functions for g5 

movements with respect to Aa are described by ~). After the movement, 
(~x], ~) becomes part of each equivalence class ([[x], 6) such that 6 E Cat~? 
for some ~ E 15a. As a special case, consider that in which 15 = Absp(fld), 
a ~ fl (that is, in which the movement described by 15 is downward into 
an instance of a lambda expression other than )~). Then 15a = {~}, and 
C a t ~  = {~}, for all ~ E 15~. Therefore (Ix], ~) is unmoved in this case, 
as we would expect. As another example, suppose that 15a = {u}, and 
consider the class of variable instances represented by (Ix], d) (which class, 
as we showed in Theorem 28, contains at most one member). This vari- 
able instance "becomes" the instance (Ix], e) after the movement MoveE@15, 
since Cat d u = {e}. 

The auxiliary functions RdEnv and WrEnv, used to read from and write 
to the environment in $5, are defined in Figure 2.12. Modeling the action 
of g2 closely, in g5 the (abstract) instance of a lexically visible variable 
will be identified by (/~[x])a, where /~x] is the stack configuration that 
summarizes the movements made by the lexically visible instance of x from 
its instantiation to the current state q, and/~a is the procedure that binds 
x. Consider the definition of WrEnv; the set s = (/~[x])a c A isolates 
those movements that pertain to As. If s contains only d or e, then by 
Theorems 27 and 28, this abstract instance of x represents exactly one 
concrete instance of x (for every state in the concretization of q), and we 
may model an assignment in WrEnv by "overwriting" the value of @(v, 6) 
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where s = {5}; else, we simply raise the lattice value of e(v, 5) for all 5 E s, 
by the value being assigned. 

The definitions of $5, S~, and E5 are given in Figures 34, 35, 36 and 
37. Our alterations to 84 are restricted to the treatment of the environ- 
ment. We may therefore apply Theorem 23 directly to 85, once we show 
that our abstraction of environments under E5 preserves the meaning of 
environments under E2. The following theorem suffices. 

T h e o r e m  29 IS AbsEe p EE ~, AbsBbP EBb and AbsDd p Eb d, then 

I. AbsD(e(~x],b~x~))p E_ b RdEnv ~[x]((/~[x~)a), and 

where x is bound by A~. 

Proof :  

I. By the definition of RdEnv, 

Let Abspp Ep 15. That AbsEe p EE ~ implies that 

Ub{AbsD(e([xl,p'))pl Dir(p - p ')a = 5} ED e(Ix~, 6) for all 6 e A. 

Therefore 

But 

AbsD(e([x],b[x]))p E b @([x],Dir(p- b[x])a). 

Dir(p- blx]])a e (/~[[xl)a 

since AbsBb p EBb. Therefore 

AbsD(e<[x], b[x]))p Eb Ub{@<[x], 5) 15 e (/~[xl)a} 

and 
AbsD ( e<ix~, bix]))P Ep RdEnv@[x]( (/~[x])a ) 

by the definition of RdEnv. 

II .  
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Let t = (;5, b, ~,/~, ,~), i E N.  T h e n  85 : N --+ T ~ (~ is defined, according to 
the  form of Si,  as follows. 

S / =  [(set!  x (f Yl '"Ym))~ or S i =  [ (se t !  x ( c a l l / c c  f))~ ::~ 
ssi~ = 4~ uQ q~ 
where ~ = U~){~i ~, if i r ~ j 

then J_~ 
else {/~ ® p', 

(Mov~b~'k)[;~o, { ~ } / N ] ' ' '  [~,~.{~}/~~.,d], 
Move[;e'p', 

Move[c( ~[k / / Container i])p} 
where,ka = [(lambda (z l""zra )  <Zm+l '"zn > Sj . . . )~ ,  

p = Ab,sp(ad), 

and e ~ = i f S i = [ ( s e t !  x (f y~...yr~))~ 
then e~ where do = 

and dt =WrEnv etkl[zt]{e} 

where [Yl] is bound by A~, 1 < l < rn 
else w,~E,,,~, ai~, ]{~}(±o,  <{~}, ~',,"'~.{~}>, 

J- p~{~ op , ]- zi~t , A B bol } 

wher~ ~lf~ = <e', k ' , . . . t  
and d = <&,/~) 

F igure  34: The  Semant ic  Func t ion  $~ (Par t  I) 
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and 
( 

q~k = kl~)~.~i', i f / '  # j  
then _1_~ 
else Movei.~, 

b ~ , 

÷Z, 
?[k / / Container i]l( Inv p') 

where d = if S/ = [ ( s e t  ! x (f  Yl))I  
then WrEnv ~[z[{e} 

(RdEnv ~[yll ((D[y~[)c~)) 
where y~ is bound by $~ 

else WrEnv ~[z[{e}<_l_d, ({i}, b, A~.{e}), 

-[-PrimOp' Lint'-[-Bool} 
where Sj = [ ( s e t !  z ( c a l l / c c  g))]] 

where ~[f[ = {c', k',...) 
and /~'= (3",/),p') 

F igure  35: T h e  Semant i c  F u n c t i o n  S5 (Par t  II) 
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Si = [ (se t !  f (lambdaa (x l . . . xm)  <Xm+l'"Xn > ""))~ ==~ 
$h i t  = Ai'. if i' # Suec i 

then _1_~ 
else (15, 

8, 
WrEnv ~Ifl ((/~[f])~)(({a}, [~), -I- R, J-PrimOp' -k l;,t' -kBaot) 

÷) 
where f is bound by AZ 

Si = l(±f x (goto m) (goto 

then^-l- T 
else t 

n))] 

Si = I(return x)l 

$hit = kJQ/)d'., if i' ¢ j 
then _l_~ 
else Move¢ (~ 

b ~ , 

W r E n v  ~ [[y] ((/~ ly] )~) (RdEnv ~ Ix] ((/~ [x]] )(~)) 
?( Conta iner  j), 
÷)(Inv,') 
where y is bound by AZ 
and x is bound by Aa 

w h e r e S j =  [ (se t !  y ...)1 

where k = (j, b',p'} 

Figure 36: The Semantic Function $5(Part III) 
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Eh: Q ~ Q - AS. Let q' = S ~  
in if q' EQ q then ~ else Eh(~ UQ q') 

Figure 37: The Semantic Functions S~ and E5 

case 1: (/~xl)a = {e} or {d}. Let 

e' = e[d/ ([x~, b[x~}] 

and 
$ = 5)] 

where (b[x])a = {d}. It is clear that 

AbsD(e'([x],b~x]>)P ED ~'<lxl, 5} 

because AbsEe p EE ~ and Abspd p ED d, and Dir (p -b[x] )a  = 5 
since AbsBb E/~/~. We must therefore show that the meaning of 
e' is preserved at all points other than (~x], b[x]}. Let ~ be an 
instance of y, and let Pb be the birth date of y. If y ~ x, then 
clearly 

A bSD ( e' ( ~Y] , Pb ) )P E D e~ ( [Y~ , Dir(p - pb )a ), 

since AbsEe p EE e. Assume therefore that y = x. By The- 
orems 27 and 28, if Dir(p -P b )  = 6 then b~x] = Pb and :~ is 
the instance of x whose birth date is b[x] (that is, the instance 
of x being assigned). This case was treated above. Else, if 
D i r ( p -  Pb) ~ 5, then 

A bsD ( e' ( ~y] , pb ) ) p E D #<[y], Dir(p - pb )a > , 

since this equation holds for e and ~, and e ~ and # do not dif- 
fer from e and ~ at the points ([Y],Pb) and (~y~ ,Dir (p -pb)a)  
respectively, by the fact that Pb ¢ b[x] and Dir(p - p b ) a  ~ 5. 
Therefore 

AbsE(e[d/(~x~,b~x]}]) EF. WrEnv~x]((b~x])a)d 

by the definition of EE. 
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case 2: (/~[x])a ¢ {~} and (/~x])a ~ {d}. Let 

e' = ~[d/ ([x], blx]>] 

and 
i' = ~[dl l <[xl, 61)]... [dl l (M,  4)] 

where (b[xl)a = {51,. . . ,  6k}. This case is much simpler, because 
@ E~ e' by the definition of the notation f [x / / y] .  By assumption, 

AbsEe p E_E 2, AbsDd p ---25 d, and AbsBb p E_ b b. Therefore 
Pir(p - blx])a = 5 for some 5 E (b[x])a, and it follows at once 
that 

AbsD(e'([x],b~x]))P - D  UD{e'([[x]],S} I 5 e (/~[[x]])a} 

and therefore that 

AbsE(e[d/(~x~,b[x])]) p E_p. WrEnv@[x]((b[x])a)d. 

[] 

Apart from their treatments of the environment, there is no difference 
between $4 and $5, and therefore Theorem 29 (to show that the meaning 
of environments are preserved by 85), and Theorem 23 (to show that all 
other components of states are preserved by 85) together constitute proof 
of the correctness of 85. Theorem 19 is likewise proof of the correctness 
of gs, because (apart from their respective invocations of 8~, $~, and 8~) 
there is no difference between C3, g4, and $5. 

2.13 Examples of Analysis under g5 

Let us now return to some examples to see what we may expect of the 
framework of analysis that we have constructed. First, consider the exam- 
ple of Figure 20 once more, to see if we have overcome the difficulties it 
presented for g3 and g4. It is easy to see that we have; in fact, it is enough 
to consider the evaluation of statement $5, in which t3 is assigned a closure 
of ~. Again, let q~n = g4 qo be the result of abstract interpretation of the 

program of Figure 20 under $4, and let q~na = (/3, b, @, k, rl. We have that 
(/~[t3])a = {e} when $5 is first evaluated. Then bythe  definition of WrEnv, 
the closure of As which is newly formed will overwrite the previous value of 
(t3, e} in the environment; when this closure is applied at statement 5'6, it 
will have undergone no interprocedural movements. Therefore, if D ~ is the 
birth date map of a state in which a reference to x is made within A.~ (that 
is, when evaluating ( se t !  t4 (car  x))) ,  we will find that (/~x])? = {d} 
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(define accum-fn 
( lambda~ (x) ( lambda~ (y) (set! x (+ x y)) x))) 

(define apply-to-range ( lambda 7 (io hi fn) 
(if (= Io hi) 

(fn Io) 
(begin (fn Io) 

(apply-to-range (I+ io) hi fn))))) 
(define sum-of-integers ( lambdaa (m n) 

(apply-to-range m n (accum-fn 0)))) 
(define list-of-sums ( lambdae (ii 12) 

(if (null? II) 
#f 
(cons (sum-of-integers (car ii) (car 12)) 

(list-of-sums (cdr 11) (cdr 12)))))) 

Figure 38: Example of Side-Effects and Object Lifetimes 

(set! sum-of-integers ( lambdaa (m n) <tl t2> 
(set! tl (accum-fn 0)) 
(set! t2 (apply-to-range m n tl)) 
(return t2))) 

Figure 39: s u m - o f - i n t e g e r s ,  Rewritten in £ 

and (/~'[x])a = {~}. This implies, by Theorem 21, that  x may be stack 
allocated. 

Now let us turn  our attention to the example of Figure 11; it is reproduced 
in Figure 38 for convenience. The procedure A¢ ( s u m - o f - i n t e g e r s )  is 
rewritten in a form close to £, for the purpose of illustration, in Figure 39. 

The critical moment in evaluation is the assignment of the return value 
of accum-fn into t l ;  by exactly the reasoning used above, the closure of 
Af that  is assigned into t l  overwrites the previous value of t l  in the envi- 
ronment,  and therefore when x is referenced in Aft, we will find that  it has 
described no downward movements (none of d, d d  +, u + d  +) with respect 
to Ao, and no upward movements (none of u, u u  +, u + d  +) with respect to 
A¢, either. This implies both that  A¢ has no side-effects upon x (and x 
is the only mutable quantity in this example), and that  x may be deal- 
located upon exit of the invocation of A¢ which creates it (via a call to 
Aa). In short, the analysis uncovers both the high-level parallelism of this 
example, in that  the sum computed within each recursive application of 
A~ (list-of-sums) is seen to be independent of the others (since all are 
seen to be free of side-effects), and provides a precise description of the 
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(define cons (lambda (car cdr) 
(lambda (op val) 

(cond ((eq? op 'car) car) 
((eq? op 'cdr) cdr) 
((eq? op 'set-car!) 
((eq? op 'set-cdr!) 

(define car (lambda (x) 
(define cdr (lambda (x) 
(define set-car! 
(define set-cdr! 

( s e t !  car  va l )  car)  
( s e t !  cdr  va l )  c d r ) ) ) ) )  

(x ' c a r  # f ) ) )  
(x ' c d r  # f ) ) )  

(lambda (x y) (x ' s e t - c a r !  y ) ) )  
(lambda (x y) (x ' s e t - c d r !  y ) ) )  

Figure 40: cons in Terms of Closures 

lifetime of each instance of x, for the purpose of its automatic deallocation 
(and ultimately, for the purpose of placing it within a hierarchical shared 
memory). 

2.14 M u t a b l e  D a t a  and Al ias ing 

It might appear to the reader familiar with the difficulties of analyzing 
and parallelizing Lisp programs, that  in L we have put  forth a subset of 
Scheme that  sidesteps the most difficult issue of all: aliasing, particularly 
aliasing relationships that  arise by the use of mutable, compound data 
objects, such as cons cells, user structures, vectors, a tom property lists and 
hashtables. In fact, our abstractions o f / :  provide very sharp analyses of 
such effects; it is simply a mat ter  of casting such aliasing problems into 
the terminology we have been using, and of interpreting the results of the 
subsequent analysis. 

Let us first consider (mutable) cons cells. A cons cell is a record of two 
fields, called ca r  and cdr,  either of which may be updated after the cell has 
been allocated. It is well known that  the function cons and its auxiliary 
routines car,  cdr,  s e t - c a r  !, and s e t - c d r  ! can be written using closures, 
as in Figure 40. (We forward this means of expressing cons only for the 
purpose of static analysis, and not as a means of implementing cons cells 
at run-time.) 

The reader is now asked to consider the example of Figure 41. The ex- 
ample of Figure 11 has been rewritten in this figure, to make use of mutable 
cons cells instead of instances of ,~,  to accumulate a sum of integers. It 
is clear that  the analysis of side-effects and object lifetimes applies equally 
well to this program as to that  of Figure 11; in particular, the high-level 
parallelism of l i s t - o f - s u m s  is discovered, and the lifetime of each cons 
cell is seen to be circumscribed by an instance of A~. Theorems 6, 7 and 



292 WILLIAMS LUDWELL HARRISON III 

(define accum-fn 
( lambdaG (x) (cons x #f))) 

(define apply-to-range ( lambda 7 (io hi y) 
(if (= io hi) 

(set-car! y (+ (car y) io)) 
(begin (set-car! y (+ (car y) lo)) 

(apply-to-range (1+ lo) hi y))))) 
(define sum-of-integers ( lambda~ (m n) 

(apply-to-range m n (accum-fn 0)))) 
(define list-of-sums ( lambda~ (ll 12) 

(if (null? 11) 
#f 
(cons (sum-of-integers (car 11) (car 12)) 

(list-of-sums (cdr 11) (cdr 12)))))) 

Figure 41: Example of Side-Effects and Object Lifetimes 

20 tell us that  all of the dependences of a computat ion are uncovered by 
our analysis; any side-effects that  arise through aliasing of cons cells, will 
therefore be revealed as side-effects upon the variables c a r  and cdr,  at any 
points at which such side-effects are visible. 

To see the outcome of aliasing more clearly, consider Figure 42. The 
definitions of two mutable structures are shown; one has a field called x, 
the other a field called y. As with the cons cell, these fields are represented, 
for the purpose of static analysis, as free variables within closures. In the 
example, the variable a holds an instance of As, and b and c hold instances 
of AZ. In effect, b and c each "point" to a. The final two expressions of the 
example illustrate a dependence caused by this shared substructure,  this 
aliasing of pointers. First a is reached via b, and is updated  so that  its x 
field has the value 2. This "indirect" update  entails two visible side-effects: 
a use of the variables y, and a definition of the variable x. Second, a is 
reached via c, and its x field is read. Again, there are two visible side- 
effects, a use of y and a use of x. By Theorem 20, both  of these side-effects 
are revealed by our analysis, and thus the aliasing of pointers is properly 
accounted for. 

There is, however, much information provided by our analysis that  is 
not available from a conventional alias analysis [14, 33]. Intuitively, this 
information is of two kinds: information concerning an object 's lifetime, 
and the limits thereof (in terms of the net interprocedural movements it 
describes), and information concerning distinct instances of objects that  
arise from a single lexical construct  (where the instances are distinguished 
by the movements they describe from an evaluation of that  lexical construct,  
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(define make-struct-a 
(lambda 7 (x) 

(lambdaG (op val) 
(if (eq? op ~update) 

(begin (set! x val) 
x))))  

(define make-struct-b 
(lambda5 (y) 

(lambda~ (op val) 
(if (eq? op 'update) 

(begin (set! y val) 
y)))) 

(set! a (make-struct-a I)) 
(set! b (make-struct-b a)) 
(set! c (make-struct-b a)) 
((b 'read #f) 'update 2) 
((c 'read #f) 'read #f) 

x) 

y) 

Figure 42: User Structures, in Terms of Closures 

to a later point during the evaluation). For instance, in the example of 
Figure 38, we have been able to detect the freedom from side-effects of 
sum-o f - in t ege r s ,  because the analysis is able to recognize each instance 
of A~ as restricted in lifetime to the subtree of computation rooted at an 
instance of A~, and to recognize the instance as distinct from all other 
instances of A~. 

It is important to emphasize again that we are not suggesting that cons 
cells, user structures, etc., be implemented using closures, but rather that 
their lifetimes and the dependences that arise from their manipulation can 
be understood in terms of (the more general mechanism of) closures which 
capture free variables. This analogy is not entirely satisfactory, in its de- 
tails, however. For example, in Figure 41, every application of the function 
car appears to our analysis to entail both a use and a definition, of both 
the variables car and cdr. This is really a problem of flow-sensitivity: the 
side-effects of an application of the closure that represents a cons cell de- 
pend entirely upon the argument that is passed to it; our analysis does not 
take this into account, but rather attributes all of the possible effects of a 
procedure to each of its points of application. 

There are several ways around this dimeulty; the first is simply to extend 
the semantics of £ to accommodate compound mutable data directly; this 
presents little technical difficulty, for as we have seen, their implications for 
dependence and lifetime analysis are less general that those of closures that 
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capture free variables. The other means of addressing the problem is to in- 
crease the flow-sensitivity of the analysis functions, so that they might take 
into account the differing conditions under which a procedure is applied. 
The latter approach is appealing for the reason that it would improve the 
accuracy of the analysis generally (not simply in the case of aliased, mutable 
data). If, for example, instead of joining all of the environments in which a 
particular procedure is invoked, we analyze the procedure (that is, perform 
an abstract evaluation of the body of the procedure) once for every point in 
the program at which it is applied, and if we increase the sensitivity of the 
analysis to treat simple expressions such as (eq? op ' car)  where op has 
a constant value (and recognize control paths that cannot be taken, when 
they depend upon the outcome of such a comparison), then we may easily 
sharpen the framework sufficiently to reveal that the procedures car  and 
cdr make no modifications to variables, whereas s e t - c a r !  and s e t - c d r !  
do. This technique assumes that the procedures to which we choose to give 
such a flow-sensitive analysis are not recursive; but this is true of all of the 
procedures we have used to define cons, car, cdr, s e t - c a r ! ,  s e t - c d r ! ,  
and user structures. 

There is a simple, mechanical means by which we may further improve the 
accuracy of our analysis, when applied to mutable objects such as returned 
by cons (as defined in Figure 40). Suppose that we rewrite expressions of 
the form (cons A B) as 

((lambda (car cdr) (lambda (op val) ... )) A B) 

where the identifier cons is literally replaced by the definition given in 
Figure 40. We proceed with analysis as usual. This has the effect of parti- 
tioning the cons cells created by the program into classes according to their 
(lexical) points of creation. The advantage of this is very simple: side- 
effects upon the car  and cdr  variables bound by one lexical occurrence of 
cons will be unrelated to those upon the car  and cdr  variables bound by 
other occurrences (since these occurrences will be distinct lambda expres- 
sions). If we do not effect such a transformation, then the analysis may 
reveal dependences that are caused by cons cells that originate from lexi- 
cally distinct invocations of cons, and which therefore could not possibly 
refer to the same memory locations. The same techniques may be applied, 
of course, to lambda expressions that are used to simulate other forms of 
mutable data (e.g., user structures). 

There are some mutable objects, whose precise behavior it is unneces- 
sary, or complex, to simulate exactly during interprocedural analysis, via 
closures. For example, while hashtables and vectors may (in their func- 
tion) be described exactly in L, an approximate description may be more 
practical, and equally accurate, for our analysis. As an example of such an 
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(define cons 
(lambda (cxr) 

(lambda (val) 
(if #f (begin (set! cxr val) cxr) 

(define car (lambda (x) (x #f))) 
(define cdr (lambda (x) (x #f))) 
(define set-car! (lambda (x y) (x y))) 
(define set-cdr! (lambda (x y) (x y)))) 

cxr)))) 

Figure 43: An Abstraction of cons, for Analysis 

approximation, we could redefine cons and its auxiliary functions as per 
Figure 43. 

This is a strange-looking definition indeed. First, notice that  the ( i f  
#f ° . .  ) construct is treated by all of our abstract semantics as if both  
the true and false branches were possible outcomes. Second, notice that  
the value of the argument to x in ca r  and cdr  is unimportant ,  but on 
the other hand it causes the ca r  and cdr  variables to be treated as if #f  
were possible values for them. Better would be if a constant ±D were 
provided at the source level, so that  we could write ( i f  I D  . . . )  and 
(x ±D) instead of ( i f  #f  . . . )  and (x #f) ,  respectively. The important  
thing about the definition is that  it preserves the dependence behavior 
of our previous definition of cons. There is a loss of accuracy, in that  
where ca r  and cdr  were distinct variables in the environment previously, 
they are now represented by one variable, and thus their values will be 
joined in the lattice D. Nevertheless, any side-effects upon the variables 
ca r  and cdr  (when using the definition of Figure 40) will be reflected as 
side-effects upon the variable cxr  (when using the definition of Figure 43); 
and likewise, the lifetime of cons cells as determined by use of the less 
accurate definition of Figure 43 will be at least as great as that  determined 
using Figure 40. These facts may be confirmed formally without difficulty. 
We may form similar abstractions of the dependence behavior of vectors, 
hashtables, a tom property lists, and so on. For each such object, the correct 
abstractions of its behavior describe a lattice of approximation, that  is quite 
interesting in itself (but beyond the scope of this work). Before leaving these 
thoughts behind, it is worth pointing out that  the abstraction of dependence 
behavior in the above style, leads to an elegant handling of the problem of 
interprocedural analysis in the face of separate compilation. The idea is a 
simple one: the dependence implications of a separately compiled module 
may be abstracted into procedures, just as we have abstracted cons into the 
form of Figure 43, and analyzed in lieu of the entire module, for the sake of 
efficiency in compilation. Furthermore, such abstractions provide a natural  
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means of representing the dependence consequences of a subroutine call, 
when the procedure being invoked may vary from run to run (according 
to, for example, a link-time decision). This promises to be a rich area of 
investigation. 

It should be clear at this point that  the techniques described in this sec- 
tion are applicable to a wide variety of programming language constructs. 
For instance, it is straightforward to create a semantics for a suitable subset 
of C or Pascal in terms of procedure strings, and to abstract this seman- 
tics using stack configurations, in order to analyze the dependences and 
lifetimes of, say, dynamically allocated. The essential insights of this sec- 
tion are the way in which side-effects and object lifetimes can be reasoned 
about in terms of procedure strings, and the way in which these strings, 
and the reasoning that  applies to them, can be abstracted to stack con- 
figurations. Because most programming languages in wide use lack such 
radically general features as Scheme's first-class procedures and continu- 
ations, the application of these techniques to such languages is, in many 
instances, a mere restriction to less difficult situations (and, as we will see 
in subsection 2.16, these restrictions can sometimes be used to improve the 
accuracy or efficiency of the analysis). 

2.15 M a n a g e m e n t  o f  a H ie ra r ch i ca l ,  S h a r e d  M e m o r y  

We have, from time to time, been discussing a hierarchical strategy for 
management of dynamically allocated objects. Under this strategy, each 
object is associated with a procedure instance. This procedure instance 
is guaranteed to have outlive the object, i.e., to be active prior to the 
object's allocation, and subsequent to the last reference to the object; as a 
consequence, the object may be deallocated safely upon its exit. 

This strategy is intended as directly analogous to one for the placement 
of data within a hierarchical shared memory. Ultimately, the goal of the 
analysis framework we have designed is to facilitate the automatic par- 
allelization of a program; let us suppose that  this parallelism is realized 
in the following very simple way: where the sequential execution of the 
program describes a procedure calling tree, the parallel version describes 
exactly the same tree, except that  for every node that  has been successfully 
parallelized, the node's children are evaluated simultaneously instead of se- 
quentially. (This is a simple model of parallelization, but realistic enough, 
as we could certainly rewrite the sequential and parallel versions of a pro- 
gram in a form that  corresponds to this model.) See Figure 44. In it, a 
procedure calling tree is depicted. Assume that  after parallelization, the de- 
scendants of A2 are to be evaluated simultaneously, as are the descendants 
of Am; these two nodes are highlighted in the figure. 
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)~1 

A4 A5 A6 A7 

AS A9 

,~12 A13 

)~14/~15 /~16 

Figure 44: A Procedure Calling Graph 
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Now suppose that  we use the following (again, realistic enough) model of 
parallel execution within a shared memory machine: upon execution of a 
parallelized node of the program, the machine is partit ioned into d subma- 
chines, where d is the out-degree (number of children) of the node. When, 
within one such submachine, another parallel node is encountered, the sub- 
machine is further partit ioned into submachines, and so on. The process 
of subdivision ends when a submachine contains only one processor, and 
the subcomputat ion performed by that  processor is executed sequentially. 
To each submachine, assume there corresponds a (lowest) level in the hier- 
archical memory which is visible to all processors in the submachine. Any 
data which must be shared among the processors of the submachine must 
be placed at this level of the hierarchy, or at a higher (more widely visible) 
level; data to be shared only among the processors of the submachine may 
be placed at exactly this level of the hierarchy. The execution depicted in 
Figure 44 represents two divisions of the machine into submachines: once 
at A2 (where the entire machine is partit ioned into four submachines), and 
once at All (where one of the submachines is further partitioned into two 
submachines). 

When cast in these terms, the problem of placing each dynamically al- 
located object within the memory hierarchy is identical to the problem 
of hierarchical deallocation we have been discussing; we must place every 
object at a level of the hierarchy such that  it is visible to the entire subma- 
chine that  executes the subtree of computat ion that  delimits the object's 
lifetime. Exactly as before, this entails locating a node that  is above (an 
ancestor of) the subtree of computat ion that  contains the object's lifetime; 
this node corresponds to a level in the memory hierarchy at which the 
object may be safely placed. Of course, we would like to find the lowest 
such node for the sake of reducing latency and congestion in the memory 
hierarchy. Adapting the techniques of subsection 2.10.3 directly, any par- 
allelized procedure through which the object makes no upward movement 
will suffice; when the object is allocated, we place it such that  it is visible 
to the submachine on which the innermost instance of that  procedure is 
executing; this guarantees that  the object has sufficient visibility. 

Referring to Figure 44, consider a variable instance ± that  is bound by 
A14, and captured as a free variable by a closure formed within A14. Let 
Ax be the nearest ancestor of A14 through which ± describes no upward 
movements. If Az = A14 o r  A12,  then ~ may be placed in the hierarchy 
such that  it is visible only to the submachine that  executes the subtree of 
computat ion rooted at A12 (this may be the private memory of a processor). 
If Ax = All or As or A6, then ± may be placed such that  it is visible only 
to the submachine that  executes the subtree of computat ion rooted at A6. 
Finally, if Ax = A2 o r  A1, then ~ must be placed at the global level. As with 
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our artificial version of this problem, there are several possible strategies. 
One is to form, at compile-time, a set X of the procedures through which 
x makes no upward movements, and to allocate i by traversing links of the 
calling tree at run-time, until the first member of X is encountered; this 
will correspond to a level of the memory hierarchy at which ± may safely be 
allocated. Alternatively, using additional information about the structure 
of the calling graph, we may make a purely static decision about which 
level of the hierarchy at which to place i ,  or perhaps simply how many 
levels "upward" in the hierarchy, from the point at which it is created, it 
must be placed to have adequate visibility. 

2.16 In  t h e  A b s e n c e  of  c a l l / c c  

It is worth asking what penalty is paid, in the accuracy of our compile- 
time analysis, because of Scheme's feature of first-class continuations. There 
are at least two major improvements that can be made to the analysis, in 
its absence. We begin with a revised exact semantics (£6) for the subset of 
£ that does not include c a l l / c c  (see Figures 45 and 46). The domains for 
this semantics are the same as for g2 (see Figure 6). 

There is but one important change from the definition of 62 (apart from 
the deletion of any text that pertains to first-class continuations): the eval- 
uation of a r e t u r n  form now results in a state whose procedure string is 
p + a u, where p is the procedure string of the state prior to the return, and 
As is the procedure being deactivated. This is a perfect complement to the 
p -~- C~ d construction that describes a procedure invocation, and raises the 
question, why could we not compute the procedure string described by a 
return so easily in the presence of c a l l / c c ?  In effect, the new definition 
says that if p' is the procedure string in effect when a procedure As is ap- 
plied, and p is the procedure string in effect at the point of return from that 
invocation, then Inv(p  - p ' )  = o~ u always (in the absence of c a l l / c c ) .  It 
is easy to construct an example to show that this statement does not hold 
in the presence of the procedure re-activations made possible by c a l l / c c .  
For instance, let p = p' + o~dctu~u~doL d, and suppose that p describes the 
following scenario: in a state whose procedure string is p', and in which 
procedure I~ is active, i s  is applied via c a l l / c c ,  the continuation created 
by c a l l / c c  is captured in a global variable, control returns from As, and 
likewise from AZ. Then the continuation created while As was active is 
retrieved from the global variable, and applied, resulting in a state whose 
procedure string is p. 

Now consider a return from the (re)activated instance of As: the suffix 
[nv(p  - pt) = o~U~u~d will be appended to p. (We may verify that 

Net(p  + Inv(p  - p') ) = Ne t  p', 
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Let q = ( i , p ,b , e , k ,o , r )  E Q. Then  8 6 : Q ~ Q is defined as follows: 

Si = [ ( s e t !  x ( f  Y l ' "Ym)) ] ]  or Si = [ ( s e t !  x ( c a l l / c c  f ) ) l  =~ 
if e<[f]], b[[f]]> = <a, b'> e C 
then  $6q = ( j ,  

P + O~ d, 

b'[p + ad/~zd}. . .  IV + ad/[zn]], 
e', 
(i ,b,p,o),  
p + a d, 

r[k/o]> 
w h e r e A a =  ~(lambda ( z l ' " z m )  <zm+l ' "Zn> S j ' " ) 1  
and e ' =  e[e l [y l l , b [y l ] ) / ( I z z ] ,p+ad)] . . .  

[e <[ym]], b[[ym]]>/([zm]], p + ad>] 

S i =  [ ( s e t !  f ( lambdaa ( X l ' " X m )  <Xm+l""Xn> "'" ))1 =~ 
S~q = <Suee i,p,b,e[<a,b>/<[~],bH>],k,o,r> 

Si ---- [(if x (go to  m) (go to  n ) )  1 =~ 
S6q = ( if e([xl ,b[xl)  = true then  m else n , p , b , e , k , o , r )  

= [ ( r e t u r n  x)] =:~ 
S6q = (Succj, p + aU, b',e[e([x~,b[x])/([yl, b'~y])],ro',o',r> 
where Sj = I ( s e t !  y -..)]], 

a = Container i, 
and k = {j, b', p', o') 

Si = [(end) 1 :=~ 
S6q = q 

Figure 45: The  Semantic Funct ion $6 

E 6 : Q --* Q -= Aq. Let q~ = ~q6q 
in if ql = q then  q else $6q t 

Figure 46: The  Semantic Funct ion $6 
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as per Theorem 3, as follows: 

N e t ( p  + Inv (p  - p '))  = Ne t (p '  + ad(~u~u/3dad + a~/~u/~ d) 
= N e t ( p ' +  flu/~d) 
= Ne t  pl 

because A;~ is the procedure that  applies )~, and thus pt . . . .  fld.) The 
important  point is that  such a re-activation is necessary to create a situation 
in which Inv (p  - P O  ~ au at the point of re turn from As. We can formalize 
this result as follows. 

T h e o r e m  30 Let q = (i,p, b, e, k, o, r) be a state during evaluation under  
E6, such that p ~ ~, where k = (j,b',p~,o~), and a = Conta iner  i. Then  
I n v ( p  - pl) = au.  

P r o o f :  By induction on the number  of states in the evaluation sequence. 
Let q be the first state during evaluation with a non-empty procedure string 
p. We have therefore that  p = a d for some c~ E A, and p~ = e. In this case 
N e t ( p  - p')  = old and Inv (p  - p') = a~ trivially. 

Now assume the theorem is true for sequences of fewer than n states, and 
let q be the n th state during evaluation. If q results from an application of 
)~, then  p = p' + a d, N e t ( p  - p ')  = a d, and Inv (p  - p')  = a u. Otherwise, 
if )~a is active in q, and q results from the return from an instance of AZ, 
then let p" be the procedure string of the state in which the application 
of this instance of AZ occurs, and let p"~ be the procedure string of the 
state immediately prior to q. By the definition of 86, p = p"~ + / ~ .  By 
induction, Inv(p '"  - p " )  = / j u ,  and therefore N e t ( p "  - p " )  = fld. Likewise, 
by induction, Inv (p"  - p')  = a u and therefore N e t ( p " - p ' )  = a d. By the 
choices of p, p', p", and p'", 

N e t ( p  - p ' )=  Net (  (p" - p')  + ( p "  - p")  + (p - p"') ) 
= N e t ( N e t ( p "  - p')  + Net (p" '  - p")  + N e t ( p  - p" ' ) )  
= N e t ( a d  + ~d + / ~ )  

= N e t ( o J )  
~_ O~ d 

and therefore I n v ( p -  pl) = a~. Otherwise (if q does not result from proce- 
dure application or return) then no interprocedural  movements take place 
in the evaluation step that  leads to q, and I n v ( p -  pl) = a u by induction. 
[] 

This result has enormous significance for the accuracy of our static anal- 
ysis, because it implies that  we may use a construct  analogous to p + 
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Let i = (15,/~, @, ]~, ÷}, i E N.  Then  $7 : N ~ ~b --~ Q is defined, according to 
the form of Si, as follows. 

Si= [ ( s e t !  x ( f  Y l ""Yn  ) ) ]  ~ 

$5 i t  = UQ{Ai'. if i' # j 
then  _l_/. 

else (~ G p', 

(MOVeB?~')[Aa. { ~ } / [z l  ] ] - . .  [As. { e } / [z , ] ] ,  
Move$dp', 
({i}, b,15), 
÷[]~/ / Container i]} 

where Aa = [ ( lambda ( z l . - " Z m )  <Zm+l" "'Zn> Sj  "" ")],  
p'= Absp(~d), 

and d = em where do = @ 
and =WrEnv e =lN{4 

( RdEnv @~Yl]((b[Yl])~I)) 
where [Yl] is bound  by Aa~, 1 < 1 < m 

where ~fl = <9,...) 
and c' = (&,/~') 

Figure 47: The  Semantic Funct ion S7 (Part  I) 

(namely, 15 ® Absp(aU)) to model  procedure return,  in the absence of 
c a l l / c c .  In Figures 47, 48 and 49 are defined an abstract  in terpreta t ion 
(called £7) of the subset of £ t reated by g6, tha t  makes use of this obser- 
vation. The domains for $7 are exactly as for £5, and the correctness of £7 
follows immediate ly  from the correctness of g5 and Theorem 30. The  anal- 
ysis of side-effects and object lifetimes based upon  $7 is more accurate in its 
t r ea tment  of upward movements  than  £5, for the reason tha t  as an object  
X moves upward (via a re turn  from Aa) under  37, it is subject  to the move- 
ment  Move X(Absp(c~U)), ra ther  than  the movement  Move Z(Inv IY) (see 
the meaning of a re turn  form under  £5, in Figure 36). Therefore the effect 
of any inaccuracy which accumulates  in 1~ under  £5, is el iminated entirely 
under  gT, since Absp(a u) is (by Theorem 30) as accurate an abstract ion of 
Inv(p - PO as possible, in the absence of c a l l / c c .  

There is also a considerable simplification in the t rea tment  of continu- 
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Si = [(set! f (lambdaa (Xl. . .xm) <Xm+l'"Xn > '"))] =~ 
STit = Ai'. if i' # Succ i 

then ,L 2 
else (15, 

WrEnv ~[f] ((b[f])Z)(({a},/~), "L PrimOp, -i in t, "L Bool} 

k, 

where f is bound by AZ 

Si = [(if x (goto m) (goto n)) 1 
$7it = Ai'. i f /~t  {m, n} 

then _J_2 
else 

Si = ~(return x) 1 =~ 

$7it = Uo { Ai'. if i' # J 
then -L~ 
else (/Y, 

6', 
MOVeE( WrEnv ~[y]((g'IyD~)(RdEnv ~lx]((b[x])a))) 

Absp(v 
~ ,  

where y is bound by A~ 
and x is bound by As 

w h e r e S j =  [ (se t !  y ...)1 
and Container j = 

where k = <j, b',p'> 

Figure 48: The Semantic Function $7(Part II) 
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C7: Q --+ Q - ~ .  Let q' = S ~  

in if q' ___Q ~ then ~ else $7(~ UQ q') 

Figure 49: The Semantic Functions $~ and C7 

ations (/~) and restoration functions (/~) in ~7, which makes it yet more 
accurate than E5. The justification for this simplification comes from the 
following theorem. 

T h e o r e m  31 Let  qi = ( i ,p ,  b, e, k, o, r) be a state during the evaluat ion of  
E6 qo. Then  

g e t ( p  - o) = ~. 

P r o o f :  By induction on i. If i = 0, then p = o = c trivially. Else, 
suppose that  the theorem holds for i < n, let i = n, and let qn+l = 
(i~,p ~, b ~, c ~, k ~, d I. If qn+l results from a procedure application in state qn, 
then p~ = o ~ and N e t ( p  - o) = ~. Else, if qn+l results from a re turn from 
procedure ~ in state qn, then pl = p + ~u. Let qj = (in~p n, b II, c II, k ' ,  o n) 
be the state in which the this instance of ~ was applied. Then  

Net (p '  - o') = N e t ( ( p "  + (p - p") + ~/u) _ o') 

= N e t ( ( p "  + N e t ( p  - p") + ~u) _ o') 

= N e t ( ( p "  + .yd + .y~) _ o') 

since by Theorem 30, I n v ( p  - p ' )  = ~u. Therefore 

N e t ( p ' - o ' )  = N e t ( p " - o " )  

= N e t ( p " - o " )  

since o ~ and o" are equal to the birth date of the procedure instance to 
which control returns in qn+l. Then, by induction, 

N e t ( p  I - o ' )  = ~. 

[] 
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Now consider the continuation k associated with a procedure instance. 
Under  E2, k is "saved" in a restoration map r 6 R, subjected to inter- 
procedural  movements during the computat ion that  follows, and retrieved 
whenever control returns to the procedure instance. The important  point 
is this: that  whenever control returns to the procedure instance, the con- 
t inuation k associated with that  instance has undergone a net movement 
given by Net(p  - o), where p is the current procedure string and o is the 
bir th date  of the procedure instance. But under E6, Net(p  - o) = e al- 
ways, and so the net effect of the movement experienced by a continuation 
(whenever the continuation is used) is empty. Since stack configurations 
represent only Net movements,  under  $7 we therefore dispense entirely with 
the use of Move K and Move R. The result is that  C7 is more accurate than 
$5 in its approximation to the continuations of a program. While this is 
not important  for the analysis of side-effects and object lifetimes, it may 
be significant if we make use of the continuations directly, for example, to 
construct  an approximation to the procedure calling graphs that  may be 
described by the program's execution. 

But alas, c a l l / c c  and first, class continuations are firmly implanted in 
the Scheme definition. Or are they? We might indulge in a moment 's  wish- 
ful thinking, and consider CPS (continuation passing style) conversion [5] as 
a way out of our difficulties. When a program is rewri t ten in continuation 
passing style, to its every lambda expression is added a parameter.  The 
value of this parameter  is a closure of one argument,  called the continua- 
tion of the procedure. In lieu of its normal re turn sequence, the procedure 
applies its continuation to the value it would return. For example, the 
function f a c t  is shown before and after CPS conversion, in Figure 2.16. 
The converted function is invoked as ( f a c t  (lambda~ (x) x) 10). One 
advantage of CPS conversion is that  we may define c a l l / c c  simply as 

(lambda (k f) (f k k)) m 

Continuation passing style would seem to be the solution! We may use 
it to implement first-class continuations ( that  is, continuations created via 
c a l l / c c )  in terms of closures, and therefore analyze the resulting program 
using g7 rather  than  g5- 

To see what 's  wrong with this, let's consider the procedure strings de- 
scribed by the evaluation of ( f a c t  (lambda~ (x) x) 5), where f a c t  is in 
CPS, as per Figure 2.16. It is easy to see that  when the top-level continu- 

21This definition leaves a bit to be desired, as it does not permit f to be a continuation, 
since we have said that continuations are procedures of one argument. We may remedy 
this by making continuations procedures of two arguments, that simply ignore their first 
argument. 
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(define fact (lambda (n) 
(if (= n O) 

1 

(* n ( f a c t  (1-  n)))))) 
(define fact (lambda~ (k n) 

(if (= n O) 
(k I) 
(fact (lambdaz (m) (k (* n m))) 

(i- n))))) 

Figure 50: f a c t ,  Before and After CPS Conversion 

ation (AT) is applied, the procedure string in effect is 

In short, the evaluation of a program converted to CPS describes only 
downward movements (until the top-level continuation is applied, and the 
entire string unwinds). If, therefore, we were ever to ask if a variable could 
be stack-allocated, the answer would always be yes, because to our analysis 
it appears that  once activated, a procedure remains active to the end of the 
computat ion (and thus any variables it binds enjoy indefinite extent,  even 
though allocated on the stack). Likewise, our analysis of side-effects would 
conclude that  a reference to a variable instance ± induces a side-effect in 
every procedure that  is activated between the instantiation of ± and the 
state in which the reference occurs, because each such procedure appears 
to be active at the point of reference to i .  This is to be expected, since the 
means by which upward movements are introduced into procedure strings 
(procedure return) is replaced by further procedure application in CPS. 
Put  another way, if we were to convert a program to CPS, and execute it 
according to the operational semantics of procedure activation implicit in 
our analysis framework, the program would continually allocate stack space 
as it ran, while deallocating none. It would then be vacuous to observe that  
all its variables could be stack-allocated. This is not an indictment of CPS; 
it is simply to say that  the model of procedure activation and deactivation 
it assumes differs from that  built into the semantics of procedure strings. 

The upshot of this seems to be that  a real price is paid, in the accuracy 
of our compile-time analysis, for the power of c a l l / c c .  

2.17 Env ironment  P r u n i n g  

There is a final improvement to both the accuracy and efficiency of the 
abstract semantics that  we will discuss only informally. In the absence of 
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c a l l / c c ,  it is possible to reduce the amount of information passed across 
procedure boundaries (during the analysis) by the following observation. 
When a procedure Aa is invoked by A~, hZ need transmit to the initial 
state of execution within ha, only the values of those variable instances in 
the environment prior to the application, that  will be referenced during the 
subcomputat ion initiated by the application. If hZ is the function (lambda 
(x y) (+ x y) ) ,  the only variable instances whose values are relevant are 
the fresh instances of x and y; if, however, h~ is a more involved procedure, 
which invokes yet further procedures, then an appreciable fraction of the 
environment at the point of application may be needed during the subcom- 
putation.  We can be more precise about what variable instances might be 
accessed during the subcomputation.  Let ~ be the (abstract) closure of ha 
that  is applied by hZ, and let ± be an instance of a variable x, such that  ± 
is instantiated prior to the application of ~. If ± is to be accessed during 
the subcomputat ion initiated by the application of ~, then it must either 
occur free in ~, or in a closure that  is accessible through a variable instance 
that  occurs free in ~, or in a closure that  is accessible through a variable 
instance that  occurs free in a closure that  is accessible through a variable 
instance that  occurs free in ~, etc. (This transitive dependence is the same 
as that  described by Theorem 6.) Let go be the (abstract) environment 
that  contains only bindings for the parameters to 5, and the free variable 
instances captured by ~. go is a subset of the environment in effect when 

is applied, extended with bindings for the parameters of ha; the variable 
instances in the domain of go are therefore mapped to the values they have 
at the commencement of execution within ~. Let gl be the environment 
which is created by extending e~0 to include any variable instances that  oc- 
cur free within closures that  are found among the values in e~0 . That  is, if 
~r has the closure c ~ as its value in e~0, and d has captured a free variable 
instance ~., then ~ is added to gl, and is mapped to the value it has at the 
point of application of ~. We continue generating environments di in this 
way until no further extension is possible. (We are forming the transitive 
closure of e~0, under the relation "occurs as a free variable instance in a 
closure found in the environment".) It is easy to show that  the resulting 
environment (call it e~.) contains every variable instance whose value prior 
to the application of ~ might be needed during the subcomputat ion initiated 
by the application. This observation works both to improve the accuracy of 
our static analysis, since it reduces the port ion of the environment at each 
call that  is subjected to the M o v e  functions, and to reduce the expense of 
analysis, assuming that  the time spent to compute the transitive relation 
described above is less than is spent manipulat ing an unnecessarily bulky 
environment. Consider the example of (lambda (x y) (+ x y ) ) -  admit- 
tedly a trivial function. Assuming that  x and y cannot take closures as their 
values, g. will be quickly computed, and if this function is invoked from a 
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state with a large environment, an appreciable savings will be realized. 

An analogous tr imming of the environment can be performed when a 
procedure is deactivated. We observe that  for a variable instance to persist 
beyond the lifetime of a procedure instance, it must either occur free in the 
caller of the procedure, or in a closure that  is accessible to the caller, or in 
a closure that  is accessible from a closure that is accessible to the caller, 
etc. To return again to our trivial example, instances of x and y cannot 
persist beyond the deactivation of (lambda (x y) (+ x y) ) ,  because they 
cannot occur free in the caller, nor are they captured by any closures. 

3 T h e  A u t o m a t i c  P a r a l l e l i z a t i o n  o f  S c h e m e  P r o g r a m s  

We have seen how interprocedural analysis is used in Parcel to assess the 
dependence structure and object lifetimes of a Scheme program. In this 
section we will see how the compiler puts this information to use in re- 
structuring the program for execution on a shared-memory multiprocessor. 
Our assumptions concerning the target architecture will be few: we will 
envision it as a number of identical processors sharing a memory. In [3], 
the individual transformations that  are discussed below, were presented in 
their technical details, in terms of the control flow and dependence graphs 
that  might be manipulated by a compiler. Here, the goal will instead be to 
portray the compilation process in its entirety. We will proceed by following 
several example programs, as they are subjected to the restructuring trans- 
formations of Parcel, and we will concentrate upon the intuition underlying 
each transformation, its contribution to the shaping of the program for ef- 
ficient, parallel execution. The figures in the text below are produced by 
Parcel, and are simply human-readable renderings of the compiler's data 
structures, depicted at intervals during compilation, with the goal of pro- 
viding "snapshots" of the restructuring process. 

Quicksort seems an ideal algorithm with which to introduce the transfor- 
mations performed by Parcel, for the reason that  it is probably familiar to 
the reader, it performs some simple but representative list manipulations, 
and it includes a tail-recursive procedure that  will serve to introduce Par- 
cel's t reatment of iterative computation. It is necessary to see how iterative 
computat ion is treated, before we can move to Parcel's t reatment of recur- 
sive (not merely tail-recursive) computation. Parcel has been designed to 
be an optimizing compiler for parallel shared memory architectures, and not 
merely a compiler that  detects parallelism; in the restructuring of quick- 
sort, we will see a variety of transformations of which it is capable, that  
contribute to the speed of the object codes it produces, but which are not 
parallelizing transformations per se. 
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(define sortby 
(lambda (f i) 

(if (null? i) 
,() 
(let 

((1-and-r (splitby f (cdr l) (car l) 
(append 

(sortby f (car 1-and-r)) 
(list (car 1)) 
(sortby f (cdr 1-and-r))))) )) 

(define splitby 
(lambda (f x partition left right) 

(cond ((null? x) (cons left right)) 
((> (f partition) (f (car x))) 
(splitby f (cdr x) partition 

(cons (car x) left) right)) 
(#t 
(splitby f (cdr x) partition 

left (cons (car x) right)))))) 
(sortby id (read)) 

Figure 51: Quicksort 

,()  , ( ) ) ) )  

3.1 The Program Representation 

The compiler begins with the definition of quicksort given in Figure 51. 
The algorithm consists of two procedures, s o r t b y  and s p l i t b y ,  s o r t b y  
takes a procedure f and a list l ,  and produces a sorted list. The procedure 
f,  when applied to an element' of l ,  is expected to return a number; this 
value is used to compare the element to other elements of 1. If 1 is a list 
of numbers, then the identity procedure may be used; in this example, it 
is assumed that  such is the list read from input (via read),  and thus f is 
given the value id  (the identity procedure) by the top-level invocation of 
so r tby ,  s p l i t b y  divides a list x into two lists, l e f t  and r i g h t ,  of those 
elements less than  the parti t ion element, and those greater than or equal 
to the parti t ion element, respectively. The parameters l e f t  and r i g h t  are 
initially null; at each recursive invocation of s p l i t b y ,  the first element of x 
is added either to the head of l e f t  or r i g h t ,  s o r t b y  uses s p l i t b y  to effect 
one such division of l ,  using the first element of i as the partition. It then 
applies itself recursively to the two resulting sublists, and concatenates the 
sorted results, placing the parti t ion element between them. 

Parcel treats a core subset of Scheme that  includes only a handful of 
special forms: lambda, de f i ne ,  cond, s e t ! ,  etc. All other special forms 
that  are visible to the user are provided as macros. The version of the 
example program that  is actually parsed by Parcel is therefore the macro- 
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(define sortby 
(lambda (f l) 

(cond 
( (null? i) 

' ( )  ) 
( #t 

( (lambda (1-and-r) 
(append 

(sortby f (car 1-and-r))  
(list (car i)) 
(sortby f (cdr 1-and-r))) ) 

(splitby f (cdr i) (car i) '() '()) ) 
) ) )) 

(def ine  s p l i t b y  
(lambda (f  x p a r t i t i o n  l e f t  r i g h t )  

(cond 
( (null? x) 

(cons left right) ) 
( (> (f partition) (f (car x))) 

(splitby f (cdr x) partition 
(cons (car x) left) right) ) 

( #t 
(splitby f (cdr x) partition 

left (cons (car x) right)) ) ) )) 
(sortby id (read)) 

Figure 52: Quicksort Program, after Macro-Expansion 

expanded version of Figure 52. Only a few changes have occurred in the 
definition of sor tby :  an i f  form has been rewritten as a cond, and a l e t  
has been expanded into a nested lambda expression, in the usual way. 

From here, the compiler begins its work. It will first parse the program, 
and rewrite it in a language similar to £, as defined in Section 2. See Fig- 
ures 53 and 54. Alas, we have left the orderly world of Scheme syntax, and 
entered the murky realm of compiler data structures made manifest by a 
simple pretty-printer. There are four lambda expressions depicted in this 
figure, and the compiler has named them $-$, $ - $ - s p l i t b y ,  $ -$ - so r t by ,  
and $-$-sor tby-~. .  There are two lambda expressions known to the com- 
piler, that  are not written explicitly by the user, but are part of every 
program; these are called $ and $-$. $ is the outermost lambda expression, 
by which, conceptually, the globally defined variables made available by 
the system to the programmer, are bound. For example, car,  cdr, append, 
and c a l l / c c  are bound by $. The action of $ is to apply $-$, which is the 
lambda expression that  represents the top level of the user's program, and 
by which, conceptually, all of his top-level variables are bound. $ is not 
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depicted here, because it is boring and will remain so throughout  compila- 
tion. The compiler constructs the name $ - $ - s o r t b y - ~  by concatenation of 
the name of the containing lambda expression ($ -$ - so r tby )  with the suffix 
-~, in the hope that  the name will be suggestive of the lexical position of 
the inner lambda expression. 

There is, visible to the compiler but not to the user, an environment 
which surrounds that  of $, called the n i l  environment. The environment 
of $ and the n i l  environment are identical, except that  variables in the n i l  
environment cannot be altered by the user program, while, for example, 
the user may write ( s e t !  ca r  c a l l / c c )  and affect the definition of car  
that  is used by his code (that is, the variable car  bound by $). The n i l  
environment simply permits the compiler to refer to top-level variables 
without worrying that  the user will clobber their values. 

Consider the definition of $-$. The syntax 

(lambda () <sortby splitby t-56 t-57> ... ) 

means that $-$ is a lambda expression of no arguments, that has four local 
variables (sortby, splitby, t-56 and t-57). Its action is to form closures 
of $-$-sortby and $-$-splitby, to call read to fetch a list of numbers, 
to apply sortby to this list, and to return the result. The formation of 
a closure of $-$-sortby will be denoted as #<$-$-sortby>, and likewise 
for lambda expressions by other names. It makes for easier reading, if we 
concentrate upon one lambda expression at a time, and summarize nested 
ones in this way; the compiler, too, treats the program one lambda expres- 
sion at a time. The closures of $-$-sortby and $-$-splitby are passed to 
the procedure id before being assigned into a variable for the reason that 
every expression treated by the compiler, through most of the restructuring 
phase of compilation, is of the form (set! 1 (f a b ... c)) wherel, f, 
a, b and c are variables, constants or closures, but not further applications 
or special forms. The resemblance to the language /~ of Section 2 should 
be clear. 

Let us move on to $-$-splitby. It has a long list of local variables, 
all compiler-generated temporaries. There are many intrinsic procedures 
applied here (car, cdr, cons, >, null?), but at this point the compiler 
does not know that such intrinsics are being applied; it sees only references 
to variables bound by $, and as we mentioned, the user may modify such 
variables. After parsing the program, the compiler launches into an inter- 
procedural analysis based upon the techniques of Section 2, and after this 
analysis, it will be aware that  the variable car  has the procedure car  as 
its value, at all points within $ - $ - s p l i t b y ,  and its representation of the 
program will change to reflect this knowledge: the reference to the variable 
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($-$ = 

(lambda () 
<sortby s p l i t b y  t-56 t-57> 
(set!  sor tby (id #<$-$-sortby>)) 
(set!  s p l i t b y  (id #<$-$-spl i tby>))  
(set!  t-57 (read)) 
(set! t-56 (sortby id t-57)) 
(return t-56) )) 

($-$-splitby = 
(lambda (f x partition left right) 

<t-44 t-45 t-46 t-4T t-48 t-49 t-50 t-51 t-52 t -53 t-54 t-55> 
(set!  t-45 (nul l?  x)) 
(cond 

( t-45 
(set!  t-44 (cons l e f t  r i g h t ) )  ) 

( else 
(set! t-47 (f partition)) 
(set! t-49 (car x)) 
(set! t-48 (f t-49)) 
(set!  t-46 (> t-47 t -48))  
(cond 

( t-46 
(set!  t-50 (cdr x)) 
(set!  t-52 (car x)) 
(set! t-51 (cons t-52 left)) 
(set! t-44 (splitby f t-50 partition t-51 right)) ) 

( else 
(set! t-53 (cdr x)) 
(set! t-55 (car x)) 
(set! t-54 (cons t-55 right)) 
(set! t-44 (splitby f t-53 partition left t-54)))))) 

(return t-44) )) 

Figure 53: The Initial Representation of Quicksort (Part 1) 
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($-$-sortby = 
(lambda (f i) 

<t-25 t-26 t-27 t-28 t-37 t-38> 
(set! t-26 (null? i)) 
(cond 

( t-26 
(set! t-25 (id ~()))) 

( else 
(set! t-27 (id #<$-$-sortby-~>)) 
(set! t-37 (cdr i)) 
(set! t-38 (car i)) 
(set! t-28 (splitby f t-37 t-38 '() '())) 
(set! t-25 (t-27 t-28)) ) ) 

(return t-25) )) 
($-$-sortby-~ = 

(lambda (1-and-r) 
<t-30 t-31 t-32 t-33 t-34 t-35 t-36> 
(set ! t-34 (car 1-and-r)) 
(set! t-31 (sortby f t-34)) 
(set! t-35 (car i)) 
(set! t-32 (list t-35)) 
(set ! t-36 (cdr 1-and-r)) 
(set! t-33 (sortby f t-36)) 
(set! t-30 (append t-31 t-32 t-33)) 
(return t-30) )) 

Figure 54: The Initial Representation of Quicksort (Part 2) 
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car  will be replaced by a reference to the "constant" (procedure) car. The 
same applies to all applications of intrinsic procedures within the program. 
Unfortunately, our printed representation of the compiler's data structures 
will not reflect this fact, but we will be clear about the meaning of such 
intrinsics when it is important  to the discussion. 

$ - $ - s o r t b y  and $ - $ - s o r t b y - ~  are two procedures (and not one) only 
because of the definition of l e t ,  and not because there is a compelling 
reason for the computat ion to be divided, interprocedurally, in this way. 
The recursive calls to $ - $ - s o r t b y  occur within $ -$ - so r tby -~ .  There are 
several transformations within Parcel that  apply only to self-recursive pro- 
cedures (procedure that  invoke themselves directly). An artificial procedure 
boundary such as exists between $ - $ - s o r t b y  and $ - $ - s o r t b y - ~  is an im- 
pediment to such transformations. We will return to this momentarily. 

The first action of the compiler, once having built a representation of 
the source code, is to perform an interprocedural analysis based upon the 
results of Section 2. Let us assume therefore, that  the analysis has been 
performed, and that  for every expression of the program we have a def and 
use set; that  is, a set of mutable quantities that  may be defined and used 
as a result of evaluating the expressions. These sets will reflect both the 
local (visible) and interprocedural (remote) side-effects of the expression. 
(We are using side-effect here as per Definition 1.) 

3.2 Preparatory Optimizations 

Before restructuring the program for parallel execution, Parcel a t tempts  
to reorganize the computat ion to facilitate the discovery of parallelism, and 
to perform any traditional optimizations that  are not at odds with the aim 
of automatic parallelization. The goals of this preparatory restructuring 
are straightforward: to eliminate spurious or artificial dependences, to en- 
hance the visibility of the computat ion to the compiler, and generally to 
reduce and simplify the code without introducing additional dependences. 
From every procedure of the program, Parcel generates two versions: a se- 
quential and a parallel (we will return to this). The preparatory phase of 
optimization is designed to be consistent with both; therefore the version 
of each procedure that  emerges from this phase serves as the starting point 
for further refinement into both the parallel and sequential versions. 

This phase of optimization is organized as a battery of individual op- 
timizations which are applied to the program repeatedly, until no further 
improvements occur. This organization was chosen because the application 
of one transformation may create conditions that  enable another, and so 
on; we wish to allow such propagation of transformations to occur until the 
program stabilizes into a fixpoint. We have not a t tempted to demonstrate 
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($-$-sortby = 
(lambda (f i) 

<t-25 t-26 t-27 t-28 l-and-r t-30 t-31 
t-32 t-33 t-34 t-35 t-36 t-37 t-38> 

(set! t-26 (null? i)) 
(cond 

( t-26 
(set! t-25 '()) ) 

( else 
(set! 
(set! 
(set! 
(set! 
(set! 
(set! t-31 
( s e t !  t - 3 5  
(set! t-32 
(set! t-36 
(set! t-33 
(set! t-30 
(set! t-25 t-30) 

(return t-25) )) 

t-37 (cdr I)) 
t-38 (car I)) 
t-28 (splitby id t-37 t-38 ' () 
l-and-r t-28) 
t-34 (car 1-and-r)) 

(sortby id t,-34)) 
(car I)) 
(list t-35)) 
(cdr 1-and-r)) 
(sortby id t-36)) 
(append t-31 t-32 t-33)) 

)) 

' ( ) ) )  

Figure 55: $-$-sortby-~ is Merged into $ - $ - s o r t b y  

formally that  such a fixpoint must be reached, but it is not difficult to 
reason informally about the interaction between transformations, and to 
arrange for a monotonicity in their net effect upon the program. 

3.2.1 Contour Merging 

Whenever it is possible to do so without an increase in the program size, 
Parcel expands procedures in-line. This means, in essence, that  a closure 
that  is applied in only one place, is open-coded at that  single point of ap- 
plication, provided that  the lexical environment at the point of application 
contains all of the variable bindings that  occur free in the closure. This op- 
t imization is called contour merging, for the reason that  it eliminates the 
needless lexical contours that  arise from the use of l e t ,  l e t * ,  l e t r e c  and 
other binding forms. As we will see, when it is applied more generally than 
to the mere elimination of lexical contours, it is quite a powerful tool for 
enhancing the visibility of computat ion to the compiler, and for allowing 
optimizations to be applied to larger units of computation.  It is easy to 
formulate a general test for the legality of contour merging in terms of the 
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stack configurations computed during interprocedural analysis. Intuitively, 
if each free variable of the closure makes no net  (upward or downward) 
movements with respect to the procedure that  binds it, from the point 
where it is bound to the point of application of the closure in which it 
occurs free, and if the free variable is in the lexical scope at the point of 
application, then the procedure may be expanded in-line at the point of ap- 
plication, as all of its free variable references will be to the correct bindings. 
When we say that  a variable is "in the lexical scope" at a certain point, we 
are ignoring the possibility that  it is shadowed by another variable of the 
same identifier. Parcel pays no attention to the identifiers associated with 
variables once the program has been parsed: it considers a variable to be 
in the lexical scope at a point in the program, if it is bound by a lambda 
expression that  surrounds that  point, textually. In effect, all variables are 
renamed to unique identifiers when the program is parsed. 

To return to our example, Parcel discovers that  the above condition ap- 
plies (trivially) to the procedure $ - $ - so r t by -~ ,  and the procedure is ex- 
panded in-line at the point of its application. See Figure 55. The compiler 
has also applied dead code elimination, and so has deleted the formation of 
the closure of $ -$ - so r t by -~ .  That  is, the definition of t - 2 7  in Figure 54 
is discovered to be useless and is eliminated. 

Let us be more formal about the condition under which contour merging 
is correct, since it is a very useful transformation. Assume that  we have 
performed interprocedural analysis using C5 or E7 as defined in Section 2, 
and let ~ be an (abstract) closure. Suppose that  i is a free variable instance 
in ~, and let 15 be the stack configuration that  describes the movements 
that  ~ makes between the point at which it is instantiated, and a point 
of application of ~. If 15a = {e} where x is bound by As (and if x is in 
the lexical scope at the point of application), then the same instance of 
x is visible at the points at which ~ is closed and applied. If this is true 
of every free variable instance in ~, then it may be expanded in-line at 
the point of application. Of course, the compiler must also determine that  
there is but one lambda expression applied at this point. This information 
is available directly from the results produced by £5 and ~7: an abstract 
closure is represented as a set of lambda expression indices, and a function 
from variables to stack configurations; if the former has only one member, 
then it represents (concrete) closures of only one lambda expression. 

There is a simple but important  special case of this test: if ~ is closed at 
the top level of the program, that  is, directly within the lambda expression 
$ or $-$, then all of its free variables will be bound by by $-$ or $, and we 
will always have that  15a = {c} for every free variable x in 5. Therefore 
can be in-lined at any point where it is applied. 
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($-$-splitby = 
(lambda (f x partition left right) 

<t-44 t-45 t-46 t-47 t-48 t-49 t-50 t-51 t-52 t-53 t-54 t-55> 
(exit-block 

(repeat 
(cond 
(x 

(set! t-48 (car x)) 
(set! t-46 (> partition t-48)) 
(cond 

( t-46 
(set! t-52 t-48) 
(set! left (cons t-52 left)) ) 

( else 
(set! t-55 t-48) 
(set! right (cons t-55 right)) ) ) 

(set! x (cdr x)) ) 
( else 

(go 1-74:) ) )) 
(1-74: (set! t-44 (cons left right)) (return t-44))) )) 

Figure 56: Tail-Recursion is Eliminated from $-$-splitby 

3.2.2 Tail-Recursion Elimination 

We would like to see the procedure call to $-$-splitby within $ -$ - so r tby  
disappear by contour merging, but it won't happen so easily, for $ - $ - s p l i t b y  
is recursive, and therefore in-lining it at all its points of application would 
be a (serious) violation of our rule against increasing the program size. 
However, the compiler discovers that the procedure is tail-recursive, and 
transforms it into a loop. See Figure 56. The syntax of this figure requires 
some explanation. An expression of the form 

(exit-block EXPR 

(LI:  A1 A2 " ' )  
( L 2 : B 1  B2 "" )  

(Ln: Zl Z 2 - ' - ) )  

indicates that EXPR will contain branches (go forms) to the labels L1 through 
Ln. When such a go form is evaluated, the expressions following the target 
label are evaluated from left to right, and control leaves the e x i t - b l o c k  
form. An expression of the form ( repea t  EXPR) indicates that EXPR is 
evaluated repeatedly; the repetition ceases only by an explicit branch out 
of the r epea t  form. 
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We will return shortly to the conditions under which tail-recursion elimi- 
nation is correct. The mechanics of the transformation once it is determined 
to be applicable, are simple: each of the parameters is assigned the value 
to which it would be bound on a tail-recursive call, and a branch is made 
to the top of the procedure. Some temporary variables may be needed 
to effect this updating of the parameters. The reader may have noticed 
several subtle optimizations performed by the compiler in producing the 
code of Figure 56. First, the naive translation of tail-recursion would have 
produced some vacuous assignments to the effect of ( s e t !  l e f t  l e f t )  
and ( se t !  r i g h t  r i g h t ) ,  but these have been cleaned up following the 
transformation. The danger of such an assignment, is that  it may cre- 
ate the appearance that  l e f t  or r i g h t  is conditionally computed (within 
an if-s tructure) ,  whereas its value is actually unchanged. In the case of 
this procedure, no such spurious dependence would result, because l e f t  
and r i g h t  really a r e  conditionally dependent upon t -46.  In any event, 
it seems prudent to delete useless code early, before it is transformed into 
something that  the compiler is unable to eliminate. 

The second optimization that  has been performed, is the "floating" of 
the invariant expression (ca r  1) out of the inner cond expression. This 
expression is computed along both paths of the cond form, and is therefore 
not conditionally dependent upon t -46.  Similarly, the expression ( s e t  ! x 
(cdr  x))  was found on both branches of the inner cond after tail~recursion 
elimination, and was therefore floated out of the conditional block. The 
variable t - 4 6  is dependent upon x (via t - 4 8  and p a r t i t i o n ) .  If we did 
not float the expression ( s e t !  x (cdr  x))  out of the inner cond form, it 
would appear that  x was conversely dependent upon t -46.  This additional 
dependence would prevent the compiler from parallelizing the computat ion 
of both the values of x and the values of t -46 ,  whereas we will see below 
that,  having performed this transformation, both of these computations 
may be made parallel. 

The conditional branch on t - 4 5  (the value of which was ( n u l l ?  x)) 
has been replaced by a conditional branch, with the logical sense reversed, 
on the variable x. When it is considered that  n u l l ?  is, effectively, boolean 
negation 22 this transformation is seen to be very simple. We emphasize that  
this transformation is triggered not by an occurrence of the variable n u l l ? ,  
the value of which can be overwritten by the user; rather, interprocedural 
flow analysis has revealed that the intrinsic procedure n u l l ?  is applied in 
computing t -45.  The outcome would have been the same if the user had 
assigned the procedure n u l l ?  into the variable c a l l / c c ,  and had written 
( c a l l / c c  x) as the exit condition. 

22As of [41], the empty list and boolean false (#f) may be treated as indistinguishable 
by an implementation of Scheme. 
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(define fact (lambda (n k) 
(if (= n O) 

(k i) 
(fact (i- n) 

(lambda (m) (k (* m n))))))) 

Figure 57: A Continuation-Passing Version of Factorial 

Finally, the compiler has recognized that  f has as its value the identity 
procedure (id),  and it therefore treats applications of f as simple (identity) 
assignments, and eliminates them where they are superfluous. Assignments 
of the form ( s e t  ! a b) in the printed representation of the compiler's data 
structures are, internally, expressions of the form ( se t !  a ( id  b) ) ,  where 
id  represents not the identifier id  but the procedure id  (a constant). The 
pretty-printer produces the simpler form, when it sees an application of the 
identify begin. 

Tail-recursion elimination, as we have described it, cannot be applied to 
every procedure that  is determined to be tail-recursive by the compiler. For 
example, consider the familiar continuation-passing version of f a c t ,  shown 
in Figure 57. This procedure is arguably tail-recursive, but it is incorrect to 
rewrite it as a loop in which n is updated to have the value (1- n),  and in 
which k is repeatedly assigned to (exactly) the same closure: (lambda (m) 
(k (* m n ) ) ) .  The result would be an infinite loop for ( f a c t  x) where 
x is greater than zero, because k would be made a recursive procedure 
with no exit condition. The problem is obviously that  variable binding and 
assignment have meanings that  are not, in general, interchangeable. 

Under what conditions can tail-recursion elimination be performed? To 
re-use the location to which a variable instance is bound, it must be that  
the instance is no longer needed. Since we would re-use the locations asso- 
ciated with the parameters and local variables of a procedure upon every 
tail-recursive call to the procedure, we require that  the lifetimes of these 
variables be restricted to the time between the point at which the proce- 
dure is invoked, and the point at which it invokes itself tail-recursively (or 
returns). In other words, considering the procedure as a loop, we require 
that  the lifetimes of its bound variables be restricted to a single iteration 
of the loop. As in the case of contour merging, this condition can be neatly 
expressed in terms of the stack configurations computed by the interpro- 
cedural analysis described in Section 2. The condition may be stated this 
way: let As be the tail-recursive procedure under consideration, let ± be 
an instance of a variable bound by As, and let 5 be an (abstract) closure 
in which ± occurs free. Let 15 be the stack configuration that  describes the 
interprocedural movements made by ± from its point of instantiation to a 
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( $ -$ - so r tby  = 
(lambda (f  l )  

<t-25 t -26  t -27  t -28  1-and- r  t -30  t -31 
t -32  t -33  t -34  t -35  t -36  t -37  t-38> 

(cond 
( 1  

( se t !  
(set! 
(set ! 
(set ! 
(set ! 
(set! 
(set ! 
(set ! 
(set ! 
(set ! 

( else 
(set ! 

(return 

t-37 (cdr i)) 
t-38 (car i)) 
l-and-r (splitby id t-37 t-38 '() 
t-34 (car 1-and-r)) 
t -31 
t -35  
t -32  
t -36  
t -33  
t -25  

(#self-closure# id t-34)) 
t-38) 
(list t-35)) 
(pcdr 1-and-r)) 
(#self-closure# id t-36)) 
(append t-31 t-32 t-33)) 

t - 25  ' ( ) )  ) ) 
t - 2 5 )  ) ) 

' ( ) ) )  

Figure 58: A Common Subexpression is Eliminated in $ - $ - s o r t b y  

point at which it is referenced within 5. If ~a = {c}, then this reference 
occurs while the instance of )~s that binds ± is still active, for otherwise, 
by Theorem 21, iba would contain one of u, uu  + or u+d  +. Furthermore, 
at the point of reference to ±, no additional instances of As are active (for 
otherwise ~ba would contain one of d or dd  +). If this condition holds for 
all variables bound by As, and for every closure in which those variables 
occur free, then we may perform tail-recursion elimination in confidence 
that, at the point where they would be re-bound by a tail-recursive call, 
the parameters and local variables of the tail-recursive procedure are dead 
and may overwritten instead. 

3.2.3 Common Subexpression Elimination 

In Figure 55, the expression (car  l )  is computed into both t -38  and 
t-35.  The compiler remedies this by eliminating one of the computations, 
and replacing references to t -35  by references to t -38.  See Figure 58. This 
leaves the identity assignment ( se t !  t -35  t -38)  which is eliminated by 
forward substitution shortly. 

The conditions under which common subexpression may be eliminated 
are a bit slippery, and do not lend themselves as easily to specification in 
terms of stack configurations. To be sure, the analysis of Section 2 permits 
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us to show easily that  expressions have no side-effects, and this is a neces- 
sary for common subexpression elimination. Unfortunately it is not suffi- 
cient. Consider two occurrences of the expression (cons a b). Although 
they are identical and have no side-effects (in the sense of Definition 1), 
the semantics of eq? dictate that  they remain as distinct applications of 
cons, if it is possible that  their results will be compared using eq?, or if 
they might be updated using s e t - c a r !  or s e t - c d r ! .  As another example, 
consider the procedure 

(define f (lambda (x) (lambda (y) (set! x (+ x y))))). 

The procedure f (that is, the outer lambda expression) is side-effect free, 
but two identical invocations of it must not be treated as common subex- 
pressions, because they create distinct instances of x. The test for the 
legality of common subexpression elimination must therefore include a cri- 
terion for the "exact equivalence" of two subexpressions, that  accounts for 
such circumstances. In short, if the evaluation of a subexpression results in 
the creation of new data  objects, and the objects created in one evaluation 
are discernible from those created in another evaluation, then to replace 
several (lexical) instances of the expression with one is incorrect, even if 
the expression is free of side-effects (by Definition 1). 

The version of $ - $ - s o r t b y  in Figure 58 has a few peculiarities. First, the 
recursive calls to sortby have been replaced by the forms ( # s e l f - c l o s u r e #  
id  t - 3 4 )  and ( # s e l f - c l o s u r e #  id  t - 36 ) .  As mentioned above, several 
transformations performed by Parcel apply only to self-reeursive lambda 
expressions: closures which make applications of themselves (the same 
lambda expression, the same environment). We see, in the printed rep- 
resentation of the compiler's data  structures, the symbol # s e l f - c l o s u r e #  
when it has discovered a recursive procedure invocation that  satisfies these 
conditions, and that  occurs directly within the body of the procedure (not 
within another, lexically contained, lambda expression). Such an appli- 
cation may be considered when performing tail-recursion elimination, re- 
cursion splitting (to be introduced below) and other transformations that  
apply only to self-recursive procedures. The requirement that  the recursive 
application occur directly within the body of a procedure, and not within a 
lexically contained procedure, increases the importance of contour merging. 

The expression (cdr  1 -and- r )  in Figure 55 has been rewritten as (pcdr  
1 -and- r )  in Figure 58. Parcel's run-time system makes use of some un- 
usual list representations; we will return to this later. Among these rep- 
resentations is one using which it is less costly to take the cdr  of a list 
that  is known to be null-terminated (a proper list) than one which may be 
non-null-terminated (an improper list). In this case, the compiler discov- 
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ers that l-and-r is always a proper list, since the variable right within 
$-$-sortby is always a proper list, and it replaces the application of the 
more general intrinsic procedure cdr with one of the intrinsic procedure 
pcdr, that applies only to proper lists. This is, in effect, a reduction in 
strength [i0]. 

3.2.3 More Contour Merging 

Once it has rewritten the tail-recursive procedure $ - $ - s p l i t b y  in itera- 
tive form, the compiler is able to expand it in-line, at its point of application 
within $ - $ - s o r t b y ,  for the reason that  there is now but one application of 
$ - $ - s p l i t b y  in the program. See Figure 59. 

We skip now to the version of the program that emerges from the prepara- 
tory restructuring phase we have been discussing; this version is presented 
in Figure 60. The benefits of iterative application of tail-recursion and con- 
tour merging, among the other preparatory transformations, now become 
apparent. First, the variable 1 -and- r ,  which previously held the cons cell 
that  paired the two sublists returned by $ - $ - s p l i t b y ,  is gone entirely. 
The method of the compiler is apparent from Figure 59. The variable t - 4 4  
is assigned the pair of l e f t  and r i g h t ,  and this pair becomes the value 
of 1 -and- r .  Immediately afterwards, t - 3 4  is assigned the car  and t - 3 6  
the cdr  of this pair. The compiler first replaces the right-hand sides of 
these assignments by l e f t  and r i g h t ,  respectively, and then discards the 
assignment to l-and-r as dead code. 

Finally, the temporaries t-52 and t-55, which were used in the iterative 
computation of left and right, have been eliminated by forward substi- 
tution. The result is a very clean organization of the quicksort algorithm, 
that is ideal both for compilation into sequential form, and for further re- 
structuring into parallel form. Parcel does just this: the version of the 
program in Figure 60 is subjected to two distinct sets of transformations, 
one of which leads to an optimized sequential version of the program, the 
other which leads to an optimized parallel version. The run-time system 
makes use of these two versions, so that additional parallel activity can be 
created when the machine is underutilized, on the one hand, while allowing 
each processor to execute an optimized, sequential version of the code when 
adequate parallelism exists, on the other hand. We will follow the progress 
of the program, as it is restructured by Parcel into parallel form. 

3.3 Exit-Loop T r a n s l a t i o n  

Parcel has two central algorithms for automatic parallelization: exit-loop 
translation and recursion splitting. In fact, recursion splitting includes exit- 
loop translation as a subalgorithm, as we will see when we consider another 
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( $ - $ - s o r t b y  = 
(lambda (f  i) 

<t-25 1-and- r  t -31  t -32  t -33  t -34  t -35  t -36  t -37  t -38  
f x partition left right t-44 t-46 t-48 t-52 t-55> 
(cond 

(1 
(set! t-37 (cdr i)) 
(set! t-38 (car I ) )  
(set! fid) 
(set! x t-37) 
(set! partition t-38) 
(set! left '()) 
(set! right '()) 
(exit-block 

(repeat 
(cond 

(x 
(set! t-48 (car x)) 
(set! t-46 (> partition t-48)) 
(cond 

( t -46  
(set! t-52 t-48) 
(set! left (cons t-52 left)) ) 

( else 
(set! t-55 t-48) 
(set! right (cons t -55  right)) ) ) 

(set! x (cdr  x))  ) 
( else 

(go 1-74:) ) )) 
(1-74: 

(set! t-44 (cons left right)) 
(set! l-and-r t-44) 
(set! t-34 (car 1-and-r)) 
(set! t-31 (#self-closure# id t-34)) 
(set! t-35 t-38) 
(set! t-32 (list t-35)) 
(set! t-36 (pcdr 1-and-r)) 
(set! t-33 (#self-closure# id t-36)) 
( s e t !  t -25  (append t-S1 t-32 t-33)))) ) 

( else 
( se t !  t-25 ' ( ) )  ) ) 

( r e t u r n  t -25 )  )) 

Figure 59: $ -$ - sp l i tby  is Merged into $-$-sortby 
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($-$-sortby = 
(lambda (f i) 

<t-25 t-31 t-32 t-33 t-38 x left right t-46 t-48> 
(cond 

(l 
(set! t-38 (car I)) 
(set! x (cdr i)) 
(set! left '()) 
(set! right '()) 
(exit-block 

(repeat 
(cond 

(x 
( s e t !  t -48  (car  x))  
( s e t !  t -46  (> t -38  t - 48 ) )  
(±f 

t -46  
( se t !  l e f t  (cons t -48  l e f t ) )  
(set! right (cons t-48 right))) 

(set! x (cdr x)) ) 
( else 

(go 1-25:) ) )) 
(I-25: 

(set! t-31 (#self-closure# id left)) 
(set! t-32 (list t-38)) 
(set! t-33 (#self-closure# id right)) 
(set! t-25 (append t-31 t-32 t-33)))) ) 

( else 
( se t !  t -25  ' ( ) )  ) ) 

(return t -25)  )) 

Figure 60: The Quicksort Program, after Preparatory Transformations 
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example program, below. We concentrate first upon exit-loop translation. 
These transformations are presented in [3] in terms of control flow graphs, 
and the details of the transformations as described there differ substantially 
from those that  were ultimately implemented in Parcel, although the goals 
of the transformations remain the same. During the compiler's develop- 
ment, we discovered several ways in which these transformations could be 
simplified and generalized, and in which the transformed programs could 
be made more efficient. The changes in our approach will be apparent in 
the stepwise evolution of the program depicted below. 

3.3.1 Replacing Exits with Recurrences 

We will restrict our attention to the procedure $ - $ - s o r t b y ,  as the pro- 
cedure $-$ is uninteresting and is unaffected by further transformations. 
$ - $ - s o r t b y  (as of Figure 60) contains a loop derived from $ - $ - s p l i t b y .  
This loop is like a Pascal whi le  or r e p e a t  structure, in that  the number of 
iterations to be performed is not known prior to execution of the loop, but  
is rather determined by a condition computed in every iteration. In this 
case, the exit condition is simply the variable x; when x becomes empty, the 
loop is exited by a branch to L-25. In general, such a loop might contain 
many branches which send control from the loop to various points in the 
code that  follows the loop. If we replace every such exiting branch by an 
assignment to a boolean variable that  indicates when the exit condition has 
been satisfied, then the loop may be easily rewritten as a whi le  loop. 23 

See Figure 61. Again, there is some new syntax to explain. An expression 
of the form 

(do (i n) EXPR) 

denotes a loop in which EXPR is evaluated n times, and i assumes the 
values 0 to n-1 in successive iterations. That  the number of iterations (n) 
is replaced in Figure 61 by ?? indicates that  the compiler is manipulating a 
do loop for which there is, as yet, no expression for the number iterations. 

The variable t - 5 9  is initialized to false (#f) before this loop begins, and 
remains false until the original loop would have been exited. In place of 
the exit branch from the loop, the compiler has written the expression 

(set! t-59 (#or t-59 i-60)). 

For the moment, assume that the operator #or simply returns its second 
argument. We will explain its meaning more precisely below. The values 
of t - 5 9  after every iteration of the loop describe a sequence of the form 

23In general, we will have to record which branch was taken in exiting the loop, and 
perform a multiway branch after the derived whi le  loop is performed, to simulate the 
action of exiting the original loop. 
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($-$-sortby = 
(lambda (f I) 

<t-25 t-31 t-32 t-33 t-38 x left right t-46 t-48 t-59 i-60> 
(cond 

(i 
(set! t-38 (car I)) 
(set! x (cdr I)) 
(set! left '()) 
(set! right '()) 
(set! t-59 #f) 
(do 

(i-60 ?7) 
(cond 

(x 
(set! t-48 (car x)) 
(set! t-46 (> t-38 t-48)) 
(if 
t-46 
(set! left (cons t-48 left)) 
(set! right (cons t-48 right))) 

(set! x (cdr x)) ) 
( else 

(set! t-59 (#or t-59 i-60)) ) )) 
(set! t-31 (#self-closure# id left)) 
(set! t-32 (list t-38)) 
(set! t-33 (#self-closure# id right)) 
(set! t-28 (append t-31 t-32 t-33)) ) 

( else 
(set! t-25 '()) ) ) 

(return t-28) )) 

Figure 61: Exit Branches are Eliminated from $ - $ - s o r t b y  
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#f, #f, ... #f, N 

where there is one #f for every iteration that  would be performed by the 
loop of Figure 60. In short, exit-loop translation works by reorganizing the 
computat ion such that  the sequence of values assigned to t - 5 9  is computed 
in parallel, and that  the first non-#f value within this sequence is located, 
also in parallel. This value is the number of iterations of the loop; call 
this number N. It then reorganizes the rest of the loop (the portion of the 
loop that  has nothing to do with t -59)  into a conventional do structure, 
the number of iterations of which is N. This do loop is subjected to fur- 
ther parallelizing transformations, that  are applicable only to loops whose 
number of iterations is computed prior to their execution. 

Of course, the procedure of Figure 61 is not yet a legal translation of 
$ - $ - s o r t b y ,  since the compiler has written a do loop for which the num- 
ber of iterations is unknown. It must be remembered that  these figures 
provide windows into the restructuring process, and in the case of exit- 
loop translation, the transformed loop must pass through some awkward 
intermediate states before emerging as a finished product. We will try 
to augment the printed representations of these intermediate states with 
insight into their significance. 

3.3. 2 Variable Expansion 

The first thing to be done is to isolate the computat ion within the loop 
that  is relevant to the variable t -59;  to do this in turn  requires several steps. 
The compiler first applies variable expansion [47, 3] to every variable that  
is computed within the loop. Variable expansion, or scalar expansion as 
it is usually called in the literature on vectorization of Fortran, is, roughly 
speaking, a technique whereby N assignments to a single location replaced 
by N assignments into a vector of length N. There are several reason for 
such a transformation. First, if N processors are, ultimately, to compute 
the N values assigned to a variable within a loop simultaneously, there must 
be N memory locations into which they may write their results; variable 
expansion provides these N locations, where there was merely one location 
previously. Second, after this transformation, the value of a variable at 
every point during the loop's execution will be recorded in a vector. We may 
therefore break the transformed loop into one which contains the definitions 
of the variable, and others which make use of the variable, since these uses 
will have been replaced by references into the vector. We will see an example 
of such a division of a loop, shortly. 

See Figure 62. More explanations of syntax are due. The notation x [±. j ] 
indicates the value of the expanded variable x after the jth assignment 
during the i th iteration of the loop. x [±. 0] is therefore the value of x before 
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($-$-sortby = 
(lambda (f i) 

<t-25 t-31 t-32 t-33 t-38 x left right t-46 t-48 t-59 i-60> 
(cond 

(i 
(set! t-38 (car I)) 
(set! x (cdr i)) 
(set! left '()) 
(set! right '()) 
(set! t-59 #f) 
(do (i-60 ??) 

(cond 
( x [i-60. O] 

(set! t-48[i-60.i] (car x[i-60.O])) 
(set! t-46[i-60.I] (> t-38 t-48[i-60.I])) 
(cond 

( t-46 [i-60. i] 
(set! left [i-60.I] 

(cons t-48 [i-60. I] left [i-60. O] ) ) 
(set 

( else 
(set 

(set 

right [i-60. i] right [i-60. O] ) ) 

right [i-60, I] 
(cons t-48 [i-60. i] right [i-60. O] ) ) 
left [i-60.I] left [i-60.0]) ) ) 

(se t !  x [ i -60 .1 ]  (cdr x [ i - 6 0 . 0 ] ) )  
( se t !  t - 5 9 [ i - 6 0 . 1 ]  t - 5 9 [ i - 6 0 . 0 ] )  ) 

( else 
(set! t-59[i-60.i] (#or t-59[i-60.0] i-60)) 
(set! x[i-60.1] x[i-60.O]) 
(set ! left [i-60. i] left [i-60. O] ) 
(set! right[i-60.1] right[i-60.O]) ) )) 

(set! t-31 (#self-closure# id left)) 
(set! t-32 (list t-38)) 
(set ! t-33 (#self-closure# id right)) 
(set! t-25 (append t-31 t-32 t-33)) ) 

( else 
(set! t-25 '()) ) ) 

( re tu rn  t -25)  )) 

Figure 62: Variables are Expanded in $ - $ - s o r t b y  
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any assignments occur to it, during the i th iteration. In general, along some 
path  through the body of a loop there may be several assignments (say, k of 
them) to a variable. Parcel arranges, by an algorithm described in [3], that  
the number of assignments to an expanded variable be equal along every 
path  through the body of the loop. For example, identity assignments of 
the form 

(set ! right [i-60. I] right [i-60. O] ) 

and 

(set! left [i-60.I] left [i-60.0]) 

have been added to the loop in Figure 62 in order that  there be one assign- 
ment to l e f t ,  and one to r i g h t ,  on every path  through the body of the 
loop. Therefore x [ i + l .  0] refers to the same position within the expanded 
variable x as x [ i .  k], where k is the number of assignments to x along every 
path  through the transformed loop. That  is, the value of x after the last 
assignment to it in iteration i,  is the same as its starting value in iteration 
i+ l .  There are several actions which must be taken by the code, in order 
to complete the process of variable expansion. First, the vectors into which 
the variables have been expanded must be allocated, and the first locations 
of these vectors must be assigned the initial value of the variables, prior to 
the execution of the loop. Second, after the loop has executed, the variable 
must be assigned the value of the last position of the vector (to give it the 
final value it would have had after the original loop). Some of these actions 
may not be necessary for a particular variable; for instance, a variable may 
be unused after the loop terminates. The code to perform these actions has 
not yet been added to the procedure, but will be below. 

The reader might well ask how we plan to allocate these expanded vari- 
ables (vectors) as contiguous blocks of storage, when we don't  yet know 
how many iterations the loop has, and we therefore don't  know how long 
the vector should be. Furthermore, it seems that  there is a nasty circularity 
here: we need to know N to allocate these vectors in order that  N may be 
computed. Clearly, we have some more rewriting to do~ before we arrive at 
a sensible translation of the original loop. 

3.3.3 Loop Distribution 

Consider Figure 63. The do loop of Figure 62 has been broken into 
six loops, each of which computes the values of only one of the variables 
computed in the original loop. This technique is called loop distribution 
or loop fission [47, 3]. In this transformation, variable expansion acts to 
record all the values that  are assumed by a variable during the loop, so that  
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( $ -$ - so r tby  = 
(lambda (f 1) 

<t-25 t -31 t -32  t -33  t -38  x l e f t  r i g h t  t -46  t -48  t -59  1-60> 
( c end 

( 1  
(se t !  t -38  (car  1)) 
(set! x (cdr I)) 
(set! left ' ( ) )  
(set! right '()) 
(set! t-59 #f) 
(do ( i -60  77) 

(if x [i-60.0] 
(set! x[i-60.1] (cdr x[i-60.O])) 
(set! x[i-60.1] x[i-60.O]))) 

(do (i-60 ??) 
(if x[i-60.O] (set! t-48[i-60.I] (car x[i-60.O])))) 

(do (i-60 ??) 
(if x[i-60.O] (set! t-46[i-60.I] (> t-38 t-48[i-60.I])))) 

(do (i-60 77) 
(if x [i-60.0] 

( i f  t - 4 6 [ i - 6 0 . 1 ]  
(set ! left [i-60. i] (cons t-48[i-60, i] left [i-60.0])) 
(set! left[i-60.1] left[i-60.O])) 

(set! left[i-60.1] left[i-60.O]))) 
(do (i-60 ??) 

(if x [i-60.0] 
(if t-46 [i-60. I] 

(set ! right [i-60.1] right [i-60.0] ) 
(set! right[i-60.1] (cons t-48[i-60.I] right[i-60.O]))) 

(set ! right [i-60. I] right [i-60. O] )) ) 
(do (i-60 ??) 

(if x [i-60.0] 
(set! t-59[i-60.I] t-59[i-60.0]) 
(set! t-59[i-60.I] (#or t-59[i-60.0] i-60)))) 

(set! t-31 (#self-closure# id left)) 
(set! t-32 (list t-38)) 
(set! t-33 (#self-closure# id right)) 
(set! t-25 (append t-31 t-32 t-33)) ) 

( else 
(set! t-25 ' ( ) )  ) ) 

( r e t u r n  t -25)  )) 

Figure 63: Loops are Distributed in $ - $ - s o r t b y  
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the computation of those values may be isolated from other computation 
in the loop (that may make use of these values). 

3.3.4 Reordering the Subloops 

We mentioned above that the goal of exit-loop translation is to extract 
that portion of the loop that is pertinent to the computation of its exit 
condition, so that we might determine the number of iterations of the loop. 
In the case of our example, this may be restated as the portion of the loop 
that is pertinent to the computation of t -59.  The compiler determines 
which of the loops created by distribution are relevant to the computation 
of t -59,  by reordering them such that the one in which t -59  is computed 
is preceded by as few others as possible, respecting the dependences among 
variables, of course. Those which remain above that in which t -59  is 
computed, belong to the computation of the exit condition. See Figure 64. 
In this case, it would appear that only the loops in which x and t -59  are 
computed are relevant to the exit condition of the loop. 

3.3.5 Eliminating Unused Computation 

In forming the loop of Figure 61, the compiler replaces each branch from 
the loop by an an assignment to t-59; after this assignment, control flows 
directly to the bottom of the loop. This adds a control path to the loop 
body, of course, and when variable expansion is applied, identity assign- 
ments are added along this path. However, the computation along these 
(former) exit paths is useless, except in the case of t -59,  and must be elim- 
inated. See Figure 65. In each case, this leaves us with a conditional node 
(a branch on x [ i -60 .0 ]  ) one of whose outgoing edges has been deleted. 
The compiler is quick to recognize this as dead code and eliminate it. We 
may view this transformation in the following way: the loop in which x is 
computed, for example, is meaningful only for t -59  iterations, whatever 
t -59  turns out to be; we are not interested in the loop's behavior after the 
first t -59  iterations are performed. However, by the very definition of t -59  
(the iteration number in which the exit condition is first satisfied, where 
iterations are counted from 0), it is impossible for the variable x to become 
false (that is, for the exit condition to be satisfied) during the first t -59  
iterations. Therefore, for the meaningful iterations of the loop in which x is 
computed, the branch on x and the identity assignment ( se t  ! x [ i - 6 0 . 1 ]  
x [ i -60 .0 ]  ) are inert, they contribute nothing and may be eliminated. In- 
deed, they must be eliminated if the compiler is to recognize the recurrence 
described by x, for otherwise the computation of x appears to have a com- 
plex dependence structure. 

The compiler has added an index variable and number of iterations to 
each of the loops that follows that in which t -59  is computed. The number 
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($-$-sortby = 
(lambda (f i) 

<t-25 t-31 t-32 t-33 t-38 x left right t-46 t-48 t-59 i-60> 
(cond 

(i 
(set! t-38 (car i)) 
(set! x (cdr I)) 
(set! left '()) 
(set! right '()) 
(set) t-59 #f) 
(do ( i-60 ??) 

( i f  x [ i -60.0]  
(se t !  x[ i -60 .1]  (cdr x[ i -60 .O]))  
( se t !  x[ i -60.1]  x [ i - 6 0 . 0 ] ) ) )  

(do (i-60 ??) 
(if x[i-6o.0] 

(set! t-59[i-60.i] t-59[i-60.0]) 
(set! t-59[i-60.I] (#or t-59[i-60.0] i-60)))) 

(do (i-60 ??) 
(if x[i-60.O] (set! t -48[ i -60 .1 ]  (car x [ i -60 .O] ) ) ) )  

(do (i-60 ??) 
(if x[i-60.O] (set! t-46[i-60.i] (> t-38 t-48[i-60.i])))) 

(do (i-S0 ??) 
(if x [i-60.0] 

(if t -46 [i-60. I] 
(set! left[i-60.1] (cons t-48[i-60.I] left[i-60.O])) 
(set! left[i-60.1] left[i-60.O])) 

(set! left[i-60.1] left[i-60.O]))) 
(do (i-60 ??) 

( i f  x [i-60.0] 
(if t -46[ i -60 ,  i] 

(set ! right [i-60. i] right [i-60.0]) 
(set ! right [i-60. I] (cons t-48[i-60, i] right [i-60.0] ))) 

(set ! right [i-60. I] right [i-60. O] ) ) ) 
(set! t-31 (#self-closure# id left)) 
(set! t-32 (list t-38)) 
(set! t-33 (#self-closure# id right)) 
(set! t-25 (append t-31 t-32 t-33)) ) 

( else 
(set! t-25 '()) ) ) 

(return t-25) )) 

Figure 64: Distributed Loops are Reordered in $ - $ - s o r t b y  
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($-$-sortby = 
(lambda (f i) 

< t-25 t-31 t-32 t-33 t-38 x left right 
t-46 t-48 t-59 i-60 i-61 i-62 i-63 i-64 > 

(cond 
(z 

(set! t-38 (car i)) 
(set! x (cdr i)) 
(set! left '()) 
(set! right J()) 
(set! t-59 #f) 
(do (i-60 ??) (set! x[i-60.1] (cdr x[i-60.O]))) 
(do (i-60 77) 

(if x [i-60.0] 
(set! t-89[i-60.1] t-59[i-60.0]) 
(set! t-69[i-60.I] (#or t-59[i-60.0] i-60)))) 

(do (i-61 t-89) (set! t-48[i-61.1] (car x[i-61.O]))) 
(do (i-62 t-59) (set! t-46[i-62.1] (> t-38 t-48[i-62.1]))) 
(do (i-63 t-69) 

(if t-46[i-63, i] 
(set ! left [i-63. I] 

(cons t-48 [i-63.1] left [i-63. O] )) 
(set! left[i-63.1] left[i-63.0]))) 

(do (i-64 t-59) 
(if t-46[i-64, i] 

(set ! right [i-64. i] right [i-64.0]) 
(set ! right [i-64. i] 

(cons t-48 [i-64. I] right [i-64. O] )) ) ) 
(set ! t-31 (#self-closure# id left)) 
(set! t-32 (list t-38)) 
(set ! t-33 (#self-closure# id right)) 
(set! t-28 (append t-31 t-32 t-33)) ) 

( else 
(set! t - 2 5  '()) ) ) 

(return t-25) )) 

Figure 65: Exit Path Computations are Eliminated in $ -$ - so r tby  
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of iterations is given as t - 5 9  itself. A distinct index variable has been given 
to each of these do loops, in order that  there be no artificial dependences 
between the loops, that  would prevent several of them from being executed 
simultaneously. 

3.3. 6 The Parallel Computation of the Number of Iterations 

Granted, that  Figure 65 does not appear to be a legal translation of the 
original procedure $ -$ - so r tby ;  we have interrupted the compiler while in 
the midst of performing a lengthy transformation. Still, the procedure at 
this point has a clear intuitive meaning, that  gives insight into the generality 
of exit-loop translation. Consider for a moment  only the first two do loops 
of Figure 65, and suppose that  we ignore that  they are written as do loops, 
but think of them as signifying the following computation.  Let x [0 .0 ]  
have the initial value of x (that is, the value of (cdr  1), as per the figure), 
and let t - 5 9 [ 0 . 0 ]  have the initial value of t - 5 9  (#f, as per the figure). 
Given x [0 .0 ] ,  we may perform one iteration of the loop that  computes 
t -59;  this will give a value for t - 5 9  [0.1] (and recall that  t - 5 9  [0.1] and 
t - 5 9  [1.0]  refer to the same vector element). Then t - 5 9  [0. t]  is either #f  
(if x [0.0] is non-null) or 0 (if x [0.0]  is null). Assuming x [0.0] is non- 
null, we may then execute one iteration of the loop in which x is computed. 
This gives us a value for x [1 .0] ,  and we may again perform an iteration 
of the loop in which t - 5 9  is computed. Once again, the outcome will be 
either that  t - 5 9  [1.1] is #f (if x [1.0] is non-null) or 1 (if x [1.0J is null). 
We may repeat this indefinitely, until a numeric value is obtained for some 
t -59[N.  1]; this value will be N itself, the iteration number in which the 
exit condition is first satisfied. 

As we have described it, this process is very sequential. A simple observa- 
tion, however, leads straightforwardly to its parallelization. The sequence 
x [0 .0 ] ,  x [1 .0 ] ,  ..., is a simple recurrence relation whose terms may be 
computed in parallel with good speedup, depending upon the representa- 
tion that  s-expressions are given in memory. The i th term of this sequence 
is given by 

x [ i . 0 ]  = ( l i s t - t a i l  x [0 .0 ]  i ) ,  

and the computat ion of these terms can be made quite parallel; in effect, 
we can compute an application of l i s t - t a i l  in constant or near-constant 
time, given the proper representation of x in memory. We will return 
to this. Likewise, given the sequence x [0 .0 ] ,  x [1 .0 ] ,  ..., the sequence 
t - 5 9  [0 .0] ,  t - 5 9  [1 .0] ,  ..., is also a simple recurrence relation, a variation 
on the first-one problem of finding the first one in a boolean string, the 
terms of which can be computed in parallel with good speedup. We may 
modify our interpretation of the first two loops in Figure 65, then, by 
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viewing them instead as describing the following computation: first,/c terms 
of the sequence x [0 .0] ,  x [1 .0] ,  ... are computed in parallel. Using these 
k terms, we compute k terms of the sequence t - 5 9  [0 .0] ,  t - 5 9 [ 1 . 0 ] ,  .... 
We then examine the t - 5 9  terms to see if there is a non-null term among 
them, and to find the leftmost such term, if so. If there is such a term, 
the number of iterations of the original loop has been discovered, and we 
are done. Otherwise, we repeat the process by computing k more x terms, 
and k more t - 5 9  terms, and so on until the number of iterations has been 
found. 

At last, we may explain the meaning of #or: it is a a binary operator, 
defined by the following four equations: 

(#or #f #f) = #f 

( # o r  # f  j )  = j 
(#or i #f) = i 
(#or i j) = i. 

Assume that  i and j are integers. Then #or takes two arguments which 
are either boolean or integer values, and returns either a boolean or integer 
value. It is easily verified that  this operator is associative. If we reduce a 
vector of boolean and integer values using this operator, it will return the 
leftmost integer found within the vector, or #f if none is found. In short, 
this operator is used by parallel prefix [32], to reduce a vector ( t -59  in our 
example) of boolean and integer values, in order that  the least iteration for 
which the exit condition is satisfied may be found in parallel. The somewhat 
laborious details of the computat ion of the number of iterations using this 
technique are given in [3]. In the example before us, the compiler will 
be able to produce a closed-form expression for the number of iterations; 
but  were it necessary to compute this number through the use of #or, 
the recurrence would be restructured and rewritten in parallel form by the 
compiler in a later phase. We will see several examples of such restructuring 
of recurrences, for parallel solution, momentarily. 

This, then, is the mechanism underlying exit-loop translation. It de- 
pends, in this case, upon x describing a recurrence relation with a parallel 
solution. In general, Parcel requires of a variable that  contributes to the 
exit condition of the loop, either that  it describe such a recurrence relation, 
or a computat ion with even simpler dependences. For example, each of the 
terms x [0 .1] ,  x [1 .1] ,  etc., might be the return value of another proce- 
dure, which is determined by interprocedural analysis to be side-effect free. 
This requirement is imposed, not because it is impossible to give a legal 
translation to the loop if, for example, the terms of x had to be computed 
sequentially; but rather as a heuristic intended to prevent the generation 
of an inefficient restructured version of the loop that  contains too little 
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parallelism to recover the expense of expanded variables, distributed loop 
control, etc., in the computat ion of the number of iterations. The phi- 
losophy embodied in Parcel is that  if a loop or procedure is resistant to 
automatic parallelization, it is better to hope for more natural parallelism 
in the procedures that  call, and are called by, the resistant computation, 
than to force the issue. 

There are several important  observations to be made at this point. First, 
as part of the process of computing t -59 ,  the intermediate values of x are 
computed and saved; they need not be recomputed when they are used 
in the loops which follow the computat ion of the number of iterations, 
and thus the parallelism introduced by this technique entails very little 
redundant computation. Second, in some cases, and the example before us 
is such a case, the recurrence relation that  defines the number of iterations 
of the loop has a closed-form solution. In this case, the solution is simply 
t -59  = ( l e n g t h  x). As we will see momentarily, this fact is not lost to 
Parcel. 

3.3. 7 Marking Doalls and Recurrences 

See Figure 66. In the next several figures, the compiler will make each of 
the observations that  we have mentioned in the above paragraphs. First, it 
marks the loop in which x is computed as an induction sequence (a simple 
recurrence in which the i th term has a closed-form solution in terms of i and 
the value x [0.0] ), and the loop in which t - 5 9  is computed as a recurrence 
relation (as mentioned above, a simple variation on the boolean first-one 
recurrence). The names d o - i n d u c t i o n  and d o - r e c u r r e n c e  indicate this 
discovery. Since each of the loops that  contributes to the computat ion 
of the number of iterations can be made parallel, exit-loop translation has 
succeeded. It remains only to rewrite the computat ion of t - 5 9  in as efficient 
a form as possible, and to continue with the parallelization and optimization 
of the rest of the procedure. 

3.3.8 Closed-Form Solution for the Number of Iterations 

See Figure 67. Simple induction sequences over s-expressions and inte- 
gers, such as that  described here by x, are recognized by Parcel, because 
they occur so frequently, and can be solved in closed form much more effi- 
ciently than by the k-terms-at-a-time approach described above. The com- 
piler has simply written ( s e t !  t - 5 9  ( l e n g t h  x)) ,  and the loop in which 
t - 5 9  was computed has disappeared. The loop in which x is computed is 
needed by other loops in this figure, and cannot be deleted; it is rewritten 
to have t - 5 9  as its number of iterations. There is some dead code in the 
figure, that  will be eliminated shortly. 
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(set) 
(set) 
(set! 
(set) 
(set! 
(set) 

( else 

($-$-sortby = 
(lambda (f I) 

< t-25 t-31 t-S2 t-3S t-S8 x left right t-46 
t-48 t-59 i-60 i-61 i-62 i-63 i-64 t-65 t-66 > 

(cond 
(i 

( se t !  t-38 (car 1)) 
( se t !  X (cdr i)) 
(set) left '()) 
(set! right '()) 
(set! t-59 #f) 
(do-induction (i-60 ??) (set! x[i-60.1] (car x[i-60.O]))) 
(do-recurrence 

(i-60 ??) 
(if x [i-60.0] 

(set! t-59[i-60.I] t-59[i-60.0]) 
(set! t-59[i-60.I] (#or t-59[i-60.0] i-60)))) 

(doall (i-61 t-59) (set! t-48[i-61.1] (car x[i-61.O]))) 
(doall (i-62 t-59) (set! t-46[i-62.1] (> t-38 t-48[i-62.1]))) 
(do-rem-recurrence 

( i-63 t -59)  
( i f  t -46[ i -63 .1 ]  

( se t !  t -65[ i -63 .1 ]  (cons t -48[ i -63 .1 ]  t - 6 5 [ i - 6 3 . 0 ] ) )  
(se t )  t -65[ i -63 .1 ]  t - 6 5 [ i - 6 3 . 0 ] ) ) )  

(do-rem-recurrence 
( i -64 t -59)  
(if t-46 [i-64. I] 

(set) t-66 [i-64.1] t-66 [i-64.0] ) 
(set) t-66[i-64.1] (cons t-48[i-64.1] t-66[i-64.0])))) 
right (append2 right t-66)) 
left (append2 left t-65)) 
t-S1 (#self-closure# id left)) 
t-32 (list t-38)) 
t-33 (#self-closure# id right)) 
t-25 (append t-31 t-32 t-33)) ) 

(se t !  t-25 ' ( ) )  ) ) 
( re turn  t-25) )) 

Figure 66: Recurrences and Parallel Loops are Identified in $-$-sortby 
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( $ - $ - s o r t b y  = 
(lambda ( f  1) 

< t - 2 5  t - 3 1  t - 3 2  t - 3 3  t - 3 8  x l e f t  r i g h t  t - 4 6  
t - 4 8  t - 5 9  i - 6 0  i -61  i -62  i - 6 3  i - 6 4  t - 6 5  t - 6 6  i - 6 7  > 

(cond 
( 1  

( s e t !  t - 3 8  ( c a r  1))  
( s e t !  x (cdr  1))  
(set! left '()) 
(set! right '()) 
( s e t !  t - 5 9  #f )  
( s e t  ! t - 5 9  ( l e n g t h  x) )  
( d o - i n d u c t i o n  ( i - 6 7  t - 5 9 )  ( s e t !  x [ i - 6 7 . 1 ]  (cdr  x [ i - 6 7 . 0 ] ) ) )  
( d o a l l  ( i - 6 1  t - 5 9 )  ( s e t !  t - 4 8 [ i - 6 1 . 1 ]  ( c a r  x [ i - 6 1 . 0 ] ) ) )  
(doall (i-62 t-59) (set! t-46[i-62.1] 

(> t-38 t-48 [i-62. I] ) ) ) 
(do-rem-recurrence (i-63 t-59) 

(if t-46[i-63, i] 
(set! t-65[i-63.1] (cons t-48[i-63.1] t-65[i-63.0])) 
(set ! t-65 [i-63. I] t-65 [i-63. O] ) )) 

(do-rem-recurrence (i-64 t-59) 
(if t-46[i-64. I] 

(set! t-66[i-64.1] t-66[i-64.0]) 
(set! t-66[i-64.1] (cons t-48[i-64.1] t-66[i-64.0]))) 

(set! right (append2 right t-66)) 
(set! left (append2 left t-65)) 
(set! t-31 (#self-closure# id left)) 
(set! t-32 (list t-38)) 
(set ! t-33 (#self-closure# id right)) 
(set! t-25 (append t-31 t-32 t-33)) ) 

( else 
(set! t-25 '()) ) ) 

(return t-25) )) 

Figure  67: A C l o s e d - F o r m  Solut ion  for t - 5 9  is F o u n d  
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3.3.9 Restructuring the Recurrences 

Let us return to Figure 66 to consider the computat ion of the variables 
t -48 ,  t -46 ,  l e f t ,  and r i g h t .  The loop in which t - 4 8  is computed requires 
little explanation; its iterations are independent of one another, and so the 
compiler has marked it as a d o a l l  loop, so that  its iterations may be 
executed simultaneously. The same is true of the loop in which t - 4 6  is 
computed. 

The loops in which left and right are computed have been rewritten, 
using t - 6 5  and and t - 6 6  instead of l e f t  and r i g h t ,  respectively. They 
are called d o - r e i n - r e c u r r e n c e  loops for the purposes of displaying the 
compiler's view of them, because they describe recurrence relations with 
parallel solutions, whose remote terms are the only terms that  are needed. 
The remote term of the sequence l e f t  [0 .0] ,  l e f t  [1 .0] ,  ..., l e f t  IN. 0] 
is the final term, l e f t  [N.0]. The procedure has been rewritten in this 
way, so that  in the event that  the original loop had been surrounded by 
other loops, the recurrences described by l e f t  and r i g h t  would be par- 
allelized at several of these nest levels, and not merely at the innermost 
level. Consider, for example, the assignment (set! left (append2 left 
t - 65 )  ). (append2 is simply a special case of append that  takes exactly two 
arguments.) If this assignment appeared inside yet another do loop that  
surrounded all of Figure 66, then the compiler would distribute loop control 
around the assignment, isolating it from the rest of the outer do loop, and 
the recurrence relation it defines would be given a parallel translation as 
well. 

Now consider Figure 68. The loop in which t - 6 5  is computed has been 
rewritten, so that  it now places either t - 4 8  [ i .  1] or the constant #? into 
the i th position of t -65 ,  depending upon the value of t - 6 4  [ i .  1] ; the loop 
in which t - 6 6  is computed is rewritten similarly. Intuitively, if a cell was 
added to l e f t  in the i th iteration of the original loop, the the ca r  of this 
cell is placed in t - 6 5 [ i .  1], and the marker #? is placed in t - 6 5  [ i .  1] 
otherwise. The procedure cons - r em- rec  takes two arguments: an input 
vector and an output  vector, which may be the same. It expects its input 
vector to be filled with legitimate values and #? markers, as are t - 6 5  
and t -66 ,  and it produces a list of only the non-#? values, in the reverse 
order of their occurrence in the input vector. This list is pointed to by the 
last position of the output  vector, which represents the remote term of the 
recurrence being solved. The procedure works in parallel, and is part of 
the Parcel run-time library. Its workings are described in [3]. 

The loop in which x was computed in Figure 67 has been replaced by 
a call to the routine c d r - i n d .  This procedure takes a vector v, the first 
position of which is assumed to point to a list, and and integer, call it k. 
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($-$-sortby = 
(lambda (f 1) 

< t-25 t-S1 t-32 t-33 t-38 x left right t-46 t-48 
t-59 i-60 i-61 i-62 i-63 i-64 t-65 t-66 i-67 > 

(cond 
( 1  

(set ! 
(set ! 
(set! 
(set ! 
(set ! 
(set ! 
(set! 
(set ! 
(set ! 

t-38 (car 1)) 
x (cdr 1)) 
l e f t  ' ( ) )  
r ight  ' ( ) )  
t -59 (length x)) 
x (a l locate  x t -59))  
t-46 (a l locate  #f t -59))  
t-48 (a l locate  #f t -59))  
t-65 (a l locate  #f t -59))  

(set! t-66 (a l locate  #f t -59))  
(cdr-ind x 1) 
(doall  (i-61 t-59) 

(set! t -48[ i -61 .1]  (car x [ i -61 .0 ] ) )  
(set! t -46[ i -61 .1]  (> t-38 t - 48 [ i -61 .1 ] ) ) )  

(deal1 (i-63 t-59) 
( i f  t -46[ i -63 .1]  

(set! t -65[ i -63 .1]  t-48[i-63.1]) 
(set! t -65[ i -63 .1]  #?))) 

(cons-rem-rec t-65 t-65) 
(doall  (i-64 t-59) 

( i f  t-46 [i-64.1] 
(set! t -66[ i -64 .1]  #?) 
(set ! t-66 [i-64.1] t-48 [i-64.1] ) ) ) 

(cons-rem-rec t-66 t-66) 
(set! t-66 (restore  t-66 t -59))  
(set! t-65 (restore  t-65 t-59))  
(set! r ight  (append2 r ight  t -66))  
(set! l e f t  (append2 l e f t  t -65))  
(set! t-31 (#self -c losure# id l e f t ) )  
(set! t-32 ( l i s t  t -38))  
(set! t-33 (#self -c losure# id r igh t ) )  
(set!  t-25 (append t-31 t-32 t-33))  ) 

( else 
(set! t-25 '()) ) ) 

(return t-25) )) 

Figure 68: Recurrences are Res t ructured  for Parallel Execut ion 
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Upon return, the i th position of the vector points to (cdikr  v [0 .0 ]  ), the 
i k  th cell of v [0 .0] .  The length of the vector v, and not the length of the 
list v [0 .0] ,  determines the number of terms of the induction sequence to 
be computed. 

3.3.10 Allocating and Initializing Expanded Variables 

The procedures a l l o c a t e  and r e s t o r e  perform the initial and final ac- 
tions, respectively, upon an expanded variable, a l l o c a t e  takes two argu- 
ments: an initial value (the value to be given to x [0 .0] ,  where x is the 
expanded variable; in other words, the value of x prior to the loop in which 
x is expanded), and the number N of iterations of the loop in which x is 
expanded. Recall that  Parcel adds identity assignments as needed, to in- 
sure that  the number of assignments to a variable x is invariant over all 
paths through the loop, when it expands x in a loop. Let this number of 
assignments be W. a l l o c a t e  creates a vector of length NW+I locations on the 
run-time stack to hold the values of x at all points during the loop's execu- 
tion. There are NW+I locations because there is one initial value (x [0.0] ), 
and W values per each of N iterations, a l l o c a t e  then assigns to x [0.0] the 
value of its first argument, r e s t o r e  simply returns the value of the final 
position of x (x [N.0] or, equivalently, x [N-1 .W] ); its arguments are x and 
N. The value of W is a compile-time constant; a l l o c a t e  and r e s t o r e  are 
compiled in-line at code generation, and the value of W is built directly into 
the code that  is emitted. 

3.3.11 Loop Fusion 

The version of $ - $ - s o r t b y  in Figure 68 is, at last, a complete and legal 
translation of the original $ - $ - s o r t b y  in Figure 54. 

The final parallel version of $ - $ - s o r t b y  is given in Figure 69. In order 
to reduce the overhead of starting and stopping parallel loops, the compiler 
has fused the loop in which t - 4 8  is computed with that  in which t - 4 6  is 
computed.  The loops in which t - 6 5  and t - 6 5  are computed should be 
similarly fused, but Parcel uses a naive "undistribution" algorithm, and 
applies it only to loops which are unaltered from the form they had im- 
mediately prior to distribution, whereas the loops in which t - 6 5  and t - 6 6  
are computed have been derived from the loops in which the variables l e f t  
and r i g h t  were originally computed. 

3.3.12 Cobegin Insertion 

A simple but significant step of parallelization has been performed by 
the compiler in arriving at Figure 69. Consider the final d o a l l  loop of the 
figure; it has only two iterations. The syntax 
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($-$-sortby = 
(lambda (f i) 

< t -25  t -S1  t - 3 2  t - 33  t - 3 8  x l e f t  r i g h t  t - 46  t - 4 8  t - 5 9  
i - 60  i -61  i -62  i - 63  i - 64  t - 65  t - 66  i - 67  i -72  > 

(cond 
( 1  

( s e t !  r i g h t  ' ( ) )  
( s e t !  left ' ( ) )  
( s e t !  x (cdr  1))  
(set! t - 5 9  (length x))  
( s e t !  t - 6 6  ( a l l o c a t e  #f t - 5 9 ) )  
( s e t !  t - 6 5  ( a l l o c a t e  #f t - 5 9 ) )  
( s e t !  t - 4 8  ( a l l o c a t e  #f t - 5 9 ) )  
( s e t !  t - 4 6  ( a l l o c a t e  #f t - 5 9 ) )  
( s e t !  x ( a l l o c a t e  x t - 5 9 ) )  
( c d r - i n d  x 1) 
( s e t !  t - 3 8  (ca r  1))  
( d o a l l  ( i -61  t -59 )  

( s e t !  t - 4 8 [ i - 6 1 . 1 ]  (ca r  x [ i - 6 1 . O ] ) )  
( s e t !  t - 4 6 [ i - 6 1 . 1 ]  (> t - 38  t - 4 8 [ i - 6 1 . 1 ] ) ) )  

( s e t !  t - 32  ( l i s t  t - 3 8 ) )  
( d o a l l  ( i - 6 4  t -59 )  

( i f  t - 4 6 [ i - 6 4 . 1 ]  
( s e t  ! t - 6 6  [ i -64 .1 ]  #?) 
( s e t  ! t - 6 6 [ i - 6 4 . 1 ]  t - 4 8 [ i - 6 4 . 1 ] ) ) )  

( d o a l l  ( i -63  t -59 )  
( i f  t - 4 6 [ i - 6 3 . 1 ]  

( s e t  ! t - 6 5  [ i -63 .1 ]  t - 4 8  [ i -63 .1 ]  ) 
( s e t !  t - 6 5 [ i - 6 3 . 1 ]  #? ) ) )  

( cons - rem-rec  t - 6 6  t -66 )  
( s e t !  r i g h t  ( r e s t o r e  t - 6 6  t - 5 9 ) )  
( cons - rem- rec  t - 65  t - 6 5 )  
( s e t !  l e f t  ( r e s t o r e  t - 65  t - 5 9 ) )  
( d o a l l  ( i -72  2) 

(mway i -72  
(0 ( s e t !  t - 31  ( # s e l f - c l o s u r e #  i d  l e f t ) ) )  
(1 ( s e t !  t - 33  ( # s e l f - c l o s u r e #  id  r i g h t ) ) ) ) )  

( s e t !  t - 25  (append t -S1  t -32  t - 3 3 ) )  ) 
( e l s e  

( s e t !  t - 25  ' ( ) )  ) ) 
( r e t u r n  t -25)  )) 

Figure 69: The Final, Parallel Version of $ - $ - s o r t b y  
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(define 
tak 
(lambda (x y z) 

(cond 
( (not 
z) 

( #t 
(tak 

(write 

(< y x)) 

( tak  (1- x) y z) 
( tak  (1- y) z x) 
( tak  ( 1 - z )  x y))  ) 

( t ak  18 12 6)) 

) )) 

Figure 70: The Procedure tak 

(mway m 
(0 ExprA . . .  ) 
(1 ExprB . . .  ) 

(m-1 ExprM . . .  ))  

indicates a multi-way branch on the value of m; it is similar to the swi tch  
form of C. It is used to select one of m sequences of expressions for evalua- 
tion. This d o a l l  loop might more clearly be written as 

(cobegin 
(set! t-31 (#self-closure# id left)) 
(set ! t-33 (#self-closure# id right))). 

It permits the recursive invocations of $ - $ - s o r t b y  to be executed concur- 
rently. Since each of these recursive invocations will itself contain paral- 
lelism (both the parallelism that was extracted from the loop that partitions 
each sublist to be sorted, and the parallel recursive calls to $ -$ - so r tby)  a 
significant degree of parallelism can be obtained from this procedure at run- 
time. The compiler inserts such cobegin constructs by grouping together 
invocations of user procedures and/or loops that can be evaluated simulta- 
neously. That is, expressions over intrinsic procedures are not candidates 
for inclusion in such a form. This is simply a heuristic intended to prevent 
parallel activity which does not pay back the expense of its creation. 

3.4 R e c u r s i o n  Splitt ing 

We next consider a very simple recursive procedure, which is nonetheless 
not merely tail-recursive. To parallelize this procedure, Parcel will apply a 
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($-$ 

(lambda () 
<tak t-29 t-30> 
(set! tak #<$-$- tak>)  
( s e t !  t - 3 0  ( t ak  18 12 6))  
(set! t-29 (write t - 3 0 ) )  
(return t-29) )) 

($-$-tak 

(lambda (x y z) 
<t-20 t -22 t -23  t -24  t -25 t -26 t -27 t-28> 
(set!  t -22 (< y x ) )  
(cond 

( t - 2 2  
( se t !  t - 2 6  
( se t !  t - 2 3  
( se t !  t - 2 7  
( se t !  t - 2 4  
(set! t -28  
(set! t-25 
(set! t-20 

( else 

(1- x))  
( # s e l f - c l o s u r e #  t - 2 6  y z))  
(1- y))  
(#self-closure# t-27 z x)) 
(1- z ) )  
( # s e l f - c l o s u r e #  t - 2 8  x y))  
( # s e l f - c l o s u r e #  t - 2 3  t - 2 4  t - 2 5 ) )  

( s e t !  t - 2 0  z) ) ) 
( r e t u r n  t -20 )  )) 

Figure 71: The Initial Representation of t ak  

technique introduced in [3] called recursion splitting, a general technique for 
rewriting a recursive computat ion as a pair of loops, so that  the latter may 
be subjected to further transformations, as were applied to the quicksort 
example above. 

The program we will be considering, following macro expansion, is given 
in Figure 70. t a k  is a simple function over integers that  contains four 
recursive calls. In Figure 71 is given the program as seen by Parcel, fol- 
lowing parsing, interprocedural analysis, and the preparatory restructuring 
described in subsection 3.2. This simple function proves impervious to the 
preparatory transformations. As is the case with every program that  it 
treats, Parcel introduces a lambda expression called $-$ which represents 
the top level of the user's program, and by which his global variables are 
bound, conceptually. Henceforth, we will confine our attention to $ -$ - t ak .  

The compiler has marked each of the recursive calls within $ - $ - t a k  as 
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self-recursive; this permits the application of tail-recursion elimination and 
recursion splitting to the procedure, provided that  other conditions neces- 
sary to their application are satisfied. Indeed, there is a tail-recursive call 
to $ -$ - t ak ;  the compiler could use this fact to obtain a loop from the pro- 
cedure body, and subject this loop to exit-loop translation as was done in 
the case of $ - $ - s p l i t b y  above. This would prove to be an error, however, 
because exit-loop translation would fail when applied to the loop, for the 
reason that  x would describe a recurrence of the form 

x [ i . 1 ]  = ( ta~ ( 1 - x [ i . 0 ] )  y z ) ,  

and the compiler would fail to parallelize such a recurrence, and would 
therefore fail to parallelize the computat ion of the number of iterations 
of the loop it had created. Moreover, if it first performed tail-recursion 
elimination, it would be unable to perform recursion splitting afterwards, 
as the remaining recursive calls would be within the loop introduced by tail- 
recursion elimination, and recursion splitting does not treat such recursive 
calls. Parcel therefore refrains from performing tail-recursion elimination 
upon a procedure if to do so would leave recursive calls to the procedure 
within a loop. 

3.4.1 Overview 

The idea behind recursion splitting is simple. The compiler first selects 
a set of recursive calls to the procedure, such that  there is at most one 
member of the set along any path  through the procedure; this set is called 
a fence. In the case of $ -$ - t ak ,  there are four recursive calls to the pro- 
cedure, but all occur along a single control path  through the procedure 
body; any fence will therefore have just one member. The fence is then 
used to divide the procedure into two loops, called the forward and back- 
ward loops. The forward loop contains all of the computat ion that  occurs 
between the entrance to the procedure and the members of the fence, and 
the backward loop contains all of the computat ion between the members 
of the fence and the return from the procedure. These two loops will have 
the same number of iterations, and this number will be determined by exit- 
loop translation of the forward loop. In the evaluation of an application of 
the original procedure, the parameters and local variables of the procedure 
are recorded on the stack at each recursive call, and when this recursive 
call returns, these variables are restored from the stack. To simulate this 
pushing and popping of parameters and locals, expanded variables will be 
used. Each parameter and local variable will be represented by a vector 
of length (roughly) N, where N is the number of iterations of the forward 
loop. Whenever a variable would have been "pushed" by a member of the 
fence (a selected recursive call), it is instead writ ten into a vector by the 
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($ -$ - t ak  

(lambda (x y z) 
<t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44 i-45> 
(set! t-44 #f) 
(do 

(i-45 ??) 
(set! t-22 (< y x)) 
(cond 

( t-22 
(set! t-26 (i- x)) 
(set! x t-26) ) 

( else 
(set! t-44 (#or t-44 i-45)) ) )) 

(set! t-20 z) 
(do 

(i-45 t-44) 
(set! t-23 t-20) 
(set! t-27 (i- y)) 
(set! t-24 (#self-closure# t-27 z x)) 
(set! t-28 (i- z)) 
(set! t-25 (#self-closure# t-28 x y)) 
(set! t-20 (#self-closure# t-23 t-24 t-25))) 

(return t-20) )) 

Figure 72: Forward and Backward Loops are Formed in $ -$ - t ak  

forward loop, and when it would have been "popped" at a return from a 
member of the fence, it is instead read from the vector by the backward 
loop. Intuitively, the iteration spaces of the forward and backward loops 
run in opposite directions; variables "pushed" in the first iteration of the 
forward loop are "popped" in the last iteration of the backward loop, and 
those "pushed" in the second iteration of the forward loop are "popped" in 
the next-to-last iteration of the backward loop, and so on. 

3.4.2 Forming the Forward and Backward Loops 

It is easiest to appreciate the transformation by example. Consider Fig- 
ure 72. The computer has chosen the set containing the first recursive call 
in Figure 71 as the fence. It therefore divides the procedure into two loops 
at this recursive call. The forward loop contains only the updating of the 
parameter x, and the computation of t-44,  which should be familiar to the 
reader from the discussion of exit-loop translation above, as the number of 



ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 347 

iterations of the forward loop. As usual, we have interrupted the compiler 
at an awkward moment for a view of its data structures. At this point, no 
variable expansion has occurred, and consequently this is far from a legal 
translation of the program. Not to worry. 

The backward loop (the second do loop of Figure 72) contains the bulk 
of the computation from the original procedure. It is has no assignments to 
t-44;  that is, it contained no exit branches that were rewritten as assign- 
ments to t -44,  as did the forward loop. The number of iterations of the 
backward loop, like the forward loop, will ultimately be t-44.  The return 
value of $ -$ - t ak  (t-20) is computed iteratively in the backward loop, just 
as the parameters were computed iteratively in the forward loop. 

Recursion splitting proceeds from here in two major steps. First, the 
compiler applies exit-loop translation to the forward loop. Indeed, it has 
already begun, by replacing loop exits by assignments to t -44.  If exit- 
loop translation succeeds, then recursion splitting succeeds, and both the 
forward and backward loops are subjected for further parallelization, just as 
the loop that arose from s p l i t b y  was parallelized, in the quicksort example 
of subsection 3.1. Otherwise, recursion splitting fails, and another fence will 
be tried. When the possible fences have been exhausted, then recursion 
splitting fails finally, and other sources of parallelism within the procedure 
will be sought. 

3.4.3 Exit-Loop Translation of the Forward Loop 

We focus our attention, then, upon exit-loop translation of the forward 
loop. See Figure 73. The variables defined in the forward loop are ex- 
panded. We mentioned two purposes for the expansion of variables in 
discussing the quicksort example above. First, we said, it permits (or fa- 
cilitates) the computation in parallel of the values that are assigned to a 
variable in successive iterations of a loop, by providing a distinct memory 
location into which each such value may be written. Second, it permits 
the production of a variable's successive values to be isolated from the 
consumption of those values, by recording them in a vector, to which the 
consuming computation may refer. Put another way, we may distribute 
loop control around the computation of each variable in a loop (see Fig- 
ure 63) only because the successive values assigned to the variable (in one 
subloop derived by distribution of the original loop) will be held in a vector, 
for consumption during the computation of another variable (in a second 
derived subloop). In this latter capacity, expanded variables act as com- 
munication media between subcomputations. In recursion splitting, this 
function is extended: not only do expanded variables communicate values 
between the subloops that are derived by distribution of the forward loop, 
they act also to communicate these values into the backward loop, replacing 



348 WILLIAMS LUDWELL HARRISON III 

($-$-tak 

(lambda (x y z) 
<t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44 i-4S> 
(set! t-44 #f) 
(do 

(i-45 ??) 
(set ! t-22 [i-4S. 1] (< y x [i-4S.O])) 
(cond 

( t-22 [i-4S. i] 
(set! t-26[i-45.I] (I- x[i-4S.O])) 
(set! x[i-4S.1] t-26[i-45.I]) 
(set! t-44[i-45.i] t-44[i-45.0]) ) 

( else 
(set ! t-44[i-45, i] (#or t-44[i-45.0] ±-45)) 
(set! x[i-45.1] x[i-4S.O]) ) )) 

(set! t-20 z) 
(do 

(i-45 t-44) 
(set! t-23 t-20) 
(set ! t-27 (I- y)) 
(set ! t-24 (#self-closure# t-27 z x [ [i-48. O] ] )) 
(set! t-28 (I- z)) 
(set ! t-25 (#self-closure# t-28 x[ [i-48.0] ] y)) 
(set ! t-20 (#self-closure# t-23 t-24 t-25))) 

(return t-20) )) 

Figure 73: Variables Defined in the Forward Loop are Expanded 
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the function of the stack in the original procedure. In the case of Figure 73, 
the variable x is defined (and therefore expanded) in the forward loop, and 
the references to x in the backward loop have been replaced by references 
to the vector which will record the values assigned to x in the loop. There 
is an important point concerning the references to x in the backward loop: 
they a r e  ,ritten as 

x [ [ i - 4 5 . 0 ] ] .  

This s~bscript form is used when references are made in the backward loop 
(or in a loop derived from the backward loop) to a variable defined in the 
forward loop, and is equivalent to 

x [ (1 -  (-  N i - 4 5 ) ) . 0 ]  

where N is the number of iterations of the forward and backward loops, 
the value to be assigned to t -44  in this case. Intuitively, an expanded 
variable that is defined in the forward loop is read "backward" in the back- 
ward loop, for precisely the reason that it is replacing the function of the 
stack. Alternatively, one may view the iteration spaces of the forward and 
backward loop as having opposite orientations, as mentioned above: the 
index variable of the forward loop counts recursive calls via members of the 
fence, while the index variable of the backward loop counts returns from 
these calls, and the returns occur in the reverse order of the corresponding 
calls, by the nature of recursion. 

Before proceeding with the transformation, the compiler pauses to per- 
form some optimizations, much like the preparatory optimizations discussed 
in subsection 3.2. The reason is that, as when performing tail-recursion 
elimination, some temporary variables are needed (in general) to update 
the parameters of the procedure, when forming the forward and backward 
loops. The compiler first writes the most "general" form of the forward 
and backward loops, and then attempts to improve them, by eliminating 
the manipulation of these temporary quantities where possible, by floating 
invariant computations out of conditional structures, etc. See Figure 74. 
The variable t -26,  used previously in the updating of x, is eliminated, t -23  
is similarly eliminated from the backward loop. 

We proceed with exit-loop translation of the forward loop exactly as 
though it was the entirety of the computation. The next step, it will be 
recalled, is to distribute the forward loop, with the aim of isolating the 
portion of the forward loop that is relevant to the computation of its num- 
ber of iterations, or equivalently in this case, to the computation of t -44.  
See Figure 75. The compiler has distributed the forward loop into three 
loops, and has reordered these such that as few as possible precede that in 
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($-$-tak 

(lambda (x y z) 
<t-20 t -22  t -23  t -24  t -25  t -26  t -27  t -28  t -44  i-45> 
( se t !  t -44  #f) 
(do 

( i -45 ??) 
(set! t-22[i-45.1] (< y x[i-45.0])) 
(cond 

( t-22[i-45. I] 
(set! x[i-45.1] (I- x[i-45.0])) 
(set! t-44[i-45.1] t-44[i-45.0]) ) 

( else 
( se t !  t-44[i-45.1] (#or t-44[i-45.0] i-45)) 
(set! x[i-45.I] x[i-45.0]) ) )) 

( se t !  t -20  z) 
(do 

(i-45 t-44) 
( se t !  t -27  (1- y))  
( se t  ! t -24  ( # s e l f - c l o s u r e #  t -27  z x [ [ i - 4 5 . 0 ] ] ) )  
( se t !  t -28  ( 1 - z ) )  
( se t !  t -25  ( # s e l f - c l o s u r e #  t -28  x [ [ i - 4 5 . 0 ] ]  y))  
( se t !  t -20  ( # s e l f - c l o s u r e #  t -20  t -24  t - 2 5 ) ) )  

(return t -20)  )) 

Figure 74: The Forward Loop is Cleaned Up Before Proceeding 
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($-$-tak 

(lambda (x y z) 
<t-20 t -22  t -23  t -24  t -25  t -26  t -27  t -28  t -44  i-45> 
( se t !  t -44  #f)  
(do 

(i-45 ??) 
(if 
t-22 [i-45. i] 
(set! x[i-45.1] (i- x[i-45.0])) 
(set! x[i-45.1] x[i-45.0]))) 

(do (i-45 ??) (set! t-22[i-45.1] (< y x[i-45.0]))) 
(do 

(i-45 ??) 
(if 
t-22 [i-45. I] 
(set ! t-44[i-45.1] t-44[i-45.0]) 
(set ! t-44 [i-45. I] (#or t-44 [i-45.0] i-45)))) 

(set! t-20 z) 
(do 

(i-45 t-44) 
( se t !  t -27  (1- y))  
( s e t  ! t -24  ( # s e l f - c l o s u r e #  t -27  z x [ [ i - 4 5 . 0 ] ] ) )  
(set! t-28 (I- z)) 
(set! t-25 (#self-closure# t-28 x[[i-45.0]] y)) 
(set! t-20 (#self-closure# t-20 t-24 t-25))) 

(return t-20) )) 

Figure 75: The Forward Loop is Distributed, and the Subloops Reordered 
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($-$-tak 

(lambda (x y z) 
<t-20 t -22  t -23  t -24  t -25  t -26  t -27  t -28  t -44  i-45> 
( se t !  t -44  #f)  
(do ( i -45  ??) ( se t !  x [ i - 4 5 . 1 ]  (1- x [ i - 4 5 . 0 ] ) ) )  
(do (i-45 ??) (set! t-22[i-45.1] (< y x[i-45.0]))) 
(do 

(i-45 ??) 
( i f  
t-22 [i-45. I] 
(set! t-44[i-45, i] t-44[i-45.0]) 
(set ! t-44 [i-45. i] 

(set! t-20 z) 
(do 

(i-45 
(set! 
(set ! 
(set ! 
(set! 
(set ! 

(return 

(#or t -44  [ i -45 .0]  ) ) ) ) 

t -44)  
t-27 ( i -  y))  
t -24  ( # s e l f - c l o s u r e #  t -27  z x [ [ i - 4 5 . 0 ] ] ) )  
t-28 (I- z)) 
t-25 (#self-closure# t-28 x [ [i-45.0] ] y)) 
t-20 (#self-closure# t-20 t-24 t-25))) 
t -20) )) 

Figure 76: Exit Path Computations are Deleted in $ -$ - t ak  

which t -44  is computed. It turns out that all of the computation in the 
forward loop is relevant to the computation of t -44.  Had the compiler not 
eliminated the temporaries t -26  and t -23,  the loops in which x and t -20  
are computed, would each contain assignments to two variables and not 
merely one. This would defeat the recognition of the recurrence described 
by x; the recurrence described by t -20  is intractable to the compiler in any 
event. 

The next step is to delete any inert computation that arose from the 
(former) exit paths of the forward loop. See the discussion of Figure 65 for 
an explanation of this transformation, and see Figure 76 for its outcome, 
in the case of $-$- tak .  

At this point, the compiler examines the first three loops of Figure 76 to 
decide if each can be made parallel, either because it describes a familiar 
recurrence relation with a parallel solution, or because it is simply a loop 
whose iterations are independent of one another. See Figure 77. The com- 
piler has found the computations of x, t -22,  and t -44  to be an induction 
sequence, a parallel loop, and the familiar recurrence described by #or, re- 
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($-$-tak 

(lambda (x y z) 
<t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44 i-45> 
(set! t-44 #f) 
(do-induction (i-45 ??) (set! x[i-45.1] 

(i- x[i-45.0]))) 
(doall (i-45 ??) (set! t-22[i-45.1] (< y x[i-45.0]))) 
(do-recurrence 

(i-45 ??) 
(if 
t-22 [i-45. i] 
(set ! t-44 [i-45. I] t-44 [i-45. O] ) 
(set ! t-44[i-45.1] (#or t-44[i-45.0])))) 

(set!  t -20 z) 
(do 

(i-4S 
(set! 
(set! 
(set! 
(set! 
(set! 

(return 

t-44) 
t-27 (1- y)) 
t-24 (#self-closure# t-27 z x[[i-45.0]])) 
t-28 (1- z)) 
t-25 (#self-closure# t-28 x[[i-45.0]] y)) 
t-20 (#self-closure# t-20 t-24 t-25))) 
t -20) )) 

Figure 77: Parallel Loops (from the Forward Loop) are Recognized 
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($-$-tak 

(lambda (x y z) 
<t-20 t -22  t - 23  t - 24  t - 25  t - 26  
t-27 t-28 t-44 i-45 i-46 i-47> 
(set! t-44 #f) 
(set! t-44 (pos-diff x y)) 
(do-induction 

(i-46 t-44) 
( se t !  x [ i - 4 6 . 1 ]  

(doa l l  ( i -47  t -44)  
(set! t -20  z) 
(do 

(i-45 t-44) 
(set! t -27  (1- y)) 

(1- x [ i - 4 6 . 0 ]  ) ) )  
( se t !  t - 2 2 [ i - 4 7 . 1 ]  (< y x [ i - 4 7 . 0 ] ) ) )  

( se t !  t -24  ( # s e l f - c l o s u r e #  t -27  z x [ [ i - 4 5 . 0 ] ] ) )  
(set! t-28 (i- z)) 
(set! t-25 (#self-closure# t-28 x[[i-45.0]] y)) 
(set! t-20 (#self-closure# t-20 t-24 t-25))) 

(return t-20) )) 

Figure 78: A Closed-Form Solution for t -44  is Found 

spectively. At this point, recursion splitting has succeeded. As before, the 
compiler will attempt to rewrite the computation of t -44  in as efficient a 
form as possible, and will then proceed with the parallelization of the rest 
of the procedure. 

See Figure 78. Once again, a closed-form solution to the recurrence 
described by t -44  has been found, in terms of x and y. The expression 
( p o s - d i f f  x y) is (-  x y) if x is greater than or equal to y, and zero 
otherwise. There is some dead code in this figure; in particular, the entire 
loop in which t -22  is computed is now dead code, since this variable has 
no uses. Parcel will ultimately recognize this and delete it. 

Before moving on to the backward loop, the compiler adds code to allo- 
cate and initialize the vectors which represent expanded variables, and to 
restore the final positions of these vectors to the variables, following the 
loop. See Figure 79, and the discussion of Figure 68 for an explanation 
of the functions a l l o c a t e  and r e s t o r e .  The computation of the values 
of x has been rewritten as an invocation of the procedure add2-ind. This 
procedure takes two arguments: a vector v and an integer k. v [0.0] is as- 
sumed to be initialized to an integer value. Upon return, v [ i .  0] contains 
the value v[0.0]  +ik, for every element of the vector. This computation 
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($-$- tak 

(lambda (x y z) 
<t-20 t - 22  t - 23  t -24 t - 25  t - 26  t - 27  

t-28 t-44 1-45 i-46 i-47 t-48> 
(set! t-44 #f) 
(set! t-44 (pos-diff x y)) 
(set! x (allocate x t-44)) 
(set! t-22 (allocate #f t-44)) 
(add2-ind x -I) 
(doall (i-47 t-44) (set! t-22[i-47.I] (< y x[i-47.0]))) 
(set! t-48 x) 
(set! x (restore x t-44)) 
(set!  t-20 z) 
(set!  x ( r e a l l o c a t e  t -48))  
(do 

(i-45 t-44) 
(set!  t-27 (1- y)) 
(set! t-24 (#self-closure# t-27 z x[[i-45.0]])) 
(set!  t -28 ( 1 - z ) )  
(set!  t-25 (#se l f - c losure#  t-28 x [ [ i -45 .0 ] ]  y)) 
(set!  t-20 (#se l f - c losure#  t-20 t-24 t -25) ) )  

( re tu rn  t-20) )) 

Figure 79: The Restructuring of the Forward Loop is Completed 
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may be performed in parallel, of course. 

3.4.4 Variable Expansion and the Bottom of Recursion 

Recursion splitting requires some fairly detailed manipulations of the pro- 
cedure; a good example is in handling the computat ion that  occurs at the 
"bottom" of recursion. In this case, the assignment ( s e t  ! t - 2 0  z) is the 
entire computat ion performed at the bo t tom of recursion, and establishes 
the first in the sequence of values taken by t -20 ,  the variable whose final 
value is returned by $ -$ - t ak .  In general, however, there might be a more 
complex computat ion at the bo t tom of recursion, that  involves any of the 
parameters and local variables of the procedure. In particular, the value 
of x might be required for this computation. When, however, execution 
of the forward loop is completed, x points to a vector of values; it is the 
last of these values that  must be assigned to x, so that  the computat ion at 
the bo t tom of recursion may be performed sensibly. This is the purpose of 
the expression ( s e t !  x ( r e s t o r e  x t - 4 4 ) ) .  However, the vector which 
holds the values of x as computed in the forward loop is needed by the 
backward loop; it is therefore saved in the variable t -48 ,  and the function 
r e a l l o c a t e  is used to assign this vector to x, just priior to the backward 
loop. In reality, r e a l l o c a t e  is an identity function, it does nothing; but 
for reasons that  have to do with the implementation details of Parcel, a 
function t e a / l o c a t e  is used, to inform the compiler of the purpose of this 
expression, for later optimizations. 

3.4.5 Parallelization of the Backward Loop 

The remainder of the parallelization process is easy. The backward loop 
does not need to be subjected to exit-loop translation: its number of iter- 
ations is t -44 ,  the same as that  of the forward loop. First, the variables 
defined within the backward loop are expanded. See Figure 80. Next, the 
backward loop is distributed. See Figure 81. The loops that  result from 
distribution are classified as parallel, recurrences, and so on: see Figure 82. 
All of the loops, except the last, are seen to be parallel, and are marked as 
d o a l l  forms accordingly. At this point, there are needlessly many loops, 
and the compiler remedies this by "undistributing" as much as possible, a 
transformation usually called loop fusion [47]. See Figure 83. 

The version of the procedure that  emerges from recursion splitting is 
given in Figure 84. The expanded variables of the backward loop are allo- 
cated with routines analogous to a l l o c a t e  and r e s t o r e ,  called a l l o c a t e - r  
and r e s t o r e - r  respectively. The vectors that  represent expanded variables 
at run-time are marked as arising either from a forward loop (the default 
case, as would apply also to the loop in Figure 60) or a backward loop 
created by recursion splitting. These markings are the only difference be- 
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($ -$ - t ak  

(lambda (x y z) 
<t-20 t-22 t-23 t-24 t-25 t-26 t-27 
t-28 t-44 i-45 i-46 i-47 t-48> 
(set! t-44 #f) 
(set! t-44 (pos-diff x y)) 
(set! x (allocate x t-44)) 
(set ! t-22 (allocate #f t-44)) 
(add2-ind x -i) 
(doall (i-47 t-44) (set! t-22[i-47.1] 
(set! t-48 x) 
(set! x (restore x t-44)) 
(set! t-20 z) 
(set! x (reallocate t-48)) 
(do 

(i-45 t-44) 
(set ! t-27[i-45, i] 
(set! t-24[i-45.1] 

( se t  ! t-28 [i-45.1] 
( se t  ! t-25 [i-45.1] 

(< y x[i-47.0]))) 

(1- y)) 
(#self-closure# t-27 [i-45. I] 

z x[[i-45.0] ])) 
(1- z ) )  
(#self-closure# t-28 [i-45. i] 

x [ [i-45.0] ] y)) 
(set! 
t-20 [i-45. I] 
(#self-closure# t-20 [i-45.0] 

t-24 [i-45.1 ] 
(return t-20) )) 

t-25 [i-45. i] ) ) ) 

Figure 80: Variables Defined in the Backward Loop are Expanded 
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tween the vectors created by a l l o c a t e  and a l l o c a t e - r .  The distinction 
is important to some recurrence solution routines, which take two argu- 
ments, one a vector to be read, the other a vector to be written. In the 
event that the input vector represents a variable expanded in the forward 
loop, and the output vector a variable expanded in the backward loop, the 
proper subscript functions must be selected, based upon the types of these 
vectors, so that the input vector is read in the correct "direction". 

The final parallel version of $ -$ - t ak  is given in Figure 85. A nesting of 
parallel loops has occurred because the compiler has wrapped two recursive 
calls to $ -$ - t ak  in a "cobegin" form, expressed as a doa l l  loop of two 
iterations. It is very informative to follow the parallel evaluation of this 
version of the procedure, to appreciate to what a flood of parallelism it 
gives rise, as it makes recursive calls within parallel loops. 

3.5 High-Level (Coarse-Grained) Parallelism 

It might have occurred to the reader to object that the first two program 
examples we have considered hardly call for a machinery of interprocedural 
analysis so elaborate as that we constructed in Section 2. These simple 
programs contained few procedures and no interprocedurally visible side- 
effects; we must turn to a more involved example if we are to see how the 
analysis facilitates the discovery of high-level (coarse-grained) parallelism. 

We have chosen the boyer  benchmark from the Gabriel benchmark suite 
[21], for the reason that it comprises a number of procedures, and makes use 
of simple, interprocedural side-effects. In particular, we will focus our atten- 
tion upon the procedures one-way-unify ,  o n e - w a y - u n i f y - l s t ,  r ewr i t e ,  
r e u r i t e - a r g s ,  and rewr i te -wi th- lemmas .  See figures 86 and 87. These 
procedures, as they are seen by the compiler following parsing, are shown 
in figures 88, 89, 90, 91, and 92. We have made some small but signifi- 
cant changes to the benchmark as it is found in [21], for the purpose of 
illustrating Parcel's treatment of side-effects; these changes have no effect 
upon the values computed by the benchmark. In the original benchmark 
there are two global variables, temp-temp and u n i f y - s u b s t ,  both of which 
are used in a somewhat local manner. We have made u n i f y - s u b s t  a lo- 
cal variable of r eu r i t e -w i th - l emmas ,  as its value is overwritten every time 
rewr i t e -wi th - lemmas  is invoked. We have therefore made one-way-uni fy  
a local procedure of rewr i te -wi th - lemmas  (since u n i f y - s u b s t  occurs 
free in its body), and likewise with o n e - w a y - u n i f y - l s t  (since it calls 
one-way-unify) .  Similarly, the variable temp-temp is used momentar- 
ily within one-way-uni fy  to hold a temporary quantity, to avoid twice 
evaluating an expression. We have therefore given one-way-uni fy  a local 
variable by the same name, although we could as easily have written a l e t  
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form to introduce temp-temp. 

($ -$ - t ak  

(lambda (x y z) 
< t - 20  t - 22  t - 23  t - 24  t - 25  t - 26  t - 27  t - 28  t - 4 4  

i-45 i-46 1-47 t-48 i-49 1-50 i-51 i-52 i-53 > 
(set! t-44 #f) 
(set! t-44 (pos-diff x y)) 
(set! x (allocate x t-44)) 
(set! t-22 (allocate #f t-44)) 
(add2-ind x -I) 
(doall (i-47 t-44) (set! t-22[i-47.1] (< y x[i-47.0]))) 
( se t !  t -48  x) 
( se t !  x ( r e s t o r e  x t - 4 4 ) )  
(set! t-20 z) 
(set! x (reallocate t-48)) 
(do (1-49 t-44) (set! t-28[i-49.1] (1- z))) 
(do 

(1-50 t-44) 
(set! t-25[i-50.I] 

(#self-closure# t-28[i-50.i] 
x [ [ i - 5 o . 0 ] ]  y ) ) )  

(do (i-51 t-44) (set! t-27[i-51.i] (i- y))) 
(do 

(i-52 t-44) 
(set ! t-24[i-52.1] (#self-closure# t-27[i-52.1] 

z x [ [ i - 5 2 . 0 ]  ] ) ) )  
(do 

( i -53  t -44)  
(set! 
t-20[i-53,i] 
(#self-closure# t-20[i-53.0] 

(return t-20) )) 
t - 2 4 [ i - 5 3 . 1 ]  t - 2 5 [ i - 5 3 . 1 ] ) ) )  

Figure 81: The Backward Loop is Distributed 
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($-$-tak 

(Lambda (x y z) 
< t -20  t -22  t -23  t -24  t -25  t -26  t -27  t -28  t -44  

i -45 i -46 i -47 t -48  i -49 i -50 i-51 i -52 i -53 > 
( se t !  t -44  #f) 
( se t !  t -44  ( p o s - d i f f  x y))  
( se t !  x ( a l l o c a t e  x t - 4 4 ) )  
( se t !  t -22  ( a l l o c a t e  #f t - 4 4 ) )  
(add2-ind x -1) 
(doa l l  ( i -47  t -44)  ( se t !  t - 2 2 [ i - 4 7 . 1 ]  (< y x [ i - 4 7 . 0 ] ) ) )  
( se t !  t -48  x) 
( se t !  x ( r e s t o r e  x t - 4 4 ) )  
(set! t-20 z) 
(set! x (reallocate t-48)) 
(doall (±-49 t-44) (set! t-28[i-49.1] (i- z))) 
(doall 

( i -50  t -44)  
( se t !  t -25[±-50 .1 ]  ( # s e l f - c l o s u r e #  t -2811-50.1]  

x[[ i -5o.o]]  y))) 
(doa l l  ( i -51 t -44)  ( se t !  t -2711-51.1]  (1- y ) ) )  
(doa l l  

(±-52 t -44)  
( se t !  t - 2 4 [ i - 5 2 . 1 ]  ( # s e l f - c l o s u r e #  t - 2 7 [ i - 5 2 . 1 ]  

z x [ [ 1 - 5 2 . 0 ] ] ) ) )  
(do 

(1-53 t -44)  
(set! 

t -20[ i -53.1]  
(#self-closure# t -20[ i -53.0]  

( r e t u r n  t -20)  )) 
t -24  [1-53.1] t -25  [±-53.1] ) ) ) 

Figure 82: Parallel Loops and Recurrences are Recognized 
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($-$-tak 

(lambda (x y z) 
< t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44 

i-45 i-46 i-47 t-48 i-49 i-SO i-St i-52 i-53 > 
(set! t-44 #f) 
(set! t-44 (pos-diff x y)) 
(set! x (allocate x t-44)) 
(set! t-22 (allocate #f t-44)) 
(add2-ind x -i) 
(doall (i-47 t-44) (set! t-22[i-47.1] (< y x[i-47.0]))) 
(set! t-48 x) 
(set! x (restore x t-44)) 
(set! t-20 z) 
(set! x (reallocate t-48)) 
(doall 

(i-49 t-44) 
(set! t-27[i-49.1] (I- y)) 
(set ! t-24 [i-49. I] (#self-closure# t-27 [i-49. i] 

z x[[i-49.0]])) 
(set! t-28[i-49.1] (i- z)) 
(set! t-25[i-49.1] (#self-closure# t-28[i-49.1] 

x[[i-49.0]] y))) 
(do 

(i-53 t-44) 
(set ! 

t-20 [i-53. i] 
(#self-closure# t-20 [i-53.0] 

(return t-20) )) 
t -24[ i -53.1]  t -25 [ i -53 .1 ] ) ) )  

Figure 83: Parallel Loops are Coalesced 
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($-$- tak 

(l~mbda (x y m) 
< t -20 t -22  t -23 t -24 t -25 t -26 t -27 t -28  t -44  

i -45  1-46 1-47 t -48 ±-49 i -50  L-51 ±-52 ±-53 > 
(set! t -44 ( p o s - d i f f  x y) )  
(set! x (a l loca te  x t -44 ) )  
(add2-ind x -i) 
(set! t-20 (allocate-r z t-44)) 
(set! t-24 (allocate-r #f t-44)) 
(set! t-25 (allocate-r #f t-44)) 
(set! t-27 (allocate-r #f t-44)) 
(set! t-28 (allocate-r #f t-44)) 
(doall 

(i-49 t-44) 
(set! t-27[i-49.1] (i- y)) 
(set ! t-24[i-49. I] (#self-closure# t-27 [i-49. I] 

z x[[i-49.0]])) 
(set! t-28[i-49.1] (I- z)) 
(set ! t-25 [i-49. I] (#self-closure# t-28 [i-49. I] 

x[[i-49.0]] y))) 
(do 

(i-53 t-44) 
(set ! 

t -20 [1-53.1] 
(#se l f -c losure# t -20 [1-53.0] 

t-24 [i-53.1] t-25 [i-53. I] ) ) ) 
(set ! t-20 (restore-r t-20 t-44)) 
(return t-20) )) 

Figure 84: After Recursion Splitting 
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($-$-tak 

(lambda (x y z) 
< t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44 

i-45 i-46 i-47 t-48 i-49 i-50 i-51 i-52 i-53 i-54 > 
(set! t-44 (pos-diff x y)) 
(set! x (allocate x t-44)) 
(add2-ind x -1) 
(set ! t-20 (allocate-r z t-44)) 
(set ! t-24 (allocate-r #f t-44)) 
(set! t-25 (allocate-r #f t-44)) 
(set! t-27 (allocate-r #f t-44)) 
(set! t-28 (allocate-r #f t-44)) 
(doall 

(i-49 t-44) 
(set! t-28[i-49.1] (i- z)) 
(set! t-27[i-49.1] (I- y)) 
(doall 

(i-54 2) 
(mway 

i-54 
(0 (set! t-24[i-49.1] 

(#self-closure# t-27 [i-49. I] 
z x[[i-49.0] ]))) 

(i (set! t-25[i-49.1] 
(#self-closure# t-28 [i-49. i] 

x[[i-49.0] ] y)))))) 
(do 

(i-S3 t-44) 
(set ! 

t-20 [i-53. i] 
(#self-closure# t-20 [i-53. O] 

t-24 [i-53. I] t-25 [i-53. I] ) ) ) 
(set! t-20 (restore-r t-20 t-44)) 
(return t-20) )) 

Figure 85: The Final (Parallel) Version of $-$- tak 
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(define 
rewrite 
(lambda (term) 

(cond 
( (atom? term) 
term ) 

( #t 
(rewrite-with-lemmas 

(cons (car term) (rewrite-args (cdr term))) 
(getprop (car term) 'lemmas)) ) ) )) 

(define 
rewrite-args 
(lambda (lst) 

(cond 
( (null? lst) 
#f ) 

( #t 
(cons (rewrite (car lst)) (rewrite-args (cdr lst))) ) ) )) 

Figure 86: The Procedures r e w r i t e  and r e w r i t e - a r g s  

These modifications were made by hand for the reason that  Parcel is not 
equipped to change the status of a variable from global to local (under the 
assumption that  a programmer will avoid global variables when they are 
not needed), although the conditions under which such a transformation 
may be applied are easily expression in terms of procedure strings and stack 
configurations. 

Let's first consider the variable u n i f y - s u b s t .  It occurs as a free vari- 
able in the procedure one-way-uni fy ,  where it is modified as well as used. 
Nevertheless, analysis by g5 or g7 (as defined in Section 2) reveals that  the 
procedures rewrite, rewrite-args, and rewrite-with-lemmas have no 
side-effects upon this variable. Recall the test embodied in Theorem 7 for 
side-effects: the closure which captures unify-subst makes no (net) down- 
ward movement into rewrite, rewrite-args or rewrite-with-lemmas 
before being applied. As a diversion, we might consider annotating this 
program using the "type" system of side-effects described in [23]. We 
would find that,  because it is captured by a closure which modifies it, 
the variable u n i f y - s u b s t  induces side-effects in all the routines that  are 
(indirect) callers of one-way-uni fy ,  including r e w r i t e ,  r e w r i t e - a r g s  and 
r ewr i t e -wi th - l emmas .  This program is therefore an example in which the 
automatic side-effect analysis of Parcel has greater accuracy than is possible 
for the user to achieve manually, using the system of [23]. 

Let us turn to the procedure r e w r i t e - a r g s  of Figure 91. This is a simple 
and somewhat typical procedure, that  might have been the result of macro- 
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(define 
rewrit e-with-lemmas 
(lambda (term ist) 

(define nnify-subst #f) 
(define 

one-way-unify 
(lambda (terml term2) 

(define temp-temp) 
( c ond 

( (atom? term2) 
( c ond 

( (set! temp-temp (assq term2 unify-subst)) 
(equal? terml (cdr temp-temp)) ) 

( #t 
(set! unify-subst (cons (cons term2 termS) unify-subst)) 
# t ) ) )  

( (atom? terml) 
#f ) 

( (eq? (car terml) (car term2)) 
(one-way-unify-lst (cdr terml) (cdr term2)) ) 

( #t 
# f )  ) ) )  

(define 
one-way-unify-let 
(lambda (istl let2) 

(cond 
( (null? istl) 
#t ) 

( (one-way-unify (car istl) (car let2)) 
(one-way-unify-lst (cdr Istl) (cdr let2)) ) 

( #t 
# f ) ) ) )  

(cond 
( (null? ist) 
term ) 

( (one-way-unify term (cadr (car ist))) 
(rewrite (apply-subst unify-subst (caddr (car ist)))) ) 

( #t 
(rewrite-with-lemmas term (cdr Ist)) ) ) )) 

Figure 87: The Procedure rewrite-with-lemmas, and its Subroutines 
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( $- $-rewrit e-with-lemmas 

(lambda (term ist) 
< unify-subst one-way-unify one-way-unify-lst 

t-139 t-140 t-141 t-142 t-143 t-144 t-145 t-146 t-147 > 
(set! unify-subst (id #f)) 
(set ! one-way-unify 

(id #<$-$-rewrite-with-lemmas-one-way-unify>) ) 
(set ! one-way-unify-lst 

(id #<$-$-rewrite-with-lemmas-one-way-unify-lst>) ) 
(set! t-140 (null? ist)) 
(cond 

( t-140 
(set! t-139 (id term)) ) 

( else 
(set! t-143 (car ist)) 
(set! t-142 (cadr t-143)) 
(set ! t-141 (one-way-unify term t-142)) 
(cond 

( t-141 
(set! t-146 (car lst)) 
(set! t-145 (caddr t-146)) 
(set ! t-144 (apply-subst unify-subst t-145)) 
(set! t-139 (rewrite t-144)) ) 

( else 
(set! t-147 (cdr ist)) 
(set! t-139 (rewrite-with-lemmas term t-147)) ) ) ) ) 

(return t-189) )) 

Figure 88: The Procedure $-$-rewrite-with-lemmas After Parsing 
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($-$-rewrite-with-lemmas-one-way-unify-lst 
= 

(lambda (istl Ist2) 
<t-132 t-133 t-134 t-135 t-136 t-137 t-138> 
(set! t-133 (null? Istl)) 
(cond 

( t-133 
(set! t-132 ( id  # t ) )  ) 

( else 
(set! t-135 (car l s t l ) )  
(set! t-136 (car l s t2 ) )  
(set! t-134 (one-way-unify t-135 t-136)) 
(cond 

( t-134 
(set! t-137 (cdr lstl)) 
(set! t-138 (cdr lst2)) 
(set! t-132 (one-way-unify-lst t-137 t-138)) 

( else 
( s e t !  t - 132  ( id  # f ) )  ) ) ) ) 

( r e t u r n  t -132 )  ))  

Figure 89: $-$-rewrite-with-lemmas-one-way-unify-lst 

expanding an expression like (mapcar r e w r i t e  l s t ) .  It is recursive, but 
not tail-recursive, and so the compiler will treat it by recursion splitting. 
See Figure 93. Here, the forward and backward loops have been formed. As 
always, the forward loop will be subjected to exit-loop translation; the #or 
expression is placed along what was formerly the path taken at the "bot- 
tom" of recursion. Ultimately, t -204 wilt hold the number of iterations of 
this procedure. The progress of recursion splitting is straightforward. The 
variables defined in the forward loop are expanded (Figure 94), some tradi- 
tional optimizations are applied to clean up unneeded temporary variables 
(Figure 95), the forward loop is distributed (Figure 96), and the resulting 
subloops are reordered so that the one in which t -204 is computed is pre- 
ceded by as few as possible (Figure 97). Next, any computation that was 
not performed by the original loop, that falls along what were previously 
exit paths from the loop, is eliminated (Figure 98). Each of the subloops 
that was created by distribution of the forward loop is then examined, to 
see if it is a d o a l l  loop or a familiar recurrence relation (Figure 99). At this 
point, we see that the compiler has succeeded in uncovering parallelism that 
is quite coarse in granularity: the call to S - S - r e w r i t e  within the forward 
loop has been placed in a d o a l l  loop. Since S - S - r e w r i t e  may ultimately 
invoke S -S - rewr i t e ,  $ - $ - r e w r i t e - a r g s ,  and $ -$ - rewr i t e -wi th - l emmas  
recursively, this can give rise to a flurry of nested parallel activity at run- 
time. 
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($-$-rewrit e-with-lemmas-one-way-unify 

(lambda (terml term2) 
<temp-temp t-120 t-121 t-122 t-123 t-124 
t-125 t-126 t-127 t-128 t-129> 
(set! t-121 (atom? term2)) 
(cond 

( t-121 
(set! temp-temp (assq term2 unify-subst)) 
(cond 

( temp-temp 
(set! t -126 (cdr temp-temp)) 
(set! t-120 (equal? terml t-126)) ) 

( else 
(set! t-127 (cons term2 terml)) 
(set! unify-subst (cons t-127 unify-subst)) 
(set! t-120 (id #t)) ) ) ) 

( else 
(set! t-122 (atom? term1)) 
(cond 

( t-122 
(set! t-120 (id #f)) ) 

( else 
(set! t-124 (car terml)) 
(set! t-125 (car term2)) 
(set! t-123 (eq? t-124 t-125)) 
(cond 

( t-123 
(set! t-128 (cdr terml)) 
(set! t-129 (cdr term2)) 
(set ! t-120 (one-way-unify-lst t-128 t-129)) ) 

( else 
(set! t-120 (id #f)) ) ) ) ) ) ) 

(return t-120) )) 

Figure 90: The Procedure  $-$-rewrite-with-lemmas-one-way-unify Af- 
ter Parsing 
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($-$-rewrite-args 
= 

(lambda (ist) 
<t-f06 t-lOT t-f08 t-109 t-llO t-111> 
(set! t-lOT (null? ist)) 
(cond 

( t-107 
(set! t-106 (id #f)) ) 

( else 
(set! t-llO (car Ist)) 
(set! t-f08 (rewrite t-llO)) 
(set! t-111 (cdr ist)) 
(set! t-i09 (rewrite-args t-111)) 
(set! t-106 (cons t-108 t-109)) ) ) 

(return t-106) )) 

Figure 91: The Procedure $-$-rewrite-args After Parsing 

(S-S-rewrite 

(lambda (term) 
<t-97 t-98 t-99 t-lO0 t-101 t-102 t-f03 t-f04> 
(set! t-98 (atom? term)) 
(cond 

( t-98 
(set! t-97 (id term)) ) 

( else 
(set! t-101 (car term)) 
(set! t-f03 (cdr term)) 
(set ! t-I02 (rewrite-args t-f03)) 
(set! t-99 (cons t-101 t-f02)) 
(set! t-104 (car term)) 
(set! t-lO0 (getprop t-104 'lemmas)) 
(set! t-97 (rewrite-with-lemmas t-99 t-lO0)) ) ) 

(return t-97) )) 

Figure 92: The Procedure S-S-rewrite After Parsing 
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($-$-re~rrite-args 

(lambda ( l s t )  
<t-106 t-108 t-109 t - l l 0  t - l l l  t-204 1-205> 
(set! t-204 #f) 
(do 

(i-205 ??) 
(cond 

( 1st 
(set! t-llO (car Ist)) 
(set! t-108 (rewrite t-llO)) 
(set! t-111 (cdr lst)) 
(set! 1st t-111) ) 

( else 
(set! t-204 (#or t-204 1-205)) ) )) 

(set! t-106 #f) 
(do (i-205 t-204) 

(set! t-109 t-106) 
(set! t-f06 (cons t-108 t-f09))) 

(return t-I06) )) 

Figure 93: The Forward and Backward Loops are Formed 

As might have been expected, the compiler discovers that  t -204  may 
be computed directly by the expression ( l e n g t h  l s t ) ;  see Figure 100. 
Before moving on to the backward loop, the compiler fuses loops where 
possible, among those that  originated from the forward loop (Figure 101), 
adds code to allocate and restore the expanded variables of the forward 
loop (Figure 102), and translates any recognized recurrences among the 
subloops originating from the forward loop (Figure 103). 

The treatment of the backward loop is much simpler, by contrast: the 
variable t -106  is expanded (Figure 104), the recurrence it describes is rec- 
ognized (Figure 99), and finally this recurrence is rewritten as a call to the 
run-time procedure cons - r em- ind  (Figure 106). c o n s - r e m - i n d  is a simple 
version of cons - rem-rec ,  used in the translation of q u i c k s o r t  in subsec- 
tion 3.3.9. Its two arguments are an input vector x of values, and an output  
vector y. A list of length equal to that  of x is constructed, whose top level 
contains the values in x, in reverse order; this list is appended to the head 
of the value x [0 .0 ] ,  and the result is pointed to by y[N.0] ,  where N is 
the number of iterations of the loop in which x and y are expanded. This 
procedure, like cons - rem-rec ,  solves a recurrence for its remote term; it is 
for this reason that  only the last position of y is given a value. The final 
version of $ - $ - r e w r i t e - a r g s  is shown in Figure 107. 

There are two important  points to be made by this example. First, 
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($-$-rewrite-args 

(lambda (ist) 
<t-f06 t-f08 t-109 t-llO t-lll t-204 i-205> 
(set! t-204 #f) 
(do 

(i-205 ??) 
(cond 

( ist[i-2OS.O] 
(set! t-ii0[i-205.1] (car ist[i-205.0])) 
(set! t-i08[i-205.1] (rewrite t-Ii0[i-205.1])) 
(set! t-lii[i-205.1] (cdr ist[i-205.0])) 
(set! Ist[i-205.1] t-iii[i-205.1]) 
(set!  t-204[i-205.1] t-204[i-205.0]) ) 

( else 
(set! 
(set! 
(set! 

(set! t-106 
(do 

t-204 [i-205. 
ist [i-205.1] 
t- 108 [i-205. 
#f) 

i] (#or t-204[i-205.0] i-205)) 
ist [i-205. O] ) 

1] t -108 [ i -205 .0 ] )  ) ))  

(i-205 t-204) 
(set!  t-109 t-106) 
(set!  t-106 (cons t -108[[ i -205.1]]  t -109)))  

( re turn  t-106) )) 

Figure 94: Variables Defined in the Forward Loop are Expanded 

($-$-rewrite-args 

(lambda (ist) 
<t-f06 t-f08 t-f09 t-llO t-lll t-204 i-205> 
(set! t-204 #f) 
(do 

( i -205 ??) 
(cond 

( ist [i-205.0] 
(set! t-II0[i-205.1] (car ist[i-205.0])) 
(set! t-I08[i-205.1] (rewrite t-ii0[i-205.1])) 
(set! Ist[i-205.1] (cdr ist[i-205.0])) 
(set! t-204[i-205.1] t-204[i-205.0]) ) 

( else 
(set! t-204[i-205.1] (#or t-204[i-205.0] i-205)) 
(set! ist[i-205.1] ist[i-205.0]) 
(set! t-I08[i-205.1] t-I08[i-205.0]) ) )) 

(set! t-106 #f) 
(do (i-205 t-204) (set! t-f06 (cons t-i08[[i-205.1]] t-106))) 
(return t-f06) )) 

Figure 95: The Forward Loop is Cleaned up Before Proceeding 
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($-$-rewrite-args 
= 

(lambda (Ist) 
<t-f06 t-f08 t-f09 t-llO t-lll t-204 i-205> 
(set ! t-204 #f) 
(do 

(i-205 ?7) 
(i:f 

ist [i-205. O] 
(set! ist[i-205.1] (cdr ist[i-205.0])) 
(set! ist[i-205.1] Ist[i-205.0]))) 

(do (i-205 ??) 
(if ist [i-205.0] 

(set ! t-llO [i-205. i] (car ist [i-205. O] ) ) )) 
(do 

(i-205 ??) 
( i f  

ist [i-205. O] 
(set! t-I08[i-205.1] (rewrite t-llO[i-205.1])) 
(set ! t-lOS [i-205. I] t-lOS [i-205. O] ) ) ) 

(do 
(i-205 ??) 
(i:f 

ist [i-205. O] 
(set ! t-204 [i-205. i] t-204 [i-205. O] ) 
(set ! t-204 [i-205. I] (#or t-204 [i-205. O] i-205) ))) 

(set! t-f06 #f) 
(do (i-205 t-204) (set! t-f06 (cons t-I08[[i-205.1]] t-f06))) 
(return t-f06) )) 

Figure 96: The Forward Loop is Distr ibuted 
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($-$-rewrite-args 

(lambda (ist) 
<t-106 t-108 t-I09 t-110 t-111 t-204 i-205> 
(set! t-204 #f) 
(do 

(i-205 ??) 
( i : f  

ist [i-205. O] 
(set! ist[i-205.1] (cdr ist[i-205.0])) 
(set ! ist [i-205.1] ist [i-205.0]))) 

(do 
(1-205 ??) 
( if  

Ist [i-205. O] 
(set ! t-204[i-205, i] t-204[i-205.0]) 
(set ! t-204 [i-205. I] (#or t-204 [i-205.0] i-205)))) 

(do (i-205 ??) 
(if ist [i-205.0] 

(set! t-ii0[i-205.1] (car ist[i-205.0])))) 
(do 

(i-20S ??) 
(if  

ist [i-205.0] 
(set! t-I08[i-205.1] (rewrite t-II0[i-205.1])) 
(set! t-I08[i-205.1] t-I08[i-205.0]))) 

(set! t-f06 #f) 
(do (i-205 t-204) (set! t-106 (cons t-i08[[i-205.1]] t-106))) 
(return t-f06) )) 

Figure 97: Subloops of the Forward Loop are Reordered 
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($-$-rewrite-args 

(lambda (ist) 
<t-f06 t-108 t-f09 t-llO t-lll t-204 1-205 i-206 i-207> 
(set! t-204 #f) 
(do (i-205 77) (set! ist[i-205.1] (cdr Ist[i-205.0]))) 
(do 

(i-205 77) 
(i:f 
Ist [i-205. O] 
(set ! t-204 [i-205.1] t-204 [i-205.0] ) 
(set! t-204[i-205.1] (#or t-204[i-205.0] i-205)))) 

(do (i-206 t-204) 
(set! t-Ii0[i-206.1] (car ist[i-206.0]))) 

(do (i-207 t-204) 
(set! t-i08[i-207.I] (rewrite t-Ii0[i-207.i]))) 

(set! t-f06 #f) 
(do (i-205 t-204) 

(set! t-106 (cons t-108[[i-205.1]] t-f06))) 
(return t-106) )) 

Figure 98: Exit-Path Computations are Eliminated 

($-$-rewrite-args 
= 

(lambda (ist) 
<t-106 t-108 t-109 t-110 t-111 t-204 i-205 1-206 i-207> 
(set! t-204 #f) 
(do-induction (i-205 ??) 

(set! ist[i-205.1] (cdr Ist[i-205.0]))) 
(do-recurrence 

(1-205 ?7) 
( i f  
Ist [i-205. O] 
(set ! t-204[i-205.1] t-204[i-205.0]) 
(set! t-204[i-205.1] (#or t-204[i-205.0] i-205)))) 

(doall (i-206 t-204) 
(set! t-II0[i-206.1] (car ist[i-206.0]))) 

(doall (i-207 t-204) 
(set! t-108[i-207.1] (rewrite t-Ii0[i-207.1]))) 

(set! t-106 #f) 
(do (i-205 t-204) 

(set! t-f06 (cons t-I08[[i-205.1]] t-106))) 
(return t-f06) )) 

Figure 99: Doall Loops and Recurrences are Recognized 
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($-$-rewrite-args 

(lambda (ist) 
<t-f06 t-f08 t-f09 t-llO t-lll 
t-204 i-205 i-206 i-207 i-208> 
(set! t-204 #f) 
(set! t-204 (length ist)) 
(do-induction (i-208 t-204) 

(set! ist[i-208.1] (cdr ist[i-208.0]))) 
(doall (i-206 t-204) 

(set! t-Ii0[i-206.1] (car ist[i-206.0]))) 
(doall (i-207 t-204) 

(set! t-i08[i-207.1] (rewrite t-ii0[i-207.I]))) 
(set! t-i06 #f) 
(do (i-205 t-204) 

(set! t-f06 (cons t-I08[[i-205.1]] t-f06))) 
(return t-106) )) 

Figure 100: A Closed-Form Solution is found for t -204  

($-$-rewrite-args 
= 

(lambda (ist) 
<t-f06 t-f08 t-f09 t-llO t-lll 
t-204 i-205 i-206 i-20Z i-208> 
(set! t-204 #f) 
(set! t-204 (length ist)) 
(do-induction (i-208 t-204) 

(set! Ist[i-208.1] 
(doall 

(i-206 t-204) 
(set ! t-llO [i-206. I] 
(set! t-I08[i-206.1] 

(set! t-f06 #f) 
(do (i-205 t-204) 

(set! t-f06 (cons t-I08[[i-205.1]] t-f06))) 
(return t-f06) )) 

(cdr Ist[i-208.0]))) 

(car ist [i-206. O] ) ) 
(rewrite t-llO [i-206. i] )) ) 

Figure 101: Subloops of the Forward Loop are Fused 
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($-$-rewrite-args 

(lambda (ist) 
<t-106 t-108 t-109 t-llO t-111 t-204 
i-205 i-206 i-207 i-208 t-209> 
(set! t-204 #f) 
(set! t-204 (length Ist)) 
(set! ist (allocate Ist t-204)) 
(set! t-f08 (allocate #f t-204)) 
(set! t-llO (allocate #f t-204)) 
(do-induction (i-208 t-204) 

(set! ist[i-208.1] (cdr ist[i-208.0]))) 
(doall 

(i-206 t-204) 
(set! t-Ii0[i-206.1] (car Ist[i-206.0])) 
(set! t-i08[i-206.1] (rewrite t-II0[i-206.1]))) 

(set! t-209 t-lOS) 
(set! t-lOS (restore t-f08 t-204)) 
(set! t-f06 #f) 
(set! t-f08 (reallocate t-209)) 
(do (i-205 t-204) 

(set! t-f06 (cons t-i08[[i-205.1]] t-f06))) 
(return t-f06) )) 

Figure 102: a l l o c a t e  and r e s t o r e  Forms are Int roduced 
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($-$-rewrite-args 
= 

(lambda (ist) 
<t-106 t-108 t-109 t-110 t-111 t-204 
i-205 i-206 i-207 i-208 t-209> 
(set! t-204 #f) 
(set! t-204 (length ist)) 
(set! ist (allocate ist t-204)) 
(set! t-lOS (allocate #f t-204)) 
(set! t-llO (allocate #f t-204)) 
(cdr-ind Ist i) 
(doall 

(i-206 t-204) 
(set! t-110[i-206.1] 
(set! t-I08[i-206.1] 

(set! t-209 t-f08) 
(set! t-lOS (restore t-f08 t-204)) 
(set! t-f06 #f) 
(set! t-lOS (reallocate t-209)) 
(do (i-205 t-204) 

(set! t-f06 (cons t-108[[i-205.1]] t-f06))) 
(return t-106) )) 

(car ist [i-206.0])) 
(rewrite t-llO [1-206. i] ) ) ) 

Figure 103: Recurrences from the Forward Loop are Translated 

from Parcel's perspective, there is no difference between the extraction 
of coarse- and fine-grained parallelism: within $ - $ - r e w r i t e - a r g s ,  which 
during its execution may initiate a lengthy and interprocedurally complex 
subcomputat ion at each invocation it makes of S - S - r e w r i t e ,  the compiler 
uncovered parallelism by applying exactly the techniques that  were applied 
to tak,  an "innermost" procedure. Of course, the scheduling implications 
of coarse- and fine-grained parallelism may be different, but this mat ter  is 
left to the run-time system in Parcel, which is presented with a parallel 
and sequential version of each procedure, and has a flexible mechanism for 
selecting between them according to the utilization of processors at run- 
time. 

Second, consider the collection of procedures represented in Figures 88 
through 92. Suppose that  of these, the compiler is successful in discover- 
ing parallelism only within $ - $ - r e w r i t e - a r g s .  Nevertheless, because of 
recursion among these procedures, this may well give a satisfactory, if not 
abundant,  degree of parallelism at run-time. The point is simply this: it is 
not necessary for the compiler to detect parallelism within every procedure 
of a program, in order to be successful in parallelizing the program as a 
whole. 
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($-$-rewrite-args 
= 

(lambda (let) 
<t-f06 t-108 t-f09 t-llO t-lll t-204 
i-205 i-206 i-207 i-208 t-209> 
(set! t-204 #f) 
(set! t-204 (length let)) 
(set! let (allocate let t-204)) 
(set! t-i08 (allocate #f t-204)) 
(set! t-110 (allocate #f t-204)) 
(cdr-ind let 1) 
(doall 

(i-206 t-204) 
(set! t-ii0[i-206.1] 
(set! t-I08[i-206.1] 

(set! t-209 t-108) 
(set! t-108 (restore t-108 t-204)) 
(set! t-106 #f) 
(set! t-f08 (reallocate t-209)) 
(do 

( i -205 t -204)  
(set !  t - 1 0 6 [ i - 2 0 5 . 1 ]  

(car let [1-206. O] ) ) 
(rewrite t-llO [i-206. i] ) ) ) 

(cons t -108 [ [ i -205 .1 ]  ] t -106 [ i -205.  O] ) ) ) 
( re tu rn  t -106)  ))  

Figure 104: Variables Defined in the Backward Loop are Expanded 
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($-$-rewrite-args 
= 

(lambda (Ist) 
< t-106 t-108 t-109 t-llO t-lll t-204 i-205 

i-206 i-207 i-208 t-209 i-210 t-211 > 
(set! t-204 #f) 
(set! t-204 (length ist)) 
(set! Ist (allocate ist t-204)) 
(set! t-f08 (allocate #f t-204)) 
(set! t-llO (allocate #f t-204)) 
(cdr-ind ist I) 
(doall 

(i-206 t-204) 
(set! t-Ii0[i-206.13 (car ist[i-206.0])) 
(set! t-i08[i-206.1] (rewrite t-Ii0[i-206.1]))) 

(set! t -209 t-108) 
(set! t-f08 (restore t-108 t-204)) 
(set! t-f06 #f) 
(set! t-f08 (reallocate t-209)) 
(do-rem-induction 

(i-210 t-204) 
(set! t-211[i-210.1] 

(cons t - 1 0 8 [ [ i - 2 1 0 . 1 ] ]  t - 2 1 1 [ i - 2 1 0 . 0 ] ) ) )  
(set ! t -106 (append2 t-106 t -211) )  
(return t-106) )) 

Figure 105: Doalls and Recurrences from the Backward Loop are Recog- 
nized 
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($-$-rewrite-args 

(lambda (let) 
< t-f06 t-108 t-f09 t-llO t-lll t-204 i-205 

i-206 i-207 i-208 t-209 i-210 t-211 > 
(set! t-204 #f) 
(set! t-204 (length let)) 
(set! let (allocate let t-204)) 
(set! t-I08 (allocate #f t-204)) 
(set! t-llO (allocate #f t-204)) 
(cdr-ind let i) 
(doall 

( i-206 t-204) 
(se t !  t -110[ i -206 .1 ]  (car l s t [ i - 2 0 6 . 0 ] ) )  
(se t !  t -108[ i -206 .1 ]  ( rewr i te  t - 1 1 0 [ i - 2 0 6 . 1 ] ) ) )  

(se t !  t -209 t -108) 
(se t !  t -108 ( r e s to r e  t-108 t -204))  
(set! t -106 #f) 
( se t !  t -108 ( r e a l l o c a t e  t -209))  
( se t !  t -211 ( a l l o c a t e - r  #f t -204))  
(cons-rem-ind t -108 t-211) 
(se t !  t -211 ( r e s t o r e - r  t -211 t -204))  
( se t !  t -106 (append2 t-106 t -211))  
( r e tu rn  t -106) )) 

Figure 106: Recurrences ~ o m t h e  Backward Loop are Translated 

($-$-rewrite-args 

(lambda (let) 
< t-106 t-108 t-109 t-110 t-111 t-204 i-205 

i-206 i-207 i-208 t-209 i-210 t-211 > 
(set! t-204 (length let)) 
(set! let (allocate let t-204)) 
(set! t-lOS (allocate #f t-204)) 
(set! t-110 (allocate #f t-204)) 
(cdr-ind let 1) 
(doall 

(i-206 t -204) 
(set! t-II0[i-206.1] (car Ist[i-206.0])) 
(set! t-108[i-206.1] (rewrite t-ii0[i-206.1]))) 

(set! t-211 (allocate-r #f t-204)) 
(cons-rem-ind t-108 t-211) 
(set! t-106 (restore-r t-211 t-204)) 
(return t-106) )) 

Figure 107: The Final, Parallel Version of $ - $ - r e w r i t e - a r g s  
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3.6 O r g a n i z a t i o n  of  t h e  C o m p i l e r  

Having now seen them performed upon a number of procedures, the 
reader could probably sketch the algorithms for exit-loop translation and 
recursion splitting, informally. We will do so now. 

A l g o r i t h m  1 (Exit-Loop Translation:) 

. 

. 

. 

4. 

5. 

. 

7. 

. 

Select an index variable i and a variable n to hold the number of 
iterations of the loop. 

Replace each exit branch from the loop by an assignment of the form 
( s e t !  n (#or n i ) ) ;  let control flow from this assignment to the 
bottom of the loop. 

Perform variable expansion upon all variables defined in the loop. 

Perform loop distribution. 

Reorder the resulting subloops so that as few as possible precede that 
in which n is computed. 

Mark each of the loops which precedes that in which n is computed as 
a recurrence relation for which a parallel solution is available, or a 
doaU loop. Fail if any cannot be so marked. 

Let v l , . . . ,  Vk, n be the variables which are computed in the loops which 
precede that in which n is computed (inclusive of that in which n 
is computed). I f  n (which is computed in terms of vl through Vk) 
describes a recurrence for which a closed form solution exists, emit 
that solution in place of the loop which computes n; else rewrite the 
computation of v t , . . . , v k , n  so that the first non-nuU value of n is 
found in parallel (as a "first-one" recurrence). 

Make n the number of iterations of each of the remaining loops (those 
that follow that in which n is computed). Treat these loops by recur- 
rence and doall recognition, recurrence translation, loop fusion, etc. 

A l g o r i t h m  2 (Recursion Splitting:) 

1. Let p be the procedure at hand. Select a fence F,  a set of self-recursive 
calls to p, such that there is at most one member of F along any 
control path through the body of p. 
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Parser 
Interprocedural Analysis 
Preparatory Optimizations 

Contour Merging 
Tail-recursion Elimination 
Expression Simplification / Strength Reduction 
Invariant Floating 
Copy Propagation 
Common Subexpression Elimination 
Dead Code Elimination 

Parallelizing Transformations 
Exit Loop Translation 
Kecursion Splitting 
Cobegin Insertion 

Figure 108: The Organization of the Parcel Compiler 

. 

. 

4. 

Split the procedure into a forward and backward loop, using the mem- 
bers of the fence as the points of division. 

Perform exit-loop translation upon the forward loop, as per A~o- 
rithm 1; at Step 3 of that algorithm, replace every reference made 
in iteration i of the backward loop to a variable defined in the for- 
ward loop, by a reference to the last value assumed by that variable in 
iteration n - i  of the forward loop. Fail if exit-loop translation fails. 

Expand the variables defined in the backward loop, and apply loop 
distribution, recurrence and doall recognition, loop fusion, etc. 

The organization of Parcel as a whole is given in Figure 108. As men- 
tioned above, the preparatory optimizations are applied in a cycle, until the 
program stabilizes into a version which is unaffected by further a t tempts  at 
optimization. Exit-loop translation is applied to the loops of a procedure, 
from the innermost loops to the outermost.  

3.7 S-expressions in Parcel 

The Parcel compiler permits the user to specify whether cons cells will be 
regarded as mutable or immutable. If they are regarded as mutable,  then 
they are implemented in the conventional way, as a record of two fields, and 
their dependence implications are analyzed as described in subsection 2.14. 
In that  case, however, recurrences over list da ta  will not be recognized by 
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Figure 109: Two S-expressions Using Parcel's Representation 

the compiler, so that  some of Parcel's run-time functionality will go un- 
used. On the other hand, if cons cells are regarded as immutable, then an 
alternative representation is given to them, that  facilitates the paralleliza- 
tion of code which performs list-manipulating operations (car, cdr, cons, 
append, etc.); this representation is infeasible in the presence of destructive 
list operations. (Better would be for the compiler, by analysis, to partit ion 
the cons cells of the program into those which may be operated upon de- 
structively, and those which are not. The appropriate representation would 
then be chosen accordingly.) 

It is worth mentioning at the outset, that  list-manipulation does not dom- 
inate modern Lisp code the way it might, say, programs writ ten in Lisp 1.5; 
this owes to the data structuring facilities available in modern dialects (e.g., 
d e f i n e - s t r u c t u r e ,  object-oriented extensions). It is important,  however, 
to a balanced strategy of parallelization, to address recurrence relations, 
such as those defined over s-expressions, which if neglected, introduce se- 
quential bottlenecks into otherwise nicely parallel code. 

Each pointer in this representation, whether a variable, a car or cdr 
pointer, etc., comprises three fields: a tag, a length, and an address. The 
tag indicates that  the object pointed to is a proper (nil-terminated) list, 
an improper (non-nil terminated) list, or an object of a different type al- 
together. The length field may have a non-zero value only if the object 
pointed to is a list; its meaning will be explained shortly. The address field 
is the location in memory of the object pointed to (except in the case of 
immediate data). Figure 109 shows two s-expressions, x and y, constructed 
using such cons cells. Beside each arc (pointer) in the diagram is shown 
the corresponding length field, x and y have length 4 and 7 respectively. 
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A heavy line separating two cells indicates that  the cells occupy adjacent 
memory  locations (where the unit of memory  is taken to be a single cons 
cell). Therefore, y occupies two contiguous blocks of memory, one of length 
3, the other of length 4. 24 

The reader may have noticed that  the meaning of the length field asso- 
ciated with a cdr pointer seems to be different from that  of the length field 
associated with a car or variable pointer (such as x or y). The length field 
of a car or variable pointer indicates the number of cells in the top level 
of the s-expression pointed to; that  of a cdr pointer indicates the number 
of cells "remaining" (to the "right" ) in the contiguous block containing the 
cdr pointer. For instance, the cell whose car is d in Figure 109 has a cdr 
pointer with a length field of 3; there are three cells to the right of this cell 
in the contiguous block containing it. 

This representation permits two lists to share a cell without sharing the 
entire subexpression rooted at that  cell. Furthermore,  because our version 
of the comparator  eq? examines length fields as well as addresses, such a 
cell will appear not to be eq? with the same cell in another  s-expression 
that  shares it, but  that  does not share the entire sub-expression rooted at 
it. For instance, (eq? ( c d r  x) ( cd r  y ) )  returns #f,  where x and y are 
as shown in Figure 109. When we examine the mechanics of append in this 
representation, we will see that  this behavior preserves the conventional 
semantics of eq?. 

All pointers to atoms have a length field of zero; #f  is the pointer whose 
tag indicates a proper list, and whose length is zero. 

Another  feature of this representation is that  we may access any cell in 
the top level of a list in t ime proportional to the number of contiguous 
blocks of which the list is composed, and not to the number of cells in its 
top level. Recall, for example, that  the procedure c d r - i n d ,  described in 
subsection 3.3, must compute (cdikr v [ 0 . 0 ] )  for 0 < i _ N -  1, where N 
is the length of its input vector v. Assuming that  v [0.0]  has relatively few 
blocks in its top level, this operation will take roughly constant t ime for all 
i .  Furthermore,  the routines c o n s - r e m - r e c  and c o n s - r e m - i n d  described 
above produce single, contiguous blocks. The hope, then, is that  lists which 
are to be consumed by c d r - i n d  and similar routines, will have been pro- 
duced by routines such as c o n s - r e m - r e c ,  c o n s - r e m - i n d ,  etc., al though 
experimentat ion is needed to see if such hope is warranted. 

A minor benefit of the representation is that  the predicate equa l?  which 
compares s-expressions for isomorphism may be speeded by including a 

24This representation bears a resemblance to cdr-coding [42] and vector-coding [25], 
but has both a different motivation and different properties. Our motivation is not to 
save memory, but rather to facilitate the parallel creation and access of lists. 
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Figure 110: The Result of appending to y 

comparison of lengths at every car-wise traversal. In fact, that  the length 
of each list is available in constant time is of general utility; for example, 
many a loop in the restructured code produced by the compiler has as 
its number of iterations, the length of a list, or a simple function of the 
length; likewise, many of the techniques for solving recurrences involving 
operations upon lists make use of the length fields (for example, c d r - i n d ,  
cons - r em- rec  and c o n s - r e m - i n d  operate upon the length fields of their 
inputs and outputs).  

The unusual sublist sharing permit ted by this representation helps to 
regain some efficiency advantages sacrificed by forbidding r p l a c d  (and, of 
course, does so without the side-effects for which r p l a c d  is well known). 
Let's consider two common operations involving rp lacd :  the (destructive) 
addition of cells to the end of a list, and the (destructive) elimination of 
cells from the end of a list. In both  cases, the disadvantage of aliased 
side-effects is offset by the fact that  no copying of cells is necessary. Let's 
examine the analogous operations in Parcel's representation (that is, the 
non-destructive counterparts of these operations). Figure 110 shows the 
result of performing the operation ( s e t  ! z (append y ' (h i j ) ) ) ,  where 
y is as shown in Figure 109. No new cells have been created: the list ' (h ± 
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j ) is merely tacked onto the end of y by walking to the end of y, discovering 
that  its final cdr is unused, and placing the pointer to ' (h i j ) in this cdr 
pointer. A pointer to y, with a length field of 10, is re turned as the value 
of z. Furthermore,  the operation requires only time proportional to the 
number of contiguous blocks of which y is composed (in this case, 2). The 
variable y is not altered, as the end of y is defined, not by the presence of a 
null cdr pointer, but by its length and tag. As pointed out above, the cells 
common to y and z will appear to eq? to have been copied, just as in the 
conventional version of append. Of course, if the final cell of y was in use, 
as would be the case if we tried the operation ( s e t  ! w (append y ' (k 1 
m) ) ) after forming z as above, or if y were an improper list, append would 
copy the cells of y, as does the conventional append. 

The second use of r p l a c d  we would like to emulate (non-destructively) 
is the removal of cells from the end of a list. It is easy to see that  by merely 
subtracting from the length of a list, we delete cells from its end. Thus, in 
Figure 109 above, it could be that x is the result of performing (firstn y 
4), where (firstn a b) returns the first b cells of a. For example, (firstn 
s (I- (length s))) returns a list consisting of all but the last cell of s 
(and in constant time). As before, s is not affected and the conventional 
meaning of eq? is preserved. 

Unfortunately, by composing append's and firstn's, it is possible to 
violate the usual meaning of eq?. For example, the expression 

(eq? (firstn (append x y) (length x)) x) 

can re turn true using Parcel 's representation, but cannot re turn true using 
a conventional representation, if x is non-empty. 

It should be clear that  r p l a c d  is difficult to perform using this represen- 
tation, as it may affect the length of every list sharing a cell, and to update  
all such pointers is impractical. A more subtle problem exists with r p l a c a .  
Consider the result of ( s e t !  w (append y y ) ) ,  where y is as shown in 
Figure 109. This will produce a list of length 14, with only 7 cells in its top 
level! See Fig 111. Now, the operation ( r p l a c a  w 'oops)  would change 
two cells in the top level of w, and one in the top level of y, which is clearly 
not what would happen with a conventional representation (where only one 
cell in w would be altered, and none in y). In short, this representation is 
probably not suitable for use with the r p l a c  operations. 

3.8 R e l a t i o n  t o  P r e v i o u s  W o r k  

The approaches taken by various investigators to the problem of paral- 
lelism in Lisp may be divided according to two orthogonal criteria: the 
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Figure 111: An Unusual Case of Sublist Sharing 

mechanism(s) by which parallelism is exploited, and the degree to which 
parallelism is exploited automatically. In Multilisp [24, 38], a flexible mech- 
anism called a f u t u r e  is used to permit the overlapping of the production 
of a quantity with its consumption. It might be, for example, that  a func- 
tion returns a quanti ty which will not be needed (in fully evaluated form), 
for some time following the function's return; by enclosing the expression 
whose value is to be returned in a f u t u r e ,  the overlap may be turned into 
speedup. Another example of such a mechanism for explicit parallelism is 
the qlambda construct of Qlisp [22]. Using qlambda, one may spawn an 
asynchronous process which will run in the lexical environment in which 
the qlambda is closed. The p c a l l  s tatement (described in both [22] and 
[24]) is similar in power to the cobegin-style parallelism discussed in sub- 
section 3.3, but there in no form in Multilisp or Qlisp analogous to the 
d o a l l  construct of which Parcel makes such wide use, nor to the many 
recurrence solution routines that  are part of its run-time system. Both 
f u t u r e  and qlambda are less rigidly structured than any of the constructs 
for parallelism employed by Parcel. On the one hand, this has an advantage 
in expressiveness: a f u t u r e  obeys the rules of indefinite extent that  pertain 
to all Scheme objects, and thus fits neatly into the language, especially in 
the absence of side-effects. On the other hand, the modes of parallelism 
used in Parcel are machine-oriented, and are designed for efficiency in im- 
plementation. The formation of a f u t u r e  entails (in general) both closure 
formation and scheduling overhead, and introduces at most one additional, 
parallel strand of execution. The starting of a d o a l l  loop may result in 
many concurrent streams of execution, and (in the case of the machines for 
which Parcel is targeted) consumes but a few instructions of overhead. The 
a construct ("apply-to-all") of Connection Machine Lisp [7] may be seen 
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as a special case of a d o a l l  loop. CM Lisp's ~ operator has two variants. 
The first is similar to the reduce operator above (~ requires both commu- 
tativity and associativity of the operator of reduction); the other variant of 

has no analogue in Parcel (it is specific to the manipulation of xectors). 
SIMD machines execute such forms efficiently when conditional branching 
within the function being mapped (or the operator of reduction) is lim- 
ited; ordinarily, this restricts one to the mapping of primitive functions, or 
simple user functions in which conditional execution is controlled by mode 
vectors (boolean vectors which "turn off" processors not participating in a 
computation). 

Most work on parallelizing Lisp to date has left the job of identifying and 
exploiting parallelism to the user. All of the constructs described above, 
for example, come from dialects of Lisp which have been extended for the 
expression of parallelism. Some work has been done on the automatic in- 
sertion of forms such as f u t u r e  and qlambda; see [35] and [34]. These 
approaches leave the structure of the program relatively unaltered. In Cu- 
rare [33], the problem of parallelizing tail-recursive functions which operate 
destructively upon list structures is addressed. As mentioned in subsec- 
tion 2.14, Parcel's interprocedural analysis of object lifetimes and side- 
effects is of greater generality than methods based upon conventional alias 
analysis (such as that described in [33]), because while aliasing relations 
are subsumed by the Parcel analysis of side-effects, it is able to distinguish 
among instances of dynamically created objects, and to limit the visibility 
of side-effects according to the lifetimes of the objects involved. This is 
essential to the automatic extraction of high-level parallelism. Of course, 
much work has been done on program transformation and optimization; 
the approaches taken may be divided broadly into two categories. In [31] 
and [39] techniques for the automatic parallelization of Fortran programs 
are discussed; these operate upon a program represented as a control-flow 
or dependence graph, and may be seen as extensions of traditional tech- 
niques for program optimization. Such is the approach described in this 
paper, and in [33]. Another category of program transformation operates 
more directly upon the syntax of a program, and makes use of pattern 
matching in lieu of use-definition and control-flow information (i.e., in lieu 
of semantic analysis); for this reason, such techniques are applied primar- 
ily to functional (side-effect free) languages. See [20]. A mixed strategy 
for parallelism detection, namely a compiler which accepts a language that 
includes constructs for parallelism, is feasible as well; see [37]. The non- 
determinism that results from the addition of annotations for parallelism 
may complicate the analysis of dependences sufficiently that sequential and 
parallelizing optimizations are severely inhibited. The interesting trade-offs 
of this interaction appear to be relatively unexplored. 
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Finally, the reader may wish to see [5] and [29] for work on the compi- 
lation of Scheme for sequential machines. Many Scheme compilers work 
by conversion of the input program to continuation passing style. This 
approach is not taken in Parcel, for the reason that many transforma- 
tions performed in our compiler, including traditional optimizations such 
as invariant floating, global common subexpression elimination, and partic- 
ularly parallelizing transformations, are most naturally expressed in terms 
of a conventional control flow model (i.e., a control flow graph), and are fa- 
cilitated by increased visibility of the computation. Rather than coalescing 
units of control flow into larger, nested structures over which transforma- 
tions can be applied, CPS conversion appears to cause fragmentation of 
the computation that limits the scope of optimization and restructuring. 
Indeed, great effort is spent in Parcel in merging procedure contours, so 
that the compiler can manipulate procedure bodies that are as large as 
possible, and as free from branching and procedure application as possi- 
ble. On the other hand, many traditional optimizations have been recast 
into the CPS framework (see the above references), and it may be that the 
transformations we are performing could be so recast as well. 

4 Preliminary Performance Results  

We have constructed a code generator and parallel run-time system for 
the Alliant FX/8 [2], an 8-processor shared memory multiprocessor, in or- 
der to test the compilation strategy of the Parcel compiler. The run-time 
system consists of a parallel stop-and-copy garbage collector, a microtask 
scheduler, and a library of parallel recurrence solution routines, in addition 
to the usual (sequential) functionality of a Scheme run-time system, such 
as I/O. The table in Figure 112 lists the running time of an Alliant FX/8 
under normal, daytime loading, executing a few of the Gabriel benchmarks 
[21] as compiled by Parcel. At the time of this writing, the run-time system 
is still under development, and isn't able to execute the entire Gabriel suite 
of benchmarks; in any event, a detailed study of the run-time behavior of 
the object codes produced by the Parcel compiler is called for, and is beyond 
the scope of this work. Nevertheless, the reader may compare these run- 
ning times to those of commercially developed Lisp compilers for sequential 
machines, to appreciate the efficiency of the object codes produced by the 
Parcel compiler. 
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P a r c e l -  F X / 8  

boyer  1.80 + 0.00 
dde r iv  0.48 + 0.00 
de r iv  0.58 + 0.00 
id ly2  0.28 + 0.00 
rdiv2 0.25 + 0.00 
tak  0.11 + 0.00 

Figure 112: Preliminary Performance Figures for Parcel - CPU+GC Sec- 
onds 

5 C o n c l u s i o n s  

We have presented a comprehensive approach to the interprocedural anal- 
ysis and automatic parallelization of Scheme programs. There are a number 
of conclusions to be drawn from this work. 

First, we conclude that automatic parallelization can be profitably ap- 
plied to languages other than Fortran. In fact, the simplicity and clarity 
of their semantics make Scheme programs ideal as input to a parallelizing 
compiler. 

Second, we conclude that the heavy use of procedures by Scheme pro- 
grammers, and in the implementation of the advanced features of the lan- 
guage, means that aggressive interprocedural analysis is essential to the 
successful optimization of Scheme programs for parallel and sequential ex- 
ecution. To answer this requirement, we have introduced procedure strings 
and stack configurations as a natural and powerful framework in which to 
reason about object lifetimes and interprocedural side-effects. Because it 
restricts the visibility of side-effects according to the lifetimes of mutable 
objects, the system of interprocedural analysis we have constructed is able 
to reveal high-level parallelism in programs that make use of side-effects. It 
is likewise well suited to problems of memory management, both the prob- 
lem of placing objects on a stack where their lifetimes permit, and of placing 
objects in a hierarchical shared memory according to the visibility required 
of them. In fact, the generality of Scheme's semantics would allow us easily 
to use this framework for the analysis of object lifetimes and side-effects 
in, for example, C programs. In short, it can provide the theoretical basis 
for parallelization and memory management of programs that manipulate 
pointers and dynamically allocated storage, since these manipulations can 
be reasoned about in terms of Scheme's more general feature of first-class 
procedures. The framework also accommodates Scheme's first-class contin- 
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uations naturally; this gives hope that it will apply to other, usually more 
restricted mechanisms for causing interprocedural movement of control. 

Third, we conclude that in parallelizing Scheme (or Lisp) programs a 
compiler must treat control structures more complex than the conventional 
do loop of Fortran. In particular, while and repeat structures (which 
may arise from tail-recursion) and recursion (other than tail-recursion) are 
rich sources of parallelism, but the extraction of this parallelism often re- 
quires extensive transformation of the program, as the examples we have 
presented demonstrate. The techniques of exit-loop translation and recur- 
sion splitting we have introduced are a natural extension of the techniques 
for parallelizing Fortran programs developed by Kuck and his colleagues, 
to the control structures found commonly in Scheme programs. In fact, 
when augmented with numerous "sequential" optimizations performed in 
Parcel, exit-loop translation and recursion splitting may be seen as the 
bridge over which Scheme programs must pass to be eligible for restruc- 
turing by the techniques that have been so well-developed for Fortran (or 
straightforward adaptations of those techniques). Like our framework of 
interprocedural analysis, exit-loop translation and recursion splitting are 
directly applicable to other languages that provide iterative structures and 
recursion. 

Finally, we conclude that agressive "sequential" optimizations are impor- 
tant to the successful parallelization of Scheme programs, for two reasons. 
First, transformations which do not introduce parallelism on their own, 
may nonetheless facilitate parallelization by simplifiying code, eliminating 
spurious control and data dependences, and rearranging computations so 
that they are more "visible" to the compiler. Second, the use of several 
versions of procedures (one parallel, one sequential) is an effective means of 
balancing the opposing requirements of creating parallel activity, when the 
target machine is underutilized, and executing efficient sequential code in 
each processor, when the target machine is saturated with parallel activity. 
If the parallelized procedures produced by Parcel were not complemented 
by optimized sequential ones, the performance of its object codes would be 
unbalanced and awkward for the run-time system to manage, as the degree 
of parallelism would be grossly out of proportion to the target machine size, 
and the extensive restructuring performed in parallelizing a program would 
come back as sheer overhead during execution. 
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