
LISP AND SYMBOLIC COMPUTATION: An International Journal 2:3//4: 179-396, 1989
@ 1989 Kluwer Academic Publishers - Manufactured in The Netherlands

The Interprocedural Analysis and Automatic
Parallelization of Scheme Programs

WILLIAMS LUDWELL HARRISON III* (harrison@uicsrd.csrd.uiuc.edu)
Center for Supercomputing Research and Development
University of Rlinois at Urbana-Champaign
305 Talbot Laboratory
104 South Wright Street
Urbana, IL 61801

(Received: March 1, 1989)

(Revised: May 10, 1989)

Keywords: Interprocedural Analysis Abstract Interpretation, Automatic Paralleliza-
tion, Program Transformation, Parallel Processing, Symbolic Computation,
Lisp, Scheme

Abs t rac t . Lisp and its descendants are among the most important and widely used of
programming languages. At the same time, parallelism in the architecture of computer
systems is becoming commonplace. There is a pressing need to extend the technology of
automatic parallelization that has become available to Fortran programmers of parallel
machines, to the realm of Lisp programs and symbolic computing. In this paper we
present a comprehensive approach to the compilation of Scheme programs for shared-
memory multiprocessors. Our strategy has two principal components: interprocedural
analysis and program restructuring. We introduce procedure strings and stack configu-
rations as a framework in which to reason about interprocedural side-effects and object
lifetimes, and develop a system of interprocedural analysis, using abstract interpretation,
that is used in the dependence analysis and memory management of Scheme programs.
We introduce the transformations of exit-loop translation and recursion splitting to treat
the control structures of iteration and recursion that arise commonly in Scheme pro-
grams. We propose an alternative representation for s-expressions that facilitates the
parallel creation and access of lists. We have implemented these ideas in a paralleliz-
ing Scheme compiler and run-time system, and we complement the theory of our work
wi th "snapshots" of programs during the restructuring process, and some preliminary
performance results of the execution of object codes produced by the compiler.

*This work was supported in part by the Nat ional Science Foundation under Grant
No. NSF MIP-8410110, the U.S. Depa r tmen t of Energy under Grant No. DE-FG02-
85ER25001, the Office of Naval Research under Grant No. ONR N00014-88-K-0686,
the U.S. Air Force Office of Scientific Research under Grant No. AFOSR-F49620-
86-C-0136, and by a donation from the IBM Corportation.

18o WILLIAMS LUDWELL HARRISON III

C o n t e n t s

Introduct ion 185
1.1 M o t i v a t i o n and A p p r o a c h 185

1.2 T h e I n p u t Language : Scheme 187

2 The Interprocedural Analys is of Scheme Programs 189
2.1 Mot iva t i ons . 189

2.1.1 Side-Effects a n d D e p e n d e n c e Ana lys i s 190

2.1.2 O b j e c t L i fe t imes a n d M e m o r y M a n a g e m e n t 190

2.1.3 Fold ing P r o c e d u r a l C o n s t a n t s and Merg ing Con tou r s 192

2.2 Ove rv i ew of our A p p r o a c h 192

2.3 N o t a t i o n a l Conven t ions . 194

2.4 A b s t r a c t I n t e r p r e t a t i o n . 195

2.5 Conc re t e Seman t i c s . 199

2.5.1 T h e L a n g u a g e £: . 199

2.5.2 P r o c e d u r e St r ings 201

2.5.3 A Seman t i c s f o r / : in T e r m s of P r o c e d u r e St r ings . . 203

2.5.4 A b s t r a c t i o n in the Face of Ref lex iv i ty 207

2.5.5 Modif ied D o m a i n Def ini t ions for t: 208

2.5.6 A Modif ied Seman t i c s for t: 210

2.6 O p t i m a l Solut ions in T e r m s of P r o c e d u r e St r ings 217

2.6.1 Side-Effects , in T e r m s of P r o c e d u r e S t r ings 218

2.6.2 S tack Al loca t ion , in T e r m s of P r o c e d u r e St r ings . . 223

2.6.3 Genera l i zed Hie ra rch ica l A l loca t ion and Dea l loca t ion 224

2.6.4 E x a m p l e s of Side-Effects and O b j e c t L i fe t imes . . . 225

2.6.5 Some O b s e r v a t i o n s 227

2.7 S tack Conf igu ra t ions . 228

2.8 T h e A b s t r a c t i o n of O p e r a t i o n s Over P r o c e d u r e St r ings . . . 231

2.9 A b s t r a c t Seman t i c s . 236

2.10 A p p r o x i m a t e Solut ions in T e r m s of S tack Conf igura t ions . . 252

2.10.1 Side-Effects , in T e r m s of S tack Conf igura t ions 253

2.10.2 S tack Al loca t ion , in T e r m s of S tack Conf igura t ions . 254

2.10.3 Gene ra l i zed Hie ra rch ica l A l loca t ion a n d D e a l l o c a t i o n 255

2.11 A Shift in P e r s p e c t i v e (and in A c c u r a c y) 257

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 181

2.12

2.13

2.14

2.15

2.16

2.17

2.11.1 Side-Effects u n d e r g4 272

2.11.2 S t ack -Al loca t i on unde r g4 274

2.11.3 Gene ra l i zed Hie ra rch ica l S to rage M a n a g e m e n t . . . 275

A d d i n g F low-Sens i t i v i ty to the Ana lys i s 275

E x a m p l e s of Ana lys i s u n d e r g5 289

M u t a b l e D a t a a n d Al ias ing 291

M a n a g e m e n t of a Hiera rch ica l , Sha red M e m o r y 296

In the Absence of c a l l / c c 299

E n v i r o n m e n t P r u n i n g . 306

The Automat ic Parallelization of Scheme Programs 308
3.1 T h e P r o g r a m R e p r e s e n t a t i o n 309

3.2 P r e p a r a t o r y O p t i m i z a t i o n s 314

3.2.1 C o n t o u r Merg ing . 315

3.2.2 Ta i l -Recur s ion E l i m i n a t i o n 317

3.2.3 C o m m o n S u b e x p r e s s i o n E l i m i n a t i o n 320

3.2.4 More C o n t o u r Merg ing 322

3.3 E x i t - L o o p T r a n s l a t i o n . 322

3.3.1 R e p l a c i n g Ex i t s w i t h Recu r r ences 325

3.3.2 Var iab le E x p a n s i o n 327

3.3.3 L o o p D i s t r i b u t i o n 329

3.3.4 R e o r d e r i n g the Sub loops 331

3.3.5 E l i m i n a t i n g U n u s e d C o m p u t a t i o n 331

3.3.6 T h e Para l l e l C o m p u t a t i o n of the N u m b e r of R e r a t i o n s 3 3 4

3.3.7 M a r k i n g Doal ls and Recu r r ences 336

3.3.8 C l o s e d - F o r m Solu t ion for the N u m b e r of I t e r a t i o n s . 336

3.3.9 R e s t r u c t u r i n g the Recu r r ences 339

3.3.10 Al loca t ing a n d In i t ia l iz ing E x p a n d e d Var iab les . . . 341

3.3.11 L o o p Fus ion . 341

3.3.12 Cobeg in I n s e r t i o n 341

3.4 Recu r s ion Sp l i t t ing . 343

3.4.1 Ove rv i ew . 345

3.4.2 F o r m i n g the F o r w a r d a n d B a c k w a r d Loops 346

3.4.3 E x i t - L o o p T r a n s l a t i o n of the F o r w a r d L o o p 347

3.4.4 Var iab le E x p a n s i o n and the B o t t o m of Recur s ion . . 356

182 WILLIAMS LUDWELL HARRISON III

3.4.5 Parallelization of the Backward Loop 356

3.5 High-Level (Coarse-Grained) Parallelism 358

3.6 Organization of the Compiler 381

3.7 S-expressions in Parcel . 382

3.8 Relation to Previous Work 386

3.9 Preliminary Performance Results 389

4 P r e l i m i n a r y P e r f o r m a n c e R e s u l t s 389

5 C o n c l u s i o n s 390

6 A c k n o w l e d g e m e n t s 391

7 V i t a 396

L i s t o f F i g u r e s

1 A Sample Scheme Program 200

2 The Sample Program Rewrit ten in £ 201

3 Domain Definitions for S1 and $1 204

4 The Semantic Function $1 206

5 The Semantic Function C1 206

6 Domain Definitions for 82 and $2 210

7 The Semantic Function 82 (part 1 of 2) 211

8 The Semantic Function 82 (part 2 of 2) 212

9 The Semantic Function C2 212

10 Example of Stack-Allocated Variables 225

11 Example of Side-Effects and Object Lifetimes 226

12 Abstract Domains for $3 . 237

13 Abstraction Maps . 238

14 Partial Orderings . 239

15 LUB Operators Over the Abstract Domains 240

16 The Semantic Function 83 (Part I) 243

17 The Semantic Function $3 (Part II) 244

18 The Semantic Functions $~ and $3 244

19 An Example of the Inaccuracy of E3 257

ANALYSIS AND PARALLELIZATION OF SCHEME P R O G R A M S 183

20 An Example of the Inaccuracy of ~3, Rewrit ten i n / : 258

21 Abstraction Maps . 260

22 Auxiliary Functions for E4 262

23 The Semantic Function S4 (Part I) 263

24 The Semantic Function $4 (Part II) 264

25 The Semantic Function S4 (Part III) 265

26 The Semantic Functions S~ and E4 265

27 Example of Overlapping Variable Lifetimes 276

28 Abstract Domains for E5 . 277

29 R d E n v and W r E n v . 279

30 Abstraction Maps . 280

31 Partial Orderings . 281

32 LUB Operators Over the Abstract Domains 282

33 Movement Functions for E5 283

34 The Semantic Function $5 (Part I) 285

35 The Semantic Function $5 (Part II) 286

36 The Semantic Function $5(Part III) 287

37 The Semantic Functions S~ and £5 288

38 Example of Side-Effects and Object Lifetimes 290

39 s u m - o f - i n t e g e r s , Rewrit ten in L 290

40 cons in Terms of Closures 291

41 Example of Side-Effects and Object Lifetimes 292

42 User Structures, in Terms of Closures 293

43 An Abstraction of cons, for Analysis 295

44 A Procedure Calling Graph 297

45 The Semantic Function $6 300

46 The Semantic Function ~6 300

47 The Semantic Function $7 (Part I) 302

48 The Semantic Function $7(Part II) 303

49 The Semantic Functions $~ and E7 304

50 f a c t , Before and After CPS Conversion 306

51 Quicksort . 309

52 Quicksort Program, after Macro-Expansion 310

53 The Initial Representation of Quicksort (Part 1) 312

54 The Initial Representation of Quicksort (Part 2) 313

184 WILLIAMS LUDWELL HARRISON Ill

55 $ - $ - s o r t b y - ~ . is Merged into $ - $ - s o r t b y 315

56 Tail-Recursion is El iminated from $ - $ - s p l i t b y 317

57 A Continuation-Passing Version of Factorial 319

58 A Common Subexpression is El iminated in $ - $ - s o r t b y . . 320

59 $ - $ - s p l i t b y is Merged into $ - $ - s o r t b y 323

60 The Quicksort Program, after P repa ra to ry Transformations 324

61 Exit Branches are El iminated from $ - $ - s o r t b y 326

62 Variables are Expanded in $ - $ - s o r t b y 328

63 Loops are Distr ibuted in $ - $ - s o r t b y 330

64 Distr ibuted Loops are Reordered in $ - $ - s o r t b y 332

65 Exit Pa th Computa t ions are El iminated in $ - $ - s o r t b y . . 333

66 Recurrences and Parallel Loops are Identified in $ - $ - s o r t b y 337

67 A Closed-Form Solution for t - 5 9 is Found 338

68 Recurrences are Res t ruc tured for Parallel Execut ion 340

69 The Final, Parallel Version of $ - $ - s o r t b y 342

70 The Procedure talc . 343

71 The Initial Representat ion of talc 344

72 Forward and Backward Loops are Formed in $ - $ - t a k . . . 346

73 Variables Defined in the Forward Loop are Expanded 348

74 The Forward Loop is Cleaned Up Before Proceeding 350

75 The Forward Loop is Distributed, and the Subloops Reordered351

76 Exit Pa th Computa t ions are Deleted in S-S- ta lc 352

77 Parallel Loops (from the Forward Loop) are Recognized . . 353

78 A Closed-Form Solution for t - 4 4 is Found 354

79 The Rest ructur ing of the Forward Loop is Completed . . . 355

80 Variables Defined in the Backward Loop are Expanded . . . 357

81 The Backward Loop is Distr ibuted 359

82 Parallel Loops and Recurrences are Recognized 360

83 Parallel Loops are Coalesced 361

84 After Recursion Splitt ing 362

85 The Final (Parallel) Version of S-S- ta lc 363

86 The Procedures rewrite and rewrite-args 364

87 The Procedure r e w r i t e - w i t h - l e m m a s , and its Subroutines 365

88 The Procedure $ - $ - r e w r i t e - w i t h - l e m m a s After Parsing 366

89 $ - $ - r e w r i t e - w i t h - l e m m a s - o n e - w a y - u n i f y - l s t 367

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 18'5

90 The Procedure $-$-rewrite-with-lemmas-one-way-unify
After Parsing . 368

91 The Procedure $ - $ - r e w r i t e - a r g s After Parsing 369

92 The Procedure S - S - r e w r i t e After Parsing 369

93 The Forward and Backward Loops are Formed 370

94 Variables Defined in the Forward Loop are Expanded 371

95 The Forward Loop is Cleaned up Before Proceeding 371

96 The Forward Loop is Distributed 372

97 Subloops of the Forward Loop are Reordered 373

98 Exi t -Path Computat ions are Eliminated 374

99 Doall Loops and Recurrences are Recognized 374

100 A Closed-Form Solution is found for t -204 375

101 Subloops of the Forward Loop are Fused 375

102 a l l o c a t e and r e s t o r e Forms are Introduced 376

103 Recurrences from the Forward Loop are Translated 377

104 Variables Defined in the Backward Loop are Expanded . . . 378

105 Doalls and Recurrences from the Backward Loop are Recog-
nized . 379

106 Recurrences from the Backward Loop are Translated 380

107 The Final, Parallel Version of $ - $ - r e w r i t e - a r g s 380

108 The Organization of the Parcel Compiler 382

109 Two S-expressions Using Parcel's Representation 383

110 The Result of appending to y 385

111 An Unusual Case of Sublist Sharing 387

112 Preliminary Performance Figures for Parcel - C P U + G C Sec-
onds . 390

1 I n t r o d u c t i o n

1.1 Mot iva t ion and Approach

Lisp figures prominently among programming languages, in part because
it is, by the standards of our discipline, an old language, and therefore
enjoys what little respect time affords the creations of engineering; in part
because it is fundamental ly elegant and powerful, as is Church's lambda
calculus [16], upon which it is loosely based; and in part because of the
singular flexibility of its central da ta structure, the list. The drawbacks

186 WILLIAMS LUDWELL HARRISON III

of Lisp programming, in particular the problems of dynamic binding of
variables and of the proliferation of dialects, have been addressed, and
seem in large part to have been alleviated by promulgation of the Scheme
[41] and Common Lisp [6] standards. Its expressive strength, and its wide
portability insure that Lisp will remain a popular programming language,
or, at the very least, will exert a potent influence over future language
designs.

At the same time, parallelism in the architecture of computer systems has
become commonplace. There is little doubt that it offers the most direct
route to very high rates of computation. Machines such as the Alliant FX/8
[2], the BBN Butterfly [1], and the Thinking Machines Connection Machine
[27], have made parallel processing commercially viable, and few ideas in
science have more enduring impact than those that make their originators
wealthy.

The collision of the forces of software engineering and those of parallel
architecture has brought forth any number of alternative solutions to the
problem of programming these new machines. At the risk of drawing ar-
tificial boundaries, we may divide these solutions into those which would
do the work of parallelization automatically, and those which would leave
such work to the programmer. This criterion is artificial in that there are
probably no systems of parallel programming which leave every detail of
parallel execution to the programmer, and likewise none (or few) which
require no effort beyond that needed to develop the same program for a
sequential machine. We may likewise characterize an approach by the class
of machines to which it is applicable. Again, there is probably no approach
which is uniformly effective, across all parallel architectures, nor one which
has nothing to offer beyond its applicability to a single machine.

Nevertheless, to proceed as though these distinctions were hard and fast,
the solution proposed in this paper is fully automatic, and applicable to
shared-memory multiprocessors, such as IBM's RP3 [40], Alliant's FX/8
[2], or the Cedar machine of the University of Illinois [30]. In short, we
propose the design of an optimizing compiler to produce an object code
for a shared-memory multiprocessor from a sequential Scheme program.
Except where stated explicitly in the text, no restrictions are ptaced upon
the program.

Our compilation strategy will have two large components: interprocedural
analysis and program restructuring. The goal of interprocedural analysis
will be to collect information concerning interprocedurally visible side-effects
and the lifetimes of dynamically instantiated objects. We introduce proce-
dure strings as a framework in which to reason about side-effects and object
lifetimes at run-time, and stack configurations, an abstraction of procedure
strings, as a framework in which to reason about side-effects and object life-

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 187

times at compile-time. In terms of these structures we specify a system of
interprocedural analysis as an abstract interpretation of Scheme programs,
prove its correctness, and show that it is a powerful basis for the dependence
analysis and memory management of Scheme programs.

Our discussion then takes something of a sharp turn, and we introduce
the system of program transformation used to parallelize Scheme programs
automatically in Parcel [4], the compiler and run-time system in which the
ideas of this paper have been implemented. Having collected interproce-
dural information, and having used it to assess the interprocedural depen-
dence structure of the computat ion at hand, and the lifetimes of the objects
created during the computation, the Parcel compiler turns to each proce-
dure of the program being compiled, and restructures it into two versions:
one parallel, one sequential. The run-time system we have constructed
to complement the compiler makes use of these two versions to achieve
good utilization of processors without excessive overhead. We introduce
the transformations of exit-loop translation and recursion splitting to treat
the iterative and recursive control structures found commonly in Lisp and
Scheme programs. We illustrate these transformations with "snapshots"
of programs taken during the compilation process. The Parcel run-time
system makes use of an unusual representation for s-expressions that facil-
itates the parallel creation and access of lists, and allows the fast solution
of recurrence relations over list data. We show how the Parcel compiler
extracts and recognizes such recurrence relations, and illustrate the rep-
resentation and its properties. We present some preliminary performance
results of object codes produced by the Parcel compiler and executed on
an Alliant FX/8, under the Parcel run-time system. Finally, we compare
this work with that of researchers in related areas.

1.2 The Input Language: Scheme

The language accepted by the Parcel compiler is Scheme, as defined in
[41]. What makes Scheme appropriate as the input language to our com-
piler? First, it is a small language, with semantics that are clear and simple.
This is valuable when writing a conventional compiler; it is utterly invalu-
able when writing a compiler that performs detailed analysis and radical
transformation of an input program. Each transformation is an opportu-
nity to violate the semantics of a program; if those semantics are simple,
then a proof of its correctness will be more manageable and believable.

Second, it is a language of powerful and general constructs. We can be
sure that techniques that are effective when applied to Scheme will find
applications, often in a restricted or specialized sense, to other languages.
(We will point such applications out from time to time.)

188 WILLIAMS LUDWELL HARRISON III

Third, much useful computat ion can be performed in Scheme without
the use of side-effects. We will see that side-effects are largely a matter
of perspective, and that there is no reason to throw up our hands simply
because a function modifies free variables or compound data. Nonetheless,
code that is laden with side-effects will certainly be more difficult to par-
allelize than code that is not. For this reason a language that encourages
programming without side-effects is appropriate as input to a parallelizing
compiler. 1

The language accepted by most restructuring compilers is Fortran [39].
What advantages does Scheme offer over Fortran? It might be thought
that the flexibility of dynamically allocated storage and pointers would
impede the dependence analysis, and thus the automatic parallelization of
a program. In fact, we might argue that the contrary is the case, for a
somewhat subtle reason. A Fortran program begins running with all of
the storage upon which it will operate declared statically. 2 This means
that as execution proceeds deeper into the calling tree, data that is being
read and written is ever more likely to have been previously written, and
to be subsequently read. There is no mechanism for allocating storage
whose lifetime is restricted to a subtree of the calling tree. 3 By contrast, a
Scheme program may (and typically does) allocate storage at all points of
a computation, and by static analysis we may discern that a dynamically
allocated object is limited, in lifetime, to a particular subcomputation.
Such restricted lifetime is the stuff of parallelism, as well as the stuff of
efficient memory management, as we will see in section 2.

Finally, the reader who is familiar with conventional implementations of
Scheme, particularly those based upon continuation-passing style conver-
sion (CPS conversion) should put aside assumptions concerning the imple-
mentat ion of Scheme's features, particularly concerning the environment,
procedure calling and returning, and first-class continuations. For example,
we will speak of the objects created by invocation of c a l l / c c (continua-

l i t is interesting that while the Scheme definition leaves the order of evaluation of
the arguments to a procedure application unspecified, this is no help in parallelization,
as the simple example ~[(f (se t ! x (1+ x)) (se t ! x (1+ x)))~ shows. The arguments
to f may be evaluated in any order (with the same outcome) but not simultaneously,
because of race conditions. Since such effects may occur remotely, non-trivial automatic
parallelization seems to require interprocedural information.

2This is true of most implementations of Fortran, although it is not mandated by the
standard.

3This is a bit simple-minded. In fact, parallelizing compilers for Fortran expand
scalar variables into vectors or arrays as a matter of course, and for precisely this reason.
However, the more complex a data structure becomes (scalar variables are the limiting
case of simplicity of structure) the more difficult it becomes to expand it; we would argue
that the penalty for failing to do so is lower in Lisp than in Fortran, since much dynamic
allocation of storage occurs in the course of a Lisp program.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 189

tions) as distinct from those created by evaluation of lambda expressions
(closures). In some implementations of Scheme, there is no distinction be-
tween these objects, because first-class continuations are implemented as
lexical closures; nevertheless, we will find it useful to distinguish these two
types.

It will be important for us to speak precisely about identifiers, variables,
and bindings. Here, identifier will be used to mean a textual object, such
as x or car, which is writ ten by a programmer. A variable (which has
an identifier), may be a formal parameter or local variable of a lambda
expression, or global (defined outside all user lambda expressions). In the
expression (lambda (x y) (lambda (x) (s e t ! y z))) , there are three
formal parameters and one free variable; two of the formal parameters
have the same identifier (x). The free variable (whose identifier is z) may
be global, or may be a formal parameter or local variable of a lambda
expression which surrounds this expression. By a variable binding we will
mean the association of a variable with a location in memory. In terms of
our example, if the outer lambda expression is applied to two values, two
memory locations will be set aside for the instances of its formal parameters.
We say that the variables are bound to these locations. These locations will
initially contain the values to which the function was applied; if the inner
lambda expression is subsequently applied, the value of y will be altered
(it will be assigned but not rebound). Identifiers and variables exist at
compile-time, whereas bindings exist at run-time.

2 T h e I n t e r p r o c e d u r a l A n a l y s i s o f S c h e m e P r o g r a m s

2.1 M o t i v a t i o n s

Abstract interpretation [17, 18] and dataflow analysis [26, 14] share the
goal of deriving information from a program text that is at once specific
enough to permit the efficient implementation of the computat ion it ex-
presses, and general enough to be valid in every state in which the program
may be executed. The advantage of the former is in viewing this process as
an abstraction of a denotational definition of the program: exact properties
which hold for an instance of the program over a particular input data set,
are reflected in the abstract domain as less exact properties which hold over
many input data sets. The advantage of the latter is its operational na-
ture: the conditions for optimization frequently depend upon mechanical
or structural qualities of the computat ion which are most easily gleaned
from, for example, the program's control flow graph. In this section we will
borrow ideas from both. Our goal is the formulation of an interprocedural
dataflow analysis framework for Scheme programs, but this framework will

190 WILLIAMS LUDWELL HARRISON III

be derived through a series of alternate semantics for the language (some
concrete, some abstract) whose formal properties will give us confidence
that the analysis provides sensible information.

2.1.1 Side-Effects and Dependence Analysis

Before creating a program analysis framework, it is well to have ques-
tions in mind whose answers justify the expense of analysis. In our case,
the first objective is the automatic parallelization of Scheme programs by
a restructuring compiler, and in particular, the automatic extraction of
high-level (or coarse-grained) parallelism from programs: parallelism which
results in the concurrent execution of lengthy, interprocedurally involved
subcomputations. Par t of this compilation process is the dependence analy-
sis [12, 13, 45] of the program: in order for restructuring and parallelization
to proceed, the precedence constraints of the original computat ion must be
discovered. Specifically, we wish to construct for each procedure applica-
tion in the program, a set which identifies the mutable objects (variables,
cons cells, vectors, etc.) that may be modified (written) during the subcom-
putat ion that is initiated by the application and terminated by its return.
Likewise, we wish to construct a set which identifies the objects that may be
used (read) during the subcomputation. We will refer to these as def and
use sets, respectively. Ideally, these sets would include only those objects
that are relevant from the caller's point of view. We require that they have
a reasonable and useful interpretat ion in light of the irregular, non-local
control flow made possible by c a l l / c c .

Our use for these sets will, as mentioned above, be in inferring the depen-
dence structure of a computation, in order that high-level parallelism may
be extracted from it. 4 We will intersect the use and def sets of two pro-
cedure invocations to discover any dependence constraints between them.
We must therefore err, in our estimation of side-effects, in favor of adding
too many objects to a use or def set. That is, our program transforma-
tions will be legal only in the absence of certain dependences. We must
therefore arrange that, if such dependences might exist at run-time, they
are represented in our def and use sets at compile-time.

2.1.2 Object Lifetimes and Memory Management

The second major application of our program analysis framework is to
the memory management of Scheme programs, whether sequential or par-
allelized. For instance, much of the effort of implementing Scheme effi-

4If our only concern was the identification of fine-grained parallelism, we could restrict
our attention to "innermost" computations which do not cross procedure boundaries; such
is the approach of most vectorizing compilers, which therefore do not depend so heavily
upon interprocedural analysis.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 191

cient ly is spent in the careful handl ing of first-class closures and continu-
at ions. Thei r general i ty means tha t , in the absence of in format ion prov-
ing otherwise, a variable t h a t m a y be cap tu red by lexical closure mus t be
heap-al located, to provide for the event in which it is referenced af ter the
procedure by which it is b o u n d has t e rmina ted . 5 This difficulty, known
as the upward funarg problem [8], pales by contras t to the implicat ions of
call/cc. A continuation, when applied, reactivates all procedure instances
that were active ("on the stack") at its creation. This application may oc-
cur after these procedures have been exited normally, with the consequence
that any variables needed for their resumption must be given space in the
heap (and subsequently reclaimed). Yet, as when they are captured by
closures in continuation passing style [5, 29] or by continuations used as
non-local exits ("throws"), it is frequently the case that variables need not
be heap-allocated; the dimculty is simply in anticipating the lifetime of the
closure or continuation, in comparison to the lifetimes of the variable bind-
ings it captures. 6 Because the notions of object lifetime and dependence
are so nearly related, we may as easily turn our analysis of side-effects to
the problem of allocating variables on a stack, when their lifetimes per-
mit. This leads to a simple and efficient implementation of closures and
continuations at run- t ime.

A closely re la ted problem depends, as well, upon ant ic ipa t ing the life-
t imes of objects: t h a t of their placement within a hierarchical memory.
Suppose t h a t the machine for which we are compil ing has not a single
shared me mory visible to all processors, bu t ins tead a hierarchy of shared
memory, wi th the p rope r ty t h a t locat ions which are lower (nearer to the
processors) in the hierarchy are visible to fewer processors, bu t less cost ly
to access, t h a n locat ions which are higher in the hierarchy. Dur ing the
execut ion of the code p roduced by our compiler, objects will be a l located
s imul taneous ly by m a n y processors. Each such object must be a l located as
low in the h ierarchy as possible for the sake of access t ime, bu t high enough
to ensure its visibil i ty to all processors making use of it. 7 This m a y be seen

5This is too strongly stated. It need only be the case that such a variable appear to
have been heap-allocated, that provision be made for reference to it subsequent to the
termination of the procedure that binds it. There is no end of run-time devices to effect
this appearance.

6In the case of continuation passing style, closures representing continuations are
passed downward, as parameters. As long as these closures are only applied, captured in
other downward closures, or passed as parameters to further procedure applications, they
cannot outlive the procedure instances that bind the free variables they contain, cal l /co,
of course, is a mechanism by which the user can gain access to these continuation objects,
and having done so he will straightaway store one in a global variable and ruin everything.

7Clearly, such placement depends as much upon the processor allocation and schedul-
ing discipline used in executing a parallel program, as upon the anticipated lifetimes of
the objects being allocated. We will make our assumptions explicit when we define the

192 WILLIAMS LUDWELL HARRISON III

as a variation on the heap versus stack problem above, in which instead
of two choices of an area from which to allocate, there is a spectrum from
least expense / shortest lifetime to greatest expense / longest lifetime. We
will consider the problem in this latter form until, in subsection 2.15, we
treat the problem which interests us more directly.

2.1.3 Folding Procedural Constants and Merging Contours

Another significant optimization made possible by the analysis described
below is the folding of procedural constants. For instance, we may expand
applications of intrinsic procedures in-line (sometimes called open coding),
when it is determined that a variable in the operator position of an applica-
tion has as its only value an intrinsic procedure. This is, in general, made
impossible by Scheme's semantics, which allow that the global variable car,
for example, may be assigned the value of cdr during a procedure invoca-
tion, with the result of changing the behavior of all users of the variable
from that point. By couching this as a constant propagation problem [46],
we are able to detect both those applications of an intrinsic function that
are made from the top-level variable by the same name, as well as those
that occur as the result of parameter passing or assignment to a different
variable; and we are able to do so without alteration to the semantics of
the language, s

As we will see in section 3, the analysis described below can also be ap-
plied to the problem of contour merging, or more generally, of expanding
user procedures in-line. This has the effect of eliminating needless proce-
dure calls, and of making the computation performed by a program more
visible to the compiler.

2.2 Overv iew of our Approach

We will develop solutions to the above problems in several steps. First, we
propose an alternate semantics for Scheme, nearly related to the standard
semantics, which introduces the procedure string, a device for recording
the interprocedural behavior of a running program. The straightforward
abstraction of this semantics leads to abstract domains containing higher-
order objects (functions) over reflexive domains, whereas our purpose re-
quires a more concrete compile-time representation of the values assumed
by variables. We therefore modify the semantics such that its abstraction
results in domains which are both finite and non-reflexive.

problem more sharply, at the end of this section.
SThis optimization is less dependent upon the specifics of our analysis than are the

other optimizations mentioned above. It is a by-product of any method of constant
propagation over procedural domains that retains enough information to determine when
intrinsic functions are being applied.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 193

Second, we propose an optimal solution to each of the problems described
above (identification of side-effects, stack-allocation of variables, and place-
ment of data within a hierarchical memory) in terms of procedure strings,
similar in spirit to the MIN algorithm for page replacement: a solution that
is unobtainable, because it requires foresight and pertains only to a single
instance of the program (that is, to the particular input data set used to
build the procedure strings).

Procedure strings are an infinite set, and are exact in a way that makes
them unsuitable for use in static analysis. Our third step, then, is to ab-
stract procedure strings into stack configurations, a finite set each member
of which represents an infinite set of procedure strings, yet contains enough
information to be useful in static analysis. We formulate conservative so-
lutions to each of the above problems in terms of stack configurations.

Fourth, we present an abstract semantics based on stack configurations.
We show that the abstraction preserves the meaning of the program and the
procedure strings it describes. The beauty of a carefully chosen abstract
domain is that operations upon its members, while preserving the mean-
ing of analogous operations upon members of the concrete domain, occur
within the abstract domain. When the abstract domains and the operations
upon them are sufficiently simple, the abstract semantics give rise to a prac-
tical dataflow analysis algorithm. We show how the abstraction we have
constructed may be adapted for both flow-sensitive and flow-insensitive
datafiow analyses.

Fifth, we note that our construction of stack configurations in the ab-
stract semantics, while correct, causes unnecessary information loss. We
show that this is corrected by a simple shift of perspective.

For the sake of simplicity, the presentation to this point assumes a subset
of Scheme that includes no mutable compound data objects (lists, vectors,
etc.) In concluding our discussion of interprocedural analysis, we extend
the technique to accommodate such data.

In the end, we are left with a framework for program analysis that allows
us to evaluate the lifetimes of, and side-effects upon all forms of dynamically
allocated objects provided in Scheme, from variables captured by lexical
closures and continuations, to mutable cons cells and user structures. This
has a most significant consequence for automatic parallelization: it permits
the extraction of parallelism from procedures that are invoked at all levels
of the calling tree of a program, from the lowest (innermost) computations
to the highest (outermost), for the reason that a side-effect upon an object x
that occurs (directly) within a procedure f need not "pollute" all procedures
that call f (directly or indirectly), but is limited in visibility according to the
lifetime of x. Also, the framework permits us to speak, at compile time, of
distinct instances of dynamically allocated objects that arise from a single

194 WILLIAMS LUDWELL HARRISON III

lexical construct. That is, we may distinguish several instances of cons cells
that result from a single piece of program text, or of several instances of a
particular bound variable. We will see that this gives a sharpness to the
analysis that is absent from conventional techniques for alias analysis. We
will likewise see that discovering restrictions upon the lifetimes of objects
is useful in placing them within a memory system, whether on the stack of
a sequential Scheme evaluator, or in the hierarchical shared memory of a
multiprocessor executing automatically parallelized programs.

As will become clear as the discussion progresses, the techniques de-
scribed in this section may be applied in a straightforward manner to other
procedural languages; they are particularly appropriate for languages such
as C and Pascal, which make use of recursion and manipulate dynamically
allocated storage. In fact, because most programming languages in wide
use lack such radically general features as Scheme's first-class procedures
and continuations, the methodology illustrated in this section may be ap-
plied to such languages, in large part as a specialization of the concrete
and abstract semantics given below. As an extension of the work described
in this paper, we are implementing a compiler which accepts a variety of
source languages

2.3 N o t a t i o n a l C o n v e n t i o n s

In this subsection we review the notation of lambda calculus and the
terminology of domains that is used in the discussion which follows. Our
notation is consistent with that in [44, 11], and the reader who is unfamiliar
with the concepts reviewed below will find a thorough introduction in those
texts.

We will make heavy use of the lambda calculus [16] in the discussion
below. There are, in essence, just two kinds of expressions in the lambda
calculus: abstractions and applications. An expression of the form)~a.e is
called an abstraction, and denotes a function of a single argument a, whose
body is e. An expression of the form ele2 denotes the application of the
function el to an argument e2. el has type A ~ B, e2 has type A, and ele2
has type B for some domains A and B (we will characterize these domains
shortly). Parentheses may be used to group subexpressions, so that (ele2),
(el)e2 and el(e2) are equivalent ways of writing the application of el to
e2. All of our functions will be curried (that is, will have exactly one
argument). Function application is left associative, so that abcd should be
read as (((ab)c)d).

By a domain D we mean a set upon which is imposed a chain-complete
partial order, denoted by _ED. That is, D has a distinguished least ele-
ment J-D, and every non-decreasing chain xl _ED x2 E_D '-" with xi E D

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 195

has a least upper bound (LUB) in D, wri t ten Xl UD X2 UD "'" LJD Xn or
UD{Xl ,Xh, . . . ,xn} . D may have a distinguished greatest element TD
as well. We write x ~D Y to denote ordering among members of D.
D1 +. • • +Dn denotes the separated sum of D1 through Dn; that is, the bot-
tom element ZDI+...+D~ of Di +" • • + D n is is less than each of "±D1 through
-I-DR. While every member of this sum (other than its bo t tom element) has
the form (di,i} where di E Di, we omit coercions between Di + .." + Dn
and its subdomains (that is, t reat di E Di as a member of Di + . . . + Dn),
where they are clear from context. The partial order within Di + . • • + Dn
is implied by the partial orders ~D1,...,--EDn. If di ~Di+...+Dn dj where
di, dj E Di + ' " + Dn then either dl = ±Dl+...+Dn or di, d# E Dk, for
1 <__ k < n, and di ~Dk dj. Di x .. . x Dn denotes the non-strict product
of Di through Dn. The bo t tom element ±Dix"'xDn : (±Di,' ' ' ,±Dn},
and is distinct from (dl,...,dn} where ±Di EDi di for some 1 < i < n. As
when summing domains, the partial order within Di x -. . x Dn is implied
by ~Di,'",~Dn" If (dl,...,dn} ~Dix...xDn (el,...,en), then di EDi ei for
all 1 < i < n. D ~ E denotes the domain of continuous functions from
D to E. The bo t tom element of D ~ E is)~d.-l-E, and S _D- ,~ g if
(fx) EE (gx) for all x E D. The notat ion D* ---* E represents the sum
E + (D -~ E) + (D ---, D ~ E) Occasionally we will have need to
enumerate a function (that is, to represent it directly as a subset of the
Cartesian product A x B). In such a case we will write {ai ~ bi, a2
b2 , . . . , an ~ bn} where ai, a 2 , . . . , a~ E A, bi, bh, . . . , bn E B, and fa i = bi
for l < i < n .

We write f[y/x] to represent the function that is everywhere identi-
cal to f , except at x, where its value is y. We write S[y//x] to denote
f [(f x) U y/x], the function everywhere identical to f , except at x, where
its value is consistent with, but possibly greater than Sx. (Whenever we
use this notation, the least upper bound (fx) U y will exist.) It follows, of
course, that f E f[y / /x] regardless of the value of y. Syntactic objects will
be surrounded in double brackets, as in I (s e t ! x y)~

2.4 A b s t r a c t I n t e r p r e t a t i o n

In this subsection, we review as much of the theory of abstract inter-
pretat ion as is needed to follow the main lines of our construction, with
the goal of defining terms and giving the reader an intuitive feel for our
approach. See [17, 18, 28] for a more complete introduction to the topic.

How is abstract interpretat ion relevant to the writing of a compiler? We
have, at the outset of our task, a host of techniques for implementing the
various features of the source language. Some of these techniques are of
such generality that they may be legally employed under all circumstances.

196 WILLIAMS LUDWELL HARRISON III

Others are more efficient than the most general techniques, but may be
employed only under special circumstances. Practical considerations aside,
the obvious method of compilation would be to execute a program over all
possible input data sets, and note which of the special conditions needed
to trigger an optimization are satisfied by every instance of the program.
We would then compile the optimization, where permitted, into the object
code, in full confidence that our translation would be a legal one. Since this
is impossible, we settle instead for an approximation to the above process.
Abstract interpretation provides such an approximation.

We begin, then, with an concrete semantics for our language, a definition
that gives precise, mathematical meaning to programs in the language.
The abstraction of such a semantics normally proceeds in several steps.
First, we select domains for abstraction. These may be domains that are
visible within the programming language (such as integers or symbols), or
domains that are used only within the language definition (domains over
which the semantic functions, or their auxiliary functions, are defined). For
each such domain we create a corresponding abstract domain, and define
an abstraction map which carries members of the concrete domain into
members of the corresponding abstract domain. In this paper, such a map
is written as AbsD, where D is the concrete domain being abstracted, and

has type D --,/9, where/9 is the corresponding abstract domain.

Because abstract domains may be smaller than their concrete counter-
parts, such maps need not be one-one. That is, many members of an con-
crete domain may be mapped onto a single element of the corresponding

abstract domain. We think of each member ~ of an abstract domain/9 as
equivalent to (or representative of) a subset of the corresponding concrete
domain D. In order greatly to simplify the mathematics of the abstraction,

we require that every d E/9 signify an ideal of D. If an ideal includes an
element a E D, then it includes every element b E D such that b _E/9 a.
Furthermore, if it contains a chain al _D a2 _ED "-', then it includes the
least upper bound of the chain. In the jargon of power domain theory,
the members of our abstract domains are downwardly closed and upwardly
complete. 9 This construction is known as the Hoare power domain [43], and
allows us to use the natural ordering of subsets (according to inclusion) as
the partial ordering in the abstract domains; we will return to this momen-
tarily. A thorough discussion of Hoare power domains and their properties

9Because each ideal includes the bottom element of the concrete domain, when viewed
as a set of possibilities the ideal suggests that the bottom element is a possibility. This
means, for example, that when our concrete domain is a function space whose bottom ele-
ment represents non-termination or undefinedness, we cannot exclude non-termination or
undefinedness as a possibility. We can, however, discern the case in which undefinedness
is the only possibility.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 197

is found in [43, 15].

A function that maps each member of an abstract domain onto the ideal it
represents (of the corresponding concrete domain), is called a concretization
map. In this paper, such a map is denoted by COnCD, where D is an abstract

domain, and will have t y p e / 9 --~ P(D), where P(D) is the power domain
of D (in our case, the set of ideals of D). Given an abstraction map AbsD,
we may define the corresponding concretization map as

Conc b = Ad.{d] AbsDd U_ b d}.

The definition says that d represents the set of all elements of D whose
abstractions are consistent with el. Likewise, given a concretization map
Conch, we may define the corresponding abstraction map as

Abs D - Ad. N b {d I d E Concf)d}.

This definition says tha t the abstraction of d is the least ideal represented
in /9 that contains d. Since the members of a Hoare power domain are
partially ordered by inclusion, when we write (i --b b, we will mean that

Concbgt C Concbt); and if we define the partial ordering 5 ---b ~ differently,

we must prove that our definition is equivalent to Concbgt C_ C°ncbb"
Having abstracted the primitive domains of our semantics, and having

made precise what these abstractions represent, we abstract functions over
the primitive types. The functions we abstract are those used to give mean-
ing to the programming language. Our abstractions of these functions must
preserve the meaning of the corresponding concrete functions. There are
many senses in which meaning can be preserved. In this case, we mean
that the result of projecting operands onto abstract domains, and applying
an abstract function, must be a member of an abstract domain (that is,
an ideal of the concrete domain) that contains the result of applying the
concrete function, and projecting the concrete result onto the abstract do-
main. Perhaps it is helpful to think of this is as follows. The members of
our abstract domains represent sets of values, for example, the values that
may be assumed by a user variable, or the values that may be re turned by
an auxiliary function applied within our semantic functions. We wish for
an abstract interpretat ion of the program to inform us of all possible values
that may be assumed by the user variable, or all possible values that may
be re turned by the auxiliary function. We must arrange to err in favor of
overestimation of such sets. In light of this choice, the s ta tement 2 E~ ?)
may be read as saying that x is consistent with, but is more precise than
~). That is, all possibilities suggested by 2 are suggested by ?) as well, but

198 WILLIAMS LUDWELL HARRISON III

~) may suggest possibilities not suggested by 5. In terms of subsets of the
concrete domain D, Conc b 2 C Conc D ft.

We need to pause to make as clear as possible the distinction between
the partial ordering among members of an abstract domain, and the partial
ordering among members of the corresponding concrete domain. In each of
our concrete domains there is a distinguished element _1_ (bot tom) which is
less than every other element in the domain, according to the partial order
of the domain. For instance, the b o t t o m element in the domain of values
that may be computed by a program is undefinedness (non-termination
or error). In information content, this value is consistent with any bet ter
defined value (such as the integer 5), but it less informative. This much
should be familiar to the reader, from introductory semantics.

Here's the rub. I f /) is an abstract domain as we have defined it above,
and if D is the corresponding concrete domain, then every member o f / 9
contains the b o t t o m element of D, -J-D (since ever member o f /9 is an ideal
of D). But we have said that if 2 -----D Y, then 2 is at least as informative
as ~. Clearly the smallest ideal that can be produced by Abs D is {-l-D},
which by our pronouncements is at once the most informative member of
/~,10 and the set containing only the least informative member of D. This
is a paradox in appearance only. To know that a program never terminates
is a special case of knowing that some of its s ta tements (here, the final
s ta tement among them) never execute. This is enormously informative,
since we may give whatever translation we like to code that goes unused.
In the lattice of functions ordered by information content, the function
that never terminates is the least informative, and is consistent with every
other function (it returns the same value as every other function, when it
terminates). In the lattice of conditions that enable optimization, that a
piece of code never executes is as strong and specific a condition as possible.
Our conclusions are the same when _k represents error. We assume that
the program being compiled is correct, since we will certainly be unable to
give a meaningful translation to a meaningless program. Therefore, when
error appears as a possible outcome of the execution of a s tatement, the
consistent assumption is that the possibility is apparent only, that one of
the other outcomes occurs in reality. When error appears to the be only
outcome, the consistent assumption is that the s tatement is never executed.
Therefore it is of no consequence that the b o t t o m element is overloaded with
the meanings non-termination, error, etc. In all cases, the assumption of
a correct input program leads us to treat the undefined value consistently

1°In [43], larger elements of the Hoare powerdomain /) are regarded as more infor-
mative, for the reason that they represent better defined elements of D. Prom our per-
spective, however, a larger element represents more possibilities; in the extreme, every
member of D is a possibility, and this gives us no leverage in aptimization.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 199

(as non-execution).

Given an abstract semantics for the language, it remains only to create
(via the abst ract ion maps) a representat ion of the initial states from which
execution of the program may proceed, and to evaluate the p rogram in this
abstract state, using the abstract semantics. By observation of this evalu-
ation, we may answer the questions, albeit wi th reduced accuracy, tha t we
wished to ask about the execution of the program over all possible sets of
input data, using the concrete semantics. The formal correspondence be-
tween the concrete and the abstract guarantees tha t the answers we obtain,
if in terpreted properly, will be consistent with the best (most informative)
answers possible, to these questions.

2.5 C o n c r e t e S e m a n t i c s

2.5.1 The Language £

We will begin by t reat ing a simple variant of Scheme (call it £) , which
is described by the following grammar .

/2 ::= Stmt +
S tru t : := I (s e t ! V (V +))

I ~ (s e t ! V (lambda (V*) < V* > Strut +))]
I [(s e t ! V (c a l l / c c V))]
I [(i f V (goto N) (goto N))]
I I (r e t u r n V)]
] ~ (end)]

V ::= identifier
N ::= s ta tement index

A program in £ consists of a sequence of s ta tements , the last of which is
an end form. Each procedure i n / : has, in addi t ion to its pa ramete r list, a
list (surrounded by angle brackets) of local variables. The local variables
are bound to locations when the procedure is applied, but have undefined
values unti l they are assigned. We will assume tha t any literal da ta needed
by a p rogram are held in global variables in the initial state. Similarly,
intrinsic procedures are held in global variables in the initial state. These
include an identify function for effecting assignment from one variable to
another . A procedure applicat ion in L: is "fiat" (the operator and arguments
must be variables), and its re turn value is s tored into a variable (the value
may go unused). Not accidentally, this resembles the t radi t ional quadruple
representa t ion used in opt imizing compilers [10]. Likewise, an i f form in £
functions only as a branch, and an explicit r e t u r n form is used for normal
exit from a procedure. Finally, c a l l / c c is t rea ted as a special form, not

200 WILLIAMS LUDWELL HARRISON III

(define sum-of-squares (lambda~ (m n k)
(if (= m n)

(* m m)
(s u m - o f - s q u a r e s (1+ m)

n

(lambda# (x) (+ x (* m m)))))))

Figure 1: A Sample Scheme Program

as a variable, n It is a simple mat te r to rewrite a Scheme program in a
form that resembles 1;. Parcel effects such a t ransformation while parsing
its input.

We assume that as part of the process of translation from Scheme to
L, variables are renamed, so that distinct variables have distinct iden-
tifiers. Wi th each lambda expression (lambdaa (xi • .. Xm) <Xm+l • "" Xn>
S.il "'" Sin) of the program is associated a distinct index a E A. We write
Aa for the a th lambda expression of the program. Likewise, with each
s ta tement Si of the program is associated the distinct index i E N, and the
successor function S u c c : N --, N defines the flow of control between state-
ments, in the absence of explicit branches. (The s tructure of £, including
its numbered, flat expressions and the addition of explicit end and r e t u r n
forms, is intended to make more natural the adaptat ion of its semantics for
dataflow analysis.)

An example of a Scheme program, and the corresponding program in/2,
is given in Figures 1 and 2. In the latter, every s ta tement is subscripted
by its s ta tement index. In this case, the successor function is defined as
follov~s: Succ I = Z N , S u c c 2 : 10, Succ 10 = -l-N, Succ 3 = 5, Succ 5 = 6,
Succ 6 = 7, S u c c 4 = 7, Succ 7 = A-N, Succ 8 = 9, Succ 9 = 11, and
S u c c 11 = i N . ,~a (when rewri t ten in/2) has five local variables, and AZ
has two. The successor function is not defined for s ta tement 10 (an i f form)
because the s ta tement that follows it in execution order is determined by
the branch that is taken (either to s ta tement 3 or s ta tement 4), and not by
the successor function. Nor is the successor function defined for either of
the r e t u r n forms in the example. The variable s u m - o f - s q u a r e s is assumed
to be bound at the global level.

nGiven call/cc as a special form, one may write (set! my-call/cc (lambda (f)
(c a l l / c c f))) , to achieve the effect of the variable c a l l / c c as it is defined in Scheme.
The value of this variable (my-cal l /cc) can be passed as an argument to a procedure,
for example, while the "value" of a special form cannot be.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 201

(set ! sum-of-squares
(set! tl (= m n))2
(if tl (go 3) (go
(set! t3 (l+ m))3
(se t ! t4 (lambda#

(se t ! t lO (* m
(se t ! t l l (+ x

(lambdaG (m n k)

4))10

(x) <tiO t l l >
m)) 8
tlo))9

(r e t u r n t11)11))s
(se t ! t5 (sum-of-squares t3 n t4))6
(se t ! t5 (* m m))4
(r e t u r n t5)7)l

<tl t2 t3 t4 tS>

Figure 2: The Sample Program Rewritten in/2

2.5.2 Procedure Strings

Consider a program A consisting of Aa, A/~ and A~. We will associate
a procedure string Pi with every state qi of an execution of A. Let the
procedure string p0 that corresponds to the initial state q0 of A be c (empty).
We will append the term c~ d, ~d or ,,/d to the current procedure string
whenever As, Aft or A.~ is applied, respectively, and we will append the
term a ~, flu or 7 ~ to the current procedure string whenever control returns
from As, A/~ or A.y respectively.

Suppose the first procedure application which occurs during execution is
of Aa, and let ql be the state which results. Then pl = a d Suppose next
that AZ is applied, and that q2 results. Then p2 = ad/3 d. The superscripts in
ad/3d indicate that control has moved downward into As, and subsequently
downward into AZ. At this point, let control return to As, resulting in
q3. We indicate by P3 = ad/3d/3~ that control has moved upward from
AZ. Now let consecutive applications of A~, A~ and .~ result in q6 in
which p6 = adl3d/3uadTdc~d. We may read the history of A's interprocedural
behavior to this point from P6: there have been three applications of As,
and one each of AZ and A,. Apparently AZ is no longer active, whereas the
other procedure instances are still active.

Now suppose that As has bound variables x and y. Between states qo
and q6 there were three instances of As (and thus three instances of x and
y), corresponding to the procedure strings Pl - - o~d, P4 = c~d/~d/~ uc~d and
P6 = c~d/3dfluad~/dad of the states that follow each application of A~. We will
use the procedure string of the state at its point of creation to distinguish
one instance of x from another, and likewise for instances of y. We will not
confuse instances of x with instances of y, since the aliasing [14] of variables

202 WILLIAMS LUDWELL HARRISON III

is impossible in Scheme. 12 Thus, every state q will contain a function that
maps each variable that is lexically visible in q to the procedure string of
the state in which the variable was bound. We will call this procedure
string the birth date of the variable. The environment of q will be a map
from a variable and its birth date, to the current value of that instance of
the variable.

Before formalizing these observations in a definition of/2, we must decide
how to describe the effect of continuations on procedure strings. We were
able to discern, above, by inspection of a procedure string, what interproce-
dural movements had led to the state corresponding to the string, and what
procedures were active in that state. 13 We must formalize this analysis, for
we require that the same be true of a procedure string that results from the
application of a continuation. Let us define a function N e t : P ~ P which
deletes every pair of the form a d a u from its argument, until no further such
deletions are possible. For example,

N e t old /~d ",/d ~/u /~u oL d'~d a d : N e t oe d /3d /3u o~d"/d ol d ----- ot d oL d"[d oz d.

Intuitively, N e t p represents all "unmatched" procedure activations and
deactivations in p. We say that a procedure string p is balanced if N e t p = e
(and thus N e t is a function that deletes all balanced substrings from its
argument). Now we may make our observation about active procedures
precise. The active procedures in a s tate q may be read directly from
N e t p, where p is the procedure string corresponding to q. For instance,
N e t P6 = adad~/dotal, and we observed above that in s tate q6 there were
three active instances of Aa and one of A.~.

Suppose that we are given procedure string p, and are asked to form
another procedure string q such that p + q is balanced (where + represents
concatenation). By the definition of Net , we seek q such that N e t (p + q) = e.
In other words, q must contain a "match" for every unmatched term of
N e t p. Clearly there are many strings q which satisfy this requirement,
because adding a balanced substring to any such q produces another. Let
us imagine that there is a function Inv : P --~ P so that Inv p is the
shortest procedure string such that p + (I n v p) is balanced. If, for example,
p = adf3d/~uTd , then Inv p = ~/uau. This definition of Inv is sensible only if
p is a procedure string accumulated from the initial s tate of the program.
If, for example, p is an arbi trary substring of the procedure string of a

12Aliasing may arise in Scheme, however, from operations upon cons cells and user-
defined structures; and an effect very much like aliasing may arise by the use of closures~
and assignments to the free variables they capture. Such aliasing is accommodated neatly
within our framework for side-effect analysis, as we will see in subsection 2.14.

13Operationally, these correspond to the procedure instances that are "on the stack"
at the point in question.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 203

state during execution, it will not (in general) be "invertible". Consider
p : o~u/3d"/d; there is no procedure string which, when appended to p, will
result in a balanced procedure string, because the leading c~ u term in p can
be balanced only by a corresponding ~d term to its left. The action of Inv
upon an arbitrary p will be to reverse Net p, and "invert" each of the d's
and u's in the result. If p = olu]3d"f d, then Inv p = Vufluc~ d. We will prove
below that when p has an "inverse", that these two definitions of Inv p are
equivalent.

Now consider a continuation k which is formed in a state q to which the
corresponding procedure string is p, and applied in a state qt to which the
corresponding procedure string is p~. Let qt~ be the state that results after
the application of k, and let p~r be the procedure string that corresponds to
q' . What should be the value of p"? Applying k has the effect of exiting
any procedures that were not active at q but are at q~, and re-activating
any procedures that were active at q but are not at q~. The string p~ - p
(where x - y is the suffix of x not contained in y) describes all activity which
occurred between q and q'. It follows that Inv (p ' -p) is the (shortest) string
which "undoes" the net effect of that activity. Therefore p" = p~+Inv(p~-p)
seems to be the procedure string we want. As a record of interprocedural
activity, it indicates that we progressed to state q / at which point k was
applied, causing the net effect of all movements made between k's formation
in q and its application in q' to be undone. We will prove that this is the
desired value of p ' , below.

2.5.3 A Semantics for t2 in Terms o/Procedure Strings

As a first step toward our program analysis framework, we will construct
a semantics for 12 in terms of procedure strings. It is our immediate goal to
create a definition of the language which will allow us to formulate optimal
solutions to the problems, defined in subsection 2.1, which motivate us in
this section.

The domain definitions for our first semantics for 12 are presented in
Figure 3.

N is the domain of statement indices, over which the function Succ is
defined. The primitive domains P, N, A, Int, and Bool are fiat domains
with distinguished least elements i F , I N -kA, -Lint, and _l_Boot respectively,
whose non-bot tom members are incomparable. It is important to remark
that the definition of P in Figure 3 does not delimit the set of procedure
strings that arise from program executions, nor even the substrings of such
procedure strings. The definitions implies, for example, that ad/3 u E P ,
whereas such a (sub)string could not arise from a program execution. The
subset of P with which we are concerned will be defined via some theorems
in the discussion below.

204 WILLIAMS LUDWELL HARRISON III

P = (Ad] A~) * (procedure strings)
B = V --* P (birth date maps)
E = V x P ~ D (environments)
C = Q ~ D* --, Q (closures)
K = Q ~ D ~ Q (continuations)
D = C + K + P r i m O p + I n t + Bool (values)
Q = N x P x B x E x K (states)

Figure 3: Domain Definitions for $1 and $1

The s tructure of the compound domains B, E, C, K, D and Q are as
described in subsection 2.3. A state q E Q is a 5-tuple of a s ta tement index,
a procedure string, a map from lexically visible variables to their birth
dates, an environment, and a continuation. An environment is a map from a
variable and its birth date to the current value of the variable. Closures and
continuations are similar to one another in structure and effect. A closure
is a function from a state (the state in which the closure is applied) and a
set of values (its actual parameters) to a new state (the state from which
execution proceeds within the body of the applied lambda expression). A
continuation is a function from a state (the state in which it is applied) and
a value (the argument to the continuation, which becomes the value of the
expression which created the continuation), to a new state (the state from
which execution proceeds following return from the initiating expression).

Continuations do not play quite so pervasive a role here as in most formal
definitions of Scheme. We make use of the continuation component of a
state only when crossing procedure boundaries (i.e., when entering or leav-
ing a procedure, or when applying a continuation created with c a l l / c c) .
The sequencing of control within a procedure (for example, when evalu-
ating an i f form) depends upon s ta tement indices, and does not involve
continuations directly. This is because we wish to collect information con-
cerning interprocedural flow of control and data, and it serves us to this
end to isolate such information within the semantics. Pu t another way,
procedure strings are unaffected by intraprocedural movements of control.

Int and Bool represent integers and booleans, and PrimOp is the do-
main of primitive operators over these types. We take the meaning of the
members of these domains for granted. The semantic functions defined
in Figures 4 and 5 are $1 (for step) and E1 (for evaI). 31 maps each
state onto its successor; it describes a single step of evaluation, gl simply
composes applications of $1. The state q/ that results from executing a

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 205

program in an initial s tate q0 is the least fixed point !4 of g l tha t satisfies
qf = g lqo = g l q f . An expression of the form

expr o

where X 1 = expr 1

x2 = expr 2

and Xn = expr n

should be understood as meaning roughly the same as

(l e t * ((Xl expr 1)
(x2 expr 2)

(Xn exprn))
expr o)

in Scheme, so tha t xl may appear in e x p r 2 . . , exprn, x2 may appear in
expr 3 . . . exprn, etc., and any of xl through xn may appear in expr o.

Consider the definition of $1 in the case that Si is an i f expression.
The definition says tha t the state S lq which results from a single step of
evaluation in state q, is the state whose procedure string is p (the same as
tha t of q), whose s ta tement index is either m or n, depending upon the
value of the variable x, and whose b (map from variables to birth dates),
e (environment) and k (contimlation) components are the same as those of
q. The other cases within the definition are read similarly. Before looking
at this definition in more detail, let's consider the function £1.

$1 is the only recursive definition in this semantics. We could write
it as the least fixed point of a functional, and show that the fixed point
exists, but such reasoning is more relevant to a discussion of denotat ionat
semantics per se. 15 See [43, 44, 11]. Here we simply accept the recursive
definition, and resort to theorem-making when it is necessary to validate
something novel to our approach.

T h e o r e m 1 gl preserves the s tandard s e m a n t i c s of £ .

14The reason for defining evaluation in this way will be clear when we make these
semantics the basis of an iterative data flow algorithm which converges to a fixed point.

15Besides, the purist will find much to object to in our definition of/2. For instance,
the function Succ is dependent entirely upon the structure of a particular program, and
yet it occurs free within the definition of $1. The point is that we have, from the outset,
made concessions to our intended use for this semantics, as a stepping stone toward a
practical framework of program analysis.

206 WILLIAMS LUDWELL HARRISON III

Let q = <i,p,b,e,k> 6 Q. T h e n 8 1 : Q -~ Q is defined, according to the
form of s t a t e m e n t Si, as follows.

Si---- [(set! x (f YI'"Ym))[=~
$1q = e<[f[, b~fl)q(e<[yl], b[yl[>) . . . (e<[ym~, b[ym~>)

[(set! x (call/cc f))]
$1q = e([f]], b[f]}qA.sAd.<Succ i,p' + Inv(p' - p), b, e'[d/([x~, b[xl>], k))
where s = < (, / , b ~, #, U) (state at application of the continuation)

s~ = [(set! f (lambdaa (XI"''X m) <Xm+l"''Xn> Sj . . .)) I =:>
S~q = <S~c~ i, ~, b, e[e/<[~[, bill>[, k>
where c = ArAdz . . . Adm.

J,
p' + a d,
b[p' + ~ g [x d] . . . [p' + ~d/[x~[],
e'[dl/<[xz],p' + ad>] .. . [dm/(~xm],/ + ad>],
AsAd.<Succ i',p" + Inv(p" - p'), b', e"[d/<[y], b[y[>], U))

where r = <i',p', b', e', U) (state at application of the closure)
s = <i",p", b", e", k") (state at r e t u r n from the application)

and Si, = [(s e t ! y . . .)]

S i = [(i f x (goto m) (goto n)) [
$tq = <if e<z, bx) = true then m else n,p ,b ,e ,k)

= ~(return x)] =~
S l q = kq(e<[x~,bM>)

Si = [(end) 1 =~
Slq = q

Figure 4: The Semant ic Funct ion ,91

$1 : Q --* Q - Aq. Let q' = S lq
in if q' = q then q else Elq '

Figure 5: The Semant ic Funct ion g l

ANALYSIS AND PARALLELTZATION OF SCHEME PROGRAMS 207

S k e t c h o f p roof : $1 differs materially from a standard semantics [41]
only in its representation of the environment (store). We may define a
conventional store by the following correspondence. Let E (the domain of
environments) correspond to the standard domain of stores, and let the
product V × P (variables and their birth dates) correspond to locations
within stores. We must show that every instance of every bound variable is
assigned a unique location in the store. Since a location is a pair (v, p) of a
variable and its birth date, it is impossible for £1 to assign a single location
to instances of distinct variables. We must therefore show that separate
instances of a single bound variable are assigned distinct locations in the
store. To do so it is sufficient to show that every state in which the variable
is bound has a distinct procedure string. Let x be a bound variable of An,
and let qj and qk be distinct states in which)~ is applied. Without loss
of generality, assume j < k. By the definition of $1 in the case of closure
formation, the birth dates of the instances of x corresponding to qj and
qk are pj + a d and Pk + a d. Since the procedure string of each state is a
prefix of the procedure string of its successor, pj +c~ d is a prefix ofpk. Thus
p j "~ Ot d and Pk + a d are distinct. []

For the purpose of showing preservation of a s tandard semantics, we need
only prove that our method of identifying variable instances by their birth
dates is equivalent to the "NewLoc" function used in a standard semantics
to generate unique locations within a store. There is, however, far more
information in the birth date of a variable instance than is needed to dis-
tinguish it from other instances of the same variable. We will characterize
that information in a series of theorems, shortly. We must first decide if
the semantics we have proposed is a suitable basis upon which to construct
a framework of static program analysis.

2.5.4 Abstraction in the Face of Reflexivity

We have now a concrete definition of t:, that constructs procedure strings
as it evaluates a program. We suspect (and will show it to be so shortly)
that these procedure strings are ideal for answering our questions about
side-effects and object lifetimes. Recalling our outline of abstract interpre-
tat ion from subsection 2.4, the next step is the abstraction of this semantics,
with the hope of observing the (abstract counterparts of the) procedure
strings accumulated during abstract evaluation.

We turn to the domain definitions of Figure 3, looking for primitive
(first-order) domains to abstract. The choices are P (procedure strings),
N (statement numbers), Int and Bool (integers and booleans). If we were
to abstract each of these domains completely away (that is, map each to
an abstract domain of a single element), we would be left with a domain
of values (the abstraction of D) which would contain higher-order objects,

208 WILLIAMS LUDWELL HARRISON III

namely primitive operators, closures, and continuations. We will suppose,
for the moment, that the problem of primitive operators in the domain of
values could be overcome with little difficulty. In the case of continuations
and closures, however, we would be left to ponder the functions (from states
and values to new states) in our abstract domain of values.

If an analysis of a program is performed, and the result is a function,
then in a sense the analysis has not been completed: there is a measure of
uncertainty left, embodied in the parameters of the function. This uncer-
tainty is resolved by applying the function to values (that is, by eliminating
the degree of freedom represented by the parameters). There seem to be
two choices here. We could attempt, at compile time, to enumerate the
function (that is, construct a representation of the function as a subset of
the Cartestian product of its domain and its range). This would entail the
application of the function to every value in its domain. But the functions
representing closures and continuations are defined over reflexive domains;
this process would result, in general, in yet further functions in the same
domains. In short, there need be no finite enumeration of such a function,
in terms of primitive domains, even when the primitive domains are them-
selves finite. Another choice is to suspend the resolution of uncertainty
until run time, by making of the function a test to be compiled into the
object code. To draw upon a problem to which abstract interpretation
has traditionally been applied, if we analyze the strictness of a function f ,
and our analysis returns to us a function, which expresses the strictness
of f in terms of the strictness of its parameters, we might compile this
decision-making function into the object code, and use it at run-time to
select between alternative means of evaluating an application of f . This
approach is suggested in [28].

We choose instead to return to the concrete semantics upon which the
abstract are based, and seek a representation for the domain of values that
leads to abstractions which are more amenable to compile-time examina-
tion. Such representations are bit-vectors of reaching definitions, sets of
aliased variables, upper and lower bounds upon the values of integer vari-
ables, etc. When we have made such an attempt, and find that still we lack
sufficient information to produce an acceptably efficient translation of the
program, then we may consider such devices as compiling multiple versions
of the program, and spending additional running time deciding between
versions.

2.5.5 Modified Domain Definitions for £

The difficulty we encountered in our first attempt at abstraction resulted
from the reflexivity of the domain D of values, and this reflexivity was
introduced by our representation of closures and continuations. Let us look

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 209

closely at the way they are used, to see how they might be represented
differently. There are several states which are relevant to the formation
and application of a closure: the state q in which it is formed, the state
r in which it is applied, the state s from which the application returns,
and the state t from which execution proceeds, following the return. By
examination of the rule within 81 for the formation of a closure, we see that
the only information imparted to the closure from s ta te q is the variable
bir th date map b. This accords with intuition: to form a lexical closure
we need only know which lambda expression is the object of closure, and
the bindings of its free variables at the point of closure. Any additional
information needed to apply the closure, or to re turn from its application,
may be (indeed, must be) garnered at the points of application and return.
This suggests tha t we represent a closure as a member of the product
A x B, of lambda expression indices and variable bir th date maps. The
most serious difficulties this creates are in the restoration of the bir th date
map b, the s ta tement index i, and the continuation k following the re turn
from a closure application. All but the continuation k will be bundled into
the continuation of the state which immediately follows the application.
(If we were to put k into this continuation, then we would not have rid
ourselves of the reflexivity of D.) The restoration of k will be effected by a
function r, which is passed through the sequence of states, but is not in D,
of type P --* K. It will be the bir th date of a procedure instance 16 that is
used to restore its continuation, whenever control returns to the instance.
The continuation of every procedure instance will contain the birth date
of its caller; at the point of return, this birth date will be passed to r,
which will re turn the continuation of the caller. To effect this linking of
continuations, we will make the birth date of the current procedure instance
a component of every state. (The members of R = P ~ K will be called
restoration functions.)

We turn now to the rule, within the definition of 81, for the formation
of a continuation (the c a l l / c c rule). The continuation which is passed to
the argument of c a l l / c c is the function

~s~d.(Suee i , F + Inv(F - p), b, e'[d/([x~, b[x~)], k).

The information which is imparted to this continuation from the state q
in which it is created, is the procedure string p, the s ta tement number
i, the birth date map b, and the continuation k of the current procedure
instance. All of these components of the continuation are used to construct
the state which results from application of the continuation. The procedure
string p and s ta tement index i are first-order values, and so are unlikely

16Recall that the birth date of a procedure instance is the procedure string of the first
state in which the instance is active.

21o WILLIAMS LUDWELL HARRISON III

P = (Ad I AU) * (procedure strings)
B = V ~ P (birth date maps)
E = V × P ~ D (environments)
C = A × B (closures)
K = N × B × P × P (continuations)
D = C + K + P r i m O p + I n t + Bool (values)
R = P --~ K (restoration functions)
Q = N × P × B x E x K × P × R (states)

Figure 6: Domain Definitions for $2 and g2

to cause any real difficulty. Although b is a function, its type is simply
V ~ P, so that its inclusion in the continuation causes no reflexivity in
D. We described above the mechanism by which continuations will be
linked. The birth date o of the procedure instance in which the c a l l / c c
expression is evaluated is included in the continuation it creates. At the
same time, a restoration function is constructed (that is, accumulated as
the state sequence progresses) which returns k when applied to o. This
function will be used to restore k in the state which follows application of the
continuation. A continuation will therefore be a member of N × B × P × P
of the form (i, b, p, o).

The new domain definitions, based upon these observations, are given in
Figure 6. A member (i , p , b , e , k , o , r) of the domain Q of states is now a
7-tuple of a s ta tement index i; a procedure string p; a birth date map b;
an environment e; a continuation k; a procedure instance birth date o; and
a restoration function r. The important change from Figure 3 is that the
domains are no longer reflexive.

2.5.6 A Modified Semantics for L

A modified semantics for L is presented in Figures 7 8, and 9. The
auxiliary function Container : N -~ A is defined such that Containeri = (~,
where As is the lambda expression (immediately) containing s ta tement Si.
The semantic functions S2 and $2 are exactly analogous to S1 and $1.
The bulk of the activity, in this definition of L, is in the application of
closures and continuations, ra ther than in their formation. This reflects
the fact tha t they are no longer represented by functions which contain all
of the actions to be taken at the points of closure, application, and return.
Instead, those actions have migrated to the appropriate points within the
semantic functions. Examinat ion of the definition of 82 reveals that this is

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 211

Let q = (i ,p,b,e,k ,o,r) E Q. Then 82 : Q --* Q is defined as follows:

Si = [(s e t ! x (f
if e([f], b~f]>
then S2q = <

Y l " " Ym))] or Si = [(s e t ! X (c a l l / c c f)) l =~
= <a, 59 e c
J,
p-~- O~ d,
b'[p + ~ d / [z d] . . . [p + ~d/[znl],
e',
(i,b,p,o>,
P + c~ d,
r[k/o]>

w h e r e A ~ = [(lambda (Z l ' " Z m) <Zm+l""Zn> S j ' ") ~
and e I = i f S i = [(s e t ! x (f Yl""Ym))~

then e [e<[[yl], b[yl]>/([z~]],p + ad>] ...
[e([ym], b[ym]> / <[zm], p + ad>]

else e [<i,b,p,o>/<[~d,p + ~d>]
else if e<[f],b[f[) = <j,b',F, ol> e K
then $2q = <Succ j , p + Inv(p-p'),b' ,e' ,ro' ,o' ,r[k/o]>

where Sj = [(s e t ! z (c a l l / c c g))]
and e ' = i f S i = [(s e t ! x (f Yl))]

then e[e<[y~], b[y~])/([z~, b'[z]>]
else e[(i,b,p,o>/([z],b'[z]>]

Figure 7: The Semantic Function 82 (part 1 of 2)

more a cosmetic than a substantive change.

Consider the case within 82 of evaluation of a r e t u r n expression. In
both 81 and $2 the actions to be taken in this case are embodied in the
continuation k of a procedure instance; but while in 81, the continuation
was (textually) part of the closure whose application initiated the procedure
instance, in S2 it is a 4-tuple created at the point of application. The birth
date of the procedure instance to which control is returning is the fourth
component of the continuation of the current state. As promised, this
birth date is used to retrieve the continuation in effect upon return, via the
restoration function r. The construction of procedure strings within $2 is
exactly as in 81.

Before proving the equivalence of the definitions of g l and g2, let us
write some theorems which characterize the procedure strings constructed
during evaluation. It is intended that each of these theorems have a simple,
intuitive interpretation in terms of the interprocedural behavior of a pro-

212 WILLIAMS LUDWELL HARRISON III

Si = [(set! f (lambdaa (Xl."Xm) <Xm+l"'Xn> .."))I =~
S2q = (Succ i , p ,b , e [(a ,b) / ([f l , b [f])] , k ,o , r >

S~ = [(if x (goto m) (goto n))~ =~
S2q = (if e([x],b[x~) = true then m else n , p , b , e , k , o , r)

Si = [(r e t u r n x)] =~
S2q = (Succj, p + I n v (p - p'),b',e[e([x~,b~x]>/(~y],b'[y])],ro',o',r)
w h e r e S j = [(s e t ! y . . -)]
and k = (j, b', p', o')

Si= [(end)]=~
S2q = q

Figure 8: The Semantic Function $2 (part 2 of 2)

$ 2 : Q ~ Q - = A q . Let q ' = S 2 q
in if qt = q then q else C2q'

Figure 9: The Semantic Function £2

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 213

gram, and that it illuminate a salient characteristic of procedure strings.
While it will be proved using the semantics of g2, each holds in the case of
g l , and the analogous proof is nearly identical to that for £2.

T h e o r e m 2 Let q = (i ,p , b, e, k, o, r) be a state during the evaluation of a
program by g2. Then there exists a procedure string u such that

N e t (p + u) = ~.

Proof." The theorem says that every procedure string which corresponds
to a state during evaluation may be extended to a balanced procedure
string. Its proof is by induction on the number of states in the sequence
described by the evaluation. In the initial state, p = (, and N e t (p + ~) = c
trivially. Assume that the theorem is true for sequences of n or fewer
states, let q be the n th state in the sequence of an evaluation, and let
qr = 82q = (i~,p t, b', e', k t, # , r t) . If p~ = p, then the theorem holds trivially
by induction. If pP = p + a d, then pt is extensible to a balanced procedure
string by induction, since N e t (p ~ + a u) = Net p and p is extensible to a
balanced procedure string. Else, p~ = p + Inv (p - p") , where p" is a prefix
of p. Suppose that p~ cannot be extended to a balanced procedure string.
Then

N e t (p + I n v (p - p ")) a u . . . for some a E A.

This a u must be within I n v (p - p P O , since if N e t p a u , . . then p is not
extensible to a balanced string (since the matching a d must be found to the
left of aU), contradicting the induction hypothesis. Therefore I n v (p - p")
has the form X -1 + a u + y - l , and N e t (p - p") = Y + ce d -P X (where
X -1 = I n v X) . Since

N e t (p + Inv (p - p")) = Ne t (p" + N e t (p - p") + Inv (p - p"))

and since the a d within N e t (p - p~) does not annihilate the a u within
Inv (p - p") , X must have the form R + flu + S. (The pair f u f d within

N e t (N e t (p - p") + Inv (p - p"))

prevents the annihilation of the matched pair adau.) Then N e t (p - pH) =

Y + a d ~- R ~- flu _]_ S. Since a d can be annihilated only by an a u to the
right of S,

Net p = N e t (p " + (p - p")) Ot d -~- R -Jr f u _~_ S.

Since f u can only be annihilated by a fd to the left of ad, p is not extensible
to a balanced procedure string, a contradiction of the induction hypothesis.
Therefore p~ is extensible to a balanced procedure string. []

214 WILLIAMS LUDWELL HARRISON III

We say that a procedure string p is d-monotonic if p E (Ad) *, and that
p is ud-bitonic if p E (AU)*(Ad) *. We define u-monotonic and du-bitonic
similarly. Of course, every d-monotonic or u-monotonic string is trivially
ud-bitonic as well. If p is ud-bitonic, then Inv p is also ud-bitonic. (Why?)

C o r o l l a r y 1 Let q = (i ,p, b, e, k, o, r) be a state during the evaluation of a
program by $2. Then Ne t p is d-monotonic.

P r o o f : By Theorem 2, p is extensible to a balanced procedure string.
Suppose that Net p is not d-monotonic. Then Net p a u. •., and p is
not extensible to a balanced procedure string, since a matching OLd must
be found to the left of a ~', to be annihilated by Net , a contradiction of
Theorem 2. []

C o r o l l a r y 2 Let q = (i , p , b , e , k , o , r) and q' = (i l , p ' , b ' , e ' , k ' , o ' , r ') be
states during the evaluation of a program by $2, such that q~ precedes q.
Then N e t (p - #) is ud-bitonie.

P r o o f : By Theorem 2, pl and p are extensible to balanced procedure
strings. Suppose that N e t (p - #) is not ud-bitonic. Then

Net (p - p') c~d [3 u " " "

Since a d can be annihilated only by an c~ u to the right of/3 u,

Net p ~ d t3u " "

Since t3 u can be annihilated only by a/~d to the left of ad, p is not extensible
to a balanced procedure string, a contradiction. []

Given a ud-bitonic procedure string p, we will sometimes wish to refer
to its u-monotonic prefix, or its d-monotonic suffix. We will denote these
as UpRun p and DownRun p respectively; they satisfy

p = UpRun p + DownRun p

for any ud-bitonic p. Corollary 2 then says that the net effect of the inter-
procedural flow of control between any two states during evaluation may
be summarized as a sequence of procedure deactivations (a u-monotonic
prefix), followed by a sequence of procedure (re)activations (a d-monotonic
su~x).

T h e o r e m 3 Let q = (i , p , b, e, k, o, r) be a state during the evaluation of a
program by g2, and let pl be a prefix of p. Then

Ne t (p + Inv(p - p')) = Net p'.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 215

P r o o f : By Corollaries 1 and 2, N e t p and N e t p ~ are d-monotonic, while
N e t (p - p ') and I n v (p - p ') are ud-bitonic. Since p = p' + (p - p ') and N e t p
is d-bitonic,

Net p' = p" + D o w n R u n (I n v (p - p')) for some p" E P

(that is, the suffix of N e t p ~ must annihilate U p R u n (N e t (p - p ')) .) We have

N e t (p + I n v (p - p')) = Ne t (p ' + (p - p') + Inv (p - p'))
= Ne t (p ' + N e t (p - p') + I n v (p - p '))
= Ne t (p" + D o w n R u n (I n v (p - p '))

+ U p R u n (N e t (p - p '))
+ D o w n R u n (N e t (p - p '))
+ U p R u n (I n v (p - p '))
+ D o w n R u n (I n v (p - p')))

= N e t (p " + D o w n R u n (I n v (p - p ')))
= Ne t p~

[]

T h e o r e m 4 Let q = (i ,p , b, e, k, o, r) be a state during the evaluation of a
program by $2. Then

Ne t p = Ne t o

P r o o f : By induction on the number n of steps in the evaluation. In
the initial state p = o = e, and the theorem is satisfied trivially. Assume
tha t it holds for evaluations of n or fewer states, let q be the n th state of
evaluation, and let q~ = (i~, p ~, b ~, e ~, k ~, d , r ~) = S2q. There are two cases in
which p ~ p~.

• p~ = p + Ot d. In this case (the application of a closure) o ~ = p~, and
the theorem is satisfied.

p~ = p + Inv (p -- P~O. Here p~ is the procedure string of the state
which results from a continuation application or a procedure return.
In either case, the continuation k = (i ~,b",p",or~ I being applied 17
satisfies N e t p " = N e t o ~ by induction. By the definition of $2, o ~ = o ~,
since o t is the birth date of the procedure instance to which control is
returning, and tha t is the procedure instance in which k was formed.
By Theorem 3, N e t (p + Inv (p - p")) = Ne t p~, and we have tha t
Net p~ = Ne t p~ = Ne t o ~ = Net o ~.

17In the case of a return form, k is the 5th component of the state from which control
is returning.

216 WILLIAMS LUDWELL HARRISON III

[]

Theorems 3 and 4 are the justification for our interpretation of Net p as
a listing of the procedures that are active ("on the stack") in the state to
which p is the corresponding procedure string. They conjoin to demonstra te
that whenever control returns to a procedure instance, Net applied to the
current procedure string will reveal that the same procedures are active as
when the procedure instance was born (that is, the same as Net applied to
the birth date of the procedure instance).

To show equivalence between $1 and £2, we will show that there is a
straightforward, component-wise correspondence between the states that
occur during an evaluation under 31, and the states that occur during the
same evaluation under £2.

T h e o r e m 5 £1 and £2 are equivalent definitions of £.

S k e t c h o f p roof : By induction upon the length of a sequence of states.
We will show an example of the reasoning, in the case of the rule for ap-
plication of a continuation. Assume that the program is evaluated from
equivalent initial states, and that the theorem holds for sequences of no
more than n states. We will show equivalence in the first five components
of analogous states, since the final components (birth date and continua-
tion restoration function) of the states of $2 are material only their effect
upon the first five. Let ql = (i l ,pl , bl, el, k!) be the n th state during eval-
uation under 31, and let q2 = (i2,p2, b2, e2, k2, o, r) be the n th state during
evaluation under £2. Let ql ~ = (il~,pl ~, bl ~, el ~, kl/) be the state which sat-
isfies ql ~ = £1 ql, and let q2 ~ = (i2~,p2 ~, b2 ~, e2 ~, k2 ~, o ~, r ~) be the state which
satisfies q2 ~ = £2 q2.

By the rules within 81 for the formation and application of a continua-
tion, we have that pl ~ = Pl + Inv(pl -p~) , where p" is the procedure string
of the state in which the continuation was formed. (The procedure string
p" is captured within the lambda expression which represents the continu-
ation, in the state of its formation.) Similarly, il ~ = Succ i ' , where i" is the
s ta tement index of the state in which the continuation was formed. (Again,
this s ta tement index is captured by the lambda expression which represents
the continuation.) bl ~ = b', where b" is the variable birth date map of the
state in which the continuation was formed. (This map, too, is captured at
the point of the continuation's creation.) e l ' = el[d/([x], b[x~}], where d is
the value passed as the argument to the continuation, and x is the variable
which receives the value of the originating c a l l / c c expression. Finally,
kl ~ = k ' , the continuation of the state in which the c a l l / c c expression
was evaluated.

By the rules within $2 for the formation and application of a continua-

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 217

tion, we have that p21 = P2 + Inv(p2 - p ") = pl ~, where p" is the procedure
string of the state in which the continuation was formed. (The procedure
string p" is the third component of the continuation.) i2 ~ = Succ i" = il I,
where i" is the statement index of the state in which the continuation was
formed. (i" is the first component of the continuation.) b2 / = b" = bl/,
the b component of the state in which the continuation was formed (the
second component of the continuation), e 2 ' = e2[d/(Ix], b"[x]/], where d is
the value passed as the argument to the continuation, and x is the variable
which receives the value of the originating c a l l / c c expression. The birth
date map used to update the receiving environment is equal to bl 1, and it
follows that the same location within each environment will be modified fol-
lowing return of the c a l l / c c expression, and e2' = el' . Finally, k2' = ro",
where o", the fourth component of the continuation, is the birth date of
the procedure instance in which the c a l ! / c c expression was evaluated. By
the definition of 82, r was updated to return the continuation of the state
in which the c a l l / c c expression was evaluated, the analogue of kl ' . []

2.6 O p t i m a l S o l u t i o n s in T e r m s o f P r o c e d u r e S t r i ng s

At this point, we have a definition of £: (over non-reflexive domains) that
constructs a sequence of procedure strings as it evaluates a program. Our
goal is to build approximations to these procedure strings at compile time,
and to use these approximations to guide the optimizer. In this subsection
we show that procedure strings are an ideal form of information concerning
side-effects and object lifetimes. Having done so, we will return to the
semantics of the last subsection, and form from them an abstraction based
upon an approximation to procedure strings.

Before proceeding, let us recall the basics of dependence analysis. The
traditional types of dependence are flow-, anti-, and output-dependence. A
dependence arises when two subcomputat ions $1 and $2 (where $1 precedes
$2 in time) each access a single location in memory, and at least one of
them modifies the location. A flow-dependence arises when $1 writes and
$2 reads the location. An anti-dependence arises when $1 reads and $2
writes the location. An output-dependence arises when $1 writes, and $2
overwrites the location. No constraint upon execution order is implied if $1
reads, and $2 also reads the location. See [47, 12, 13] for dependence testing
between statements within a single procedure, in array-based languages;
see [45] for dependence testing in the presence of subroutine calls, in array-
based languages.

218 WILLIAMS LUDWELL HARRISON III

2.6.1 Side-Effects, in Terms of Procedure Strings

Suppose we are asked to determine what side-effects a subcomputat ion
S has, and that we have at our disposal all of the states of the program,
before, during and after S. First we must determine what is meant by a
side-effect. We will adopt a somewhat unusual perspective, summarized in
the following definition.

D e f i n i t i o n 1 A subcomputation S has a side-effect upon a mutable object
X if X exists prior to S, and S makes a reference to (use or modification
of) X.

There is much to explain in this definition. Why do we include uses (and
not merely modifications) in our definition of side-effects? What, in light
of the non-local control flow made possible by c a l l / c c , is the duration of
S? That is, when does S begin and end, given that procedures may be
arbitrarily exited and re-entered by the use of continuations? Why do we
distinguish objects which predate S from those created during S? We will
argue that this definition, while somewhat unfamiliar, describes the essence
of side-effects, and is the appropriate definition for our purpose.

First, by our definition of flow-, anti-, and output-dependences above,
we see that side-effects give rise to dependence only when at least one of
the side-effects is a modification. Nevertheless, because every dependence
involves two references, one of which may be a use (and not a modification),
to be made the basis of an interprocedural dependence test, our definition
of side-effects must regard quantities that are read, as well as those that
are written, during each subcomputation.

The construction of procedure strings in E1 and C2 gives a concrete mean-
ing to the duration of a subcomputation. Where no continuations are in-
volved, we mean by the duration of a subcomputat ion S, the time between
the procedure application which initiates S, and the return from that ap-
plication. Suppose that S is initiated normally, by application of a closure,
but that during S a continuation is applied which was created prior to S,
and has therefore the effect of exiting S entirely. Let p be the procedure
string of the state in which the continuation is applied, and let p~ be the
procedure string of the state in which the continuation was formed. By the
definition of 32, the procedure string of the state following application of
the continuation is p + Inv(p - p~). Recall from the discussion preceding
Theorem 3 that the suffix I n v (p - p~) describes (first) the exit of any pro-
cedures which are active at application of the continuation, but not at the
point of the its creation, and (second) the re-activation of any procedures
which were active at the continuation's creation, but not at the point of its
application. This is the natural interpretation of a ud-bitonic string, such

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 219

as Inv (p_pl): a sequence of procedure deactivations, followed by a sequence
of procedure (re)activations. In short, we have taken great pains to insure
that interpreting the sequence of procedure strings of an evaluation just
as though continuations were not present (that is, only in terms of normal
procedure entrance and exit) is sensible and intuitive. When a procedure
string contains a term of the form (~, we know that an instance of ~ has
been exited, whether by continuation or normal return; and when it con-
tains a d, we know that an instance of Aa has been (re)activated, whether
by application of a closure of As, or by a continuation which was formed
when an instance of ~ was active, and applied after that instance of ~
terminated. We will define the duration of a subcomputat ion then, by the
balanced procedure string which is delimited by its initiation and termina-
tion. To repeat, its initiation may correspond to a fresh closure application,
or to the reactivation of a previously exited procedure instance, and its ter-
mination may correspond to a normal return or to a non-local exit effected
by application of a continuation. The distinction is made unimportant by
the construction of procedure strings. (We include the procedure appli-
cation that initiates it, if any, in a subcomputation. We likewise include
the assignment to the variable which captures its return value, if any, in a
subcomputation.)

Why does Definition 1 distinguish objects which are referenced during
S, and existed prior to S, from those which are referenced during S, but
were created during S? The creation of a new object X during S implies, of
itself, no dependence to S from the surrounding computation, or vice versa.
Furthermore, any modifications that occur to X during S are invisible from
without S.

This explanation may fail to put the matter to rest. Let X be created
(and possibly modified) during S, and used after the conclusion of S. Sup-
pose we grant that there are no visible side-effects to X during S; but if
this estimation of side-effects becomes the basis for our dependence testing,
are we not obliged to include a modification of X among the side-effects of
S, in order to recognize the dependence from S to the use of X? The point
is that for such a dependence to exist, X must be accessed following S, and
such an access must begin with a location which is known both to S and
the subsequent computation, such as the variable which receives the return
value of S, or another variable which serves as a point of communication
between S and the surrounding computation. By identifying such points
of communication, we find the "roots" of all dependences which originate
from S. We will prove that all such points of communication are locations
which exist prior to S. We assume, in the proof below, that we may distin-
guish the object X, in which we are interested, from all other values in the
environment. That is, we will not be concerned with the trivial objection

220 WILLIAMS LUDWELL HARRISON III

that X may be "communicated" from within S by simply recomputing its
value, or by arranging that X be a constant whose value is known outside
of S, etc: such devices do not give rise to dependence. To communicate
X from within S, we assume that a chain of memory accesses must occur
from the point of its computat ion to the point of its use. We will write
qi to mean the i th state in the sequence described by the evaluation of a
program under g2.

T h e o r e m 6 Let S be a subcomputation, defined by a balanced procedure
string s, during the evaluation of a program by g2, let X E D be an object
computed during S, and let qi be a state, subsequent to the termination of
S, in which a variable x is accessed, such that x has the value X . Then
there is a state qj, j < i, also subsequent to the termination of S, in which a
variable y is accessed, such that y is bound prior to S, y is modified during
S, and either i = j and x = y, or there is a dependence from the access of
y in qj to the access of x in qi.

P r o o f : By induction on the number n of states between the termination
of S and q~. Let n = 0. Then qi is the state which follows the termination
of S immediately. In this case, no procedures are applied (and thus no
variables are bound) between the termination of S and qi- Suppose that
x is bound during S, and let Aa be the binding lambda expression. Since
s is balanced, the binding instance of As terminates during S. But x is
in the lexical environment of qi. Therefore x is captured by a closure or
continuation c during S, which is applied between the termination of S and
q~. This is impossible, since qi is the first state following the termination
of S. Therefore x is bound prior to S, and since X is computed after the
binding of x, x is assigned the value of X during S. Letting x = y and
i = j , the theorem is satisfied for n = 0.

Now assume the theorem holds when there are n or fewer states between
the termination of S and qi, n > 1. Let qi, as defined in the theorem, be
the rt th state following the termination of S. Let qb be the state in which
x is bound, and let As be the binding lambda expression. There are three
cases.

. x is bound prior to S. Since qb precedes S, and since X is computed
during S, x must be assigned after being bound. If this assignment
occurs during S, then the theorem follows at once, by letting x = y
and i = j . Otherwise, the assignment occurs in a s tate qk between
the termination of S and qi. However, this assignment involves an
access to a variable z whose value is X, since by the definition of
$2, the value of every expression is either passed from a variable as
the argument to a continuation, or to a r e t u r n form. By induction,

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 221

.

.

there exists a state qj, j < k < i, subsequent to the termination of
S, in which a variable y is accessed such that y is bound prior to S,
y is modified during S, and either j = k and y = z or there is a
dependence from the access of y in qj to the access of z in qk. There
is a dependence from the the access of z in state qk to the assignment
to x in state qi, and therefore by the transit ivity of dependence, there
is a dependence from the access of y in qj to the access of x in qi.

x is bound during S. Because s is balanced, the binding instance of
As terminates during S. But x is in the lexical environment of qi.
It is therefore captured by a closure or continuation c E D during
S, which is applied between the terminat ion of S and qi. Let qk be
the state in which this application occurs, and let z be the variable
in the operator posit ion of the application. By induction, there is a
state qj, j <_ k < i, subsequent to the terminat ion of S, in which a
variable y is accessed, such that y was modified during S, and either
j = k and y = z or there is a dependence from the access of y in qj
to the access of z in qk. There is a dependence from the application
of c in qk to the access of x in qi, and therefore by the transit ivity of
dependence, there is a dependence from the access of y in qj to the
access of x in qi.

x is bound after the termination of S. Since x has the value X in qi,
x is either assigned this value after its binding, or bound with X as
its initial value. In either case, the assignment or binding procedure
application necessitates an access to a variable whose value is X, and
the theorem holds by the argument of transit ivity made in cases 1
and 2 above.

[]

All dependences of a computa t ion must be honored is by our restructur-
ing compiler. Given a subcompnta t ion S, there are several ways in which
dependences may arise due to S. Let R be the entire computa t ion preceding
S, and T the entire computa t ion which follows S. Any dependence from R
to S obviously involves an object that exists prior to S. A dependence from
S to T may involve an object that exists prior to S, or an object created
during S. The remarkable fact proved in Theorem 6 is that any dependence
from S to T that involves an object created during S results (by transitiv-
ity) from a dependence that involves (only) an object that exists prior to S!
By enforcing each "primary" dependence by which a "secondary" depen-
dence is transitively induced, we guarantee enforcement of the secondary

lSMore precisely, they must appear to be honored. We will see, when we consider the
restructuring phase of compilation, that the distinction is sometimes useful.

222 WILLIAMS LUDWELL HARRISON III

dependence. (See [36] for a thorough discussion of dependence enforcement
via synchronization.) Thus we need only regard dependences to and from
S tha t involve objects tha t exist prior to S. Definition 1, then, accords
with the requirements of dependence analysis.

Having arrived at a satisfactory definition of a side-effect, let us cast the
definition in terms of procedure strings.

T h e o r e m 7 Let ± be an instance of the variable x, let the procedure string
Pb be the date of its birth (in state qb), and let Pr be the procedure string of
a state qr in which a reference to ± takes place. Then Net(pr --Pb) contains
a term of the form a d if and only if the instance Aa of Aa corresponding to
this term has a side-effect upon ~.

Proof."

If. Suppose tha t A'~ has a side-effect upon ±. Then by Definition 1, A'~
is active at q~, and therefore Netpr a d . . . where O~ d corresponds
to the activation (or reactivation, by applicat ion of a continuation) of
A'~. Further, since the corresponding a ~ must be found to the right
of this a d, we have tha t Net(p~ -Pb) o l d . . .

Only if. Suppose tha t Net(pr-pb) contains a t e rm of the form a d, and
let As be the instance of A~ tha t is applied in state q.~ tha t corresponds
to the term. Then ± was bound prior to qa, and As was active at q.~
(that is, the matching a ~ t e rm which denotes the deact ivat ion of Aa
is absent from Pr). By Definition 1, A'a has a side-effect upon ±.

[]

The string Pr - Pb is a record of the interprocedural movements between
the point at which ~ is bound and a point at which it is referenced. Ac-
cording to the discussion above, if the net effect of that movement has
been downward into an instance As of As, then A'a has a side-effect upon i ,
since ± existed prior to A'~'s activation (or reactivation), and was referenced
while A'~ was still active. The side-effect tha t Theorem 7 at t r ibutes to the
procedure instance As is visible to the procedure which invokes Aa. Let the
invoking procedure instance be A~. If A6, too, has a side-effect as a result
of the reference to ± at p~, then it, too, will be represented in Net(p~ - Pb)
as a t e rm ~d. (This depends entirely upon the movements tha t ± describes
with respect to A~.) This gives us a perfect test for side-effects, in the sense
that we may state exactly which procedure instances have side-effects as a
result of each variable reference tha t occurs during execution.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 223

As a special case of Theorem 20, we may have that a = 5 (that is, the
routine within which x is referenced directly may have a side-effect as a
result of the reference), and even that a = f . In order to have A'~ = I" 8
where '~8 is the instance of "~8 that binds ~, it must be that I" 8 is deactivated,
and reactivated by application of a continuation created while it was active,
and that ± is captured by a closure or continuation while ~'Z is active (so

that ± describes a movement whose net shape, with respect to)~'8, is first
upward, then downward).

2.6.2 Stack Allocation, in Terms of Procedure Strings

Now let us turn to the problem of allocating variable instances on a stack.

T h e o r e m 8 Let ~ be a procedure which binds a variable x, let Pb be the

birth date of an instance)~8 of ~ , let ± be the instance of x bound by ~8,
and let p~ be the procedure string of a state qr in which a reference is made
to ±. Then Net(p~--Pb) contains a term f u , i f and only i f)~ 8 is deactivated
before ic is referenced in q~.

P r o o f :

• If. Suppose that ~'~ is deactivated before 2 is referenced in the
state whose procedure string is Pr. Then pr = Pb + (P~ -- Pb), where
Pb f d , and p~ - Pb = " " " f u .. where this matching f d f u pair
corresponds to the activation and deactivation of)~8" Therefore

Net(pr -- pb) f u .

as desired.

Only if. Recall that the active procedures in qr are read from the
string Net p~. The theorem says, then, that if Net(pr - Pb) contains
the term f~, then p~ contains the balanced substring, which begins
with fd and ends with f u that corresponds to the subcomputat ion
initiated by the binding instance of)~Z. (This balanced substring is
deleted from Net p~.) By the rule within $2 for closure application,
Pb ends in fd. Thus, if Net(p~ - Pb) contains f~, then it must begin
with f~ (to balance the procedure string of the entire computation).
Therefore if Net(p~ - Pb) contains f l u then in Pr the fd in which Pb
ends will be matched by the first unmatched flu in Pr - Pb. By our
interpretation of Netp~, this means that the instance of A8 that binds
± bas been deactivated before qr.

224 WILLIAMS LUDWELL HARRISON III

[]

Assuming the stack frame associated with a procedure instance is over-
written when the instance is exited, any variables it binds that are ref-
erenced following its exit must be allocated in the heap. If, however, we
examine all references to its bound variables, and find that all occur prior
to deactivation of the procedure instance, then the variables may be bound
to locations on the stack. Actually, to emphasize the impracticality of this
test in its current form, we should write, "then the variables could have
been bound to locations on the stack." This test is similar to the optimal
MIN algorithm for page replacement in virtual memory management: it
requires foresight. Nevertheless, we can put it to very practical use, since
a data flow analysis based upon it will have a sort of "blurry" foresight.

Suppose that a procedure instance A'Z is deactivated, and reactivated
by application of a continuation, and that all references to the variable
instances it binds occur while the procedure instance is active (that is,
following its reactivation, but prior to any further deactivations). In this
case, its bound variables must be heap-allocated, since they are referenced
after the procedure instance is deactivated. The reader may verify that the
initial deactivation of ~'~ is revealed by Theorem 8, and therefore that the
need to heap-allocate activation records of procedure instances which are
re-activated by application of first-class continuations is recognized by the
theorem.

2.6.3 Generalized Hierarchical Allocation and Deallocation

We may easily extend the result of the last subsection to accommodate a
richer selection of areas from which to allocate than the two-fold distinction
between stack and heap. In the extreme, we are led to the following tactic
for storage management. With each procedure instance we associate a list
of objects to be deallocated upon its exit. When allocating an object, we
add it to the "to be deallocated" list of the nearest procedure instance
which will outlive all references to the object. (In the worst case, this will
be the topmost procedure instance, the root of the stack.) For each object,
then, we must find the maximum rn over all references to the object, of the
number of procedure instances, of those active at the point of the object's
creation, that are exited before the point of reference. We place the object
on the deallocation list found m procedure instances "above" the procedure
instance in which it is created.

Let ± be an instance of the variable x that is bound in state qb, and let
qr be a state in which ± is referenced. Let Pb and Pr be the procedure
strings corresponding to qb and qr, respectively. As in the case of stack
allocation, we will consider the procedure string Net(p~ -Pb) . Every term
in Net(p~ - Pb) of the form au denotes the exit of an instance of As, which

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 225

(define fact (lambdaG (n k)
(if (= n O)

(k I)
(fact (I- n)

(lambda~ (m) (k (* n m)))))))
(fact I0 (lambda~ (x) x))

Figure 10: Example of Stack-Allocated Variables

instance was active in qb. (Since the balancing Ol d iS not found in Pr - Pb,
it must be in Pb.) The number of such terms (summing over all a 6 A)
is the count of procedure instances, of those active at qb, that are outlived
by ± between qb and qr inclusive. Let the maximum of this count, over
all references to :~ (that is, over all states qr in which i is referenced)
be m. We may place ± on the deallocation list associated with the mth
procedure instances above the procedure instance active in qb, knowing
that the deallocation list is associated with a procedure instance that is
not outlived by ±.

Actually, we are not proposing this seriously as a storage management
strategy; it is instead a simple motivation for the very nearly related prob-
lem of placing dynamically allocated objects within a hierarchical shared
memory. We will return to the problem in which we have genuine interest
in subsection 2.15.

2.6.4 Examples of Side-Effects and Object L i fe t imes

Consider first the example of Figure 10. The factorial function is shown,
writ ten in cont inuat ion passing style (we will have more to say about this
style below). The local variables of Aa (n and k) are captured by the closure
of A~, which is clearly a downward funarg. Suppose, as per the example,
that the expression (f a c t 10 (lambda,~ (x) x)) is evaluated, and let Pb
be the birth date of one of the instances of n during the evaluation, and
Pr be the procedure string of the state in which this same instance of n is
referenced, within AZ. Then we have that

(one or more terms),

Pb -= oJ . . . Oz d

Pr = o J . . • o ~ d ~ d . . . / ~ d ,

and
Net (pT - Pb) = ~ " " ~ d Z d . . . /~d.

Since this holds for all choices of Pb and Pr, the instances of n may be
stack-allocated by Theorem 8. The same is true of the instances of k.

226 WILLIAMS LUDWELL HARRISON III

(define accum-fn (lambda~ (x)
(lambdaz (y) (set! x (+ x y)) x)))

(define apply-to-range (lambde b (io hi fn)
(if (= io hi)

(fn io)
(begin (fn Io)

(apply-to-range (i+ io) hi fn)))))
(define sum-of-integers (lambda~ (m n)

(apply-to-range m n (accum-fn 0))))
(define list-of-sums (lambda~ (ii 12)

(if (null? ii)
#f
(cons (sum-of-integers (car ii) (car 12))

(list-of-sums (cdr ii) (cdr 12))))))

Figure 11: Example of Side-Effects and Object Lifetimes

Now consider the example of Figure 11. The procedure accum-fn returns
a procedure (an instance of AZ) that captures a state variable (an instance
of x). When AZ is applied, its argument is added to x, and the accumulated
sum is returned, a p p l y - t o - r a n g e applies a procedure (its third argument)
to every integer between lo and hi , inclusive, s u m - o f - i n t e g e r s first cre-
ates an accumulating function with a call to accum-fn, and then invokes
a p p l y - t o - r a n g e to sum the integers in the range of m to n, inclusive. Fi-
nally, list-of-sums takes two lists of integers, applies sum-of-integers
to the corresponding members of the lists, and forms a list of these sums.

Let us begin by considering an invocation of As (that is, of accum-fn).
An instance ± of x is born by this invocation; let its birth date be Pb.

Suppose that, by subsequent application of the return value of As, ± is
referenced in a state whose procedure string is Pr. We will have that

N e t (Pr - Pb) °lu " " ,

which by Theorem 8 implies that ± cannot be stack-allocated. Aa has no
side-effects, for the reason that it is not active when ± is referenced. That
is, N e t (p ~ - P b) will never contain a term of the form c~ d.

Now consider an application of s u m - o f - i n t e g e r s . The first action taken
is to invoke accum-fn; as above, let the instance of x that is created be ±,
and its birth date be PD. The instance A'Z of AZ that is returned by accum-fn
is passed to A~ (a pp l y - t o - r a nge) , where it is applied repeatedly, causing
references to ±. Let Pr be the procedure string of the state in which one
such reference occurs. We have that

N e t (p r - Pb) ~ d . . ",

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 227

and therefore that the active instance of h~ has a side-effect upon ±. The
active instance of hz (sum-of-integers) has no such side-effect, because
Net(pr - Pb) contains no term of the form ~d (no term involving)% at all,
in fact).

Finally, consider an application of hE. We have seen that s u m - o f - i n t e g e r s
has no side-effects, and therefore each recursive instance of h~ is indepen-
dent of the others (aside from the formation of the list of results). In
short, the state variables (instances of x) that are created to form each
sum within l i s t - o f - s u m s , are invisible to the caller of s u m - o f - i n t e g e r s .
There is therefore a potential for high-level parallelism in this computation;
we would hope to construct a framework of program analysis that would
reveal this parallelism.

We saw above that an instance ± of x (the variable bound by ha) cannot
be stack-allocated, for the reason that references are made to it after the
termination of the binding instance of ha. This was reflected as a term au
in the string Net(pr--Pb) that summarizes the activity between the binding
of i and a reference to it. However, it is easy to see that this is the only
term denoting upward movement, within Net(pr -Pb), and therefore that
± may be deallocated upon exit of the instance of h~ which creates it (by
an invocation of ha).

2.6.5 Some Observations

It is interesting to juxtapose the results of this subsection concerning side-
effects with those concerning heap-allocation. Theorems 7 and 8 lead us
to the conclusion that downward movements give rise to side-effects, while
upward movements give rise to heap-allocation. This is interesting because
upward movements (as manifest in the upward funarg problem) are perhaps
the central issue in the sequential implementation of a language with first-
class procedures (that is, upward movements prevent the evaluation of such
a language by a simple stack mechanism); but Theorem 7 suggests that
downward movements (of mutable objects) may be among the central issues
in the parallel implementation of such languages, for (by Theorem 6) all
interprocedural dependences arise from such downward movements.

To digress, there is a pronounced shortcoming of Fortran, as a language
for parallel processing, that is set in sharp relief by these theorems. In
Fortran, all storage is allocated, effectively, at the global level; in terms of
procedure strings, we would say that every such object has a birth date
of c (the empty procedure string). Therefore, every reference to such an
object (assuming it is a mutable object, such as a scalar variable or array
element) will, by Definition 1, induce a side-effect in every procedure that
is active when the reference is made. Now, we could sharpen our definition
of dependence, so that each re-definition of the object is viewed, in effect,

228 WILLIAMS LUDWELL HARRISON III

as a separate instantiation of the object; this approach is taken in [19]. Put
another way, by examination of the definitions and uses of a scalar variable,
we may discover that the single name may be replaced by several variables,
whose lifetimes are mutually disjoint. Having done so, we may discover that
the side-effects upon the resultant (newly introduced) variables have more
restricted visibility than those upon the original. Indeed, any dependence
test may be sharpened by giving it a measure of flow-sensitivity. The
point being made here is that the visibility of a side-effect upon an object
is circumscribed by the lifetime of the object; in the case of the statically
allocated storage of Fortran, all objects have the maximum possible lifetime.
This is reflected in Theorem 7, by the fact that a statically allocated object
describes a downward movement through every procedure that is active
when it is referenced.

2.7 S t ack C o n f i g u r a t i o n s

The construction of a useful abstraction is a practical matter, constrained
by opposing requirements: to restrict information content so that the ab-
stract domain may be represented and manipulated efficiently by a com-
puter, on the one hand, and to preserve information content so that when
applied to real programs, the resulting analysis is sufficiently powerful to
yield appreciable performance improvements, on the other. The first step
in the abstraction of procedure strings, then, is to separate the information
they contain into the essential and the inessential; our abstraction should
dispose, as much as possible, only of the latter. Turning to the examples
of dependence analysis, stack-allocation, and hierarchical storage manage-
ment, we see, of the solutions we have proposed to these problems, that

• each makes use of a difference of two strings,

• each makes use of strings which have been reduced by the N e t oper-
ator, and

• none depends upon the order of elements within the strings (once
reduced by the N e t operator).

The structure of our abstraction will take advantage of the second and third
of these points, whereas to take advantage of the first point (indeed, to
render our abstraction satisfactory in accuracy) will require an alteration
to the way procedure strings are constructed in the semantics. We will
return to this point.

We need two auxiliary functions, Trace : P ---, A --~ P and D i r : P

A --* A before we can define the abstraction map itself. Let p E P and
E A (p ~ _[_p and c~ ~ -l-h). Trace p a is the result of deleting all terms

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 229

from p other than a d or a u. Let A = {~,d, d d + , u , u u + , u + d + } . The six
members of A are tokens representing the regular expressions ~, d, dd +, u,
uu + and u+d + respectively. The function Dir, when applied to a procedure
string p and a lambda expression index a, returns a member of A, according
to the structure of Net (Trace pa) . It is defined as

Dir =_ ApAa. Let Net(Trace pa) = az l a x2 . . . (~x~
in case X l X 2 ' ' ' X n E c : £

d : d
dd + : d d +
u : U

UU + : a n +

u+d + : u + d +

Intuitively, the function Trace extracts from a procedure string p all of
the information concerning a single procedure An; the function Net when
applied to the result, produces a string which summarizes the net move-
ments described by p, with respect to An. The function Dir (for direction)
then characterizes this movement as one of six types. By Corollary 2, the
procedure strings to which we will apply Trace and Dir are ud-bitonic,
and it is easy to see that the disjoint union of the six regular languages
represented by the members of A is the language u'd*.

We want to summarize the net movements made with respect to each
lambda expression, in the abstraction of a procedure string; this means
isolating all those terms within' the string that pertain to a single lambda
expression, and applying the Net operator to the result, as in the definition
of Dir. It is possible to proceed in the opposite order, by first applying Net
and afterwards isolating all terms pertaining to a single lambda expression.
It will be useful to be sure that the outcome is independent of the order in
which we proceed.

T h e o r e m 9 Let Pl and P2 be the procedure strings of two states during the
evaluation of a program under C2, where Pl is a prefix of p2. Then

Ne t (Trace(p2 - p l) a) = Trace(Net(p2 - p l)) a .

P r o o f i Suppose the theorem is false. Then it must be that

Net (Trace (Ne t (p2 - p l)a)) ¢ Trace(Net(p2 - pl))a ;

that is, that further annihilation of matching ada u pairs is possible within
Net(p2 - P l) , once the terms within it that are unrelated to a are deleted.
Therefore Pl must be of the form . . . a d + X + a u . . . where X is an un-
balanced string. But then Pl cannot be extended to a balanced procedure
string, contradicting Theorem 2. []

230 WILLIAMS LUDWELL HARRISON III

As a special case of this theorem, we may let Pl = e, so that the result
applies to all procedure strings tha t correspond to states during evaluation.
Intuitively, the theorem says tha t the net movements described by a proce-
dure string with respect to one lambda expression are independent of the
net movements it describes, wi th respect to other lambda expressions.

A stack configuration is a member of the s e t / 5 = A ~ 2 A of maps from
lambda expression indices to subsets of A. The abstract ion map Absp is
defined as

Absp - Ap.Act.ifp = _kp or ct = -LA then {} else {Dirpct}.

Notice tha t if a lambda expression A# is not represented in a procedure
string p 7~ _Lp, then p's image i n / 5 will map ~ to {c}.

The image in /5 of a (fully defined) procedure string maps each (fully
defined) lambda expression index onto a singleton subset of A; if project ion
from P t o / 5 were the only means of construct ing stack configurations, then
they would be bet ter defined as members of A ~ A (with A extended to
include a b o t t o m element). We will more often, however, arrive at stack
configurations via functions tha t operate upon other stack configurations,
and these will give rise to stack configurations with less information than
those tha t result from project ion from the concrete domain of procedure
strings. The least upper bound operator Up is defined simply as

Up = #ACAct.(# ct) u ct)

and the partial order ___# among members o f /5 is defined as

Ep-- ct) c ct) vct e A.

(Up and ___# have been defined as functions of type /5 ---, /5 ~ /5 and

/5 --*/5 --+ Bool respectively, a l though we will write t hem as infix operators,
as is traditional.)

We should be certain tha t our handling of the b o t t o m element I p of P
is sensible. It is abstracted to the element Act.{} in /5 . By the discussion
of concretization maps in subsection 2.4,

Concp(Absp_Lp) = {P l Abspp r_p Act.{}} = {J_p}

since any procedure string p ¢ _Lp is abstracted to a stack configuration
tha t maps every fully defined lambda expression index to a non-empty
subset of 2/'. Therefore the b o t t o m element of P is abstracted to the
b o t t o m element of /5 , as expected. Since the domain of procedure strings
is flat, it follows tha t Absp is (trivially) monotonic and continuous.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 231

We can be quite precise about the information loss that occurs during
this abstraction. First, if two procedure strings have the same Net value,
they are indistinguishable after abstraction. Second, if a procedure string
that has been reduced by the Net operator, is a permutat ion of another
that is likewise reduced by the Net operator, then they will be indistin-
guishable after abstraction. Finally, if two procedure strings are equivalent
according to the above criteria, and in addition, the regular expressions that
describe the contributions of each lambda expression to one of the strings,
are equivalent to the corresponding regular expressions for the other (or,
more exactly, the corresponding regular expressions are equivalent modulo
the six classes defined by A), then the two strings are indistinguishable
after abstraction.

2.8 The Abstract ion of Operations Over Procedure S t r i n g s

There are several operations upon procedure strings which must be ab-
stracted to stack configurations, in a way that preserves the meaning of
procedure strings. To be precise, if f : P ~ P ~ . . . --~ P is an n-ary
function from procedure strings to procedure strings, then an abstraction
] :/5 ~ / 5 __... . ~ / 5 of f must satisfy

Absp(fpl . . .pn) Ep f(AbspPx)... (Absppn) (1)

or, equivalently

fPi ...Pn E Concp(f(AbspPl)... (Absppn)). (2)

In words, the projection on to /5 of the result of applying f to arguments,
should be represented by (contained in the concretization of) the result of
first projecting the arguments onto/5 , and then applying] . The direction
of inclusion is important: we will begin abstract interpretation by project-
ing some initial values onto abstract domains; afterwards we will operate
entirely within the abstract domains, by applying the abstractions of func-
tions. To be meaning-preserving, the (concretization of the) result must
contain all possible outcomes in the concrete domain.

Let's begin with the abstraction of Net and Inv. Net may be abstracted
to the identify function

A f e t -

since, as we observed above, Absp(Net p) = Abspp. The abstraction of
Inv is also very simple. There is a symmetry among the members of A,
which is induced by the Inv operator. For example, if Dir pa = u, then
Dir(Invp)a = d; if Dirpa = d d +, then Dir(Invp)a = u u +. The converse

232 WILLIAMS LUDWELL HARRISON III

of each of these equations is true as well: if Dirpa = d, then Dir(Invp)a =
u, and so on. By way of example, suppose that p =/3uad~ d. Then 15a =

^

{d} and 15/3 = { u + d +} where 15 = Abspp. On the other hand, if p' =
Absp(Invp), then pta = {u} and pt/~ = {u+d+}. Let us write 51 ~ 52
when

(Dir pa = 51) ~ (nir(Inv p)a = 52)

and
(nir qa = 52) ~ (nir(Inv q)a = 61)

for all p, q E P, where 61, 62 E A. It is easy to see that d ~-~ u, dd+ +-~ u u +,
u + d + ~ u + d +, and e ~ e. We may therefore abstract the function Inv to
the function

= 1 61 62, 52 15 }.
It follows, by explicit construction, that Absp(Inv p) = Inv(Abspp). The
abstractions of Net and Inv are maximal in that they satisfy the require-
ment posed by Equation 1 as strongly as possible (by equality instead of
mere inclusion).

There are two more operations over procedure strings that must be ab-
s tracted to stack configurations: + and - . We begin with the former; the
abstraction of the lat ter is then easily derived. Let us look at concate-
nation in terms of members of A. If 15 is a stack configuration such that
15a = {d}, then it represents procedure strings whose Net values contain
one term (a d) that pertains to A~. Likewise, if ~ is a stack configuration
such that ~(~ = {u}, then it represents procedure strings whose Net values
contain only the te rm a u that pertains to A~. Therefore the Net value of
the concatenation of two procedure strings p E Concp15 and q E ConepO,
will contain no terms of the form OLd o r O~ u (because the matching ada u pair
within the concatenation will be annihilated by Net). In terms of stack con-
figurations, (15 ~ O)a = {e}, where ® is the abstraction of concatenation we
have yet to define.

There is an implicit assumption here that p describes a legitimate evalu-
ation sequence, and that q describes a legitimate sequel to that evaluation
sequence. This is the sensible assumption, since the only concatenation we
are interested in abstracting is that by which a procedure string is length-
ened during computation. Alternatively, we may cast this assumption into
the terms of Theorem 9: if we extract the terms pertinent to A~ from p + q,
we have c~da u, which is certainly annihilated by Net. Theorem 9 then tells
us that when p + q describes an evaluation sequence, that Net(p + q) will
contain no a terms, since Net(Trace(p + q)(~) is empty. Therefore, of all
procedure strings represented by 15 and ~, in the abstraction of concate-
nation we regard only those pairs p, q such that p + q is extensible to a
balanced string.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 233

Let us define the function Cat : A -* A ---, 2 A according to the following
table:

[c~t II ~ I d I dd+ t ~ I ~u+ 1 ~+d+ I
e {e} {d} {dd + } {u} {uu + } {u+d + }
d {d} {dd +} {dd +} {e} {u, uu +} {d, dd+,u+d +}
dd + {dd + } {ad + } {dd + } {d,dd ÷ } {e, d, dd+, u, uu + } {d, dd+, u+d + }
u {u} {u+d + } {u+d + } {uu + } {uu + } {u+d + }
uu + {uu + } {u+d + } {u+d + } {uu + } {uu + } (u+d + }
u+d + {u+d +} {u+d +} {u+d +} {u, uu+,u+d +} {u, uu+,u+d +} {u+d +}

The table should be read as follows. The value of Cat61~2 is found at
the intersubsection of the row that is headed by 51 and the column that is
headed by 52. The following theorem describes the meaning of Cat.

T h e o r e m 10 Let 51 = Di rp la and 52 = Dirp2a, f o rpbp2 E P, pl ,p2 7 ~
-J-p. Then Dir(pl + p2)a E Cat 5152.

P r o o f : By enumerat ion of the possible forms of Net(Trace pla) and
Net(Trace p2a). We give an example of the reasoning, in the case that
Dir p la = d d + and Dir p2c~ = u. In this case, Net(Trace plot) has the
form adad. . . (two or more ad's), and Net(Trace p2a) has the form a u.
Therefore, Pl +P2 will end in a matching aria ~ pair; this pair is annihilated
by Net, leaving one or more a d terms in the result. The possible values of
Dir(pl + p2)a are therefore summarized as {d, dd+} . This set is exactly
the value of Cat d d + u.

The other values of the function Cat are verified by similar reasoning. []

Given Cat, a natural abstract ion ® of concatenation of procedure strings
is defined by

Pl ~ P2 "-~)~Ol. U { Cat 5152] (51 E/~1o~, ~2 E p2ot} .

We must show that this abst ract ion preserves the meaning of concatena-
tion; that is, that it satisfies Equat ion 1.

T h e o r e m 11

Absp(pl + P2) U_p (Absppl) • (Abspp2),

for all Pl,p2 E P.

P r o o f : Let us first consider the case where at least one of pl or P2 is
_Lp. Wi thou t loss of generality, assume that Pl = _kp. Then Pl +P2 = _Lp,

234 WILLIAMS LUDWELL HARRISON III

and Absp(pl +p2) = 5_/5, for all a E A. Now suppose that neither o fp l ,P2
is undefined. We showed in Theorem 10 that for every Pl,P2 E P,

Dir(pl + p 2) a E Cat(Dir plcO(Dir p2a)

for all a E A. Therefore

(Dir(pl + p 2) a } C_ Cat(DirplcO(Dirp2a) for all c~ E A.

By the definitions of Absp, G/5 and ®, this means that

Absp(Pl + P2) Gp (AbspPl) ® (AbspP2),

as desired. []

We may write this result in the form of Equat ion 2, as

Pl + P2 E Conc/5((Absppl) ® (Abspp2)).

This, in turn, implies that Pl +P2 E Concp(191 @152) for all Pl E C0nc/5151,
P2 E Concp152. That is, the concatenation of two procedure strings pl and
p2 is contained in (the concretization of) the abstract concatenation (via
®) of any two stack configurations fil and 152 whose concretizations contain
pl and p2, respectively (since Absppl and Abspp2 are the least such 151 and

We need an abstract ion of - to complement the abstract ion we have
created for +. A natural abstract ion (3 is given by

= ~ . { 5 ! Cat'y6n (15La) :/: { } for some ~y E (152a)}.

As an example, if151a = {dd +} and 152a = {d} then (151(3152)c~ = {d, dd+}.
In order to appreciate the loss of information entailed by this abstraction,
consider that if idla = {u+d+}, then (151 (3 151)a = A. Writ ten otherwise,
we have that ((Abspp)(3 (Abspp))a = A whereas Trace(p-p)a = c, when-
ever (Abspp)a = {u+d+}. The result is the same if (Abspp)O~ = { d d + } .
Because the operation - is central to the solutions we detailed in subsec-
tion 2.6, this loss of information would be devastating to the effectiveness
of the program analysis framework we are constructing, were we to make
direct use of (3. Fortunately, by a simple shift in perspective, we can ar-
range to extract the information we need without making use of (3 at all.
We will re turn to this in subsection 2.12.

The following result verifies that (3 is a sensible abstract ion of - .

T h e o r e m 12

A bsp (pl -P2) ~ /5 (A bspPl) (3 (A bspp2) ,

for all Pl,P2 E P.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 235

Proof i In case either pi or p2 is A_p, both sides of the equation are _kp,
and the theorem is satisfied trivially. When pi and p2 are fully defined, we
have that

((AbspPl) 0 (Abspp2))a

= {5 I Cat'y~ f? (Absppi)a 7 £ {} for some 7 E (AbspP2)a}.

By Theorem 10,

Dirpia = Dir(p2 + (Pi - p2))a E Cat(Dirp2a)(Dir(pi - p2)a).

This means that

(Absppl)ct C_ Cat(Dirp2a)(Dir(pi - p2)a) for all a E A,

(AbspPi)a C Cat((Abspp2)a)((Absp(Pi - p2))a) for all a E A,

and therefore

(AbspPi)a C_ {5 I Cat'y5 N ((Absppi)a) 7£ {} for some ~/E (AbspP2)a}

which implies, by the definition of O, that

Absp(Pi -P2) Ep (AbspPl) e (AbspP2).

[]

The following result shows that stack configurations capture well the
notion of "net" procedure strings.

T h e o r e m 13

Absp(Net(pl + p2)) E_p (AbspPi) @ (Abspp2)

and
A bsp (Net (pi -P2)) U_ p (A bspPl) 0 (A bspP2) ,

for aU pi,p2 E P.

Proof :

• I. By Theorem 11,

Absp(pi + p2) __./5 (AbspPi) • (Abspp2),

and by the definition of Absp,

Absp(Pi + P2) = Absp(Net(pi + P2))-

Therefore

Absp(Net(pi + P2)) U_p (AbspPi) G (Abspp2).

236 WILLIAMS LUDWELL HARRISON III

• II . By Theorem 12,

Absp(pl - P2) E_p (AbspPl) 0 (Abspp2),

and by the definition of Absp,

Absp(pl - P2) = Absp(Net(pl - p2)).

Therefore

Absp(Net(pl -p2)) Ep (Absppl) 0 (Abspp2).

[]

Theorem 13 is a most useful result, because from it follows immediately
that for all Pl E Concp161 and P2 E Concp162, Net(p1 -p2) E Concp(161 0162)
(by the fact that Absppl and Abspp2 are the least 161 and 162 such that
pl E Conc~161 and P2 E Conc/~162). The same is true of Net(p1 +P2). There
are many abstractions of procedure strings for which this result does not
hold, since Net(p1 +P2) ~ (Net pl) + (Net p2), and (Net pl) - (Net p2) is
meaningless, in general.

2.9 A b s t r a c t S e m a n t i c s

We are now ready to abstract the meaning of £, using E2 as a basis. It
must be said at the outset that many abstractions are possible, and are
much the easier for our having rid the semantic domains of reflexivity. The
conflicting goals of an abstraction are, as always, to minimize information
content for efficiency in program analysis, on the one hand, and to maxi-
mize information content for efficiency in program execution on the other.
To appreciate its practicality, we must see both the dataflow framework an
abstraction suggests (to estimate our investment in compile time), and ex-
amples of its behavior when applied to real Scheme programs (to estimate
the re turn on our investment, at run time). Furthermore, since interpro-
cedural analysis is but one phase of parallelizing compilation, we cannot
judge its effectiveness in isolation from the "active" phases of the compiler,
which make use of its results to trigger restructuring and optimization. The
abstraction we develop below is but one point on a continuum of choices,
and no claims are made for it now, other than that it is correct, represen-
tative of the possibilities, and avoids the ridiculous extremes of complete
information loss or retention.

The equations of the abstract semantic domains are presented in Figure
12; their abstraction maps are presented in Figure 13; the partial order-
ings within the abstract domains are defined in 14; and the LUB operators

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 237

/~ = 2 1

]~/= 2 N

=y /5
d

b = d x B2 x P r i m O p x I n t x Bool

=v b

=/5 x/) x/i"

Figure 12: Abstract Domains for g3

within the abstract domains are defined in 15. In the case of the compound
d o m a i n s /) , 6', /£, /9, /), R, 2r and (~ these functions are straightforward
compositions of the corresponding functions over the primitive domains,
as described in subsection 2.3. The partial orderings and LUB operators
are defined as curried functions, although we will write them, in the con-
ventional way, as infix operators. The notat ion a A b denotes the logical
conjunction of a and b.

A member d E A is simply a subset of A. It is important to make
clear the distinction between the representation (in this case a subset of A)
from the thing that is represented (in this case an ideal of A). Here, the
relationship is simple, and is given by

Conc x _= .X&.& u {-LA}.

This abstraction is maximal in that every ideal of A is represented in A.
Most of our abstractions are more abstract than this one.

A member b E /) maps a variable to an abstraction of its birth date.
There is no information loss, during abstraction, in the domain 19 of the
function: when considered as a subset of the product V x/5, the cardinality
of the map is the same, before and after abstraction. However, there is
information loss in the range of the function, as the abstraction of procedure
strings involves a loss of information, as described in subsection 2.7.

An abstract environment ~ E /) maps a variable to an abstraction of

19Here we are using domain as the space from which a function takes its input values,
and not the space containing the function.

238 WILLIAMS LUDWELL HARRISON III

Abs h - Aa. if a = 3-a then {} else {a}
Abs g =- ki. if i = I N then {} else {i}
Abs B =_ Ab.)~v.Absp(bv)
Abs C - A(a, b).(Absha, Abssb }
A bs g =_ A (i, b, p, o) . (A bsg i, A bsub, A bspp)
Abs D -- Ax. if x -- 3-0 then (3-0, 3-R' 3-PrimOp' 3-Int' 3-Bool}

else if x E C then (Abscx, 3-R, 3-P~imOp' 3-Iiu, 3-Boot)
else if x E K then (3335, AbsKX, 3-PrimOp' 3-Int' 3-Bool)
else if x E P r i m O p then (3-~, 3-K, AbsprimOpX' "Lint' 3-Bool}
else if x E I n t then (3-~, 3-K' 3-PrimOp' AbsIntx, 3-Boot)
else if x E Bool then (-J-5, -l-K, 3-Pri~nOp' 3-Int' AbsBoolX)

Abs E - Ae.Av. U D {AbsD(e(v,p)) i p E P}
Abs R - Ar.Aa. U R {AbsK(r(p + ad))] p E P}
AbsQ =_ A(i, b,p, e, k, o, r}.Aa, if a ~ Container i

then (3-p, 3-B, 3-E, 3-R, 3-/~)
else (Abspp, AbsBb , AbsEe,

AbsKk, AbsRr)

Figure 13: Abs t r ac t ion Maps

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 239

EN-- £.~).~ c)
EX- A&.@.& c/~
EB--- ~6,.~&.(61v) c (&v) w e V
Ec--- :,(o~,, ~l).A(o~, &).(O~l E~ fi~) A (61 E~ &)
F/.~.m_)~(~, 61,.~1}.,~(~, &,1192). (/1 ___.Et'~ ~)

A (hi ---8 G2)

E/~ =-~)~(C~I,]~1, ~, a , £1).)~(6,]g2, f2, a , £2}. (6 ~ , 6)

A (/1 ~PrimOp f2)
A (~1 ---i~ ~2)
A (~1 ---Boo~ f2)

[Z~b~ ,~(b~l,J~l, e~l,/~1, r~1).)~(b~2,1-~2, ~2, k2,/-~2). (b~l E/~ b~2)

A (4 ___~ #2)

A (~i _% ~2)
E6---- A,fi.~2.~.(,:/~oO Ee (~/2o0 w c A

Figure 14: Partial Orderings

240 WILLIAMS LUDWELL HARRISON III

U~ -- Anl.ATt2.7~ 1 U ~2

us _= :,~.~.~ u
u , _= ,~l.,~6~..,~v.(61v)up (&v)
u~ - ,~<oh, b\>.,~<o~, 6~.>:<~, u x o~, 6~ uB &>
U/~ ------ /~(/~1, b~1,P1>.~<(2, b2,p2>.(71 U~ i2,

, u , & ,

U/) ---- A<dl, kl,]1, 2~1, xx).A{d2, }2, f2, 2~2, x2>.(dl U d, c2,
~1 u. ~,
/,usA,
21 US Z~2,
~a u s ~2)

U~ ~ /~e~l./~e~2.,~v.(elV) U b (e~2 v)
uR - ~FI.~F2.~a.(Fla) u~ (F2a)
% - ~(p~l, 51, el, kl, F1>.~<#2, &, e2, A;2, e2>.< #1 uo ~2,

#1 1 IS #2,
el US e2,
~1UB k2,
F1 u s r~2>

UQ - ,~g~.,~42.,~.(41~) u¢ (i2,~)

Figure 15: LUB Operators Over the Abstract Domains

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 241

the values that may be assumed by the instances of that variable. Here,
there is considerable loss of information during abstraction, in the domain
of the function; all instances of a particular variable v, represented in the
concrete semantics as pairs (v,p) where p E P, are collapsed onto the
single member v of the domain of the abstract function. Whatever loss
of information occurs in abstracting members of D is compounded by the
fact that the values of all instances of a variable, over all executions of
the program, are coalesced into a single abstract value in the range of an
abstract environment. The values assumed by a variable are differentiated
only in that there is a separate environment for each lambda expression
of the program, and the variable may assume different (abstract) values in
each environment.

The product domains C a n d / ~ are straightforward, component-wise ab-
stractions of the corresponding concrete domains. (We explain below why
members o f / < have only one component in /5 , in contrast to those in K,
which have two components in P.)

The form of a member d E /9 may be surprising. It it essentially the
same as the representation given to a sum of domains in [43]. The idea is
simple: d represents a set of values which may be drawn from the domains
C, K , Pr imOp, Int , and Bool. Each component of d represents a set of
values from one of these domains. If d represents, for example, no integer
values (or only the undefined integer), then its fourth component will be
-Lint. (See the discussion in subsection 2.4 for our interpretation of bottom
elements.)

An (abstract) restoration map ÷ E /~ is a function from a lambda ex-
pression index to an (abstract) continuation. The domain of this function
looks odd, since the corresponding concrete maps have type P --+ K. In
abstracting r E R to form ~ E/~, every procedure string p cz d in the
domain of the function has been collapsed to the lambda expression index
c~. All procedure strings over which r is defined have the form s q- c~ d for
some c~ E A and s E P, since r maps procedure instance birth dates to
their continuations, and by the definition of ,92 all such birth dates have
the form ... c~ d (where),~ is the procedure being applied). The advantage
of this abstraction is that we gather, into a single value in the range of ÷,
the continuations of all instances of a single procedure. Since each contin-
uation contains (an abstraction of) the statement index of the procedure
application or c a l l / c c expression which creates it, we will be able, after
the analysis is complete, to construct an approximation to the calling graph
of the program, using members of/~. That is, the abstract continuation of
each lambda expression will point us to the locations within the program
at which the lambda expression may be applied.

242 WILLIAMS LUDWELL HARRISON III

An abstract state ~ E Q is a map from a lambda expression index, to
a tuple of information, a member of the abstract domain T. We should
understand ~ as gathering all states in which a lambda expression)~a is
active, into a single value in the range of ~ (the value of ~ at a). There
are several dimensions of information loss in this abstraction. First, the
statement index of each of the gathered states is lost, so that one cannot
distinguish the state after statement i from that after statement j , if Si
and Sj belong to the same lambda expression. This makes our abstraction
flow insensitive, in the language of data flow analysis, since the structure
of control flow within each lambda expression is ignored (that is, the con-
trol flow is approximated by assuming that the statements of the lambda
expression can occur in any order whatsoever). There is a second dimen-
sion of information loss, in the abstraction of states, in that all instances
of a single statement will be collapsed into a single value in the range of ~:
during execution of a program, there may be thousands of states in which
a particular statement is active; we will summarize these states (along with
all states in which other statements within the same lambda expression are
executed) in a single value in the range of ~.

We remarked in subsection 2.7 that under our abstraction of procedure
strings, p and o are equivalent if they have the same net value. By Theo-
rem 4, the procedure string of a state, and the birth date of the procedure
instance that is active in that state have the same net value. It is for this
reason that members of T contain only one component in /5 (that is, if they
had two such components, the two would be identical).

An abstract semantics for £, based upon these domain equations, ab-
straction maps, partial orderings, and LUB operators is given in Figures 16,
17 and 18. Recall from subsection 2.3 that f[x//y] denotes the function
fix u (fy)/y].

In broad outline, C3 works as follows. We begin with an abstract state
(initially, an approximation to the set of states from which execution

may commence). ~ is a map from lambda expression indices to members
of T. The tuple ~a in ~b approximates all states in which a is the active
procedure. For each statement i E N of the program, we apply $3 to i and
to ~a, where Aa is the procedure that contains statement i. The least upper
bound of the set of abstract states that results from these applications is
joined with ~, and the result becomes the next abstract state in the sequence
that is described by abstract interpretation of the program. (The function
$~ collects and joins the applications of 33). The process ends when a
fixed point is reached; that is, when further applications of E 3 result in no
change in the abstract state.

Let's visit the definition of $3 in more detail. It maps a statement number

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 243

Let t = (15, D, ~,/¢, ÷) , i E N . T h e n 83 : N ~ 20 --, Q is defined, according to
the form of Si, as follows.

Si ---- [(s e t ! x (f Yl'" "Ym))] or Si = [(s e t ! x (c a l l / c c f)) [=~
Saii = 4c uO. ik
where ~c -- UQ{A/3. if/3 ¢ a

then ~ ^ ^
else (ff , b ' ~ ' / / [z @ .. . ~ ' / /[Zn~],2,

<{i}, b, i5), ~[k / /Conta iner i])
w h e r e A a = [Ckambda (z~ . . .Zm) < Z m + l ' " z n > S j ' ")] ,

and e ' = i f S i = [(s e t ! x (2 Y~ ' "Ym))]
then ~[~[y~/ / [z~]] . . . [eiym]//[zm]]
else ~[(.L~, <{i}, ~,~),

• Lpr~op, "L~a, .L,oo~>/l['d]

where ~[f~ = (c', k ' , . . .)
and d = (6,/~)

and q~k = UQ{A/3. if/3 ¢ Container j
then 1~^
else <p', b', 8, ~/3, ÷[k l l Container i])

wheree r = i f S i = [(s e t ! x (f y l . . . y , ~))]

where Sj = [(s e t !

where ~[f[= (c', k ' , . . .)
and /~' = <3,/~', io'>

then e[e[yll//I[z!]
else ~[<.L c, <{i}, b,p>,

"L pr~op, "L ~a, "L ,oo~) / /M]
(cal l /cc g))]

Figure 16: The Semant ic Func t ion $3 (Par t I)

244 WILLIAMS LUDWELL HARRISON III

Si = [(set ! f (lambda~ (x~.. . Xm) <Xm+l"" Xn > "" "))] :=~
83it = A/3. if Container i ~

then ±3
else (15,

~[<<{'~}, b>, ±K, ± ~ o ~ , ±~n~' ±~oo~>//[ftl],

~>

S i = [(i f x (goto m) (goto n))]=~
S3i{ = A~.if Containeri ~

then^±¢
else t

Si = [(r e tu rn x)] =~
S3it = UQ { A~. if Container j ¢

then ~ ^
else (p', b', ~[e[x]//M], ÷(C°ntainer j) , ~)

where Sj = [(se t ! y ...)1
j)}

where]~ = 1), bL/~>

Figure 17: The Semantic Function $3 (Part II)

S~ : Q, -+ Q, - AO. U(2 {$3i(~(Container i)) I i e N }

g3: Q -+ Q -= A~. Let q' = $ ~
in if q' _ZO ~ then { else $3(9 UQ @)

Figure 18: The Semantic Functions S~ and E3

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 245

i and a tuple t = (15,/~, e,]~, ~} E Ib to an abstract s tate (a member of (~). The
most interesting case is when Si (s ta tement i) is a procedure applicat ion
or an invocation of c a l l / c c . The definition of S3 in this case is shown
in Figure 16. The definition looks complex, but it is really quite simply
derived from $2. The variable f contains (an abst ract ion of) the object to
be applied (in the case tha t Si is a c a l l / c c expression, to be applied to
the current continuation); this abstract object is retrieved by writ ing ~ f] .
Now, ~f~ represents a set of values (an ideal in D), but there are only
two kinds of objects that can be applied by a correct program: closures
and continuations. 20 Therefore the final state that results from this single
step of evaluation (that is, the state S3it) is formed by joining the abstract
state that results from applying all of the closures represented by @Ill,
with the abstract state that results from applying all of the continuations
represented by ~[f]. These abstract states are called qc and qk respectively.
Let's consider their values in turn.

The abstraction of the closures represented by (contained in the con-

cretization of) ~[f] is ~ = (&, b~). The value & is the set of indices of those
lambda expressions, closures of which are possible values of f. The ab-
stract state qc is therefore the LUB of the abstract states that result from
the application of (closures of) each of these lambda expressions. Likewise,

the abstraction of the continuations represented by ~[f] is]~ = (),/~i ~r).

The value) is the set of those statement indices (of call/cc expressions)
continuations of which are possible values of f. The abstract state qk is
therefore the LUB of the abstract states that result from the application of
each of these continuations.

The reader may have noticed that there seems to be nothing analogous
to the expression p + Inv (p- pl) that appeared throughout the definition of
$2. We would expect to find (an abstraction of) such an expression in the
cases of continuation application and procedure return, within $2. Instead,
the stack configuration of the abstract state that results from applying an
abstract continuation is simply i5, where 15 is the abstraction of the birth
date of the procedure instance in which the continuation was formed. That
is, the abstract birth date of the current procedure instance in a state that
results from application of a continuation, and the abstract procedure string
of that state, are the same. Again, the reason is Theorem 4, which shows
that Netp -- Net o whenever p is a procedure string of a state, and o is the
birth date of the procedure instance that is active in that state. By that

2°See the discussion of bottom values in subsection 2.4. Even if we were to simulate
the application of, say, an integer, we would simply be joining the bottom element of the
domain (~ of abstract states, with the abstract state that results from the application of
legitimate (applicable) values. This would have no effect on the outcome, since ±ux -- x.

246 WILLIAMS LUDWELL HARRISON III

theorem,
Abspo' = Abspp' = Absp(p + Inv(p - p')),

where p~ is the procedure string of the state in which the continuation is
formed, d is the birth date of the procedure instance within which it is
formed, and p is the procedure string of the state in which it is applied.

Two things are to be shown, concerning this abstract semantics: first,
that all evaluations terminate; second, that the meaning of the concrete
semantics (E2) is preserved, such that the final state of abstract evaluation
approximates not merely the last state(s) of concrete evaluation, but every
state that occurs during execution. The first of these results is needed if we
are to write a compiler that is guaranteed to terminate when analyzing a
(possibly erroneous) program; the second allows us to regard the result of
abstract interpretation as representative of run-time behavior, and suggests
the derivation of a data flow analysis framework from the semantics.

T h e o r e m 14 S3i is monotonic for all i E N.

Proof." The following facts are obvious:

1. if al E bl, a2 _E b2 , ' - ' , an E bn, then U{ai} E U{bi}.

2. if al E bl,a2 E b2 , ' " , an E_ bn, then (a l , a2 , . . . ,an) E (bl,b2,. . . ,bn).

3. if f E g and x E y then f [x / / z] E g[y//z].

4. if al _ bl,a2 E b2 , ' " , an E bn, then {Cl ~ al,c2 ~-~ a2,...,Cn
an} E {el H 51, c2 ~-+ b2, . . . , cn ~ b~}

The theorem follows by decomposition of the definition of 8 3 into mono-
tonic functions over primitive types, according to these four facts. For
example, suppose that

t~l E t~2, and that

Si - - l (s e t ! x (f y l ' " y n)) ~ or ~(set! x (c a l l / c c f))~.

Let $3i[1 5 ~ ?~ = qc UQ qk, and Sait2 ,~Ii ii^ ,~" = uc ~Q uk. Then, by Fact 1 above, to show

that 83i is monotonic it is sufficient to show that q:~ ___Q q~ and q~ _EQ -~' qk"
(We have performed one step of decomposition.) Let us first show that

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 247

q:~ E- 0 @c. Following the definition of $3 in this case, let q~c = U0F and

@ = hloG. (The members of F and G are functions in (~.) Again, by Fact
1 above it suffices to show that

Vg E G, 3 f E F l f E og .

(This application of Fact 1 is a second step of decomposition.) By the
definition of $3, there is one f E F for each a l • di , where el[f] =

((dz,b~)...}, and there is one g • G for each a2 • d2, where e~2[f] =

((d2, b?2>...}. Since e~i EE e~2, it follows from the definition of E£ that
d l C_ d2. Thus, for e a c h g • G there is a function f • F such that if
gc~ ~ _k~, then f a ~ _l_~ (and there is at most one a such that ga ¢ _k¢ or
f a ~ ±~). We apply Fact 4 to f and g, which requires that we show that
f a E¢ ga (and only this, since a is the only point at which f and g may
differ in value). We continue decomposing the tuples f a and ga in this way,
applying Facts 2 and 3 at the next steps. The decomposition terminates
in operations over primitive types, because the domains over which ~3 is
defined are not reflexive. It is easily verified that these operations (such as
@ over stack configurations) are monotonic.

The same reasoning applies to the values q~ and q~', and to the other
forms of Si as well. []

T h e o r e m 15 $~ is monotonic.

Proof i L e t ~ E Q ~ . T h e n V i E N ,

$3i(~(Container i)) E_Q $3i(~(Container i))

by Theorem 14. Therefore

Uc2{S3i(~(Container i)) l i E N} EQ UO{S3i(~(Container i)) l i E g } ,

and

[]

T h e o r e m 16 g3~ terminates, for all ~ E Q.

Proof : Suppose not. ~3 is the only recursively defined function in the
abstract semantics. Therefore ~3q describes an infinite sequence of abstract
states (the arguments to 33 in successive recursive calls), call it ~/0, ql,
By the definition of g3, qo E 0 ql EQ "" ", and since evaluation terminates

if qi:F1 EQ qi, we have qo EQ qi r- 0 q2"" ". But all ascending chains in
have finite length, a contradiction. []

248 WILLIAMS LUDWELL HARRISON III

T h e o r e m 17 $3 is monotonic.

P r o o f i Let r~0 ___Q 40, and let r~0 _UQ r~l _UQ . . . and do U_C) 41 ___Q . .-
be the evaluation sequences described by E3r~0 and C340 respectively. By
Theorem 16 each of these sequences is finite. Let the shorter be extended,
by replication of its final term, so tha t bo th have length n. By Theorem 15
and the definition of E3,

~i __0 4i
for all 0 < i < n. Therefore

r~n = E3~o --Q E340 = q~n.

[]

Evaluat ion under E3 describes an ascending chain of abstract states, and
since in each of our abstract domains ascending chains have finite length,
C3 terminates, even when a corresponding evaluation under $2 will not.
This is an essential proper ty of an abstract semantics, if it is to become the
basis of an a lgor i thm for static analysis.

It is well tha t E3 terminates, but we would feel bet ter knowing what it
returns, when it does so. The following two theorems define the sense in
which E3 preserves the meaning of evaluation under E2.

T h e o r e m 18 If q • Conco(t then

S2q • Conco(S3i(~t(Container i)))

where q = (i, p, b, e, k, o, r).

P r o o f : Let ~(Conta iner i) = (15, b, ~, k,~), where q • ConeQ(t. By

assumption, p • ConcpD, b • COncBb, e • COnCE~, k • Concf~/~, o •
Concp[~, and r • Concf~. We proceed, as in the definitions of 82 and 83,
based upon the form of Si. Suppose tha t

Si----~(set! x (f Yi "'" Ym))~ or ~ (se t ! x (c a l l / c c g)) l ,

and that
e (H , blf~) = (~, b') e C.

Since e E Conep~, we may write (following the form of the definition of $3
in Figure 16)

= (c i ' , . . .) • i)

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 249

where 5 = (&,/~P), a E Conc h& and b' E Conc[~b I. We consider the compo-
nents of $2q (see the definition of $2 in Figure 7). We have that

(i", p", b", e", k 1', o", r") E ConeQ~

when
(t(Container i") = (~1,, t/', #', t~ I', ~9,)

where p,I E Concpt~", b II E Conc[3U I, e" E COnCEe", k" E Concgtc", 0 II E
Concpl~", and r" E ConcRWC Letting

ql = S2q = (i",p", b", e", k", 0 II, r"}

and

i' = 83i(~(Container i))(Container i") = <p~", b)', el', k ~11, P'>,

we must therefore show that the concretization of each component of ['
contains the corresponding component of q/.

By the definitions of $2 and $3, S = P + ad, and pit = ~ ® Absp(ad). By
assumption, p E Concpp. By Theorem 11, we have that

p + ~d E Conep(~ ® Absp(ad)).

By the definitions of $2 and $3,

b" = b'L + Lo +

and
t)' = b'[~ @ Absp(ad) / /[zl~] . . . [~ ® Absp(a d) / /[zn~].

We know that b I E Conc[~D', and therefore by the step above, and the

definition of f [x / /y] , b" E Conc[~t/'.
Assume for the moment that

S i = ~(set! x (f yi "'" Ym))~

By the definitions of $2 and $3,

e l' = e[e<[y~], b[y~]>/<[z~,p + ad>] ' ' ' [e<[ym], biym~>/<~Zm],p + ad>],

and

By assumption, e It E Conch#', and therefore

for 1 < i < m. Therefore, by the definition of the notation f[x/ /y] , e" E
Concp#C Similar reasoning holds in the case that

250 WILLIAMS LUDWELL HARRISON III

S i = [(s e t ! x (c a l l / c c f))~.

By the definitions of $2 and $3, k" = (i ,b ,p,o) , and k ~' = ({i},/~,~/.
Each member of k" is contained in the concretization of the corresponding
member of k ~". (We take ~5 as the abstraction of both p and o, since by
Theorem 4, Net p = Net o, and therefore Abspp = Abspo.) Therefore

k" E Conch:k".

By the definition of S2 o ~ = p". As above, we take p" as the abstraction
of both the procedure string of the state that results from this application
of)~, and of the birth date of the new instance of A~. Again, this is
justified by the fact that by Theorem 4, Net p~ = Net o", and therefore
Abspp" = Abspo".

Finally, by the definitions of S2 and $3,

r" = r[k/o],

and
~' = ~[k / / Container i].

By the definition of $2, o must end in the term ~d where ~ = Container i,
and therefore by the definition of AbsR, and our assumption that k E

Conc~ ,
r[k/o] e Conc[~[k/ / Container i].

We can repeat this reasoning in the case that

e(l f] ,b[f]) = (j ,b ' ,o ' ,p '} e K.

The only interesting argument arises, in that case, when proving that

p + Inv(p - p') E Concpo',

where o ~ is the abstraction of the birth date of the procedure instance in
which the continuation (j, b ~, o~,p ~) is formed. By Theorem 3,

Net(p + Inv(p - p')) = Net p';

by Theorem 4,
Net p I = Net o ~,

and therefore by the definition of Absp,

p + Inv(p - p') e Concpo'.

Similar reasoning applies to the other forms of Si. []

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 251

T h e o r e m 19 Let qo, q l , . . , be the sequence of states described by the eval-
uation of E2qo. Then qi • Conco(gaqo) Vi, where qo • Conco~[o.

P r o o f : By induction on i. Let n be the number of applications of E3
that occur in the evaluation of E3qo, and let qo, q l , . . - , q~n be the sequence of
abstract states described by that evaluation, as guaranteed by Theorem 16.
As a basis, we have

S3(q0) "~ ~3(q0 L](~ ql)

= &(c/o UQ q~ U# ... u# q'n)
= q0 u 0 41 ~0"" uo q'~

and therefore qo • Conco(g3qo).

Now assume the theorem holds for qi. Then

By Theorem 18,

q~ • Con%(&cio) = Con%¢~.

qi+l E Con%(Saj(gn(Container j)))

where qi = (j,P, b, e, k, o, r), and therefore

qi+l • Cone~)(S~qn).

By the definition of g3,

Therefore

and

q~+l e ConcQi~

q~+l e ConcQ(&4o).
[]

Theorem 19 shows that the abstract state that results from evaluation
under g3 approximates not merely the final state of evaluation (if there is
such a final state) under C~, but every state that occurs during evaluation
under g2. In the terminology of [28], we have created a collecting interpre-
tation of the program, so called because it collects information from every
state that occurs during execution. This collecting interpretation differs

252 WILLIAMS LUDWELL HARRISON III

significantly from that presented in [28], however. There, the domains used
to collect values are separated from the domains over which evaluation oc-
curs, in order that a power set, and not a power domain, may be used to
represent the collected values. Here, we have made no such distinction.
The more significant difference is that we have eliminated reflexivity from
the domains over which the semantic functions are defined. This allows
us to give a concrete representation to closures and continuations, using
which we can reason easily about certain operational properties of these
higher-order objects. It has also allowed us to write very simple proofs of
correctness, which do not involve infinite fixpoints.

Notice that Theorem 19 does not stipulate that evaluation under g2 must
terminate, in order that the result of the corresponding abstract interpreta-
tion under g3 be meaningful; we understand the abstract state g3(AbsQq)
to represent every state that occurs during g2q, even if g2q does not ter-
minate. This is precisely what we would hope for, in compiling a program
that might (intentionally) not terminate: we wish to know what s tates may
arise during the computation, in order that we correctly compile that por-
tion of the code that is used. (Recall from subsection 2.4 that we regard
a program that does not terminate as a special case of a program that has
unused code; in the case of a non-terminating program, at least its final
statement is unused.)

2.10 Approximate Solutions in T e r m s o f S t ack C o n f i g u r a t i o n s

At this point, we know how stack configurations model procedure strings,
and how they can be computed by abstract interpretation, in a way that
preserves the meaning of procedure strings. In subsection 2.6 we formu-
lated simple, and optimal solutions to a number of flow analysis problems,
in terms of procedure strings. In this subsection we recast these into ap-
proximate solutions to the same problems, in terms of stack configurations.
By the nature of abstraction, we need not derive a new solution to each
problem; rather, we "project" the old solution onto the space of stack con-
figurations, in a way that preserves its meaning. In each case, we begin
with a statement of the form "X is true of the program, if and only if
C is true of the procedure strings described by its execution." We derive
the statement "X is true of the program, only if C is true of the stack
configurations described by its abstract interpretation," where if C is true
of a stack configuration 15, then C is true of all p such that p E Concp15.
The loss of information that is suffered in this translation is reflected in the
change from "if and only if," within the original statement, to "only if," in
the derived statement: we cannot say with certainty that X is true of the
program, given that C is true of the stack configurations it describes; only

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 253

that X is certainly not true of the program if C is not true of the stack con-
figurations it describes. We must therefore arrange that transformations
and techniques that are not universally applicable are invoked only when
the circumstances under which they are illegal have been excluded.

2.10.1 Side-Effects, in Terms of Stack Configurations

It is by abstraction of Theorem 7 that we may turn our abstract inter-
pretation to the analysis of side-effects. The theorem states that if i is a
variable instance, the birth date of which is Pb, and which is referenced in
a state whose procedure string is pr, then a procedure instance ~'~ has a
side-effect as a result of this reference if and only if Net (Pr - Pb) contains
a term of the form a d corresponding to A'~. We may cast this result into
the realm of stack configurations by way of the following theorem.

T h e o r e m 20 Let q~n = E3~/0 where qo E Concd2~o. I f during the evaluation

of E2qo there is an instance X~ of)~athat has a side-effect upon an instance
of x, then there exists a "y E A such that

(fir Ofib)a D {d, dd+~u+d+} ¢ {},

where ~[nt3 = (fib,. . .) and qn'Y = {fir , . . .) , where A~ is the binder of x, and
x is referenced (directly) within)~.~.

Proof : Let A'a be an instance of ha that has a side-effect upon an
instance ± of z, let this side-effect arise from a (direct) reference to 2 within
,~, and let),~ be the binder ofx. By Theorem 7, it must be that there exists
Pb and Pr such that Net(p.~ --Pb) contains a term of the form a d, where Pb is
the procedure string of the state in which ± is bound and Pr is the procedure
string of a state in which i is referenced within ,~ (which reference gives rise
to the side-effect attributed to)~). Let qb be the state whose procedure
string (that is, whose first component) is Pb and qT be the state whose
procedure string is Pr. By Theorem 19, qr, qb E Conc(~{f~, where q~n is as

defined by the current theorem. Let q~n¢{ = (fib,...}, and q~no' = (Pr, . . .) .
By the definition of E~) and _C~, Pr E Conc(fl3r and Pb E Concofb. By
Theorem 13,

Net(pr - Pb) E Concp(p~r 0 fib),
By the form of Net(pr --Pb),

Trace(Net(pr - pb))a : a al . . . a ak,

where ai = d for some 1 < i < k. By the definition of Concp, this implies
that

(t~ el3b)a M {d, dd+, u + d +} # {}.

254 WILLIAMS LUDWELL HARRISON III

[]

Theorem 20 should be read as follows. Suppose we are given an initial
s tate q0 and an abstract s tate q0, the concretization of which contains q0.
We evaluate q0 and q~0 under g2 and g3 respectively. (Let g3q0 = qn.)
If dur ing the evaluation of g2q0 we encounter an instance of As that , by
Definition 1, has a side-effect upon an instance of the variable x, then it
must be tha t abstract in terpreta t ion (the history of which is collected into
q~n) will reveal tha t side-effect, in the following way. If A7 is the procedure
within which x is accessed directly (to produce the side-effect), and AZ
is the procedure which binds x, then (16r O 16b)a will contain one of d,
d d + or u + d +, where 165 is the first component of q~nfl, and 16r is the first
component of q~nT. 165 could alternatively (and equivalently) have been
defined as/)Ix], where q~n7 = (fir, b, ~,]% ÷), since/) maps the free variables
in A 7 to (abstractions of) their b i r th dates. We will make use of this fact
below.

2.10.2 Stack Allocation, in Terms of Stack Configurations

We may make a similar project ion of Theorem 8, which characterizes the
conditions under which a variable instance must be heap-allocated in terms
of procedure strings, to an analogous theorem over stack configurations.
Theorem 8 holds tha t if x is a variable bound by AZ, and Pb is the procedure
string tha t identifies an instance ± of x, and pr is the procedure string of
a state in which ~ is referenced, then this reference takes place after the
instance of AZ tha t binds 5: has been exited, if and only if Net(pr --Pb) has a
t e rm of the form flu. We cast this into the language of stack configurations
as follows.

T h e o r e m 21 Let q~n = g3qo, where qo E Conco~o. Let x be a variable
bound by AZ. I f during the evaluation of C2qo there is an instance ~ of x
such that ± is referenced following the deactivation of the instance AZ of AZ
that binds it, then there exists a 7 E A such that

(~ e R) Z n {u, uu+ , u + d +} -~ {},

where ~/3 = (P~b,...) and qn7 = {P~,...), and x is referenced (directly)
within A.~.

P r o o f : Let ~'Z be the instance of AZ tha t binds an instance i of x, such
tha t ± is referenced in a state qr whose procedure string is p, , following
the deact ivat ion of ~'Z. Let Pb be the bir th date of 2. By Theorem 8,
Net(pr - Pb) = flu , where flu corresponds to the deact ivat ion of X~.
Let A 7 be the procedure within which ± is referenced directly in q~. Let

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 255

(~nfl = (Pb, . . .) , and let q~n~ = (Pr, . . .) . Then by Theorem 19, and the
definition of EQ, Pr E Conep~r, and Pb E ConepI3b. By the definition of
Conep and Theorem 11,

Net(pr - Pb) E Concp(I~r 0 fib),

and since
Trace(ge t (p r - pb))/3 = ~al ~a2 . . . ~ak

where a / = u for some 1 < i < k, we have that

(fir e 16b)/3 N {u, u u +, u+d + } ¢ {}.

[]

Theorem 21 has the following intuitive interpretation. As before (in the
case of Theorem 20), we are given a state q0, and an abstract state q0, the
concretization of which contains q0. We evaluate ~2q0 and $3q0, and call
the latter q~n. If during the evaluation of C2qo we encounter an instance
of a variable x, such that ~ is referenced after the instance ~Z of AZ that
binds it has been deactivated, then abstract interpretation will reveal this
fact, in the following way. If)~ is the procedure within which the offensive
reference to x takes place, then

(A O 16b)~ n {u, u u + , u + d +} ¢ {}

where 15b is the first component of q~n/~, and idr is the first component of
q~n~/. As before, 15b could equivalently have been defined as /~[x] where
q~n~ = (P~r,/~, ~,]¢, ÷), since /~ maps the free variables in)~ to (abstractions
of) their birth dates.

Theorems 20 and 21 may be applied at compile-time, by choosing (/0
such that qo E Conc¢2~o for all possible initial states q0. In that case,
Theorem 20 may be invoked to discover, for every procedure application
of the program, what side-effects may occur as a result of the application.
Likewise, Theorem 21 may be invoked to discover, for every bound variable,
whether that variable must be heap-allocated. (In Parcel, we have taken
the approach that if any variable bound by a lambda expression must be
heap-allocated, then the entire activation record for that lambda expression
will be placed in the heap, at every application of the lambda expression.)

2.10.3 Generalized Hierarchical Allocation and Deallocation

Finally, we revisit the discussion of subsection 2.6.3, and recast our ob-
servations in terms of stack configurations. As before, let $2q0 describe a
evaluation sequence from initial state qo, let ± be an instance of a variable

256 WILLIAMS LUDWELL HARRISON III

x that is bound in state qb, and let qr be the state in which x is referenced.
Recall that we wished to place ± on a list of objects to be deallocated upon
exit from a procedure instance, such that the instance outlives 2. Our
observation was that if Pb is the birth date of 2, and p~ is the procedure
string of a state in which it is referenced, then if Net(p~ - Pb) has k terms
of the form a~ (summing over all a E A), then 2 must be placed on the
deallocation list of the k th procedure instance above the one by which 5 is
bound. The maximum m of k, over all Pr that denote states in which 5 is
referenced, points us to the innermost procedure instance that outlives 2
(and thus to the shortest-lived deallocation list on which it is safe to place
5).

We may approximate m by use of stack configurations, as follows. Let
q~n = g3q0 where qo E Conc~2~o, and let As be the binder of x. Assigning

a weight of 1 to u, a weight of cc to u u + and u + d +, and a weight of
0 to the other members of A, we compute the maximum, over all stack
configurations idr such that q~n/~ = (ida,...) where x is referenced directly
within AZ, of the weights of the subsets in the range of ~6~ O 35- Let rh be
this maximum; it is easy to prove that rh _> m, for any instance 2 of x.
We interpret rh exactly as we did m: every instance 5 of x is placed on
the deallocation list of the rrtth procedure instance above that by which 5
is bound. If rh is greater than the number of active procedure instances at
the point of 5's creation, then 5 is placed on the deallocation list of the top
level (which is to say, 2 will never be released through this mechanism).

The trouble with this approach is that a single u u + or u + d + within
(id~ O/}b)~ for some /~ E A, means that every instance of 5 will be asso-
ciated with the top level. In order, therefore, to use this as the basis of
a practical system of storage reclamation, it would have to be augmented
with garbage collection. We could, for example, allocate objects from a
free list, and deallocate them (return them to the free list) according to the
above scheme, invoking garbage collection when the free list is exhausted.
When we had precise information in the form of procedure strings, we had
the luxury of placing 5 on the deallocation list of the innermost procedure
instance which would outlive 5, and we represented this instance as an in-
teger m. The abstraction of this approach to stack configurations causes
too great a loss of information, and m is too often approximated by ce.

We can improve this strategy dramatically by the following observation.
All that is required, in the placement of ± on a deallocation list, is that we
find a procedure instance that outlives ± (that is, we need not identify the
innermost such instance). This suggests several strategies for placing the
instances of x on deallocation lists. We could, for example, construct the
set

X = {fl I (l~r e fib)~ n {u , u u +, u + d +} = {}}

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 257

(set! f (lambda~ (x)
(if (null? x)

#f
(cons ((lambda 7 () (car x)))

(f (cdr x))))))
(f ' (a b c d))

Figure 19: An Example of the Inaccuracy of E3

at compile time. When x is instantiated, we traverse the active procedure
instances from innermost to outermost, until we find a member of X, and
place the instance of x on the deallocation list of that instance. We know
with certainty that there is an instance of AZ at every point at which x is
instantiated, if c ~ ~b/3, since for every Pb E Concp13b, Pb is d-bitonic by
Theorem 1, and if Trace(Net pb)/3 # ~ then Pb must take the (non-empty)
form/3 d . . . /3 d, indicating that at least one instance of AZ is active.

As mentioned in subsection 2.6, we are not proposing this seriously as
a storage management strategy; in Parcel, a simple distinction is made
between activation records that can be stack-allocated, and those that must
be heap-allocated. Rather, this hierarchical strategy is a guise for a problem
that is difficult to motivate until we have seen the results of automatic
parallelization, namely, the placement of dynamically allocated objects in
a hierarchical shared memory. We will address a simplified version of the
problem of storage management in a parallel, shared memory setting in
subsection 2.15.

2.11 A Shift in Perspect ive (and in Accuracy)

In subsection 2.7 we remarked that our abstraction Q of the difference
of two procedure strings entails so great a loss of information as to be
practically useless. For example, consider Theorem 21. If Pr and fib satisfy
dd + E firC~ and dd+ E fibS, then (fir Q Pb) O~ = /k, and it appears that all
instances of x must be heap-allocated. To appreciate just how devastating
this is to the accuracy of our analysis, consider Figure 19. (For clarity, the
example is presented in Scheme; it is rewritten in a language nearer to £
as in Figure 20.)

Suppose we perform the abstract interpretation q~n -- E3~0 of the above
program, where q0 is initial abstract state in which cons, car, and cdr are
defined. (For the moment, ignore the question of how cons is defined, or
think of it as defined entirely in terms of closures with free variables [9].)

258 WILLIAMS LUDWELL HARRISON III

(s e t ! f (lambda~ (x) <t i t2 t3 t5 t6 tT>
(set ! t l (null? X))I
(if tl (goto 3) (goto 5))2
(set ! t2 #f)3
(goto 10)4
(set! t3 (lambda~ () <t4>

(set! t4 (car x))
(return t4)))5

(set! ts (t3))6
(set! t6 (cdr x))7
(set! t7 (f t6))8
(set! t2 (cons t5 t7))9
(return t2)10)

(f ' (a b c d))

Figure 20: An Example of the Inaccuracy of E3, Rewrit ten in

During evaluation of this program (under $2) there may be more than one
instance of As active at a time. By Theorem 19, this means that d d+ E ~ba,
where q~na = (Pb,.. '/' Since A.y is applied directly by the instance of As
within which it is closed, we also have dd+ E ~ra where q~n0' = (Pr,.. .}. By
the definition of O, we have that (i~r Oi~b)a = A, and by Theorem 21, this
implies that all instances of x must be heap-allocated (which is obviously
unnecessary in this simple example).

Nevertheless, we are on the right track. We're interested in finding a stack
configuration which approximates Pr - Pb for all possible values of p~ and
Pb, and we are doing so by finding an approximation Pr to all values ofpr ,
an approximation Pb to all values o f pb, and approximating their differences
directly with O. The trouble is that ~ and ~b record far more of the history
of the computat ion than interests us. A stack configuration contains only
finite information; if the procedure strings Pb that are represented by Pb
are much longer, or more complex in structure, than the procedure strings
Pr --Pb that we are trying to compute, then most of the information content
of ~ will be consumed in representing the prefixes Pb (since each string Pr
represented by i~r takes the form Pb + (Pr -- Pb)). Then our situation will
be not unlike that faced when subtracting two floating point numbers of
nearly equal value: the result will be dominated by the error inherent in
the representation.

The solution to this is a shift in perspective. Rather than "stamping" a
variable instance with a fixed birth date, we will associate with each vari-

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 259

able instance a stack configuration, initialized to the value ,~a.{e}, which
will be carried along with the variable instance as it makes interprocedu-
ral movements, and will be updated to reflect those movements. When a
variable instance ± is referenced directly by a procedure ,Ly, the stack con-
figuration associated with ~ will have recorded the (net) movements that
occurred between the binding of ~ and the reference to it by ,Ly. In terms of
the discussion above, the stack configuration that is accumulated as ± un-
dergoes interprocedural movements (or, more precisely, as a closure which
captures 2 undergoes interprocedural movements) is an approximation to
the strings Pr - - Pb in terms of which the solutions to our data flow prob-
lems have been expressed. We will see that this method of computing the
solutions has far greater accuracy than the naive approach embodied in g3.

We are not altering the structure of the domains defined in Figure 12,
and thus there is no need to redefine the partial order and LUB operators
over the abstract domains. We are, however, changing the meaning of the
members of the abstract domains, with respect to their concrete counter-
parts, and this meaning is defined by the abstraction and concretization
maps that carry us between the abstract and concrete realms. The new
abstraction maps are presented in Figure 21. Most have changed in type,
from their definitions under $3. We will return to this shortly.

If (&,/~) E C is an abstract closure that captures a free variable v, then

under g4 (the abstract semantics we are deriving by modification of $3),/~[v]
is a record of the interprocedural movements that are described by v, from
the point at which it is bound to the current state. (We will continue to refer

to b as a birth date map, even though its new meaning warrants a slightly
different name.) Likewise, a member (~, 8,15) E/~ has changed in meaning; 15
is now a record of the interprocedural movements described by the abstract
continuation, from the point of its formation to the current state, and
likewise records the interprocedural movements described by the variables
visible in the state in which the continuation was formed, from the points
at which they are bound, to the current state. Where all movements,
encoded as procedure strings and later as stack configurations, were absolute
under g2 and $3 (being accumulated from the beginning of evaluation),
under g4 they have become relative (being accumulated from the points at
which procedures are activated during evaluation). This has the effect of
reducing the amount of information that need be approximated by a stack
configuration (since it records a shorter piece of the history of evaluation),
and of simplifying the solutions to our data flow problems (since their
solutions are computed directly by evaluation), but of complicating the
relationship between the concrete domains of £2 and the abstract domains
of g4.

260 WILLIAMS LUDWELL HARRISON III

Abs A =-)~a. if a = -l-h then {} else {c~}
Abs g =)~i. i f / = / N then {} else {i}
Abs B _~)~b.,~p.,~v.Absp(p - (bv))
Abs¢ =.)~(a, b).)~p.(Absha, AbsBbp }
Abs K =_)~(i, b,p, o).(Absgi, AbsBbp, Abspp}
Abs D ~/~x. if x = -l-z) then (_1_~, J-K' "J-PrifnOp~ "Lint' -]-Bool}

else if x E C then (Abscxp,-LK, "l'P~i;,~Op, "l'Int, ±Boot}
else if x E K then ('±5, Absgxp, ±PrimOp' lint' ±Bool)
else if X E P r i m O p then (_l_d, ±R, AbsprimopX' "±z~t' ±Boot)
else if x E In t then ('±~, "± K , "± PrimOp' AbsIntx' ±Boot)
else if x E Bool then ('±~, -l-K, "±P~i~op, "l'I;~t, AbsBodX)

Abs E =- Ae.)~p.)w. U D {AbsD(e(v,p'))p l p' E P}
gbs n =-)~r.)~p.)~a. [JR {Absg(r(P' + ad)) p I P' E P}
AbsQ =- ik(i, b,p, e, k, o, r).)~a, if a ~ Container i

then (±p, ,±B, _l_E, _l_g, _1_~}
else (Absep, AbsBbP, AbsEeP,

AbsKkp, AbsRrp)

Figure 21: Abstraction Maps

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 261

Consider Abs B. It now has type B ~ P ~ / } . The additional parameter
p is the procedure string of the state which contains the value b C B being
projected. Tha t is, p is the first component of a state q, such that b is
the second component of q, or such that the environment of q contains a
closure or continuation of which b is a component. Under g3, we knew what
members of B were represented by a/~ E/~ , by simple examination of the
structure of/~. Under g4, however, the subset of B represented by/~ is as
much a function of the state of which it is a part, as of its structure. This
is because/~ now maps a variable v to an abstract ion of Pa --Pb, where Pb
is the bir th date of an instance of v, and p~ is the procedure string of the
current state. In order to recover v's bir th date (which is necessary if we are
to concretize b), we must have a value for Pa (or rather, we must have an
approximation to the value of Pa). Said otherwise, the stack configuration
of the current state may be seen as the sum of the (abstraction of the)
bir th date of v, and the movements described by v from the point of its
instantiation to the current state (for any v in the lexical scope of the
current state). Given the stack configuration of the current state, and the
stack configuration that represents these movements, we may reconstruct
the bir th date of v. We therefore define Conc[~ as

)~b..~15.{b I AbsBb p KK_[~ [~, for some p E Conep15}.

The concretization map that corresponds to each abstraction map whose
type has been changed by addition of a "context" parameter p, is defined
in exactly this way, by addition of a parameter 15, that represents the values
that p may assume, during abstraction. For example, COnCE is defined as

A@.A15.{e I AbsEeP K_E @, for some p C Concp15}.

The usual relationship between an abstraction map Abs x and the corre-
sponding concretization map Conc2 may be wri t ten as x E Conc2(Absxx).
The corresponding relation for the abstraction maps under E4 is given by
the following theorem. The result is s tated in terms of Abs B and Conch,
but applies directly to the other abstraction and concretization maps.

T h e o r e m 2 2

b E Conc[~(AbsBbp)15 for a l lp E Concpp.

P r o o f : Let p E Concp15. By the definition of Abs B and COnCB,

COncB(AbsBbp)15 = {b' I AbsBb'P' KK_~ AbsBb p for some p' E Concp15},

262 WILLIAMS LUDWELL HARRISON III

Move~ : [~ --~ [~ ~ B - A[~.Ap.)w.([~v) ®
Moved: d ~ P ~ d -- A(&,^D).A15.!&, MoveBb~)^
MoveR: [42 ~ P ---, K=_ A(i,b,~!.Ag.(i, ioveBbP~,~ ® ~ ,)
MoveD: D ~ D --. D - A (~, k, f , ~, &).A15. (Moved@ , Movegk15 ,], 2, ~)
Move : k P E - ae.Ap.av.Move (v)p
MoveR: R P R =_
Move¢ : 2 --* P ---* T -- A(~,b,~,k,e).AlY.(~@p',

MOVeBbi~,
Movep, ~ff ,
Movegkp',
MOVeR~P')

Figure 22: Auxiliary Functions for E4

and this certainly contains b itself, since p E Concp~ by choice, and
AbsBb p Z__u AbsBb p trivially. []

The definitions of 84, $ i and g4 are presented in Figures 23, 24, and 26.
In order to localize the changes to E3, we make use of the auxiliary func-
tions Move[~, Moved, MoveR, MoveD, Movek, MoveR, and Move 2. These
are defined in Figure 22. Move d maps an abstract closure d and a stack
configuration 15 to the abstract closure that results when d makes the inter-
procedural movements described by t3. The first component of 5 (the set
of indices of the lambda expressions whose closures are represented in d) is
not affected by these movements; the second component (call it b), which
under $4 maps the free variables in the abstract closure to the movements
they have described, following their instantiation, is updated to reflect the
movements described by 15. Move R is defined similarly. Move$ computes a
new abstract environment, in which every object that records interproce-
dural movements (closure and continuation) is updated, according to the
movements implied by its second argument.

T h e o r e m 23 /fq E Concd2O then S2q E ConcQ(84i(~(Containeri))) where
q = (i ,p,b,e,k,o,r) .

Proof : Let

where AbsQqp E_d2 ~.

~(Containeri) = (~, b, ~, k, ÷),

By this assumption, Abspp y_p p, AbsBb p E_[~ b,

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 263

Let t = 05, b, ~, k, ~), i e N. Then 84 : N -+ [b --+ (~ is defined, according to
the form of Si, as follows.

Si = [(set! x (f Yl""Ym))] or Si= [(set! x (call/cc f))] ==>
S4i{ = qc U<} q~k

where qc -- U<} { A/~. if/5 ~&
then ±3
else (/3 ®/) ,

(M o v @ ' ~) f) ~ . { d / I" d] " " " [a~.{d/[znl],
Moveke'p',
Vovee < { ~}, ~,,),~. { d >f,',
MoveR(elk~~ Container i])p>

where Aa = [(lambda (z l " " z r a) <Zm+l"" zn>
s , . . .)] , P = Absp(~),

and e ' = i f & = [(s e t ! x (f y , . . . y m))]
then a[e[yd//lzd]-.- [e[ym]//[zm]]
else el<± e, ({i}, g,, ~ -{d>,

± erimOp' ± Int' -[- Bool> / / IZl~]

where ~[f] = <c', k ' , . . .)
and d = (&,/)')

Figure 23: The Semantic Function $4 (Part I)

264 WILLIAMS LUDWELL HARRISON III

and q~k = UQ{A/3. if/3 # Containerj
then _1_~
else Move~ (~,

51 ,
2,

~[k/ / Container i])(Inv p')
w h e r e d = i f S i = [(s e t ! x (f Yl""Y,~)) I

then @[yl]//[z!]
else ~[(±e, ({i}, b, ~ . { d) ,

±P~#~o~, ±~, ±B;o~)//M]
where Sj = [(s e t ! z (c a l l / c c g))]

where ~[f] = (c', k ' , . . .)
and /~' = (),/~t, ~,)

Figure 24: The Semantic Function $4 (Part II)

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 265

Si = [(se t ! f (lambda (x~...Xm) <Xm+l '"xn> " "))]
S4it =)~/3. if Container i ~ /3

then ±2
else (ib,

8,
^

Si----[(i f x (goto m) (goto n))~ ::~
84it =)~/3. if Container i ~/3

then^_l_~
else t

Si = [(r e tu rn x)] ==F

84it = UQ{A/3. if Containerj ~/3
then 2~
else Move~(~

b',

~(Container j),

where Sj = ~(set! y ...)~

where k = () ,b ' ,g)

Figure 25: The Semantic Function 84 (Part III)

8~: (0 -~ (0 --- A~.UQ {$4i(~(Containeri))[i C N}

$4: Q -~ Q -= AS. Let qP = 8 ~
in if qP ___Q ~ then ~ else $4(~ UQ qP)

Figure 26: The Semantic Functions 8~ and $4

266 WILLIAMS LUDWELL HARRISON III

AbsEe p E_E ~, AbsKk p E_K it, and AbsRr p E_R ~. We proceed, as in the
definitions of $2 and 84, based upon the structure of Si. Suppose that

S i= [(se t ! x (f y ~ ' " Y n))] o r [(se t ! x (c a l l / c c f))~,

and that
e /H ,b l f~) = (~,b') e C.

Since AbsEe p ~ k e, we may write (following the form of $4)

where d = (&,/~'}, ~ E Conch&, and AbsBb' p KK_B b'. We consider the
components of S2q (see the definition of $2 in Figures 7 and 8). We have
that

(i", p", b", e", k", o", r"} E COnCQ~

when
^ ^ ^ ^ ^ ^

q(Container i) = 02', b", e", k I', o", rI')

where Abspp" Ep p", AbspbIIpI' E_[~ ~', AbsEeI'p " E ~', AbsKk"p I ̀ E_ R t~ I',
and AbsRr" p" E_R ~9,. Letting

and

ql = $2q = (i II, P", bl', efl, krl, o", r'}

~l = SaCti((t(Container i))(Container i") = {p~", b)l, e)l, k ~', ~,l},

we must show that the concretization of each component of ~l contains the
corresponding component of qq

By the definitions of $2 and $4, p" = p + a d, and p" = i5 @ Absp(~d),
and by Theorem 11, we have that p" E Concpt)".

By the definition of $2,

b" = b'[p + L. +

and by the definition of 84,

i/' = (MoveBg~)[Aa. { e} / l zd l ... [,~.{e}/[zn~].

where/~' = Absp(c~d). Then by the definition of Abs B,

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 267

(AbsBb"(p + ad)) [z i]= Absp((p + a d) - b"[[zil[)
= Absp((p + a d) - (p + ad))
= A b s p (e)

~.{~}

and Aa.{e} __.p b)'[zi], for 1 < i < n.

Now let w E V, w ¢ zi, 1 < i < n. By the fact that AbsBblP E_p D ~, we
have that (AbsBb'p)[wl = Absp(p - b'[w]) __p /)[w]. By the definition of
Abs B,

(AbsBb"(p + ad))[w]= Absp((p + a d) - b"[w]])
= Absp((p + a d) - b'[w]).

By the definition of $4,

b)'[w]= (Move[3[~' (AbsP(ad)))[[w]
= (b'[w]) ® (Absp(ad)) .

By the definition of + and - ,

(p + ~d) _ b ' M = (p - b ' M) + ~

and therefore

(Abssb" (p + a d))[w] =
Absp((p + a d) - b'[w])___p^/~'[w] ® Absp(a d)

= b"[w[

for all w E V, w # zi, 1 < i < n, and therefore

b" e Co~c~O'P'.

Assume for the moment that Si = [(s e t ! x (f y l " ' " Ym))], and let

~' = ~[[y,~//lzl]]]... [[ym]//[Zm]].

Then, by the definition of 82,

e" = e[e([yl], b[yl~) / <[z~], p + ad>] -. .
[e([ym], b[ym]} / < [Zm], p + ad)],

268 WILLIAMS LUDWELL HARRISON III

and
d' = Move j ' (Abs , (#)) .

(We must show tha t AbsEe"(p + a d) E/~ e)/.) We have tha t e E COnCE~,
and by the definition of the nota t ion f[x//y], we have tha t e" E COncEeP~
or (AbsEe"P) E_$ # , since p E Concpl) by assumption.

e'[w] = MoveD(#[w])(Absp(ad))

by the definition of MOVeE.

Absp(e"(iw],s})P ED e'~w~

for all s, by the fact tha t (AbsEe"p) EE e~. We consider the case in which
e"(~w], s) is a closure, and in which it is a continuation.

I. e"(~w], s} = (a, b) E C for some s E P, w E V. We have tha t

AbsD(a,b}pEb $~w]. Let ~w~ = (~, . . .) E /) where ~ = <&,/~>. Then

Absc<a , b)p = <{a}, %v.Absp(p - by)) Ed <&, b>.

This means tha t

Absp(p - by) Ep by, for all v E V

Absp(p - by) ~ Absp(a d) Ep [Jv ® Absp(a d) for all v E V

Absp((p - bv) + a d) Ep [~v ~ Absp(a d) for all v E V

Absp((p + a d) - by) Ep [~v ® Absp(a d) for all v E V

)w.Absp((p + a d) - by) E[~)w.(bv ® Absp(ad))

AbsBb(P + a d) E_[~ Move$b(Absp(ad))

and therefore
b ~ ConcB~".

This implies tha t

Absc(a , b)(p + a d) E~ Move~(&, b)(Absp(ad))

and therefore tha t

AbsD(a , b)(p + o~ d) E__D Moveb(#[w])(Absp(ad)).

ANALYSIS AND PARALLI~LIZATION OF SCHEME PROGRAMS 26g

I I . e'@¢~,8} = (j,b,p,o} e K. We have that AbsD(j,b',p',o')p U b e'[~¢~.
Let ~ M = (~,~, - . .) wh~re ~ = O,O,P) . The .

AbsK(J, b',p', o')p = ({j), Av:Abs,(p - b'v), Absp(p - p+)}
G R (j, b',p'}.

This means that

Absp(p - b%) ~-k blv, for all v ~ V

Absp(p - b'v) ® Absp(a d) Ep [~'v ® Absp(a d) for all v E V

Absp((p - b'v) + a d) ~p ~v • Absp(a d) for all v E V

Absp((p + a ~) - b~v) Gp g~v ® Absp(a d) for all v E V

Av.Absp((p + a d) - btv) U B Av.(b'v ® Absp(ad))

Abst~b'(p + a d) U~ Move~g'(Absp(a~))

and therefore

Likewise, this means that

Ab~e(v - p') ¢ Ab~p(~ ~) gp ~;' ® Abse(#)

Absp((p - p') + ~d) g~ p + ab,>(c?)

Absp((p + a d) - p') ~p p' ® Absp(ad).

This implies tha t

Absg(j, b',p', g) (p + a d) GR M°veR(J, [/,D'}(Absp(ad))

and therefore that

AbsD(J, b',p', #}(p + a d) G b MoveD(i'[w])(Abse(ad)).

270 WILLIAMS LUDWELL HARRISON III

Since we have that

for any choice of w and s, we have that

AbSEe"(P + ad) [-i~ M°VeEe'(Absp(ad)) = ~'

and
e" ~ Co~c~9'~"

as desired.

Next we consider the case that Si = [(s e t ! x (c a l l / c c f))] ; but this
is covered by case 2 above, by letting [w] = [z].

By the definition of $2, k ~ = (i, b,p, o), and by the definition of $4,

~,, = Move~:({ i }, ~, ,~o,.{ d) (A I, sp(,~d)).

It is obvious that i E Conc£{i}, and we showed above that

b ~ Co,~eB(Mow~(absp(o,~)))~ ".

Certainly p - p E Concp(Aa.{~}) and therefore

since (Aa.{c}) ® (Absp(ad)) maps/~ to {~} for all/~ ~ a, and maps a to
{d}, by the definition of ®. Therefore

k" e ConcK~"p".

Finally, by the definition of $2, r ~ = r[k/o], and

~ ' = Move[~rr(Absp(ad)),

where r' = ÷[k/ / (Conta iner i)]. We are given that r E ConcR÷~, and since

k E ConcR]@ by assumption,

r" E ConcR(÷[]~//(Container /)])lb.

Let
k' = (i', b', p', o'} = r'%

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 271

for some s /3 d C P, and let

= (i , , = ; , Z .

By the fact that r" E ConcRr~[~, we have that i' E ConcA~, and by argu-
ments we have made above,

b I e COnCB(MOve[~b'(Absp(ad)))P '

and

Therefore

(p + a d) - p' e Concp(p' @ (Absp(c~d))).

k" e ConcR(MoveRk'(Absp(ad)))p I'

for all choices of s, and

r" e Conci~(Move~r' (Absp(a d))) = COncRrf@ '.

We therefore have, in the case that e([f], bil l) E C, the result that

$2q E ConcQ(S4i(~(Container i))).

Similar arguments prove the theorem in the case where e([f], bill) e K,
and for other forms of Si. []

Theorem 23 is the analogue of Theorem 18, and shows that a single step
of abstract interpretation under S4, preserves the corresponding concrete
evaluation step under 82. To complete the proof of correctness of $4 , we
observe simply that Theorem 19 applies directly to g4, since Sa and g4 are
identical (modulo their respective invocations of S~ and $~). Likewise, the
result of Theorem 14 applies to S4, because our alterations to 83 have obvi-
ously not affected its monotonicity. We may therefore rewrite Theorems 15
and 16 in terms of S~ and C4, and thereby show that evaluation under g4
always terminates. (We will henceforth invoke Theorems 19, 14, 15 and
16 with the understanding that they apply directly to ~4 and its auxiliary
functions.)

We're getting closer; £4 is not complete (we will improve its accuracy by
one further modification, shortly), but it captures the essentials of program
analysis based upon stack configurations. Let us now revisit each of our
data flow problems, and see how their solutions are computed by g4.

272 WILLIAMS LUDWELL HARRISON III

2.11.1 Side-Effects under $4

Theorem 6 characterizes side-effects in terms of the procedure strings
constructed during evaluation under $2. It holds that if ± is an instance
of the variable x the birth date of which is Pb, and if p~ is the procedure
string of a state in which ± is referenced, then an instance A'a of ha has a
side-effect as a result of the reference, if and only if Net(pr - Pb) contains
a term O~ d corresponding to A'a.

In Theorem 20, we cast this result into the realm of stack configurations
constructed by evaluation under $3. We must now do the same for the
stack configurations constructed by g4. The following theorem is the key.

T h e o r e m 24 Let qo, q l , . . , be the state sequence described by g2qo, let ~ =
$4 (~o where qo • ConcQ~o, let ± be an instance of the variable x during E2qo
whose birth date is Pb, and let ic be referenced directly within)~.~ in a state
qr = (i,pr, b ,e ,k , r ,o) . Then

Nct(pr - Pb) • Concp(b~x])

where ~[n~/ = (fir, b , . . .) • T.

P r o o f : By Theorem 19,

and therefore by Theorem 22,

By the definition of AbsB,

and therefore

and

pr E Concpfr

AbsBbP, E[~ b.

(AbsBbpr) =)~v.Absp(pr - by)

Absp(pr - b[x]) e Concp(b[x])

Absp(pr - Pb) e Concp([~[x])

by choice of Pb = b~xl. []
By this result, we may write the following simple theorem that charac-

terizes side-effects under E4.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 273

T h e o r e m 25 Let q~n = $4~/0 where qo E Conc(2~o. I f during the evaluation

of $2qo there is an instance ~(a of)~a that has a side-effect upon an instance
of x , then there exists a "y E A such that

(b[x])a M {d, d d + , u + d +} ~ {}

where g~ f = (P~r, b , . . .) E T , and x is referenced directly wi th in/k~.

P r o o f i Let ~'s be an instance of As tha t has a side-effect upon an
instance :;: of x, let this side-effect arise from a reference to i: (directly)
within)~, and let Pb be the bi r th date of ±. By Theorem 6, there must
be a state qr whose procedure string is pr, in which ± is referenced directly
by A~ (which reference gives rise to the side-effect a t t r ibu ted to As), such
tha t Net(pr --Pb) contains a t e rm O~ d corresponding to ~'a. By Theorem 20,
qr E Conch(in, where q~n is as defined by the current theorem. Let q~n'Y =

(16r,/~...). Then, by Theorem 24,

Net(pr - Pb) E Conep(D[x]).

By the form of Net (pr - Pb),

Trace(Ne t (pr - pb))a = a al " " " a a~,

where a / = d for some 1 < i < k. By the definition of Concp, this implies
that

(/~x])a M {d, d d + , u + d +} ~ {}.

[:]

Wha t could be easier? At compile-t ime, we compute q~n = $440, where
q0 represents every initial s tate from which the program might execute.
Afterwards, we notice tha t A7 makes a reference to a mutable variable x,
and we wonder what procedures in the program might have a side-effect
(by Definition 1) as a result of the reference. The answer is contained in
b~x~, where q~n~ = (Pr,/~-..) E T. If (/~x~)a contains none of d, d d +, or
u + d +, t hen no instance of Aa has a side-effect as a result of this reference.
If (b[x])a contains one of d, d d +, or u + d + , there may be an instance of),s
t ha t has a side-effect as a result of this reference. This uncer ta inty is the
cost of abstract ion. We have chosen to err in favor of over-est imation of
side-effects, for the reason tha t parallelizing t ransformat ions are inhibi ted
by side-effects, and it is always safe (correct) to inhibit a t ransformation.

274 WILLIAMS LUDWELL HARRISON III

2.11.2 Stack-Allocation under ~4

We may likewise translate our reasoning about the stack-allocation of
variables into the terms of E4. The exact conditions under which a variable
instance must be heap-allocated are given in Theorem 8. It holds that if

is an instance of x bound by an instance ~ of)~, where Pb is the birth
date of ±, Pr is the procedure string of a state in which reference is made to
~, and Net(pr --Pb) = . . . J 3u. . ., then ~'Z is deactivated before this reference
takes place (and therefore i: must be allocated in the heap, assuming that
heap and stack are the only alternatives).

Theorem 21 is the abstraction of this result to the stack configurations
constructed by evaluation under E3, and we repeat the exercise now, for
the case of E4.

T h e o r e m 26 Let qn = E4~0, where qo E Conco~o. I f during the evaluation
of C2qo there is an instance ± of the variable x such that ± is referenced
following the deactivation of the instance of the procedure)~ that binds it,
then there exists a 7 C A such that

($Hx])Z n (u, uu+, u+d +} ¢ (]',

where q~n7 = (fir,/~,.-.} E T, and Ix] is referenced (directly) within),~.

P r o o f : Let ~'Z be the instance of AZ that binds an instance ± of x, such

that ~ is referenced in a state qr, ibllowing the deactivation of ~Z. Let Pr be
the procedure string of qr, and let Pb be the birth date of i:. By Theorem.8,
Net(pr -Pb) f lu . . ", where/~u corresponds to the deactivation of AZ.
Let A~ be the procedure within which ± is referenced directly in qr, and let

q~n7 = (fir,/~,..-). Then, by Theorem 24,

- pb e Concp([x).

By the form of Net(pr -Pb) ,

Traee(Net(p~ - pb))/~ = ~al . . . /~ak

where ai = u for some 1 < i < k. By the definition of Concp, this implies
that

(b[x])/3 M {u, u u +, u + d + } # {}.

O
This suggests a simple compile-time procedure for partitioning variables

into those that may be instantiated on the stack, and those that must be

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 275

instantiated in the heap. We perform the abstract interpretation q~n =
&{/0, where q0 is representative of the starting states of the program being
compiled. We then notice that A~ makes a reference to x, and we wish to
know whether x need be heap-allocated as a result of (an instance of) this
reference. Again, the answer is contained in/~[x], where q~n'~' = (Pr,/~-..} E
T. If (b[x])/3 contains none of u, u u +, or u + d +, then for every instance
of x, each reference to ± occurs while the instance of A~ that binds it is still
active; this implies that all instances of x may be allocated on the stack.
Otherwise, if (b[x])/3 contains one of u, u u +, u + d +, we can say only that
there might be an instance ± that is referenced following deactivation of
the instance of AZ that binds it.

2.11.3 Generalized Hierarchical Storage Management

Finally, we may repeat the abstraction of our reasoning about hierarchical
storage management in the case of £4, exactly as we did for side-effects
and stack allocation above. Again, the role under &of/~r O fib, where lob
and fir mark points at which a variable x is instantiated and referenced,
respectively, is played under 84 by/~[x], where A.y is a tambda expression
within which x is referenced directly, and b is the second component of
(£4{/0)%

2.12 A d d i n g F low-Sens i t i v i t y to t h e Ana lys i s

Let us consider the example of Figure 20 again, in light of &. Recall that
the difficulty, under £3, is that the difference between the stack configura-
tion that represents a reference to x within A?, and the stack configuration
that represents the point of x's instantiation, is so crudely approximated
by O as to yield values near to ±p even when the arguments to O are
relatively accurate. We addressed this problem by eliminating the use of
O in £4 altogether, instead computing the difference of these two stack
configurations directly within the semantic functions.

We have another problem, however. Let q~n = £4 ~/0 be the result of
abstract interpretation of the program of Figure 20 under £4. Consider
tile value d = ~[t3], where ~na = ~,/~,~,/~,~}. Let d = {{&,/~},...}. The
non-bottom values in Concpd are closures of ,~?, and therefore c~ = {7}.

Let i0 t =/~P[x]. Recall that pt is a record of the interprocedural movements
described by an instance of x, from the point of its instantiation to the
current state. Since no interprocedural movements take place between the
closure of ,~? and the assignment of the closure to t3 in statement $5,/~' is
"primed" such that e E/~a. At Ss, a recursive instance of)~ is applied, and
the value d makes a downward movement with respect to ,~, before being

276 WILLIAMS LUDWELL HARRISON III

(define fact (lambda (n k)
(i f (= n o)

(k l)
(f a c t (1- n) (lambda (m) (k (* n m)))))))

Figure 27: Example of Overlapping Variable Lifetimes

joined with its previous value. (Recall that there is only one environment
for all instances of ,~a, and at every evaluation of $5, the value of t3 in
this environment is "raised" in the la t t ice /) .) Therefore d E p~a. At $10,
a return from ,~a takes place, causing the value of d to make an upward
movement before it is once more joined with its previous value. At this

^

point, p~a contains e, d, and u. Repeating this cycle of call and return,
we have that i~c~ = { d d +, d, e, u, u u +, u + d + } = A. Again, it appears that
the instances of x must be heap-allocated.

What has gone wrong? The trouble is that E4 is flow-insensitive. It is
obvious from looking at the program text of Figure 20 that the closure of
,~ that is applied at $6 is the very one that is assigned into t3 at $5. This
is missed by E4, which knows of only one instance of t3 (representing all
the instances of t3 to that point). At each recursive application of ,~a at
Ss, the current (abstract) value of t3 undergoes a downward movement.
When the next instance of $5 is evaluated, the new value of t3 does not
overwrite the old value of t3, because $4 maintains only one environment
per lambda expression (and thus multiple assignments to a variable must
have the effect of raising its value in the la t t ice /) , and not of overwriting
the variable's value in the environment), but more importantly because
there are distinct instances of t3, and while in this example each dies
almost immediately after being assigned, in other examples it might survive
across recursive invocations of the procedure that binds them. Consider the
definition of f a c t in Figure 10 (the definition is reproduced in Figure 27
for convenience). During the evaluation of (f a c t 10 (lambda (x) x))
(under E2), there are 11 instances of n and k live simultaneously (consider
that the first multiplication of m by n does not occur until the final call to
f a c t has been made). There is only one "location" in each environment
(under E4) for the instances of n; the abstraction of the values of these
instances are therefore joined to produce a single, representative member
o f /) , and the introduction of a new instance simply raises the lattice value;
it cannot overwrite the value of n in the environment.

What is needed to give C4 a bit of flow-sensitivity? We must inform
the abstraction of environments with the notion of multiple instances of
variables, but we must add as little information content to the abstraction

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 277

= 2 A

)V _- 2 N

k= x#×P
= d x K x P r i m O p x I n t x Bool

=A k
=Px/ x#xRx2

(~ = N ~ T

Figure 28: Abstract Domains for E5

as possible, since we will pay for any increase in complexity at compile-
time. Our approach (one of many possibilities) is to parti t ion the instances
of a variable x into 6 classes (one for each member of A), according to the
movements they describe, from their points of instantiation, relative to the
procedure that binds x. If Aa is the binder of x, and p is the procedure string
that records the interprocedural movements described by ± (an instance
of x) from its instantiation to the current state, then we will abstract ±
to the pair (~x~,Dir pa) . Just as we used a pair ([x],p), where p e P ,
to index the environment under 32, so we will use a pair ([x~,5}, where
6 E A to index the environment under our modified (and last) version of
the abstract semantics, g5- In order to achieve a measure of flow-sensitivity,
we associate an environment with each statement, rather than with each
lambda expression, as in g3 and g4- The domain equations for g5 are
presented in Figure 28. The only changes from those of Figure 12 are to
the definitions o f /) and (~. Under $5 we will have one environment per
statement, and the environment will map pairs in V x A onto abstract
values i n /) .

We said, in complaining about the inaccuracy of g4 in the case of Fig-
ure 20, that we wished to overwrite the value of t3 rather than to join it
with a gradually less accurate value, when forming the closures of A 7. We
have, as yet, no justification for doing so under g5, for the act of partition-
ing the instances of t3 into classes is, of itself, no help in this regard: if
an equivalence class under the partit ion represents more than one instance
of t3, then we will still be forced to join values together, to simulate the
action of assignment in our abstract semantics. The following theorems
come to our rescue.

278 WILLIAMS LUDWELL HARRISON III

T h e o r e m 27 Let ± and ~ be two instances of x, a variable bound by An,
and let pl and P2 be the birth dates of ~ and i~ respectively. Let Pa be the
procedure string of a state following the instantiation of both i~ and ~. Then

Dir(p3 - pl)a = Dir(p3 - p2)a =

implies that Pl = P2 (and therefore that i = ~).

P r o o f : Le t Dir(p3 - p l) a = ~ and Dir(p3 - p 2) a = e, and suppose t ha t
p l ¢ p2. By the def in i t ion of Dir,

N e t (T ace(p3 - pl)) = N e t (T r a c e (p 3 - =

Assume wi thou t loss of genera l i ty t h a t Pl is a prefix of P2. T h e n

Net(Trace(p3 - p i) a) ---= Net(Trace((p2 - Pl) + (P3 - p2)) a) = e

and therefore
Net(Trace(p2 - p l)a) = ~.

But P2 a d, since it is the b i r t h da te of an ins tance of An. Th is means
t h a t P2 - Pl a d, and Net(Trace(p2 - p l))a ~ e, a con t rad ic t ion . []

T h e o r e m 28 Let ± and ~ be two instances of x, a variable bound by An,
and let pl and P2 be the birth date of ± and fc respectively. Let P3 be the
procedure string of a state following the instantiation of both i: and ~. Then

Dir(p3 - p l)a = Dir(p3 - p2)a = d

implies that Pl = P2 (and therefore that x = f~).

Proof . " Le t Dir(pa - p l) a = d and Dir(p3 - p 2) a = d, and suppose
t h a t p l ~ p2. B y the def in i t ion of Dir,

Net(Trace(p3 - p l)a) = Net(Trace(p3 - p2)a) = o~ d.

Assume wi thou t loss of genera l i ty t ha t Pl is a prefix of p2. T h e n

Net(Trace(p3 - p l) o 0 ---- Net(Trace((p2 - P l) + (P3 - p 2)) a) = a d

and since the a d with in p3 - p2 is no t ann ih i l a t ed by Net,

Net(Trace(p2 - p l) a) = e.

Bu t P2 a d, since it is the b i r t h da t e of an ins tance of An. Th is means
t h a t P2 - Pl a d and Net(Trace(p2 - p l)) a ~ e, a con t rad ic t ion . []

These t heo rems can be u n d e r s t o o d best wi th the help of the following
def ini t ion (for i l lus t ra t ive purposes only).

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 279

RdEnv: F, ~ V ---+ 2 A --* D
=_ u b 15 e

WrEnv: E ---* V ---* 2 A --* D --+/~

- A~.)~v.)~s.)~d.if s = {~} or s = {d}
then ~[d/{v, 5}] where s = {5}
else ~[d/ /{v ,51}] . . . [d / /{V, bk)] where s = {51 , . . . , 5k}

Figure 29: RdEnv and WrEnv

Absx: (V x P) -~ P -~ (V x A) _= A{v,pb}.Apr.(V, Dir(pr --pb)a)
where v is bound by As.

Abs x maps a variable instance (represented by a pair in V x P of the variable
and its b i r th date) and a procedure str ing representing the context of the
abstract ion, to an abstract variable instance (a pair in V x A of the variable
and a member of A, tha t summarizes the movements described by the
variable instance, with respect to the procedure by which it is bound) . This
abs t ract ion map is therefore "relative" in the same way tha t the abst ract ion
maps for $4 were. Theorems 27 and 28 then say tha t for any state (let its
procedure str ing be pT), there is at most one instance of x (let its b i r th
date be Pb) such tha t Absx([X],pb}Pr = (Ix], ~), and likewise at most one
instance such tha t Absx([x~,pb)pT = (Ix], d).

The definitions of RdEnv and WrEnv, used to model the actions of read-
ing and writ ing the environment under £5, are presented in Figure 2.12.
Imagine an abstract s tate ~ such tha t ~i = (15,/~, ~, . . .}, and let x be assigned
the abstract value d at s t a tement Si, where x is bound by ha. The envi-
ronment in effect after this assignment is given by WrEnv ~[x]((/~x])a)d.
While, under £2, an instance of x is identified by its b i r th date, here it
is identified by the set (/~[xl)a tha t summarizes its movements from the
point of its ins tant ia t ion to the current state, wi th respect to the procedure
As tha t binds it. If (/~[x])a = {d} or (/~lx~)a = {~}, then this abstract
instance of x represents only one concrete instance of x, for every state
in the concret izat ion of ~, and we effect the assignment within WrEnv by
"overwriting" the value of ~ at ([xl, d) or (Ix], ~). Otherwise, we raise the
lattice value of ~ at {[x~, 5) for all 5 e (/~x])a by the value d.

The abst ract ion maps for £5 are defined in Figure 30. The corresponding
concret izat ion maps are defined as described in subsection 2.11. Only the
definitions of Abs E and AbsQ have changed from Figure 21. The revised def-

280 WILLIAMS LUDWELL HARRISON III

Abs A =- ha. if a = ±h then {} else {a}
Abs N - hi. i f / = ±N then {} else {i}
Abs B = hb.hp.hv .Absp(p - (by))
Abs c -~ h(a , b) .hp.(Absha, AbsBbP)
Abs K - h(i, b,p, o) . (Absy i , AbsBbp, Abspp)
Abs 9 =_ hx. if x = ±D then (-1-5, -J-K, ±PrimOp' -]-Int~ ±Bool}

else if x E C then (Absexp, -J-K, ±PrimOp' ±Int' ±Bool)
else if x E K then (_1_5, Absgxp , ±PrimOp' ±Int' -J-Bool)
else if x E P r i m O p then (±0, -l-R, AbsprimOp x' -l-Znt' ±Boot)
else if x E I n t then (_1_5, -J-K, ±PrimOp' Abszntx, "±Bool)
else if x E Bool then ('±O, -J-K, ±PrimOp' ±Int' AbSBoolX)

Abs E =_ he.hp.h(v , 5).U[9{ AbsD(e(v ,p '))V [Oir(p - p ')a = 5}
where v is bound by ha

Abs R - hr .hp.ha. O R {AbsK(r(p ' + ad))p I P' E P }
AbsQ - h (i , b , p , e , k , o , r) . h j , if i # j

then (,± p , "j" [3 , "± E , ± R , "± R)
else (Abspp, AbsBbP, AbsEeP,

AbsKkp, AbsRrP}

Figure 30: Abstraction Maps

initions of partial orderings and LUB operators over the abstract domains
are defined in Figure 31 and 32. Again, only the definitions of ___~, __EQ, UE,
and O 8 have changed, and those only slightly.

The definitions of the Move functions under E5 are presented in Fig-
ure 33. Only Move$ has changed, but its definition is markedly different
from that under E4, for the reason that under Eh, both the range and the
domain of the function are, in effect, moved. If ~([x~, ~) is a value in the
environment prior to these movements, and ~ E 15a where x is bound by
ha, then the environment that results from moving ~ by 15 will map the
pair (lxl, 5) to a value greater than or equal to ~{~xl, (), where 5 E Cat(~.
Intuitively, when the environment undergoes a movement described by ib,
then the variable instances represented in the domain of the environment
(as pairs in V x A) make movements defined by the Cat operator, and
the values represented in the range of the environment (as members of /))
make movements defined by Move D. Suppose that (Ix], (/ i s in the domain
of the environment, and that x is bound by ha. (~x],() therefore repre-
sents an equivalence class of instances of x (all those instances whose net

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 281

E~= £.A}.;: c_)
__.~- ~,~..~/~.& c_
_ ~ - ~6,.~&.(61v) c_ (6~v) vv e v
__E~,~_ ,~(O~1, bl).~{o~2, &).(o~ 1 ___/~ 0~2) A (b 1 ~__/~ &)
_____./~ .'~(/~1, b~1,jo1).)~((2, &,P2} • ((1 [Z19 ~)

A (G1 E~ b~)

ED-- A(dl, l~l,/1,A,Xl>.A(d2, l~2, f2,~2, x2}. (c~l E 0 c~2)
A (&_E~ t;~)

A (Z1 EI~ t 2~2)
A (~1 EBoo~ ~2)

EE ~-~)~e~l.)~#2.(4(V, (~)) mE/) (#2(V,(~)) VV C V,V(~ E A
___~= :~ri.Ar~2.(ria) E~ (r~2a) va ~ A
[-,f,~-)~(bi,i'i91,e1, kl,rl>.)~(b~2,i'o2, e2,/~2, r2}. (b~l ~__/~ b2)

^

A (~1 ___B b2)
A (ei ___~ e~)
~ (~lEg ~)
A (¢~ ___R r~)

EQ--- A~a.A~2.Aa.(~li) E¢ (~2i) Vi E N

Figure 31: Partial Orderings

282 WILLIAMS LUDWELL HARRISON III

u~ = ~.~.~ u

UB ---- ~#l./~b[2.,~v.(#lV) U# (b~2 v)
U~, --)~(O~1, bl).~(0~2, b2).(0~1U A O~2, b~l Uj~ b~2)
U/~ -- .~<(1, b~1,#1>.,~((2, b~2,/%2).((1U#/(2,

#1 11~ #2,
#1 11/5 P2>

LuBL,
& u# ;~2,

uR -),rt.)~r~2.~.(Fla) [JK (~2a)
u~ = ~(.~1, 6~, el, kl, ~1).~(~2, G2, e2, ~2, ~2).(#1 uc~2,

GIU. 6:,

kl UB /g2,
~1 u~ r~>

UQ - A~I.Aq~2.Ai.((~li) U~ (~2i)

Figure 32: LUB Operators Over the Abstract Domains

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 283

Move[~ : [3 --, P ~ [3 ----" A/zA15.Av.(bv) ® 15
Move~ : C --* P --* C =- A(&,b).A15.(&,Move~[~)
MoveR: R --~ P --* K - ~(~,~,15!.~.(~,Movej~p',15ep')
MoveD: D --, P -+ ~) - A(~,k,f,~,~).A15.(Move~15, MoveR]~,] ,~,~)
i o v e ~ : E - . P - . k -- ~.~15.~(x, ~). U D {MoveD(~(~, 0)15

I ~ E Cat~l for some ~ E A, 71 E/)a}
MOVER: R ~ P ~ 1~ - A~.A15.Aa.iove~((÷~)15
M o v e : ~ -~ P -~ ~ =_ ~(P,&e, ~,~).~'.(~ e~',

^ ^

Move[~bp',
M o w ~ # ,
MoveRkp',
Move~p')

Figure 33: Movement Functions for g5

movements with respect to Aa are described by ~). After the movement,
(~x], ~) becomes part of each equivalence class ([[x], 6) such that 6 E Cat~?
for some ~ E 15a. As a special case, consider that in which 15 = Absp(fld),
a ~ fl (that is, in which the movement described by 15 is downward into
an instance of a lambda expression other than)~). Then 15a = {~}, and
C a t ~ = {~}, for all ~ E 15~. Therefore (Ix], ~) is unmoved in this case,
as we would expect. As another example, suppose that 15a = {u}, and
consider the class of variable instances represented by (Ix], d) (which class,
as we showed in Theorem 28, contains at most one member). This vari-
able instance "becomes" the instance (Ix], e) after the movement MoveE@15,
since Cat d u = {e}.

The auxiliary functions RdEnv and WrEnv, used to read from and write
to the environment in $5, are defined in Figure 2.12. Modeling the action
of g2 closely, in g5 the (abstract) instance of a lexically visible variable
will be identified by (/~[x])a, where /~x] is the stack configuration that
summarizes the movements made by the lexically visible instance of x from
its instantiation to the current state q, and/~a is the procedure that binds
x. Consider the definition of WrEnv; the set s = (/~[x])a c A isolates
those movements that pertain to As. If s contains only d or e, then by
Theorems 27 and 28, this abstract instance of x represents exactly one
concrete instance of x (for every state in the concretization of q), and we
may model an assignment in WrEnv by "overwriting" the value of @(v, 6)

284 WILLIAMS LUDWELL HARRISON III

where s = {5}; else, we simply raise the lattice value of e(v, 5) for all 5 E s,
by the value being assigned.

The definitions of $5, S~, and E5 are given in Figures 34, 35, 36 and
37. Our alterations to 84 are restricted to the treatment of the environ-
ment. We may therefore apply Theorem 23 directly to 85, once we show
that our abstraction of environments under E5 preserves the meaning of
environments under E2. The following theorem suffices.

T h e o r e m 29 IS AbsEe p EE ~, AbsBbP EBb and AbsDd p Eb d, then

I. AbsD(e(~x],b~x~))p E_ b RdEnv ~[x]((/~[x~)a), and

where x is bound by A~.

Proof :

I. By the definition of RdEnv,

Let Abspp Ep 15. That AbsEe p EE ~ implies that

Ub{AbsD(e([xl,p'))pl Dir(p - p ')a = 5} ED e(Ix~, 6) for all 6 e A.

Therefore

But

AbsD(e([x],b[x]))p E b @([x],Dir(p- b[x])a).

Dir(p- blx]])a e (/~[[xl)a

since AbsBb p EBb. Therefore

AbsD(e<[x], b[x]))p Eb Ub{@<[x], 5) 15 e (/~[xl)a}

and
AbsD (e<ix~, bix]))P Ep RdEnv@[x]((/~[x])a)

by the definition of RdEnv.

II .

ANALYSIS AND PARALLELtZATION OF SCHEME PROGRAMS 285

Let t = (;5, b, ~,/~, ,~), i E N. T h e n 85 : N --+ T ~ (~ is defined, according to
the form of Si, as follows.

S / = [(set! x (f Yl '"Ym))~ or S i = [(se t ! x (c a l l / c c f))~ ::~
ssi~ = 4~ uQ q~
where ~ = U~){~i ~, if i r ~ j

then J_~
else {/~ ® p',

(Mov~b~'k)[;~o, { ~ } / N] ' ' ' [~,~.{~}/~~.,d],
Move[;e'p',

Move[c(~[k / / Container i])p}
where,ka = [(lambda (z l""zra) <Zm+l '"zn > Sj . . .)~ ,

p = Ab,sp(ad),

and e ~ = i f S i = [(s e t ! x (f y~...yr~))~
then e~ where do =

and dt =WrEnv etkl[zt]{e}

where [Yl] is bound by A~, 1 < l < rn
else w,~E,,,~, ai~,]{~}(±o, <{~}, ~',,"'~.{~}>,

J- p~{~ op ,]- zi~t , A B bol }

wher~ ~lf~ = <e', k ' , . . . t
and d = <&,/~)

F igure 34: The Semant ic Func t ion $~ (Par t I)

286 WILLIAMS LUDWELL HARRISON III

and
(

q~k = kl~)~.~i', i f / ' # j
then _1_~
else Movei.~,

b ~ ,

÷Z,
?[k / / Container i]l(Inv p')

where d = if S/ = [(s e t ! x (f Yl))I
then WrEnv ~[z[{e}

(RdEnv ~[yll ((D[y~[)c~))
where y~ is bound by $~

else WrEnv ~[z[{e}<_l_d, ({i}, b, A~.{e}),

-[-PrimOp' Lint'-[-Bool}
where Sj = [(s e t ! z (c a l l / c c g))]]

where ~[f[= {c', k',...)
and /~'= (3",/),p')

F igure 35: T h e Semant i c F u n c t i o n S5 (Par t II)

A N A L Y S I S AND P A R A L L E L I Z A T I O N OF SCHEME P R O G R A M S 287

Si = [(se t ! f (lambdaa (x l . . . xm) <Xm+l'"Xn > ""))~ ==~
$h i t = Ai'. if i' # Suec i

then _1_~
else (15,

8,
WrEnv ~Ifl ((/~[f])~)(({a}, [~), -I- R, J-PrimOp' -k l;,t' -kBaot)

÷)
where f is bound by AZ

Si = l(±f x (goto m) (goto

then^-l- T
else t

n))]

Si = I(return x)l

$hit = kJQ/)d'., if i' ¢ j
then _l_~
else Move¢ (~

b ~ ,

W r E n v ~ [[y] ((/~ ly])~) (RdEnv ~ Ix] ((/~ [x]])(~))
?(Conta iner j),
÷)(Inv,')
where y is bound by AZ
and x is bound by Aa

w h e r e S j = [(se t ! y ...)1

where k = (j, b',p'}

Figure 36: The Semantic Function $5(Part III)

288 WILLIAMS LUDWELL HARRISON III

Eh: Q ~ Q - AS. Let q' = S ~
in if q' EQ q then ~ else Eh(~ UQ q')

Figure 37: The Semantic Functions S~ and E5

case 1: (/~xl)a = {e} or {d}. Let

e' = e[d/ ([x~, b[x~}]

and
$ = 5)]

where (b[x])a = {d}. It is clear that

AbsD(e'([x],b~x]>)P ED ~'<lxl, 5}

because AbsEe p EE ~ and Abspd p ED d, and Dir (p -b[x])a = 5
since AbsBb E/~/~. We must therefore show that the meaning of
e' is preserved at all points other than (~x], b[x]}. Let ~ be an
instance of y, and let Pb be the birth date of y. If y ~ x, then
clearly

A bSD (e' (~Y] , Pb))P E D e~ ([Y~ , Dir(p - pb)a),

since AbsEe p EE e. Assume therefore that y = x. By The-
orems 27 and 28, if Dir(p -P b) = 6 then b~x] = Pb and :~ is
the instance of x whose birth date is b[x] (that is, the instance
of x being assigned). This case was treated above. Else, if
D i r (p - Pb) ~ 5, then

A bsD (e' (~y] , pb)) p E D #<[y], Dir(p - pb)a > ,

since this equation holds for e and ~, and e ~ and # do not dif-
fer from e and ~ at the points ([Y],Pb) and (~y~ ,Dir (p -pb)a)
respectively, by the fact that Pb ¢ b[x] and Dir(p - p b) a ~ 5.
Therefore

AbsE(e[d/(~x~,b~x]}]) EF. WrEnv~x]((b~x])a)d

by the definition of EE.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 289

case 2: (/~[x])a ¢ {~} and (/~x])a ~ {d}. Let

e' = ~[d/ ([x], blx]>]

and
i' = ~[dl l <[xl, 61)]... [dl l (M, 4)]

where (b[xl)a = {51,. . . , 6k}. This case is much simpler, because
@ E~ e' by the definition of the notation f [x / / y] . By assumption,

AbsEe p E_E 2, AbsDd p ---25 d, and AbsBb p E_ b b. Therefore
Pir(p - blx])a = 5 for some 5 E (b[x])a, and it follows at once
that

AbsD(e'([x],b~x]))P - D UD{e'([[x]],S} I 5 e (/~[[x]])a}

and therefore that

AbsE(e[d/(~x~,b[x])]) p E_p. WrEnv@[x]((b[x])a)d.

[]

Apart from their treatments of the environment, there is no difference
between $4 and $5, and therefore Theorem 29 (to show that the meaning
of environments are preserved by 85), and Theorem 23 (to show that all
other components of states are preserved by 85) together constitute proof
of the correctness of 85. Theorem 19 is likewise proof of the correctness
of gs, because (apart from their respective invocations of 8~, $~, and 8~)
there is no difference between C3, g4, and $5.

2.13 Examples of Analysis under g5

Let us now return to some examples to see what we may expect of the
framework of analysis that we have constructed. First, consider the exam-
ple of Figure 20 once more, to see if we have overcome the difficulties it
presented for g3 and g4. It is easy to see that we have; in fact, it is enough
to consider the evaluation of statement $5, in which t3 is assigned a closure
of ~. Again, let q~n = g4 qo be the result of abstract interpretation of the

program of Figure 20 under $4, and let q~na = (/3, b, @, k, rl. We have that
(/~[t3])a = {e} when $5 is first evaluated. Then bythe definition of WrEnv,
the closure of As which is newly formed will overwrite the previous value of
(t3, e} in the environment; when this closure is applied at statement 5'6, it
will have undergone no interprocedural movements. Therefore, if D ~ is the
birth date map of a state in which a reference to x is made within A.~ (that
is, when evaluating (se t ! t4 (car x))) , we will find that (/~x])? = {d}

290 WILLIAMS LUDWELL HARRISON III

(define accum-fn
(lambda~ (x) (lambda~ (y) (set! x (+ x y)) x)))

(define apply-to-range (lambda 7 (io hi fn)
(if (= Io hi)

(fn Io)
(begin (fn Io)

(apply-to-range (I+ io) hi fn)))))
(define sum-of-integers (lambdaa (m n)

(apply-to-range m n (accum-fn 0))))
(define list-of-sums (lambdae (ii 12)

(if (null? II)
#f
(cons (sum-of-integers (car ii) (car 12))

(list-of-sums (cdr 11) (cdr 12))))))

Figure 38: Example of Side-Effects and Object Lifetimes

(set! sum-of-integers (lambdaa (m n) <tl t2>
(set! tl (accum-fn 0))
(set! t2 (apply-to-range m n tl))
(return t2)))

Figure 39: s u m - o f - i n t e g e r s , Rewritten in £

and (/~'[x])a = {~}. This implies, by Theorem 21, that x may be stack
allocated.

Now let us turn our attention to the example of Figure 11; it is reproduced
in Figure 38 for convenience. The procedure A¢ (s u m - o f - i n t e g e r s) is
rewritten in a form close to £, for the purpose of illustration, in Figure 39.

The critical moment in evaluation is the assignment of the return value
of accum-fn into t l ; by exactly the reasoning used above, the closure of
Af that is assigned into t l overwrites the previous value of t l in the envi-
ronment, and therefore when x is referenced in Aft, we will find that it has
described no downward movements (none of d, d d +, u + d +) with respect
to Ao, and no upward movements (none of u, u u +, u + d +) with respect to
A¢, either. This implies both that A¢ has no side-effects upon x (and x
is the only mutable quantity in this example), and that x may be deal-
located upon exit of the invocation of A¢ which creates it (via a call to
Aa). In short, the analysis uncovers both the high-level parallelism of this
example, in that the sum computed within each recursive application of
A~ (list-of-sums) is seen to be independent of the others (since all are
seen to be free of side-effects), and provides a precise description of the

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 291

(define cons (lambda (car cdr)
(lambda (op val)

(cond ((eq? op 'car) car)
((eq? op 'cdr) cdr)
((eq? op 'set-car!)
((eq? op 'set-cdr!)

(define car (lambda (x)
(define cdr (lambda (x)
(define set-car!
(define set-cdr!

(s e t ! car va l) car)
(s e t ! cdr va l) c d r)))))

(x ' c a r # f)))
(x ' c d r # f)))

(lambda (x y) (x ' s e t - c a r ! y)))
(lambda (x y) (x ' s e t - c d r ! y)))

Figure 40: cons in Terms of Closures

lifetime of each instance of x, for the purpose of its automatic deallocation
(and ultimately, for the purpose of placing it within a hierarchical shared
memory).

2.14 M u t a b l e D a t a and Al ias ing

It might appear to the reader familiar with the difficulties of analyzing
and parallelizing Lisp programs, that in L we have put forth a subset of
Scheme that sidesteps the most difficult issue of all: aliasing, particularly
aliasing relationships that arise by the use of mutable, compound data
objects, such as cons cells, user structures, vectors, a tom property lists and
hashtables. In fact, our abstractions o f / : provide very sharp analyses of
such effects; it is simply a mat ter of casting such aliasing problems into
the terminology we have been using, and of interpreting the results of the
subsequent analysis.

Let us first consider (mutable) cons cells. A cons cell is a record of two
fields, called ca r and cdr, either of which may be updated after the cell has
been allocated. It is well known that the function cons and its auxiliary
routines car, cdr, s e t - c a r !, and s e t - c d r ! can be written using closures,
as in Figure 40. (We forward this means of expressing cons only for the
purpose of static analysis, and not as a means of implementing cons cells
at run-time.)

The reader is now asked to consider the example of Figure 41. The ex-
ample of Figure 11 has been rewritten in this figure, to make use of mutable
cons cells instead of instances of ,~, to accumulate a sum of integers. It
is clear that the analysis of side-effects and object lifetimes applies equally
well to this program as to that of Figure 11; in particular, the high-level
parallelism of l i s t - o f - s u m s is discovered, and the lifetime of each cons
cell is seen to be circumscribed by an instance of A~. Theorems 6, 7 and

292 WILLIAMS LUDWELL HARRISON III

(define accum-fn
(lambdaG (x) (cons x #f)))

(define apply-to-range (lambda 7 (io hi y)
(if (= io hi)

(set-car! y (+ (car y) io))
(begin (set-car! y (+ (car y) lo))

(apply-to-range (1+ lo) hi y)))))
(define sum-of-integers (lambda~ (m n)

(apply-to-range m n (accum-fn 0))))
(define list-of-sums (lambda~ (ll 12)

(if (null? 11)
#f
(cons (sum-of-integers (car 11) (car 12))

(list-of-sums (cdr 11) (cdr 12))))))

Figure 41: Example of Side-Effects and Object Lifetimes

20 tell us that all of the dependences of a computat ion are uncovered by
our analysis; any side-effects that arise through aliasing of cons cells, will
therefore be revealed as side-effects upon the variables c a r and cdr, at any
points at which such side-effects are visible.

To see the outcome of aliasing more clearly, consider Figure 42. The
definitions of two mutable structures are shown; one has a field called x,
the other a field called y. As with the cons cell, these fields are represented,
for the purpose of static analysis, as free variables within closures. In the
example, the variable a holds an instance of As, and b and c hold instances
of AZ. In effect, b and c each "point" to a. The final two expressions of the
example illustrate a dependence caused by this shared substructure, this
aliasing of pointers. First a is reached via b, and is updated so that its x
field has the value 2. This "indirect" update entails two visible side-effects:
a use of the variables y, and a definition of the variable x. Second, a is
reached via c, and its x field is read. Again, there are two visible side-
effects, a use of y and a use of x. By Theorem 20, both of these side-effects
are revealed by our analysis, and thus the aliasing of pointers is properly
accounted for.

There is, however, much information provided by our analysis that is
not available from a conventional alias analysis [14, 33]. Intuitively, this
information is of two kinds: information concerning an object 's lifetime,
and the limits thereof (in terms of the net interprocedural movements it
describes), and information concerning distinct instances of objects that
arise from a single lexical construct (where the instances are distinguished
by the movements they describe from an evaluation of that lexical construct,

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 293

(define make-struct-a
(lambda 7 (x)

(lambdaG (op val)
(if (eq? op ~update)

(begin (set! x val)
x))))

(define make-struct-b
(lambda5 (y)

(lambda~ (op val)
(if (eq? op 'update)

(begin (set! y val)
y))))

(set! a (make-struct-a I))
(set! b (make-struct-b a))
(set! c (make-struct-b a))
((b 'read #f) 'update 2)
((c 'read #f) 'read #f)

x)

y)

Figure 42: User Structures, in Terms of Closures

to a later point during the evaluation). For instance, in the example of
Figure 38, we have been able to detect the freedom from side-effects of
sum-o f - in t ege r s , because the analysis is able to recognize each instance
of A~ as restricted in lifetime to the subtree of computation rooted at an
instance of A~, and to recognize the instance as distinct from all other
instances of A~.

It is important to emphasize again that we are not suggesting that cons
cells, user structures, etc., be implemented using closures, but rather that
their lifetimes and the dependences that arise from their manipulation can
be understood in terms of (the more general mechanism of) closures which
capture free variables. This analogy is not entirely satisfactory, in its de-
tails, however. For example, in Figure 41, every application of the function
car appears to our analysis to entail both a use and a definition, of both
the variables car and cdr. This is really a problem of flow-sensitivity: the
side-effects of an application of the closure that represents a cons cell de-
pend entirely upon the argument that is passed to it; our analysis does not
take this into account, but rather attributes all of the possible effects of a
procedure to each of its points of application.

There are several ways around this dimeulty; the first is simply to extend
the semantics of £ to accommodate compound mutable data directly; this
presents little technical difficulty, for as we have seen, their implications for
dependence and lifetime analysis are less general that those of closures that

294 WILLIAMS LUDWELL HARRISON III

capture free variables. The other means of addressing the problem is to in-
crease the flow-sensitivity of the analysis functions, so that they might take
into account the differing conditions under which a procedure is applied.
The latter approach is appealing for the reason that it would improve the
accuracy of the analysis generally (not simply in the case of aliased, mutable
data). If, for example, instead of joining all of the environments in which a
particular procedure is invoked, we analyze the procedure (that is, perform
an abstract evaluation of the body of the procedure) once for every point in
the program at which it is applied, and if we increase the sensitivity of the
analysis to treat simple expressions such as (eq? op ' car) where op has
a constant value (and recognize control paths that cannot be taken, when
they depend upon the outcome of such a comparison), then we may easily
sharpen the framework sufficiently to reveal that the procedures car and
cdr make no modifications to variables, whereas s e t - c a r ! and s e t - c d r !
do. This technique assumes that the procedures to which we choose to give
such a flow-sensitive analysis are not recursive; but this is true of all of the
procedures we have used to define cons, car, cdr, s e t - c a r ! , s e t - c d r ! ,
and user structures.

There is a simple, mechanical means by which we may further improve the
accuracy of our analysis, when applied to mutable objects such as returned
by cons (as defined in Figure 40). Suppose that we rewrite expressions of
the form (cons A B) as

((lambda (car cdr) (lambda (op val) ...)) A B)

where the identifier cons is literally replaced by the definition given in
Figure 40. We proceed with analysis as usual. This has the effect of parti-
tioning the cons cells created by the program into classes according to their
(lexical) points of creation. The advantage of this is very simple: side-
effects upon the car and cdr variables bound by one lexical occurrence of
cons will be unrelated to those upon the car and cdr variables bound by
other occurrences (since these occurrences will be distinct lambda expres-
sions). If we do not effect such a transformation, then the analysis may
reveal dependences that are caused by cons cells that originate from lexi-
cally distinct invocations of cons, and which therefore could not possibly
refer to the same memory locations. The same techniques may be applied,
of course, to lambda expressions that are used to simulate other forms of
mutable data (e.g., user structures).

There are some mutable objects, whose precise behavior it is unneces-
sary, or complex, to simulate exactly during interprocedural analysis, via
closures. For example, while hashtables and vectors may (in their func-
tion) be described exactly in L, an approximate description may be more
practical, and equally accurate, for our analysis. As an example of such an

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 295

(define cons
(lambda (cxr)

(lambda (val)
(if #f (begin (set! cxr val) cxr)

(define car (lambda (x) (x #f)))
(define cdr (lambda (x) (x #f)))
(define set-car! (lambda (x y) (x y)))
(define set-cdr! (lambda (x y) (x y))))

cxr))))

Figure 43: An Abstraction of cons, for Analysis

approximation, we could redefine cons and its auxiliary functions as per
Figure 43.

This is a strange-looking definition indeed. First, notice that the (i f
#f ° . .) construct is treated by all of our abstract semantics as if both
the true and false branches were possible outcomes. Second, notice that
the value of the argument to x in ca r and cdr is unimportant , but on
the other hand it causes the ca r and cdr variables to be treated as if #f
were possible values for them. Better would be if a constant ±D were
provided at the source level, so that we could write (i f I D . . .) and
(x ±D) instead of (i f #f . . .) and (x #f) , respectively. The important
thing about the definition is that it preserves the dependence behavior
of our previous definition of cons. There is a loss of accuracy, in that
where ca r and cdr were distinct variables in the environment previously,
they are now represented by one variable, and thus their values will be
joined in the lattice D. Nevertheless, any side-effects upon the variables
ca r and cdr (when using the definition of Figure 40) will be reflected as
side-effects upon the variable cxr (when using the definition of Figure 43);
and likewise, the lifetime of cons cells as determined by use of the less
accurate definition of Figure 43 will be at least as great as that determined
using Figure 40. These facts may be confirmed formally without difficulty.
We may form similar abstractions of the dependence behavior of vectors,
hashtables, a tom property lists, and so on. For each such object, the correct
abstractions of its behavior describe a lattice of approximation, that is quite
interesting in itself (but beyond the scope of this work). Before leaving these
thoughts behind, it is worth pointing out that the abstraction of dependence
behavior in the above style, leads to an elegant handling of the problem of
interprocedural analysis in the face of separate compilation. The idea is a
simple one: the dependence implications of a separately compiled module
may be abstracted into procedures, just as we have abstracted cons into the
form of Figure 43, and analyzed in lieu of the entire module, for the sake of
efficiency in compilation. Furthermore, such abstractions provide a natural

296 WILLIAMS LUDWELL HARRISON III

means of representing the dependence consequences of a subroutine call,
when the procedure being invoked may vary from run to run (according
to, for example, a link-time decision). This promises to be a rich area of
investigation.

It should be clear at this point that the techniques described in this sec-
tion are applicable to a wide variety of programming language constructs.
For instance, it is straightforward to create a semantics for a suitable subset
of C or Pascal in terms of procedure strings, and to abstract this seman-
tics using stack configurations, in order to analyze the dependences and
lifetimes of, say, dynamically allocated. The essential insights of this sec-
tion are the way in which side-effects and object lifetimes can be reasoned
about in terms of procedure strings, and the way in which these strings,
and the reasoning that applies to them, can be abstracted to stack con-
figurations. Because most programming languages in wide use lack such
radically general features as Scheme's first-class procedures and continu-
ations, the application of these techniques to such languages is, in many
instances, a mere restriction to less difficult situations (and, as we will see
in subsection 2.16, these restrictions can sometimes be used to improve the
accuracy or efficiency of the analysis).

2.15 M a n a g e m e n t o f a H ie ra r ch i ca l , S h a r e d M e m o r y

We have, from time to time, been discussing a hierarchical strategy for
management of dynamically allocated objects. Under this strategy, each
object is associated with a procedure instance. This procedure instance
is guaranteed to have outlive the object, i.e., to be active prior to the
object's allocation, and subsequent to the last reference to the object; as a
consequence, the object may be deallocated safely upon its exit.

This strategy is intended as directly analogous to one for the placement
of data within a hierarchical shared memory. Ultimately, the goal of the
analysis framework we have designed is to facilitate the automatic par-
allelization of a program; let us suppose that this parallelism is realized
in the following very simple way: where the sequential execution of the
program describes a procedure calling tree, the parallel version describes
exactly the same tree, except that for every node that has been successfully
parallelized, the node's children are evaluated simultaneously instead of se-
quentially. (This is a simple model of parallelization, but realistic enough,
as we could certainly rewrite the sequential and parallel versions of a pro-
gram in a form that corresponds to this model.) See Figure 44. In it, a
procedure calling tree is depicted. Assume that after parallelization, the de-
scendants of A2 are to be evaluated simultaneously, as are the descendants
of Am; these two nodes are highlighted in the figure.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 297

)~1

A4 A5 A6 A7

AS A9

,~12 A13

)~14/~15 /~16

Figure 44: A Procedure Calling Graph

298 WILLIAMS LUDWELL HARRISON III

Now suppose that we use the following (again, realistic enough) model of
parallel execution within a shared memory machine: upon execution of a
parallelized node of the program, the machine is partit ioned into d subma-
chines, where d is the out-degree (number of children) of the node. When,
within one such submachine, another parallel node is encountered, the sub-
machine is further partit ioned into submachines, and so on. The process
of subdivision ends when a submachine contains only one processor, and
the subcomputat ion performed by that processor is executed sequentially.
To each submachine, assume there corresponds a (lowest) level in the hier-
archical memory which is visible to all processors in the submachine. Any
data which must be shared among the processors of the submachine must
be placed at this level of the hierarchy, or at a higher (more widely visible)
level; data to be shared only among the processors of the submachine may
be placed at exactly this level of the hierarchy. The execution depicted in
Figure 44 represents two divisions of the machine into submachines: once
at A2 (where the entire machine is partit ioned into four submachines), and
once at All (where one of the submachines is further partitioned into two
submachines).

When cast in these terms, the problem of placing each dynamically al-
located object within the memory hierarchy is identical to the problem
of hierarchical deallocation we have been discussing; we must place every
object at a level of the hierarchy such that it is visible to the entire subma-
chine that executes the subtree of computat ion that delimits the object's
lifetime. Exactly as before, this entails locating a node that is above (an
ancestor of) the subtree of computat ion that contains the object's lifetime;
this node corresponds to a level in the memory hierarchy at which the
object may be safely placed. Of course, we would like to find the lowest
such node for the sake of reducing latency and congestion in the memory
hierarchy. Adapting the techniques of subsection 2.10.3 directly, any par-
allelized procedure through which the object makes no upward movement
will suffice; when the object is allocated, we place it such that it is visible
to the submachine on which the innermost instance of that procedure is
executing; this guarantees that the object has sufficient visibility.

Referring to Figure 44, consider a variable instance ± that is bound by
A14, and captured as a free variable by a closure formed within A14. Let
Ax be the nearest ancestor of A14 through which ± describes no upward
movements. If Az = A14 o r A12, then ~ may be placed in the hierarchy
such that it is visible only to the submachine that executes the subtree of
computat ion rooted at A12 (this may be the private memory of a processor).
If Ax = All or As or A6, then ± may be placed such that it is visible only
to the submachine that executes the subtree of computat ion rooted at A6.
Finally, if Ax = A2 o r A1, then ~ must be placed at the global level. As with

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 299

our artificial version of this problem, there are several possible strategies.
One is to form, at compile-time, a set X of the procedures through which
x makes no upward movements, and to allocate i by traversing links of the
calling tree at run-time, until the first member of X is encountered; this
will correspond to a level of the memory hierarchy at which ± may safely be
allocated. Alternatively, using additional information about the structure
of the calling graph, we may make a purely static decision about which
level of the hierarchy at which to place i , or perhaps simply how many
levels "upward" in the hierarchy, from the point at which it is created, it
must be placed to have adequate visibility.

2.16 In t h e A b s e n c e of c a l l / c c

It is worth asking what penalty is paid, in the accuracy of our compile-
time analysis, because of Scheme's feature of first-class continuations. There
are at least two major improvements that can be made to the analysis, in
its absence. We begin with a revised exact semantics (£6) for the subset of
£ that does not include c a l l / c c (see Figures 45 and 46). The domains for
this semantics are the same as for g2 (see Figure 6).

There is but one important change from the definition of 62 (apart from
the deletion of any text that pertains to first-class continuations): the eval-
uation of a r e t u r n form now results in a state whose procedure string is
p + a u, where p is the procedure string of the state prior to the return, and
As is the procedure being deactivated. This is a perfect complement to the
p -~- C~ d construction that describes a procedure invocation, and raises the
question, why could we not compute the procedure string described by a
return so easily in the presence of c a l l / c c ? In effect, the new definition
says that if p' is the procedure string in effect when a procedure As is ap-
plied, and p is the procedure string in effect at the point of return from that
invocation, then Inv(p - p ') = o~ u always (in the absence of c a l l / c c) . It
is easy to construct an example to show that this statement does not hold
in the presence of the procedure re-activations made possible by c a l l / c c .
For instance, let p = p' + o~dctu~u~doL d, and suppose that p describes the
following scenario: in a state whose procedure string is p', and in which
procedure I~ is active, i s is applied via c a l l / c c , the continuation created
by c a l l / c c is captured in a global variable, control returns from As, and
likewise from AZ. Then the continuation created while As was active is
retrieved from the global variable, and applied, resulting in a state whose
procedure string is p.

Now consider a return from the (re)activated instance of As: the suffix
[nv(p - pt) = o~U~u~d will be appended to p. (We may verify that

Net(p + Inv(p - p')) = Ne t p',

300 WILLIAMS LUDWELL HARRISON III

Let q = (i , p ,b , e , k ,o , r) E Q. Then 8 6 : Q ~ Q is defined as follows:

Si = [(s e t ! x (f Y l ' "Ym))]] or Si = [(s e t ! x (c a l l / c c f)) l =~
if e<[f]], b[[f]]> = <a, b'> e C
then $6q = (j ,

P + O~ d,

b'[p + ad/~zd}. . . IV + ad/[zn]],
e',
(i ,b,p,o),
p + a d,

r[k/o]>
w h e r e A a = ~(lambda (z l ' " z m) <zm+l ' "Zn> S j ' ") 1
and e ' = e[e l [y l l , b [y l]) / (I z z] ,p+ad)] . . .

[e <[ym]], b[[ym]]>/([zm]], p + ad>]

S i = [(s e t ! f (lambdaa (X l ' " X m) <Xm+l""Xn> "'"))1 =~
S~q = <Suee i,p,b,e[<a,b>/<[~],bH>],k,o,r>

Si ---- [(if x (go to m) (go to n)) 1 =~
S6q = (if e([xl ,b[xl) = true then m else n , p , b , e , k , o , r)

= [(r e t u r n x)] =:~
S6q = (Succj, p + aU, b',e[e([x~,b[x])/([yl, b'~y])],ro',o',r>
where Sj = I (s e t ! y -..)]],

a = Container i,
and k = {j, b', p', o')

Si = [(end) 1 :=~
S6q = q

Figure 45: The Semantic Funct ion $6

E 6 : Q --* Q -= Aq. Let q~ = ~q6q
in if ql = q then q else $6q t

Figure 46: The Semantic Funct ion $6

A N A L Y S I S A N D P A R A L L E L I Z A T I O N O F S C H E M E P R O G R A M S 301

as per Theorem 3, as follows:

N e t (p + Inv (p - p ')) = Ne t (p ' + ad(~u~u/3dad + a~/~u/~ d)
= N e t (p ' + flu/~d)
= Ne t pl

because A;~ is the procedure that applies)~, and thus pt fld.) The
important point is that such a re-activation is necessary to create a situation
in which Inv (p - P O ~ au at the point of re turn from As. We can formalize
this result as follows.

T h e o r e m 30 Let q = (i,p, b, e, k, o, r) be a state during evaluation under
E6, such that p ~ ~, where k = (j,b',p~,o~), and a = Conta iner i. Then
I n v (p - pl) = au.

P r o o f : By induction on the number of states in the evaluation sequence.
Let q be the first state during evaluation with a non-empty procedure string
p. We have therefore that p = a d for some c~ E A, and p~ = e. In this case
N e t (p - p') = old and Inv (p - p') = a~ trivially.

Now assume the theorem is true for sequences of fewer than n states, and
let q be the n th state during evaluation. If q results from an application of
)~, then p = p' + a d, N e t (p - p ') = a d, and Inv (p - p') = a u. Otherwise,
if)~a is active in q, and q results from the return from an instance of AZ,
then let p" be the procedure string of the state in which the application
of this instance of AZ occurs, and let p"~ be the procedure string of the
state immediately prior to q. By the definition of 86, p = p"~ + / ~ . By
induction, Inv(p '" - p ") = / j u , and therefore N e t (p " - p ") = fld. Likewise,
by induction, Inv (p" - p') = a u and therefore N e t (p " - p ') = a d. By the
choices of p, p', p", and p'",

N e t (p - p ')= Net ((p" - p') + (p " - p") + (p - p"'))
= N e t (N e t (p " - p') + Net (p" ' - p") + N e t (p - p" '))
= N e t (a d + ~d + / ~)

= N e t (o J)
~_ O~ d

and therefore I n v (p - pl) = a~. Otherwise (if q does not result from proce-
dure application or return) then no interprocedural movements take place
in the evaluation step that leads to q, and I n v (p - pl) = a u by induction.
[]

This result has enormous significance for the accuracy of our static anal-
ysis, because it implies that we may use a construct analogous to p +

302 WILLIAMS LUDWELL HARRISON III

Let i = (15,/~, @,]~, ÷}, i E N. Then $7 : N ~ ~b --~ Q is defined, according to
the form of Si, as follows.

Si= [(s e t ! x (f Y l ""Yn))] ~

$5 i t = UQ{Ai'. if i' # j
then _l_/.

else (~ G p',

(MOVeB?~')[Aa. { ~ } / [z l]] - . . [As. { e } / [z ,]] ,
Move$dp',
({i}, b,15),
÷[]~/ / Container i]}

where Aa = [(lambda (z l . - " Z m) <Zm+l" "'Zn> Sj "" ")],
p'= Absp(~d),

and d = em where do = @
and =WrEnv e =lN{4

(RdEnv @~Yl]((b[Yl])~I))
where [Yl] is bound by Aa~, 1 < 1 < m

where ~fl = <9,...)
and c' = (&,/~')

Figure 47: The Semantic Funct ion S7 (Part I)

(namely, 15 ® Absp(aU)) to model procedure return, in the absence of
c a l l / c c . In Figures 47, 48 and 49 are defined an abstract in terpreta t ion
(called £7) of the subset of £ t reated by g6, tha t makes use of this obser-
vation. The domains for $7 are exactly as for £5, and the correctness of £7
follows immediate ly from the correctness of g5 and Theorem 30. The anal-
ysis of side-effects and object lifetimes based upon $7 is more accurate in its
t r ea tment of upward movements than £5, for the reason tha t as an object
X moves upward (via a re turn from Aa) under 37, it is subject to the move-
ment Move X(Absp(c~U)), ra ther than the movement Move Z(Inv IY) (see
the meaning of a re turn form under £5, in Figure 36). Therefore the effect
of any inaccuracy which accumulates in 1~ under £5, is el iminated entirely
under gT, since Absp(a u) is (by Theorem 30) as accurate an abstract ion of
Inv(p - PO as possible, in the absence of c a l l / c c .

There is also a considerable simplification in the t rea tment of continu-

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 303

Si = [(set! f (lambdaa (Xl. . .xm) <Xm+l'"Xn > '"))] =~
STit = Ai'. if i' # Succ i

then ,L 2
else (15,

WrEnv ~[f] ((b[f])Z)(({a},/~), "L PrimOp, -i in t, "L Bool}

k,

where f is bound by AZ

Si = [(if x (goto m) (goto n)) 1
$7it = Ai'. i f /~t {m, n}

then _J_2
else

Si = ~(return x) 1 =~

$7it = Uo { Ai'. if i' # J
then -L~
else (/Y,

6',
MOVeE(WrEnv ~[y]((g'IyD~)(RdEnv ~lx]((b[x])a)))

Absp(v
~ ,

where y is bound by A~
and x is bound by As

w h e r e S j = [(se t ! y ...)1
and Container j =

where k = <j, b',p'>

Figure 48: The Semantic Function $7(Part II)

304 WILLIAMS LUDWELL HARRISON III

C7: Q --+ Q - ~ . Let q' = S ~

in if q' ___Q ~ then ~ else $7(~ UQ q')

Figure 49: The Semantic Functions $~ and C7

ations (/~) and restoration functions (/~) in ~7, which makes it yet more
accurate than E5. The justification for this simplification comes from the
following theorem.

T h e o r e m 31 Let qi = (i ,p , b, e, k, o, r) be a state during the evaluat ion of
E6 qo. Then

g e t (p - o) = ~.

P r o o f : By induction on i. If i = 0, then p = o = c trivially. Else,
suppose that the theorem holds for i < n, let i = n, and let qn+l =
(i~,p ~, b ~, c ~, k ~, d I. If qn+l results from a procedure application in state qn,
then p~ = o ~ and N e t (p - o) = ~. Else, if qn+l results from a re turn from
procedure ~ in state qn, then pl = p + ~u. Let qj = (in~p n, b II, c II, k ' , o n)
be the state in which the this instance of ~ was applied. Then

Net (p ' - o') = N e t ((p " + (p - p") + ~/u) _ o')

= N e t ((p " + N e t (p - p") + ~u) _ o')

= N e t ((p " + .yd + .y~) _ o')

since by Theorem 30, I n v (p - p ') = ~u. Therefore

N e t (p ' - o ') = N e t (p " - o ")

= N e t (p " - o ")

since o ~ and o" are equal to the birth date of the procedure instance to
which control returns in qn+l. Then, by induction,

N e t (p I - o ') = ~.

[]

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 305

Now consider the continuation k associated with a procedure instance.
Under E2, k is "saved" in a restoration map r 6 R, subjected to inter-
procedural movements during the computat ion that follows, and retrieved
whenever control returns to the procedure instance. The important point
is this: that whenever control returns to the procedure instance, the con-
t inuation k associated with that instance has undergone a net movement
given by Net(p - o), where p is the current procedure string and o is the
bir th date of the procedure instance. But under E6, Net(p - o) = e al-
ways, and so the net effect of the movement experienced by a continuation
(whenever the continuation is used) is empty. Since stack configurations
represent only Net movements, under $7 we therefore dispense entirely with
the use of Move K and Move R. The result is that C7 is more accurate than
$5 in its approximation to the continuations of a program. While this is
not important for the analysis of side-effects and object lifetimes, it may
be significant if we make use of the continuations directly, for example, to
construct an approximation to the procedure calling graphs that may be
described by the program's execution.

But alas, c a l l / c c and first, class continuations are firmly implanted in
the Scheme definition. Or are they? We might indulge in a moment 's wish-
ful thinking, and consider CPS (continuation passing style) conversion [5] as
a way out of our difficulties. When a program is rewri t ten in continuation
passing style, to its every lambda expression is added a parameter. The
value of this parameter is a closure of one argument, called the continua-
tion of the procedure. In lieu of its normal re turn sequence, the procedure
applies its continuation to the value it would return. For example, the
function f a c t is shown before and after CPS conversion, in Figure 2.16.
The converted function is invoked as (f a c t (lambda~ (x) x) 10). One
advantage of CPS conversion is that we may define c a l l / c c simply as

(lambda (k f) (f k k)) m

Continuation passing style would seem to be the solution! We may use
it to implement first-class continuations (that is, continuations created via
c a l l / c c) in terms of closures, and therefore analyze the resulting program
using g7 rather than g5-

To see what 's wrong with this, let's consider the procedure strings de-
scribed by the evaluation of (f a c t (lambda~ (x) x) 5), where f a c t is in
CPS, as per Figure 2.16. It is easy to see that when the top-level continu-

21This definition leaves a bit to be desired, as it does not permit f to be a continuation,
since we have said that continuations are procedures of one argument. We may remedy
this by making continuations procedures of two arguments, that simply ignore their first
argument.

306 WILLIAMS LUDWELL HARRISON III

(define fact (lambda (n)
(if (= n O)

1

(* n (f a c t (1- n))))))
(define fact (lambda~ (k n)

(if (= n O)
(k I)
(fact (lambdaz (m) (k (* n m)))

(i- n)))))

Figure 50: f a c t , Before and After CPS Conversion

ation (AT) is applied, the procedure string in effect is

In short, the evaluation of a program converted to CPS describes only
downward movements (until the top-level continuation is applied, and the
entire string unwinds). If, therefore, we were ever to ask if a variable could
be stack-allocated, the answer would always be yes, because to our analysis
it appears that once activated, a procedure remains active to the end of the
computat ion (and thus any variables it binds enjoy indefinite extent, even
though allocated on the stack). Likewise, our analysis of side-effects would
conclude that a reference to a variable instance ± induces a side-effect in
every procedure that is activated between the instantiation of ± and the
state in which the reference occurs, because each such procedure appears
to be active at the point of reference to i . This is to be expected, since the
means by which upward movements are introduced into procedure strings
(procedure return) is replaced by further procedure application in CPS.
Put another way, if we were to convert a program to CPS, and execute it
according to the operational semantics of procedure activation implicit in
our analysis framework, the program would continually allocate stack space
as it ran, while deallocating none. It would then be vacuous to observe that
all its variables could be stack-allocated. This is not an indictment of CPS;
it is simply to say that the model of procedure activation and deactivation
it assumes differs from that built into the semantics of procedure strings.

The upshot of this seems to be that a real price is paid, in the accuracy
of our compile-time analysis, for the power of c a l l / c c .

2.17 Env ironment P r u n i n g

There is a final improvement to both the accuracy and efficiency of the
abstract semantics that we will discuss only informally. In the absence of

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 307

c a l l / c c , it is possible to reduce the amount of information passed across
procedure boundaries (during the analysis) by the following observation.
When a procedure Aa is invoked by A~, hZ need transmit to the initial
state of execution within ha, only the values of those variable instances in
the environment prior to the application, that will be referenced during the
subcomputat ion initiated by the application. If hZ is the function (lambda
(x y) (+ x y)) , the only variable instances whose values are relevant are
the fresh instances of x and y; if, however, h~ is a more involved procedure,
which invokes yet further procedures, then an appreciable fraction of the
environment at the point of application may be needed during the subcom-
putation. We can be more precise about what variable instances might be
accessed during the subcomputation. Let ~ be the (abstract) closure of ha
that is applied by hZ, and let ± be an instance of a variable x, such that ±
is instantiated prior to the application of ~. If ± is to be accessed during
the subcomputat ion initiated by the application of ~, then it must either
occur free in ~, or in a closure that is accessible through a variable instance
that occurs free in ~, or in a closure that is accessible through a variable
instance that occurs free in a closure that is accessible through a variable
instance that occurs free in ~, etc. (This transitive dependence is the same
as that described by Theorem 6.) Let go be the (abstract) environment
that contains only bindings for the parameters to 5, and the free variable
instances captured by ~. go is a subset of the environment in effect when

is applied, extended with bindings for the parameters of ha; the variable
instances in the domain of go are therefore mapped to the values they have
at the commencement of execution within ~. Let gl be the environment
which is created by extending e~0 to include any variable instances that oc-
cur free within closures that are found among the values in e~0 . That is, if
~r has the closure c ~ as its value in e~0, and d has captured a free variable
instance ~., then ~ is added to gl, and is mapped to the value it has at the
point of application of ~. We continue generating environments di in this
way until no further extension is possible. (We are forming the transitive
closure of e~0, under the relation "occurs as a free variable instance in a
closure found in the environment".) It is easy to show that the resulting
environment (call it e~.) contains every variable instance whose value prior
to the application of ~ might be needed during the subcomputat ion initiated
by the application. This observation works both to improve the accuracy of
our static analysis, since it reduces the port ion of the environment at each
call that is subjected to the M o v e functions, and to reduce the expense of
analysis, assuming that the time spent to compute the transitive relation
described above is less than is spent manipulat ing an unnecessarily bulky
environment. Consider the example of (lambda (x y) (+ x y)) - admit-
tedly a trivial function. Assuming that x and y cannot take closures as their
values, g. will be quickly computed, and if this function is invoked from a

308 WILLIAMS LUDWELL HARRISON III

state with a large environment, an appreciable savings will be realized.

An analogous tr imming of the environment can be performed when a
procedure is deactivated. We observe that for a variable instance to persist
beyond the lifetime of a procedure instance, it must either occur free in the
caller of the procedure, or in a closure that is accessible to the caller, or in
a closure that is accessible from a closure that is accessible to the caller,
etc. To return again to our trivial example, instances of x and y cannot
persist beyond the deactivation of (lambda (x y) (+ x y)) , because they
cannot occur free in the caller, nor are they captured by any closures.

3 T h e A u t o m a t i c P a r a l l e l i z a t i o n o f S c h e m e P r o g r a m s

We have seen how interprocedural analysis is used in Parcel to assess the
dependence structure and object lifetimes of a Scheme program. In this
section we will see how the compiler puts this information to use in re-
structuring the program for execution on a shared-memory multiprocessor.
Our assumptions concerning the target architecture will be few: we will
envision it as a number of identical processors sharing a memory. In [3],
the individual transformations that are discussed below, were presented in
their technical details, in terms of the control flow and dependence graphs
that might be manipulated by a compiler. Here, the goal will instead be to
portray the compilation process in its entirety. We will proceed by following
several example programs, as they are subjected to the restructuring trans-
formations of Parcel, and we will concentrate upon the intuition underlying
each transformation, its contribution to the shaping of the program for ef-
ficient, parallel execution. The figures in the text below are produced by
Parcel, and are simply human-readable renderings of the compiler's data
structures, depicted at intervals during compilation, with the goal of pro-
viding "snapshots" of the restructuring process.

Quicksort seems an ideal algorithm with which to introduce the transfor-
mations performed by Parcel, for the reason that it is probably familiar to
the reader, it performs some simple but representative list manipulations,
and it includes a tail-recursive procedure that will serve to introduce Par-
cel's t reatment of iterative computation. It is necessary to see how iterative
computat ion is treated, before we can move to Parcel's t reatment of recur-
sive (not merely tail-recursive) computation. Parcel has been designed to
be an optimizing compiler for parallel shared memory architectures, and not
merely a compiler that detects parallelism; in the restructuring of quick-
sort, we will see a variety of transformations of which it is capable, that
contribute to the speed of the object codes it produces, but which are not
parallelizing transformations per se.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 309

(define sortby
(lambda (f i)

(if (null? i)
,()
(let

((1-and-r (splitby f (cdr l) (car l)
(append

(sortby f (car 1-and-r))
(list (car 1))
(sortby f (cdr 1-and-r)))))))

(define splitby
(lambda (f x partition left right)

(cond ((null? x) (cons left right))
((> (f partition) (f (car x)))
(splitby f (cdr x) partition

(cons (car x) left) right))
(#t
(splitby f (cdr x) partition

left (cons (car x) right))))))
(sortby id (read))

Figure 51: Quicksort

,() , ())))

3.1 The Program Representation

The compiler begins with the definition of quicksort given in Figure 51.
The algorithm consists of two procedures, s o r t b y and s p l i t b y , s o r t b y
takes a procedure f and a list l , and produces a sorted list. The procedure
f, when applied to an element' of l , is expected to return a number; this
value is used to compare the element to other elements of 1. If 1 is a list
of numbers, then the identity procedure may be used; in this example, it
is assumed that such is the list read from input (via read), and thus f is
given the value id (the identity procedure) by the top-level invocation of
so r tby , s p l i t b y divides a list x into two lists, l e f t and r i g h t , of those
elements less than the parti t ion element, and those greater than or equal
to the parti t ion element, respectively. The parameters l e f t and r i g h t are
initially null; at each recursive invocation of s p l i t b y , the first element of x
is added either to the head of l e f t or r i g h t , s o r t b y uses s p l i t b y to effect
one such division of l , using the first element of i as the partition. It then
applies itself recursively to the two resulting sublists, and concatenates the
sorted results, placing the parti t ion element between them.

Parcel treats a core subset of Scheme that includes only a handful of
special forms: lambda, de f i ne , cond, s e t ! , etc. All other special forms
that are visible to the user are provided as macros. The version of the
example program that is actually parsed by Parcel is therefore the macro-

310 WILLIAMS LUDWELL HARRISON III

(define sortby
(lambda (f l)

(cond
((null? i)

' ())
(#t

((lambda (1-and-r)
(append

(sortby f (car 1-and-r))
(list (car i))
(sortby f (cdr 1-and-r))))

(splitby f (cdr i) (car i) '() '()))
))))

(def ine s p l i t b y
(lambda (f x p a r t i t i o n l e f t r i g h t)

(cond
((null? x)

(cons left right))
((> (f partition) (f (car x)))

(splitby f (cdr x) partition
(cons (car x) left) right))

(#t
(splitby f (cdr x) partition

left (cons (car x) right))))))
(sortby id (read))

Figure 52: Quicksort Program, after Macro-Expansion

expanded version of Figure 52. Only a few changes have occurred in the
definition of sor tby : an i f form has been rewritten as a cond, and a l e t
has been expanded into a nested lambda expression, in the usual way.

From here, the compiler begins its work. It will first parse the program,
and rewrite it in a language similar to £, as defined in Section 2. See Fig-
ures 53 and 54. Alas, we have left the orderly world of Scheme syntax, and
entered the murky realm of compiler data structures made manifest by a
simple pretty-printer. There are four lambda expressions depicted in this
figure, and the compiler has named them $-$, $ - $ - s p l i t b y , $ -$ - so r t by ,
and $-$-sor tby-~. . There are two lambda expressions known to the com-
piler, that are not written explicitly by the user, but are part of every
program; these are called $ and $-$. $ is the outermost lambda expression,
by which, conceptually, the globally defined variables made available by
the system to the programmer, are bound. For example, car, cdr, append,
and c a l l / c c are bound by $. The action of $ is to apply $-$, which is the
lambda expression that represents the top level of the user's program, and
by which, conceptually, all of his top-level variables are bound. $ is not

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 311

depicted here, because it is boring and will remain so throughout compila-
tion. The compiler constructs the name $ - $ - s o r t b y - ~ by concatenation of
the name of the containing lambda expression ($ -$ - so r tby) with the suffix
-~, in the hope that the name will be suggestive of the lexical position of
the inner lambda expression.

There is, visible to the compiler but not to the user, an environment
which surrounds that of $, called the n i l environment. The environment
of $ and the n i l environment are identical, except that variables in the n i l
environment cannot be altered by the user program, while, for example,
the user may write (s e t ! ca r c a l l / c c) and affect the definition of car
that is used by his code (that is, the variable car bound by $). The n i l
environment simply permits the compiler to refer to top-level variables
without worrying that the user will clobber their values.

Consider the definition of $-$. The syntax

(lambda () <sortby splitby t-56 t-57> ...)

means that $-$ is a lambda expression of no arguments, that has four local
variables (sortby, splitby, t-56 and t-57). Its action is to form closures
of $-$-sortby and $-$-splitby, to call read to fetch a list of numbers,
to apply sortby to this list, and to return the result. The formation of
a closure of $-$-sortby will be denoted as #<$-$-sortby>, and likewise
for lambda expressions by other names. It makes for easier reading, if we
concentrate upon one lambda expression at a time, and summarize nested
ones in this way; the compiler, too, treats the program one lambda expres-
sion at a time. The closures of $-$-sortby and $-$-splitby are passed to
the procedure id before being assigned into a variable for the reason that
every expression treated by the compiler, through most of the restructuring
phase of compilation, is of the form (set! 1 (f a b ... c)) wherel, f,
a, b and c are variables, constants or closures, but not further applications
or special forms. The resemblance to the language /~ of Section 2 should
be clear.

Let us move on to $-$-splitby. It has a long list of local variables,
all compiler-generated temporaries. There are many intrinsic procedures
applied here (car, cdr, cons, >, null?), but at this point the compiler
does not know that such intrinsics are being applied; it sees only references
to variables bound by $, and as we mentioned, the user may modify such
variables. After parsing the program, the compiler launches into an inter-
procedural analysis based upon the techniques of Section 2, and after this
analysis, it will be aware that the variable car has the procedure car as
its value, at all points within $ - $ - s p l i t b y , and its representation of the
program will change to reflect this knowledge: the reference to the variable

312 WILLIAMS LUDWELL HARRISON III

($-$ =

(lambda ()
<sortby s p l i t b y t-56 t-57>
(set! sor tby (id #<$-$-sortby>))
(set! s p l i t b y (id #<$-$-spl i tby>))
(set! t-57 (read))
(set! t-56 (sortby id t-57))
(return t-56)))

($-$-splitby =
(lambda (f x partition left right)

<t-44 t-45 t-46 t-4T t-48 t-49 t-50 t-51 t-52 t -53 t-54 t-55>
(set! t-45 (nul l? x))
(cond

(t-45
(set! t-44 (cons l e f t r i g h t)))

(else
(set! t-47 (f partition))
(set! t-49 (car x))
(set! t-48 (f t-49))
(set! t-46 (> t-47 t -48))
(cond

(t-46
(set! t-50 (cdr x))
(set! t-52 (car x))
(set! t-51 (cons t-52 left))
(set! t-44 (splitby f t-50 partition t-51 right)))

(else
(set! t-53 (cdr x))
(set! t-55 (car x))
(set! t-54 (cons t-55 right))
(set! t-44 (splitby f t-53 partition left t-54))))))

(return t-44)))

Figure 53: The Initial Representation of Quicksort (Part 1)

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 313

($-$-sortby =
(lambda (f i)

<t-25 t-26 t-27 t-28 t-37 t-38>
(set! t-26 (null? i))
(cond

(t-26
(set! t-25 (id ~())))

(else
(set! t-27 (id #<$-$-sortby-~>))
(set! t-37 (cdr i))
(set! t-38 (car i))
(set! t-28 (splitby f t-37 t-38 '() '()))
(set! t-25 (t-27 t-28))))

(return t-25)))
($-$-sortby-~ =

(lambda (1-and-r)
<t-30 t-31 t-32 t-33 t-34 t-35 t-36>
(set ! t-34 (car 1-and-r))
(set! t-31 (sortby f t-34))
(set! t-35 (car i))
(set! t-32 (list t-35))
(set ! t-36 (cdr 1-and-r))
(set! t-33 (sortby f t-36))
(set! t-30 (append t-31 t-32 t-33))
(return t-30)))

Figure 54: The Initial Representation of Quicksort (Part 2)

314 WILLIAMS LUDWELL HARRISON III

car will be replaced by a reference to the "constant" (procedure) car. The
same applies to all applications of intrinsic procedures within the program.
Unfortunately, our printed representation of the compiler's data structures
will not reflect this fact, but we will be clear about the meaning of such
intrinsics when it is important to the discussion.

$ - $ - s o r t b y and $ - $ - s o r t b y - ~ are two procedures (and not one) only
because of the definition of l e t , and not because there is a compelling
reason for the computat ion to be divided, interprocedurally, in this way.
The recursive calls to $ - $ - s o r t b y occur within $ -$ - so r tby -~ . There are
several transformations within Parcel that apply only to self-recursive pro-
cedures (procedure that invoke themselves directly). An artificial procedure
boundary such as exists between $ - $ - s o r t b y and $ - $ - s o r t b y - ~ is an im-
pediment to such transformations. We will return to this momentarily.

The first action of the compiler, once having built a representation of
the source code, is to perform an interprocedural analysis based upon the
results of Section 2. Let us assume therefore, that the analysis has been
performed, and that for every expression of the program we have a def and
use set; that is, a set of mutable quantities that may be defined and used
as a result of evaluating the expressions. These sets will reflect both the
local (visible) and interprocedural (remote) side-effects of the expression.
(We are using side-effect here as per Definition 1.)

3.2 Preparatory Optimizations

Before restructuring the program for parallel execution, Parcel a t tempts
to reorganize the computat ion to facilitate the discovery of parallelism, and
to perform any traditional optimizations that are not at odds with the aim
of automatic parallelization. The goals of this preparatory restructuring
are straightforward: to eliminate spurious or artificial dependences, to en-
hance the visibility of the computat ion to the compiler, and generally to
reduce and simplify the code without introducing additional dependences.
From every procedure of the program, Parcel generates two versions: a se-
quential and a parallel (we will return to this). The preparatory phase of
optimization is designed to be consistent with both; therefore the version
of each procedure that emerges from this phase serves as the starting point
for further refinement into both the parallel and sequential versions.

This phase of optimization is organized as a battery of individual op-
timizations which are applied to the program repeatedly, until no further
improvements occur. This organization was chosen because the application
of one transformation may create conditions that enable another, and so
on; we wish to allow such propagation of transformations to occur until the
program stabilizes into a fixpoint. We have not a t tempted to demonstrate

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 315

($-$-sortby =
(lambda (f i)

<t-25 t-26 t-27 t-28 l-and-r t-30 t-31
t-32 t-33 t-34 t-35 t-36 t-37 t-38>

(set! t-26 (null? i))
(cond

(t-26
(set! t-25 '()))

(else
(set!
(set!
(set!
(set!
(set!
(set! t-31
(s e t ! t - 3 5
(set! t-32
(set! t-36
(set! t-33
(set! t-30
(set! t-25 t-30)

(return t-25)))

t-37 (cdr I))
t-38 (car I))
t-28 (splitby id t-37 t-38 ' ()
l-and-r t-28)
t-34 (car 1-and-r))

(sortby id t,-34))
(car I))
(list t-35))
(cdr 1-and-r))
(sortby id t-36))
(append t-31 t-32 t-33))

))

' ()))

Figure 55: $-$-sortby-~ is Merged into $ - $ - s o r t b y

formally that such a fixpoint must be reached, but it is not difficult to
reason informally about the interaction between transformations, and to
arrange for a monotonicity in their net effect upon the program.

3.2.1 Contour Merging

Whenever it is possible to do so without an increase in the program size,
Parcel expands procedures in-line. This means, in essence, that a closure
that is applied in only one place, is open-coded at that single point of ap-
plication, provided that the lexical environment at the point of application
contains all of the variable bindings that occur free in the closure. This op-
t imization is called contour merging, for the reason that it eliminates the
needless lexical contours that arise from the use of l e t , l e t * , l e t r e c and
other binding forms. As we will see, when it is applied more generally than
to the mere elimination of lexical contours, it is quite a powerful tool for
enhancing the visibility of computat ion to the compiler, and for allowing
optimizations to be applied to larger units of computation. It is easy to
formulate a general test for the legality of contour merging in terms of the

316 WILLIAMS LUDWELL HARRISON III

stack configurations computed during interprocedural analysis. Intuitively,
if each free variable of the closure makes no net (upward or downward)
movements with respect to the procedure that binds it, from the point
where it is bound to the point of application of the closure in which it
occurs free, and if the free variable is in the lexical scope at the point of
application, then the procedure may be expanded in-line at the point of ap-
plication, as all of its free variable references will be to the correct bindings.
When we say that a variable is "in the lexical scope" at a certain point, we
are ignoring the possibility that it is shadowed by another variable of the
same identifier. Parcel pays no attention to the identifiers associated with
variables once the program has been parsed: it considers a variable to be
in the lexical scope at a point in the program, if it is bound by a lambda
expression that surrounds that point, textually. In effect, all variables are
renamed to unique identifiers when the program is parsed.

To return to our example, Parcel discovers that the above condition ap-
plies (trivially) to the procedure $ - $ - so r t by -~ , and the procedure is ex-
panded in-line at the point of its application. See Figure 55. The compiler
has also applied dead code elimination, and so has deleted the formation of
the closure of $ -$ - so r t by -~ . That is, the definition of t - 2 7 in Figure 54
is discovered to be useless and is eliminated.

Let us be more formal about the condition under which contour merging
is correct, since it is a very useful transformation. Assume that we have
performed interprocedural analysis using C5 or E7 as defined in Section 2,
and let ~ be an (abstract) closure. Suppose that i is a free variable instance
in ~, and let 15 be the stack configuration that describes the movements
that ~ makes between the point at which it is instantiated, and a point
of application of ~. If 15a = {e} where x is bound by As (and if x is in
the lexical scope at the point of application), then the same instance of
x is visible at the points at which ~ is closed and applied. If this is true
of every free variable instance in ~, then it may be expanded in-line at
the point of application. Of course, the compiler must also determine that
there is but one lambda expression applied at this point. This information
is available directly from the results produced by £5 and ~7: an abstract
closure is represented as a set of lambda expression indices, and a function
from variables to stack configurations; if the former has only one member,
then it represents (concrete) closures of only one lambda expression.

There is a simple but important special case of this test: if ~ is closed at
the top level of the program, that is, directly within the lambda expression
$ or $-$, then all of its free variables will be bound by by $-$ or $, and we
will always have that 15a = {c} for every free variable x in 5. Therefore
can be in-lined at any point where it is applied.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 317

($-$-splitby =
(lambda (f x partition left right)

<t-44 t-45 t-46 t-47 t-48 t-49 t-50 t-51 t-52 t-53 t-54 t-55>
(exit-block

(repeat
(cond
(x

(set! t-48 (car x))
(set! t-46 (> partition t-48))
(cond

(t-46
(set! t-52 t-48)
(set! left (cons t-52 left)))

(else
(set! t-55 t-48)
(set! right (cons t-55 right))))

(set! x (cdr x)))
(else

(go 1-74:))))
(1-74: (set! t-44 (cons left right)) (return t-44)))))

Figure 56: Tail-Recursion is Eliminated from $-$-splitby

3.2.2 Tail-Recursion Elimination

We would like to see the procedure call to $-$-splitby within $ -$ - so r tby
disappear by contour merging, but it won't happen so easily, for $ - $ - s p l i t b y
is recursive, and therefore in-lining it at all its points of application would
be a (serious) violation of our rule against increasing the program size.
However, the compiler discovers that the procedure is tail-recursive, and
transforms it into a loop. See Figure 56. The syntax of this figure requires
some explanation. An expression of the form

(exit-block EXPR

(LI: A1 A2 " ')
(L 2 : B 1 B2 "")

(Ln: Zl Z 2 - ' -))

indicates that EXPR will contain branches (go forms) to the labels L1 through
Ln. When such a go form is evaluated, the expressions following the target
label are evaluated from left to right, and control leaves the e x i t - b l o c k
form. An expression of the form (repea t EXPR) indicates that EXPR is
evaluated repeatedly; the repetition ceases only by an explicit branch out
of the r epea t form.

318 WILLIAMS LUDWELL HARRISON III

We will return shortly to the conditions under which tail-recursion elimi-
nation is correct. The mechanics of the transformation once it is determined
to be applicable, are simple: each of the parameters is assigned the value
to which it would be bound on a tail-recursive call, and a branch is made
to the top of the procedure. Some temporary variables may be needed
to effect this updating of the parameters. The reader may have noticed
several subtle optimizations performed by the compiler in producing the
code of Figure 56. First, the naive translation of tail-recursion would have
produced some vacuous assignments to the effect of (s e t ! l e f t l e f t)
and (se t ! r i g h t r i g h t) , but these have been cleaned up following the
transformation. The danger of such an assignment, is that it may cre-
ate the appearance that l e f t or r i g h t is conditionally computed (within
an if-s tructure) , whereas its value is actually unchanged. In the case of
this procedure, no such spurious dependence would result, because l e f t
and r i g h t really a r e conditionally dependent upon t -46. In any event,
it seems prudent to delete useless code early, before it is transformed into
something that the compiler is unable to eliminate.

The second optimization that has been performed, is the "floating" of
the invariant expression (ca r 1) out of the inner cond expression. This
expression is computed along both paths of the cond form, and is therefore
not conditionally dependent upon t -46. Similarly, the expression (s e t ! x
(cdr x)) was found on both branches of the inner cond after tail~recursion
elimination, and was therefore floated out of the conditional block. The
variable t - 4 6 is dependent upon x (via t - 4 8 and p a r t i t i o n) . If we did
not float the expression (s e t ! x (cdr x)) out of the inner cond form, it
would appear that x was conversely dependent upon t -46. This additional
dependence would prevent the compiler from parallelizing the computat ion
of both the values of x and the values of t -46 , whereas we will see below
that, having performed this transformation, both of these computations
may be made parallel.

The conditional branch on t - 4 5 (the value of which was (n u l l ? x))
has been replaced by a conditional branch, with the logical sense reversed,
on the variable x. When it is considered that n u l l ? is, effectively, boolean
negation 22 this transformation is seen to be very simple. We emphasize that
this transformation is triggered not by an occurrence of the variable n u l l ? ,
the value of which can be overwritten by the user; rather, interprocedural
flow analysis has revealed that the intrinsic procedure n u l l ? is applied in
computing t -45. The outcome would have been the same if the user had
assigned the procedure n u l l ? into the variable c a l l / c c , and had written
(c a l l / c c x) as the exit condition.

22As of [41], the empty list and boolean false (#f) may be treated as indistinguishable
by an implementation of Scheme.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 319

(define fact (lambda (n k)
(if (= n O)

(k i)
(fact (i- n)

(lambda (m) (k (* m n)))))))

Figure 57: A Continuation-Passing Version of Factorial

Finally, the compiler has recognized that f has as its value the identity
procedure (id), and it therefore treats applications of f as simple (identity)
assignments, and eliminates them where they are superfluous. Assignments
of the form (s e t ! a b) in the printed representation of the compiler's data
structures are, internally, expressions of the form (se t ! a (id b)) , where
id represents not the identifier id but the procedure id (a constant). The
pretty-printer produces the simpler form, when it sees an application of the
identify begin.

Tail-recursion elimination, as we have described it, cannot be applied to
every procedure that is determined to be tail-recursive by the compiler. For
example, consider the familiar continuation-passing version of f a c t , shown
in Figure 57. This procedure is arguably tail-recursive, but it is incorrect to
rewrite it as a loop in which n is updated to have the value (1- n), and in
which k is repeatedly assigned to (exactly) the same closure: (lambda (m)
(k (* m n))) . The result would be an infinite loop for (f a c t x) where
x is greater than zero, because k would be made a recursive procedure
with no exit condition. The problem is obviously that variable binding and
assignment have meanings that are not, in general, interchangeable.

Under what conditions can tail-recursion elimination be performed? To
re-use the location to which a variable instance is bound, it must be that
the instance is no longer needed. Since we would re-use the locations asso-
ciated with the parameters and local variables of a procedure upon every
tail-recursive call to the procedure, we require that the lifetimes of these
variables be restricted to the time between the point at which the proce-
dure is invoked, and the point at which it invokes itself tail-recursively (or
returns). In other words, considering the procedure as a loop, we require
that the lifetimes of its bound variables be restricted to a single iteration
of the loop. As in the case of contour merging, this condition can be neatly
expressed in terms of the stack configurations computed by the interpro-
cedural analysis described in Section 2. The condition may be stated this
way: let As be the tail-recursive procedure under consideration, let ± be
an instance of a variable bound by As, and let 5 be an (abstract) closure
in which ± occurs free. Let 15 be the stack configuration that describes the
interprocedural movements made by ± from its point of instantiation to a

320 WILLIAMS LUDWELL HARRISON III

($ -$ - so r tby =
(lambda (f l)

<t-25 t -26 t -27 t -28 1-and- r t -30 t -31
t -32 t -33 t -34 t -35 t -36 t -37 t-38>

(cond
(1

(se t !
(set!
(set !
(set !
(set !
(set!
(set !
(set !
(set !
(set !

(else
(set !

(return

t-37 (cdr i))
t-38 (car i))
l-and-r (splitby id t-37 t-38 '()
t-34 (car 1-and-r))
t -31
t -35
t -32
t -36
t -33
t -25

(#self-closure# id t-34))
t-38)
(list t-35))
(pcdr 1-and-r))
(#self-closure# id t-36))
(append t-31 t-32 t-33))

t - 25 ' ())))
t - 2 5)))

' ()))

Figure 58: A Common Subexpression is Eliminated in $ - $ - s o r t b y

point at which it is referenced within 5. If ~a = {c}, then this reference
occurs while the instance of)~s that binds ± is still active, for otherwise,
by Theorem 21, iba would contain one of u, uu + or u+d +. Furthermore,
at the point of reference to ±, no additional instances of As are active (for
otherwise ~ba would contain one of d or dd +). If this condition holds for
all variables bound by As, and for every closure in which those variables
occur free, then we may perform tail-recursion elimination in confidence
that, at the point where they would be re-bound by a tail-recursive call,
the parameters and local variables of the tail-recursive procedure are dead
and may overwritten instead.

3.2.3 Common Subexpression Elimination

In Figure 55, the expression (car l) is computed into both t -38 and
t-35. The compiler remedies this by eliminating one of the computations,
and replacing references to t -35 by references to t -38. See Figure 58. This
leaves the identity assignment (se t ! t -35 t -38) which is eliminated by
forward substitution shortly.

The conditions under which common subexpression may be eliminated
are a bit slippery, and do not lend themselves as easily to specification in
terms of stack configurations. To be sure, the analysis of Section 2 permits

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 321

us to show easily that expressions have no side-effects, and this is a neces-
sary for common subexpression elimination. Unfortunately it is not suffi-
cient. Consider two occurrences of the expression (cons a b). Although
they are identical and have no side-effects (in the sense of Definition 1),
the semantics of eq? dictate that they remain as distinct applications of
cons, if it is possible that their results will be compared using eq?, or if
they might be updated using s e t - c a r ! or s e t - c d r ! . As another example,
consider the procedure

(define f (lambda (x) (lambda (y) (set! x (+ x y))))).

The procedure f (that is, the outer lambda expression) is side-effect free,
but two identical invocations of it must not be treated as common subex-
pressions, because they create distinct instances of x. The test for the
legality of common subexpression elimination must therefore include a cri-
terion for the "exact equivalence" of two subexpressions, that accounts for
such circumstances. In short, if the evaluation of a subexpression results in
the creation of new data objects, and the objects created in one evaluation
are discernible from those created in another evaluation, then to replace
several (lexical) instances of the expression with one is incorrect, even if
the expression is free of side-effects (by Definition 1).

The version of $ - $ - s o r t b y in Figure 58 has a few peculiarities. First, the
recursive calls to sortby have been replaced by the forms (# s e l f - c l o s u r e #
id t - 3 4) and (# s e l f - c l o s u r e # id t - 36) . As mentioned above, several
transformations performed by Parcel apply only to self-reeursive lambda
expressions: closures which make applications of themselves (the same
lambda expression, the same environment). We see, in the printed rep-
resentation of the compiler's data structures, the symbol # s e l f - c l o s u r e #
when it has discovered a recursive procedure invocation that satisfies these
conditions, and that occurs directly within the body of the procedure (not
within another, lexically contained, lambda expression). Such an appli-
cation may be considered when performing tail-recursion elimination, re-
cursion splitting (to be introduced below) and other transformations that
apply only to self-recursive procedures. The requirement that the recursive
application occur directly within the body of a procedure, and not within a
lexically contained procedure, increases the importance of contour merging.

The expression (cdr 1 -and- r) in Figure 55 has been rewritten as (pcdr
1 -and- r) in Figure 58. Parcel's run-time system makes use of some un-
usual list representations; we will return to this later. Among these rep-
resentations is one using which it is less costly to take the cdr of a list
that is known to be null-terminated (a proper list) than one which may be
non-null-terminated (an improper list). In this case, the compiler discov-

322 WILLIAMS LUDWELL HARRISON III

ers that l-and-r is always a proper list, since the variable right within
$-$-sortby is always a proper list, and it replaces the application of the
more general intrinsic procedure cdr with one of the intrinsic procedure
pcdr, that applies only to proper lists. This is, in effect, a reduction in
strength [i0].

3.2.3 More Contour Merging

Once it has rewritten the tail-recursive procedure $ - $ - s p l i t b y in itera-
tive form, the compiler is able to expand it in-line, at its point of application
within $ - $ - s o r t b y , for the reason that there is now but one application of
$ - $ - s p l i t b y in the program. See Figure 59.

We skip now to the version of the program that emerges from the prepara-
tory restructuring phase we have been discussing; this version is presented
in Figure 60. The benefits of iterative application of tail-recursion and con-
tour merging, among the other preparatory transformations, now become
apparent. First, the variable 1 -and- r , which previously held the cons cell
that paired the two sublists returned by $ - $ - s p l i t b y , is gone entirely.
The method of the compiler is apparent from Figure 59. The variable t - 4 4
is assigned the pair of l e f t and r i g h t , and this pair becomes the value
of 1 -and- r . Immediately afterwards, t - 3 4 is assigned the car and t - 3 6
the cdr of this pair. The compiler first replaces the right-hand sides of
these assignments by l e f t and r i g h t , respectively, and then discards the
assignment to l-and-r as dead code.

Finally, the temporaries t-52 and t-55, which were used in the iterative
computation of left and right, have been eliminated by forward substi-
tution. The result is a very clean organization of the quicksort algorithm,
that is ideal both for compilation into sequential form, and for further re-
structuring into parallel form. Parcel does just this: the version of the
program in Figure 60 is subjected to two distinct sets of transformations,
one of which leads to an optimized sequential version of the program, the
other which leads to an optimized parallel version. The run-time system
makes use of these two versions, so that additional parallel activity can be
created when the machine is underutilized, on the one hand, while allowing
each processor to execute an optimized, sequential version of the code when
adequate parallelism exists, on the other hand. We will follow the progress
of the program, as it is restructured by Parcel into parallel form.

3.3 Exit-Loop T r a n s l a t i o n

Parcel has two central algorithms for automatic parallelization: exit-loop
translation and recursion splitting. In fact, recursion splitting includes exit-
loop translation as a subalgorithm, as we will see when we consider another

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 323

($ - $ - s o r t b y =
(lambda (f i)

<t-25 1-and- r t -31 t -32 t -33 t -34 t -35 t -36 t -37 t -38
f x partition left right t-44 t-46 t-48 t-52 t-55>
(cond

(1
(set! t-37 (cdr i))
(set! t-38 (car I))
(set! fid)
(set! x t-37)
(set! partition t-38)
(set! left '())
(set! right '())
(exit-block

(repeat
(cond

(x
(set! t-48 (car x))
(set! t-46 (> partition t-48))
(cond

(t -46
(set! t-52 t-48)
(set! left (cons t-52 left)))

(else
(set! t-55 t-48)
(set! right (cons t -55 right))))

(set! x (cdr x)))
(else

(go 1-74:))))
(1-74:

(set! t-44 (cons left right))
(set! l-and-r t-44)
(set! t-34 (car 1-and-r))
(set! t-31 (#self-closure# id t-34))
(set! t-35 t-38)
(set! t-32 (list t-35))
(set! t-36 (pcdr 1-and-r))
(set! t-33 (#self-closure# id t-36))
(s e t ! t -25 (append t-S1 t-32 t-33)))))

(else
(se t ! t-25 ' ())))

(r e t u r n t -25)))

Figure 59: $ -$ - sp l i tby is Merged into $-$-sortby

324 WILLIAMS LUDWELL HARRISON III

($-$-sortby =
(lambda (f i)

<t-25 t-31 t-32 t-33 t-38 x left right t-46 t-48>
(cond

(l
(set! t-38 (car I))
(set! x (cdr i))
(set! left '())
(set! right '())
(exit-block

(repeat
(cond

(x
(s e t ! t -48 (car x))
(s e t ! t -46 (> t -38 t - 48))
(±f

t -46
(se t ! l e f t (cons t -48 l e f t))
(set! right (cons t-48 right)))

(set! x (cdr x)))
(else

(go 1-25:))))
(I-25:

(set! t-31 (#self-closure# id left))
(set! t-32 (list t-38))
(set! t-33 (#self-closure# id right))
(set! t-25 (append t-31 t-32 t-33)))))

(else
(se t ! t -25 ' ())))

(return t -25)))

Figure 60: The Quicksort Program, after Preparatory Transformations

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 325

example program, below. We concentrate first upon exit-loop translation.
These transformations are presented in [3] in terms of control flow graphs,
and the details of the transformations as described there differ substantially
from those that were ultimately implemented in Parcel, although the goals
of the transformations remain the same. During the compiler's develop-
ment, we discovered several ways in which these transformations could be
simplified and generalized, and in which the transformed programs could
be made more efficient. The changes in our approach will be apparent in
the stepwise evolution of the program depicted below.

3.3.1 Replacing Exits with Recurrences

We will restrict our attention to the procedure $ - $ - s o r t b y , as the pro-
cedure $-$ is uninteresting and is unaffected by further transformations.
$ - $ - s o r t b y (as of Figure 60) contains a loop derived from $ - $ - s p l i t b y .
This loop is like a Pascal whi le or r e p e a t structure, in that the number of
iterations to be performed is not known prior to execution of the loop, but
is rather determined by a condition computed in every iteration. In this
case, the exit condition is simply the variable x; when x becomes empty, the
loop is exited by a branch to L-25. In general, such a loop might contain
many branches which send control from the loop to various points in the
code that follows the loop. If we replace every such exiting branch by an
assignment to a boolean variable that indicates when the exit condition has
been satisfied, then the loop may be easily rewritten as a whi le loop. 23

See Figure 61. Again, there is some new syntax to explain. An expression
of the form

(do (i n) EXPR)

denotes a loop in which EXPR is evaluated n times, and i assumes the
values 0 to n-1 in successive iterations. That the number of iterations (n)
is replaced in Figure 61 by ?? indicates that the compiler is manipulating a
do loop for which there is, as yet, no expression for the number iterations.

The variable t - 5 9 is initialized to false (#f) before this loop begins, and
remains false until the original loop would have been exited. In place of
the exit branch from the loop, the compiler has written the expression

(set! t-59 (#or t-59 i-60)).

For the moment, assume that the operator #or simply returns its second
argument. We will explain its meaning more precisely below. The values
of t - 5 9 after every iteration of the loop describe a sequence of the form

23In general, we will have to record which branch was taken in exiting the loop, and
perform a multiway branch after the derived whi le loop is performed, to simulate the
action of exiting the original loop.

326 WILLIAMS LUDWELL HARRISON III

($-$-sortby =
(lambda (f I)

<t-25 t-31 t-32 t-33 t-38 x left right t-46 t-48 t-59 i-60>
(cond

(i
(set! t-38 (car I))
(set! x (cdr I))
(set! left '())
(set! right '())
(set! t-59 #f)
(do

(i-60 ?7)
(cond

(x
(set! t-48 (car x))
(set! t-46 (> t-38 t-48))
(if
t-46
(set! left (cons t-48 left))
(set! right (cons t-48 right)))

(set! x (cdr x)))
(else

(set! t-59 (#or t-59 i-60)))))
(set! t-31 (#self-closure# id left))
(set! t-32 (list t-38))
(set! t-33 (#self-closure# id right))
(set! t-28 (append t-31 t-32 t-33)))

(else
(set! t-25 '())))

(return t-28)))

Figure 61: Exit Branches are Eliminated from $ - $ - s o r t b y

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 327

#f, #f, ... #f, N

where there is one #f for every iteration that would be performed by the
loop of Figure 60. In short, exit-loop translation works by reorganizing the
computat ion such that the sequence of values assigned to t - 5 9 is computed
in parallel, and that the first non-#f value within this sequence is located,
also in parallel. This value is the number of iterations of the loop; call
this number N. It then reorganizes the rest of the loop (the portion of the
loop that has nothing to do with t -59) into a conventional do structure,
the number of iterations of which is N. This do loop is subjected to fur-
ther parallelizing transformations, that are applicable only to loops whose
number of iterations is computed prior to their execution.

Of course, the procedure of Figure 61 is not yet a legal translation of
$ - $ - s o r t b y , since the compiler has written a do loop for which the num-
ber of iterations is unknown. It must be remembered that these figures
provide windows into the restructuring process, and in the case of exit-
loop translation, the transformed loop must pass through some awkward
intermediate states before emerging as a finished product. We will try
to augment the printed representations of these intermediate states with
insight into their significance.

3.3. 2 Variable Expansion

The first thing to be done is to isolate the computat ion within the loop
that is relevant to the variable t -59; to do this in turn requires several steps.
The compiler first applies variable expansion [47, 3] to every variable that
is computed within the loop. Variable expansion, or scalar expansion as
it is usually called in the literature on vectorization of Fortran, is, roughly
speaking, a technique whereby N assignments to a single location replaced
by N assignments into a vector of length N. There are several reason for
such a transformation. First, if N processors are, ultimately, to compute
the N values assigned to a variable within a loop simultaneously, there must
be N memory locations into which they may write their results; variable
expansion provides these N locations, where there was merely one location
previously. Second, after this transformation, the value of a variable at
every point during the loop's execution will be recorded in a vector. We may
therefore break the transformed loop into one which contains the definitions
of the variable, and others which make use of the variable, since these uses
will have been replaced by references into the vector. We will see an example
of such a division of a loop, shortly.

See Figure 62. More explanations of syntax are due. The notation x [±. j]
indicates the value of the expanded variable x after the jth assignment
during the i th iteration of the loop. x [±. 0] is therefore the value of x before

328 WILLIAMS LUDWELL HARRISON III

($-$-sortby =
(lambda (f i)

<t-25 t-31 t-32 t-33 t-38 x left right t-46 t-48 t-59 i-60>
(cond

(i
(set! t-38 (car I))
(set! x (cdr i))
(set! left '())
(set! right '())
(set! t-59 #f)
(do (i-60 ??)

(cond
(x [i-60. O]

(set! t-48[i-60.i] (car x[i-60.O]))
(set! t-46[i-60.I] (> t-38 t-48[i-60.I]))
(cond

(t-46 [i-60. i]
(set! left [i-60.I]

(cons t-48 [i-60. I] left [i-60. O]))
(set

(else
(set

(set

right [i-60. i] right [i-60. O]))

right [i-60, I]
(cons t-48 [i-60. i] right [i-60. O]))
left [i-60.I] left [i-60.0])))

(se t ! x [i -60 .1] (cdr x [i - 6 0 . 0]))
(se t ! t - 5 9 [i - 6 0 . 1] t - 5 9 [i - 6 0 . 0]))

(else
(set! t-59[i-60.i] (#or t-59[i-60.0] i-60))
(set! x[i-60.1] x[i-60.O])
(set ! left [i-60. i] left [i-60. O])
(set! right[i-60.1] right[i-60.O]))))

(set! t-31 (#self-closure# id left))
(set! t-32 (list t-38))
(set ! t-33 (#self-closure# id right))
(set! t-25 (append t-31 t-32 t-33)))

(else
(set! t-25 '())))

(re tu rn t -25)))

Figure 62: Variables are Expanded in $ - $ - s o r t b y

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 329

any assignments occur to it, during the i th iteration. In general, along some
path through the body of a loop there may be several assignments (say, k of
them) to a variable. Parcel arranges, by an algorithm described in [3], that
the number of assignments to an expanded variable be equal along every
path through the body of the loop. For example, identity assignments of
the form

(set ! right [i-60. I] right [i-60. O])

and

(set! left [i-60.I] left [i-60.0])

have been added to the loop in Figure 62 in order that there be one assign-
ment to l e f t , and one to r i g h t , on every path through the body of the
loop. Therefore x [i + l . 0] refers to the same position within the expanded
variable x as x [i . k], where k is the number of assignments to x along every
path through the transformed loop. That is, the value of x after the last
assignment to it in iteration i, is the same as its starting value in iteration
i+ l . There are several actions which must be taken by the code, in order
to complete the process of variable expansion. First, the vectors into which
the variables have been expanded must be allocated, and the first locations
of these vectors must be assigned the initial value of the variables, prior to
the execution of the loop. Second, after the loop has executed, the variable
must be assigned the value of the last position of the vector (to give it the
final value it would have had after the original loop). Some of these actions
may not be necessary for a particular variable; for instance, a variable may
be unused after the loop terminates. The code to perform these actions has
not yet been added to the procedure, but will be below.

The reader might well ask how we plan to allocate these expanded vari-
ables (vectors) as contiguous blocks of storage, when we don't yet know
how many iterations the loop has, and we therefore don't know how long
the vector should be. Furthermore, it seems that there is a nasty circularity
here: we need to know N to allocate these vectors in order that N may be
computed. Clearly, we have some more rewriting to do~ before we arrive at
a sensible translation of the original loop.

3.3.3 Loop Distribution

Consider Figure 63. The do loop of Figure 62 has been broken into
six loops, each of which computes the values of only one of the variables
computed in the original loop. This technique is called loop distribution
or loop fission [47, 3]. In this transformation, variable expansion acts to
record all the values that are assumed by a variable during the loop, so that

330 WILLIAMS LUDWELL HARRISON III

($ -$ - so r tby =
(lambda (f 1)

<t-25 t -31 t -32 t -33 t -38 x l e f t r i g h t t -46 t -48 t -59 1-60>
(c end

(1
(se t ! t -38 (car 1))
(set! x (cdr I))
(set! left ' ())
(set! right '())
(set! t-59 #f)
(do (i -60 77)

(if x [i-60.0]
(set! x[i-60.1] (cdr x[i-60.O]))
(set! x[i-60.1] x[i-60.O])))

(do (i-60 ??)
(if x[i-60.O] (set! t-48[i-60.I] (car x[i-60.O]))))

(do (i-60 ??)
(if x[i-60.O] (set! t-46[i-60.I] (> t-38 t-48[i-60.I]))))

(do (i-60 77)
(if x [i-60.0]

(i f t - 4 6 [i - 6 0 . 1]
(set ! left [i-60. i] (cons t-48[i-60, i] left [i-60.0]))
(set! left[i-60.1] left[i-60.O]))

(set! left[i-60.1] left[i-60.O])))
(do (i-60 ??)

(if x [i-60.0]
(if t-46 [i-60. I]

(set ! right [i-60.1] right [i-60.0])
(set! right[i-60.1] (cons t-48[i-60.I] right[i-60.O])))

(set ! right [i-60. I] right [i-60. O])))
(do (i-60 ??)

(if x [i-60.0]
(set! t-59[i-60.I] t-59[i-60.0])
(set! t-59[i-60.I] (#or t-59[i-60.0] i-60))))

(set! t-31 (#self-closure# id left))
(set! t-32 (list t-38))
(set! t-33 (#self-closure# id right))
(set! t-25 (append t-31 t-32 t-33)))

(else
(set! t-25 ' ())))

(r e t u r n t -25)))

Figure 63: Loops are Distributed in $ - $ - s o r t b y

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 331

the computation of those values may be isolated from other computation
in the loop (that may make use of these values).

3.3.4 Reordering the Subloops

We mentioned above that the goal of exit-loop translation is to extract
that portion of the loop that is pertinent to the computation of its exit
condition, so that we might determine the number of iterations of the loop.
In the case of our example, this may be restated as the portion of the loop
that is pertinent to the computation of t -59. The compiler determines
which of the loops created by distribution are relevant to the computation
of t -59, by reordering them such that the one in which t -59 is computed
is preceded by as few others as possible, respecting the dependences among
variables, of course. Those which remain above that in which t -59 is
computed, belong to the computation of the exit condition. See Figure 64.
In this case, it would appear that only the loops in which x and t -59 are
computed are relevant to the exit condition of the loop.

3.3.5 Eliminating Unused Computation

In forming the loop of Figure 61, the compiler replaces each branch from
the loop by an an assignment to t-59; after this assignment, control flows
directly to the bottom of the loop. This adds a control path to the loop
body, of course, and when variable expansion is applied, identity assign-
ments are added along this path. However, the computation along these
(former) exit paths is useless, except in the case of t -59, and must be elim-
inated. See Figure 65. In each case, this leaves us with a conditional node
(a branch on x [i -60 .0]) one of whose outgoing edges has been deleted.
The compiler is quick to recognize this as dead code and eliminate it. We
may view this transformation in the following way: the loop in which x is
computed, for example, is meaningful only for t -59 iterations, whatever
t -59 turns out to be; we are not interested in the loop's behavior after the
first t -59 iterations are performed. However, by the very definition of t -59
(the iteration number in which the exit condition is first satisfied, where
iterations are counted from 0), it is impossible for the variable x to become
false (that is, for the exit condition to be satisfied) during the first t -59
iterations. Therefore, for the meaningful iterations of the loop in which x is
computed, the branch on x and the identity assignment (se t ! x [i - 6 0 . 1]
x [i -60 .0]) are inert, they contribute nothing and may be eliminated. In-
deed, they must be eliminated if the compiler is to recognize the recurrence
described by x, for otherwise the computation of x appears to have a com-
plex dependence structure.

The compiler has added an index variable and number of iterations to
each of the loops that follows that in which t -59 is computed. The number

332 WILLIAMS LUDWELL HARRISON III

($-$-sortby =
(lambda (f i)

<t-25 t-31 t-32 t-33 t-38 x left right t-46 t-48 t-59 i-60>
(cond

(i
(set! t-38 (car i))
(set! x (cdr I))
(set! left '())
(set! right '())
(set) t-59 #f)
(do (i-60 ??)

(i f x [i -60.0]
(se t ! x[i -60 .1] (cdr x[i -60 .O]))
(se t ! x[i -60.1] x [i - 6 0 . 0])))

(do (i-60 ??)
(if x[i-6o.0]

(set! t-59[i-60.i] t-59[i-60.0])
(set! t-59[i-60.I] (#or t-59[i-60.0] i-60))))

(do (i-60 ??)
(if x[i-60.O] (set! t -48[i -60 .1] (car x [i -60 .O]))))

(do (i-60 ??)
(if x[i-60.O] (set! t-46[i-60.i] (> t-38 t-48[i-60.i]))))

(do (i-S0 ??)
(if x [i-60.0]

(if t -46 [i-60. I]
(set! left[i-60.1] (cons t-48[i-60.I] left[i-60.O]))
(set! left[i-60.1] left[i-60.O]))

(set! left[i-60.1] left[i-60.O])))
(do (i-60 ??)

(i f x [i-60.0]
(if t -46[i -60 , i]

(set ! right [i-60. i] right [i-60.0])
(set ! right [i-60. I] (cons t-48[i-60, i] right [i-60.0])))

(set ! right [i-60. I] right [i-60. O])))
(set! t-31 (#self-closure# id left))
(set! t-32 (list t-38))
(set! t-33 (#self-closure# id right))
(set! t-25 (append t-31 t-32 t-33)))

(else
(set! t-25 '())))

(return t-25)))

Figure 64: Distributed Loops are Reordered in $ - $ - s o r t b y

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 333

($-$-sortby =
(lambda (f i)

< t-25 t-31 t-32 t-33 t-38 x left right
t-46 t-48 t-59 i-60 i-61 i-62 i-63 i-64 >

(cond
(z

(set! t-38 (car i))
(set! x (cdr i))
(set! left '())
(set! right J())
(set! t-59 #f)
(do (i-60 ??) (set! x[i-60.1] (cdr x[i-60.O])))
(do (i-60 77)

(if x [i-60.0]
(set! t-89[i-60.1] t-59[i-60.0])
(set! t-69[i-60.I] (#or t-59[i-60.0] i-60))))

(do (i-61 t-89) (set! t-48[i-61.1] (car x[i-61.O])))
(do (i-62 t-59) (set! t-46[i-62.1] (> t-38 t-48[i-62.1])))
(do (i-63 t-69)

(if t-46[i-63, i]
(set ! left [i-63. I]

(cons t-48 [i-63.1] left [i-63. O]))
(set! left[i-63.1] left[i-63.0])))

(do (i-64 t-59)
(if t-46[i-64, i]

(set ! right [i-64. i] right [i-64.0])
(set ! right [i-64. i]

(cons t-48 [i-64. I] right [i-64. O]))))
(set ! t-31 (#self-closure# id left))
(set! t-32 (list t-38))
(set ! t-33 (#self-closure# id right))
(set! t-28 (append t-31 t-32 t-33)))

(else
(set! t - 2 5 '())))

(return t-25)))

Figure 65: Exit Path Computations are Eliminated in $ -$ - so r tby

334 WILLIAMS LUDWELL HARRISON III

of iterations is given as t - 5 9 itself. A distinct index variable has been given
to each of these do loops, in order that there be no artificial dependences
between the loops, that would prevent several of them from being executed
simultaneously.

3.3. 6 The Parallel Computation of the Number of Iterations

Granted, that Figure 65 does not appear to be a legal translation of the
original procedure $ -$ - so r tby ; we have interrupted the compiler while in
the midst of performing a lengthy transformation. Still, the procedure at
this point has a clear intuitive meaning, that gives insight into the generality
of exit-loop translation. Consider for a moment only the first two do loops
of Figure 65, and suppose that we ignore that they are written as do loops,
but think of them as signifying the following computation. Let x [0 .0]
have the initial value of x (that is, the value of (cdr 1), as per the figure),
and let t - 5 9 [0 . 0] have the initial value of t - 5 9 (#f, as per the figure).
Given x [0 .0] , we may perform one iteration of the loop that computes
t -59; this will give a value for t - 5 9 [0.1] (and recall that t - 5 9 [0.1] and
t - 5 9 [1.0] refer to the same vector element). Then t - 5 9 [0. t] is either #f
(if x [0.0] is non-null) or 0 (if x [0.0] is null). Assuming x [0.0] is non-
null, we may then execute one iteration of the loop in which x is computed.
This gives us a value for x [1 .0] , and we may again perform an iteration
of the loop in which t - 5 9 is computed. Once again, the outcome will be
either that t - 5 9 [1.1] is #f (if x [1.0] is non-null) or 1 (if x [1.0J is null).
We may repeat this indefinitely, until a numeric value is obtained for some
t -59[N. 1]; this value will be N itself, the iteration number in which the
exit condition is first satisfied.

As we have described it, this process is very sequential. A simple observa-
tion, however, leads straightforwardly to its parallelization. The sequence
x [0 .0] , x [1 .0] , ..., is a simple recurrence relation whose terms may be
computed in parallel with good speedup, depending upon the representa-
tion that s-expressions are given in memory. The i th term of this sequence
is given by

x [i . 0] = (l i s t - t a i l x [0 .0] i) ,

and the computat ion of these terms can be made quite parallel; in effect,
we can compute an application of l i s t - t a i l in constant or near-constant
time, given the proper representation of x in memory. We will return
to this. Likewise, given the sequence x [0 .0] , x [1 .0] , ..., the sequence
t - 5 9 [0 .0] , t - 5 9 [1 .0] , ..., is also a simple recurrence relation, a variation
on the first-one problem of finding the first one in a boolean string, the
terms of which can be computed in parallel with good speedup. We may
modify our interpretation of the first two loops in Figure 65, then, by

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 335

viewing them instead as describing the following computation: first,/c terms
of the sequence x [0 .0] , x [1 .0] , ... are computed in parallel. Using these
k terms, we compute k terms of the sequence t - 5 9 [0 .0] , t - 5 9 [1 . 0] ,
We then examine the t - 5 9 terms to see if there is a non-null term among
them, and to find the leftmost such term, if so. If there is such a term,
the number of iterations of the original loop has been discovered, and we
are done. Otherwise, we repeat the process by computing k more x terms,
and k more t - 5 9 terms, and so on until the number of iterations has been
found.

At last, we may explain the meaning of #or: it is a a binary operator,
defined by the following four equations:

(#or #f #f) = #f

(# o r # f j) = j
(#or i #f) = i
(#or i j) = i.

Assume that i and j are integers. Then #or takes two arguments which
are either boolean or integer values, and returns either a boolean or integer
value. It is easily verified that this operator is associative. If we reduce a
vector of boolean and integer values using this operator, it will return the
leftmost integer found within the vector, or #f if none is found. In short,
this operator is used by parallel prefix [32], to reduce a vector (t -59 in our
example) of boolean and integer values, in order that the least iteration for
which the exit condition is satisfied may be found in parallel. The somewhat
laborious details of the computat ion of the number of iterations using this
technique are given in [3]. In the example before us, the compiler will
be able to produce a closed-form expression for the number of iterations;
but were it necessary to compute this number through the use of #or,
the recurrence would be restructured and rewritten in parallel form by the
compiler in a later phase. We will see several examples of such restructuring
of recurrences, for parallel solution, momentarily.

This, then, is the mechanism underlying exit-loop translation. It de-
pends, in this case, upon x describing a recurrence relation with a parallel
solution. In general, Parcel requires of a variable that contributes to the
exit condition of the loop, either that it describe such a recurrence relation,
or a computat ion with even simpler dependences. For example, each of the
terms x [0 .1] , x [1 .1] , etc., might be the return value of another proce-
dure, which is determined by interprocedural analysis to be side-effect free.
This requirement is imposed, not because it is impossible to give a legal
translation to the loop if, for example, the terms of x had to be computed
sequentially; but rather as a heuristic intended to prevent the generation
of an inefficient restructured version of the loop that contains too little

336 WILLIAMS LUDWELL HARRISON III

parallelism to recover the expense of expanded variables, distributed loop
control, etc., in the computat ion of the number of iterations. The phi-
losophy embodied in Parcel is that if a loop or procedure is resistant to
automatic parallelization, it is better to hope for more natural parallelism
in the procedures that call, and are called by, the resistant computation,
than to force the issue.

There are several important observations to be made at this point. First,
as part of the process of computing t -59 , the intermediate values of x are
computed and saved; they need not be recomputed when they are used
in the loops which follow the computat ion of the number of iterations,
and thus the parallelism introduced by this technique entails very little
redundant computation. Second, in some cases, and the example before us
is such a case, the recurrence relation that defines the number of iterations
of the loop has a closed-form solution. In this case, the solution is simply
t -59 = (l e n g t h x). As we will see momentarily, this fact is not lost to
Parcel.

3.3. 7 Marking Doalls and Recurrences

See Figure 66. In the next several figures, the compiler will make each of
the observations that we have mentioned in the above paragraphs. First, it
marks the loop in which x is computed as an induction sequence (a simple
recurrence in which the i th term has a closed-form solution in terms of i and
the value x [0.0]), and the loop in which t - 5 9 is computed as a recurrence
relation (as mentioned above, a simple variation on the boolean first-one
recurrence). The names d o - i n d u c t i o n and d o - r e c u r r e n c e indicate this
discovery. Since each of the loops that contributes to the computat ion
of the number of iterations can be made parallel, exit-loop translation has
succeeded. It remains only to rewrite the computat ion of t - 5 9 in as efficient
a form as possible, and to continue with the parallelization and optimization
of the rest of the procedure.

3.3.8 Closed-Form Solution for the Number of Iterations

See Figure 67. Simple induction sequences over s-expressions and inte-
gers, such as that described here by x, are recognized by Parcel, because
they occur so frequently, and can be solved in closed form much more effi-
ciently than by the k-terms-at-a-time approach described above. The com-
piler has simply written (s e t ! t - 5 9 (l e n g t h x)) , and the loop in which
t - 5 9 was computed has disappeared. The loop in which x is computed is
needed by other loops in this figure, and cannot be deleted; it is rewritten
to have t - 5 9 as its number of iterations. There is some dead code in the
figure, that will be eliminated shortly.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 337

(set)
(set)
(set!
(set)
(set!
(set)

(else

($-$-sortby =
(lambda (f I)

< t-25 t-31 t-S2 t-3S t-S8 x left right t-46
t-48 t-59 i-60 i-61 i-62 i-63 i-64 t-65 t-66 >

(cond
(i

(se t ! t-38 (car 1))
(se t ! X (cdr i))
(set) left '())
(set! right '())
(set! t-59 #f)
(do-induction (i-60 ??) (set! x[i-60.1] (car x[i-60.O])))
(do-recurrence

(i-60 ??)
(if x [i-60.0]

(set! t-59[i-60.I] t-59[i-60.0])
(set! t-59[i-60.I] (#or t-59[i-60.0] i-60))))

(doall (i-61 t-59) (set! t-48[i-61.1] (car x[i-61.O])))
(doall (i-62 t-59) (set! t-46[i-62.1] (> t-38 t-48[i-62.1])))
(do-rem-recurrence

(i-63 t -59)
(i f t -46[i -63 .1]

(se t ! t -65[i -63 .1] (cons t -48[i -63 .1] t - 6 5 [i - 6 3 . 0]))
(se t) t -65[i -63 .1] t - 6 5 [i - 6 3 . 0])))

(do-rem-recurrence
(i -64 t -59)
(if t-46 [i-64. I]

(set) t-66 [i-64.1] t-66 [i-64.0])
(set) t-66[i-64.1] (cons t-48[i-64.1] t-66[i-64.0]))))
right (append2 right t-66))
left (append2 left t-65))
t-S1 (#self-closure# id left))
t-32 (list t-38))
t-33 (#self-closure# id right))
t-25 (append t-31 t-32 t-33)))

(se t ! t-25 ' ())))
(re turn t-25)))

Figure 66: Recurrences and Parallel Loops are Identified in $-$-sortby

338 WILLIAMS LUDWELL HARRISON III

($ - $ - s o r t b y =
(lambda (f 1)

< t - 2 5 t - 3 1 t - 3 2 t - 3 3 t - 3 8 x l e f t r i g h t t - 4 6
t - 4 8 t - 5 9 i - 6 0 i -61 i -62 i - 6 3 i - 6 4 t - 6 5 t - 6 6 i - 6 7 >

(cond
(1

(s e t ! t - 3 8 (c a r 1))
(s e t ! x (cdr 1))
(set! left '())
(set! right '())
(s e t ! t - 5 9 #f)
(s e t ! t - 5 9 (l e n g t h x))
(d o - i n d u c t i o n (i - 6 7 t - 5 9) (s e t ! x [i - 6 7 . 1] (cdr x [i - 6 7 . 0])))
(d o a l l (i - 6 1 t - 5 9) (s e t ! t - 4 8 [i - 6 1 . 1] (c a r x [i - 6 1 . 0])))
(doall (i-62 t-59) (set! t-46[i-62.1]

(> t-38 t-48 [i-62. I])))
(do-rem-recurrence (i-63 t-59)

(if t-46[i-63, i]
(set! t-65[i-63.1] (cons t-48[i-63.1] t-65[i-63.0]))
(set ! t-65 [i-63. I] t-65 [i-63. O])))

(do-rem-recurrence (i-64 t-59)
(if t-46[i-64. I]

(set! t-66[i-64.1] t-66[i-64.0])
(set! t-66[i-64.1] (cons t-48[i-64.1] t-66[i-64.0])))

(set! right (append2 right t-66))
(set! left (append2 left t-65))
(set! t-31 (#self-closure# id left))
(set! t-32 (list t-38))
(set ! t-33 (#self-closure# id right))
(set! t-25 (append t-31 t-32 t-33)))

(else
(set! t-25 '())))

(return t-25)))

Figure 67: A C l o s e d - F o r m Solut ion for t - 5 9 is F o u n d

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 339

3.3.9 Restructuring the Recurrences

Let us return to Figure 66 to consider the computat ion of the variables
t -48 , t -46 , l e f t , and r i g h t . The loop in which t - 4 8 is computed requires
little explanation; its iterations are independent of one another, and so the
compiler has marked it as a d o a l l loop, so that its iterations may be
executed simultaneously. The same is true of the loop in which t - 4 6 is
computed.

The loops in which left and right are computed have been rewritten,
using t - 6 5 and and t - 6 6 instead of l e f t and r i g h t , respectively. They
are called d o - r e i n - r e c u r r e n c e loops for the purposes of displaying the
compiler's view of them, because they describe recurrence relations with
parallel solutions, whose remote terms are the only terms that are needed.
The remote term of the sequence l e f t [0 .0] , l e f t [1 .0] , ..., l e f t IN. 0]
is the final term, l e f t [N.0]. The procedure has been rewritten in this
way, so that in the event that the original loop had been surrounded by
other loops, the recurrences described by l e f t and r i g h t would be par-
allelized at several of these nest levels, and not merely at the innermost
level. Consider, for example, the assignment (set! left (append2 left
t - 65)). (append2 is simply a special case of append that takes exactly two
arguments.) If this assignment appeared inside yet another do loop that
surrounded all of Figure 66, then the compiler would distribute loop control
around the assignment, isolating it from the rest of the outer do loop, and
the recurrence relation it defines would be given a parallel translation as
well.

Now consider Figure 68. The loop in which t - 6 5 is computed has been
rewritten, so that it now places either t - 4 8 [i . 1] or the constant #? into
the i th position of t -65 , depending upon the value of t - 6 4 [i . 1] ; the loop
in which t - 6 6 is computed is rewritten similarly. Intuitively, if a cell was
added to l e f t in the i th iteration of the original loop, the the ca r of this
cell is placed in t - 6 5 [i . 1], and the marker #? is placed in t - 6 5 [i . 1]
otherwise. The procedure cons - r em- rec takes two arguments: an input
vector and an output vector, which may be the same. It expects its input
vector to be filled with legitimate values and #? markers, as are t - 6 5
and t -66 , and it produces a list of only the non-#? values, in the reverse
order of their occurrence in the input vector. This list is pointed to by the
last position of the output vector, which represents the remote term of the
recurrence being solved. The procedure works in parallel, and is part of
the Parcel run-time library. Its workings are described in [3].

The loop in which x was computed in Figure 67 has been replaced by
a call to the routine c d r - i n d . This procedure takes a vector v, the first
position of which is assumed to point to a list, and and integer, call it k.

340 WILLIAMS LUDWELL HARRISON III

($-$-sortby =
(lambda (f 1)

< t-25 t-S1 t-32 t-33 t-38 x left right t-46 t-48
t-59 i-60 i-61 i-62 i-63 i-64 t-65 t-66 i-67 >

(cond
(1

(set !
(set !
(set!
(set !
(set !
(set !
(set!
(set !
(set !

t-38 (car 1))
x (cdr 1))
l e f t ' ())
r ight ' ())
t -59 (length x))
x (a l locate x t -59))
t-46 (a l locate #f t -59))
t-48 (a l locate #f t -59))
t-65 (a l locate #f t -59))

(set! t-66 (a l locate #f t -59))
(cdr-ind x 1)
(doall (i-61 t-59)

(set! t -48[i -61 .1] (car x [i -61 .0]))
(set! t -46[i -61 .1] (> t-38 t - 48 [i -61 .1])))

(deal1 (i-63 t-59)
(i f t -46[i -63 .1]

(set! t -65[i -63 .1] t-48[i-63.1])
(set! t -65[i -63 .1] #?)))

(cons-rem-rec t-65 t-65)
(doall (i-64 t-59)

(i f t-46 [i-64.1]
(set! t -66[i -64 .1] #?)
(set ! t-66 [i-64.1] t-48 [i-64.1])))

(cons-rem-rec t-66 t-66)
(set! t-66 (restore t-66 t -59))
(set! t-65 (restore t-65 t-59))
(set! r ight (append2 r ight t -66))
(set! l e f t (append2 l e f t t -65))
(set! t-31 (#self -c losure# id l e f t))
(set! t-32 (l i s t t -38))
(set! t-33 (#self -c losure# id r igh t))
(set! t-25 (append t-31 t-32 t-33)))

(else
(set! t-25 '())))

(return t-25)))

Figure 68: Recurrences are Res t ructured for Parallel Execut ion

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 341

Upon return, the i th position of the vector points to (cdikr v [0 .0]), the
i k th cell of v [0 .0] . The length of the vector v, and not the length of the
list v [0 .0] , determines the number of terms of the induction sequence to
be computed.

3.3.10 Allocating and Initializing Expanded Variables

The procedures a l l o c a t e and r e s t o r e perform the initial and final ac-
tions, respectively, upon an expanded variable, a l l o c a t e takes two argu-
ments: an initial value (the value to be given to x [0 .0] , where x is the
expanded variable; in other words, the value of x prior to the loop in which
x is expanded), and the number N of iterations of the loop in which x is
expanded. Recall that Parcel adds identity assignments as needed, to in-
sure that the number of assignments to a variable x is invariant over all
paths through the loop, when it expands x in a loop. Let this number of
assignments be W. a l l o c a t e creates a vector of length NW+I locations on the
run-time stack to hold the values of x at all points during the loop's execu-
tion. There are NW+I locations because there is one initial value (x [0.0]),
and W values per each of N iterations, a l l o c a t e then assigns to x [0.0] the
value of its first argument, r e s t o r e simply returns the value of the final
position of x (x [N.0] or, equivalently, x [N-1 .W]); its arguments are x and
N. The value of W is a compile-time constant; a l l o c a t e and r e s t o r e are
compiled in-line at code generation, and the value of W is built directly into
the code that is emitted.

3.3.11 Loop Fusion

The version of $ - $ - s o r t b y in Figure 68 is, at last, a complete and legal
translation of the original $ - $ - s o r t b y in Figure 54.

The final parallel version of $ - $ - s o r t b y is given in Figure 69. In order
to reduce the overhead of starting and stopping parallel loops, the compiler
has fused the loop in which t - 4 8 is computed with that in which t - 4 6 is
computed. The loops in which t - 6 5 and t - 6 5 are computed should be
similarly fused, but Parcel uses a naive "undistribution" algorithm, and
applies it only to loops which are unaltered from the form they had im-
mediately prior to distribution, whereas the loops in which t - 6 5 and t - 6 6
are computed have been derived from the loops in which the variables l e f t
and r i g h t were originally computed.

3.3.12 Cobegin Insertion

A simple but significant step of parallelization has been performed by
the compiler in arriving at Figure 69. Consider the final d o a l l loop of the
figure; it has only two iterations. The syntax

342 WILLIAMS LUDWELL HARRISON III

($-$-sortby =
(lambda (f i)

< t -25 t -S1 t - 3 2 t - 33 t - 3 8 x l e f t r i g h t t - 46 t - 4 8 t - 5 9
i - 60 i -61 i -62 i - 63 i - 64 t - 65 t - 66 i - 67 i -72 >

(cond
(1

(s e t ! r i g h t ' ())
(s e t ! left ' ())
(s e t ! x (cdr 1))
(set! t - 5 9 (length x))
(s e t ! t - 6 6 (a l l o c a t e #f t - 5 9))
(s e t ! t - 6 5 (a l l o c a t e #f t - 5 9))
(s e t ! t - 4 8 (a l l o c a t e #f t - 5 9))
(s e t ! t - 4 6 (a l l o c a t e #f t - 5 9))
(s e t ! x (a l l o c a t e x t - 5 9))
(c d r - i n d x 1)
(s e t ! t - 3 8 (ca r 1))
(d o a l l (i -61 t -59)

(s e t ! t - 4 8 [i - 6 1 . 1] (ca r x [i - 6 1 . O]))
(s e t ! t - 4 6 [i - 6 1 . 1] (> t - 38 t - 4 8 [i - 6 1 . 1])))

(s e t ! t - 32 (l i s t t - 3 8))
(d o a l l (i - 6 4 t -59)

(i f t - 4 6 [i - 6 4 . 1]
(s e t ! t - 6 6 [i -64 .1] #?)
(s e t ! t - 6 6 [i - 6 4 . 1] t - 4 8 [i - 6 4 . 1])))

(d o a l l (i -63 t -59)
(i f t - 4 6 [i - 6 3 . 1]

(s e t ! t - 6 5 [i -63 .1] t - 4 8 [i -63 .1])
(s e t ! t - 6 5 [i - 6 3 . 1] #?)))

(cons - rem-rec t - 6 6 t -66)
(s e t ! r i g h t (r e s t o r e t - 6 6 t - 5 9))
(cons - rem- rec t - 65 t - 6 5)
(s e t ! l e f t (r e s t o r e t - 65 t - 5 9))
(d o a l l (i -72 2)

(mway i -72
(0 (s e t ! t - 31 (# s e l f - c l o s u r e # i d l e f t)))
(1 (s e t ! t - 33 (# s e l f - c l o s u r e # id r i g h t)))))

(s e t ! t - 25 (append t -S1 t -32 t - 3 3)))
(e l s e

(s e t ! t - 25 ' ())))
(r e t u r n t -25)))

Figure 69: The Final, Parallel Version of $ - $ - s o r t b y

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 343

(define
tak
(lambda (x y z)

(cond
((not
z)

(#t
(tak

(write

(< y x))

(tak (1- x) y z)
(tak (1- y) z x)
(tak (1 - z) x y)))

(t ak 18 12 6))

)))

Figure 70: The Procedure tak

(mway m
(0 ExprA . . .)
(1 ExprB . . .)

(m-1 ExprM . . .))

indicates a multi-way branch on the value of m; it is similar to the swi tch
form of C. It is used to select one of m sequences of expressions for evalua-
tion. This d o a l l loop might more clearly be written as

(cobegin
(set! t-31 (#self-closure# id left))
(set ! t-33 (#self-closure# id right))).

It permits the recursive invocations of $ - $ - s o r t b y to be executed concur-
rently. Since each of these recursive invocations will itself contain paral-
lelism (both the parallelism that was extracted from the loop that partitions
each sublist to be sorted, and the parallel recursive calls to $ -$ - so r tby) a
significant degree of parallelism can be obtained from this procedure at run-
time. The compiler inserts such cobegin constructs by grouping together
invocations of user procedures and/or loops that can be evaluated simulta-
neously. That is, expressions over intrinsic procedures are not candidates
for inclusion in such a form. This is simply a heuristic intended to prevent
parallel activity which does not pay back the expense of its creation.

3.4 R e c u r s i o n Splitt ing

We next consider a very simple recursive procedure, which is nonetheless
not merely tail-recursive. To parallelize this procedure, Parcel will apply a

344 WILLIAMS LUDWELL HARRISON III

($-$

(lambda ()
<tak t-29 t-30>
(set! tak #<$-$- tak>)
(s e t ! t - 3 0 (t ak 18 12 6))
(set! t-29 (write t - 3 0))
(return t-29)))

($-$-tak

(lambda (x y z)
<t-20 t -22 t -23 t -24 t -25 t -26 t -27 t-28>
(set! t -22 (< y x))
(cond

(t - 2 2
(se t ! t - 2 6
(se t ! t - 2 3
(se t ! t - 2 7
(se t ! t - 2 4
(set! t -28
(set! t-25
(set! t-20

(else

(1- x))
(# s e l f - c l o s u r e # t - 2 6 y z))
(1- y))
(#self-closure# t-27 z x))
(1- z))
(# s e l f - c l o s u r e # t - 2 8 x y))
(# s e l f - c l o s u r e # t - 2 3 t - 2 4 t - 2 5))

(s e t ! t - 2 0 z)))
(r e t u r n t -20)))

Figure 71: The Initial Representation of t ak

technique introduced in [3] called recursion splitting, a general technique for
rewriting a recursive computat ion as a pair of loops, so that the latter may
be subjected to further transformations, as were applied to the quicksort
example above.

The program we will be considering, following macro expansion, is given
in Figure 70. t a k is a simple function over integers that contains four
recursive calls. In Figure 71 is given the program as seen by Parcel, fol-
lowing parsing, interprocedural analysis, and the preparatory restructuring
described in subsection 3.2. This simple function proves impervious to the
preparatory transformations. As is the case with every program that it
treats, Parcel introduces a lambda expression called $-$ which represents
the top level of the user's program, and by which his global variables are
bound, conceptually. Henceforth, we will confine our attention to $ -$ - t ak .

The compiler has marked each of the recursive calls within $ - $ - t a k as

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 345

self-recursive; this permits the application of tail-recursion elimination and
recursion splitting to the procedure, provided that other conditions neces-
sary to their application are satisfied. Indeed, there is a tail-recursive call
to $ -$ - t ak ; the compiler could use this fact to obtain a loop from the pro-
cedure body, and subject this loop to exit-loop translation as was done in
the case of $ - $ - s p l i t b y above. This would prove to be an error, however,
because exit-loop translation would fail when applied to the loop, for the
reason that x would describe a recurrence of the form

x [i . 1] = (ta~ (1 - x [i . 0]) y z) ,

and the compiler would fail to parallelize such a recurrence, and would
therefore fail to parallelize the computat ion of the number of iterations
of the loop it had created. Moreover, if it first performed tail-recursion
elimination, it would be unable to perform recursion splitting afterwards,
as the remaining recursive calls would be within the loop introduced by tail-
recursion elimination, and recursion splitting does not treat such recursive
calls. Parcel therefore refrains from performing tail-recursion elimination
upon a procedure if to do so would leave recursive calls to the procedure
within a loop.

3.4.1 Overview

The idea behind recursion splitting is simple. The compiler first selects
a set of recursive calls to the procedure, such that there is at most one
member of the set along any path through the procedure; this set is called
a fence. In the case of $ -$ - t ak , there are four recursive calls to the pro-
cedure, but all occur along a single control path through the procedure
body; any fence will therefore have just one member. The fence is then
used to divide the procedure into two loops, called the forward and back-
ward loops. The forward loop contains all of the computat ion that occurs
between the entrance to the procedure and the members of the fence, and
the backward loop contains all of the computat ion between the members
of the fence and the return from the procedure. These two loops will have
the same number of iterations, and this number will be determined by exit-
loop translation of the forward loop. In the evaluation of an application of
the original procedure, the parameters and local variables of the procedure
are recorded on the stack at each recursive call, and when this recursive
call returns, these variables are restored from the stack. To simulate this
pushing and popping of parameters and locals, expanded variables will be
used. Each parameter and local variable will be represented by a vector
of length (roughly) N, where N is the number of iterations of the forward
loop. Whenever a variable would have been "pushed" by a member of the
fence (a selected recursive call), it is instead writ ten into a vector by the

346 WILLIAMS LUDWELL HARRISON III

($ -$ - t ak

(lambda (x y z)
<t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44 i-45>
(set! t-44 #f)
(do

(i-45 ??)
(set! t-22 (< y x))
(cond

(t-22
(set! t-26 (i- x))
(set! x t-26))

(else
(set! t-44 (#or t-44 i-45)))))

(set! t-20 z)
(do

(i-45 t-44)
(set! t-23 t-20)
(set! t-27 (i- y))
(set! t-24 (#self-closure# t-27 z x))
(set! t-28 (i- z))
(set! t-25 (#self-closure# t-28 x y))
(set! t-20 (#self-closure# t-23 t-24 t-25)))

(return t-20)))

Figure 72: Forward and Backward Loops are Formed in $ -$ - t ak

forward loop, and when it would have been "popped" at a return from a
member of the fence, it is instead read from the vector by the backward
loop. Intuitively, the iteration spaces of the forward and backward loops
run in opposite directions; variables "pushed" in the first iteration of the
forward loop are "popped" in the last iteration of the backward loop, and
those "pushed" in the second iteration of the forward loop are "popped" in
the next-to-last iteration of the backward loop, and so on.

3.4.2 Forming the Forward and Backward Loops

It is easiest to appreciate the transformation by example. Consider Fig-
ure 72. The computer has chosen the set containing the first recursive call
in Figure 71 as the fence. It therefore divides the procedure into two loops
at this recursive call. The forward loop contains only the updating of the
parameter x, and the computation of t-44, which should be familiar to the
reader from the discussion of exit-loop translation above, as the number of

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 347

iterations of the forward loop. As usual, we have interrupted the compiler
at an awkward moment for a view of its data structures. At this point, no
variable expansion has occurred, and consequently this is far from a legal
translation of the program. Not to worry.

The backward loop (the second do loop of Figure 72) contains the bulk
of the computation from the original procedure. It is has no assignments to
t-44; that is, it contained no exit branches that were rewritten as assign-
ments to t -44, as did the forward loop. The number of iterations of the
backward loop, like the forward loop, will ultimately be t-44. The return
value of $ -$ - t ak (t-20) is computed iteratively in the backward loop, just
as the parameters were computed iteratively in the forward loop.

Recursion splitting proceeds from here in two major steps. First, the
compiler applies exit-loop translation to the forward loop. Indeed, it has
already begun, by replacing loop exits by assignments to t -44. If exit-
loop translation succeeds, then recursion splitting succeeds, and both the
forward and backward loops are subjected for further parallelization, just as
the loop that arose from s p l i t b y was parallelized, in the quicksort example
of subsection 3.1. Otherwise, recursion splitting fails, and another fence will
be tried. When the possible fences have been exhausted, then recursion
splitting fails finally, and other sources of parallelism within the procedure
will be sought.

3.4.3 Exit-Loop Translation of the Forward Loop

We focus our attention, then, upon exit-loop translation of the forward
loop. See Figure 73. The variables defined in the forward loop are ex-
panded. We mentioned two purposes for the expansion of variables in
discussing the quicksort example above. First, we said, it permits (or fa-
cilitates) the computation in parallel of the values that are assigned to a
variable in successive iterations of a loop, by providing a distinct memory
location into which each such value may be written. Second, it permits
the production of a variable's successive values to be isolated from the
consumption of those values, by recording them in a vector, to which the
consuming computation may refer. Put another way, we may distribute
loop control around the computation of each variable in a loop (see Fig-
ure 63) only because the successive values assigned to the variable (in one
subloop derived by distribution of the original loop) will be held in a vector,
for consumption during the computation of another variable (in a second
derived subloop). In this latter capacity, expanded variables act as com-
munication media between subcomputations. In recursion splitting, this
function is extended: not only do expanded variables communicate values
between the subloops that are derived by distribution of the forward loop,
they act also to communicate these values into the backward loop, replacing

348 WILLIAMS LUDWELL HARRISON III

($-$-tak

(lambda (x y z)
<t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44 i-4S>
(set! t-44 #f)
(do

(i-45 ??)
(set ! t-22 [i-4S. 1] (< y x [i-4S.O]))
(cond

(t-22 [i-4S. i]
(set! t-26[i-45.I] (I- x[i-4S.O]))
(set! x[i-4S.1] t-26[i-45.I])
(set! t-44[i-45.i] t-44[i-45.0]))

(else
(set ! t-44[i-45, i] (#or t-44[i-45.0] ±-45))
(set! x[i-45.1] x[i-4S.O]))))

(set! t-20 z)
(do

(i-45 t-44)
(set! t-23 t-20)
(set ! t-27 (I- y))
(set ! t-24 (#self-closure# t-27 z x [[i-48. O]]))
(set! t-28 (I- z))
(set ! t-25 (#self-closure# t-28 x[[i-48.0]] y))
(set ! t-20 (#self-closure# t-23 t-24 t-25)))

(return t-20)))

Figure 73: Variables Defined in the Forward Loop are Expanded

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 349

the function of the stack in the original procedure. In the case of Figure 73,
the variable x is defined (and therefore expanded) in the forward loop, and
the references to x in the backward loop have been replaced by references
to the vector which will record the values assigned to x in the loop. There
is an important point concerning the references to x in the backward loop:
they a r e ,ritten as

x [[i - 4 5 . 0]] .

This s~bscript form is used when references are made in the backward loop
(or in a loop derived from the backward loop) to a variable defined in the
forward loop, and is equivalent to

x [(1 - (- N i - 4 5)) . 0]

where N is the number of iterations of the forward and backward loops,
the value to be assigned to t -44 in this case. Intuitively, an expanded
variable that is defined in the forward loop is read "backward" in the back-
ward loop, for precisely the reason that it is replacing the function of the
stack. Alternatively, one may view the iteration spaces of the forward and
backward loop as having opposite orientations, as mentioned above: the
index variable of the forward loop counts recursive calls via members of the
fence, while the index variable of the backward loop counts returns from
these calls, and the returns occur in the reverse order of the corresponding
calls, by the nature of recursion.

Before proceeding with the transformation, the compiler pauses to per-
form some optimizations, much like the preparatory optimizations discussed
in subsection 3.2. The reason is that, as when performing tail-recursion
elimination, some temporary variables are needed (in general) to update
the parameters of the procedure, when forming the forward and backward
loops. The compiler first writes the most "general" form of the forward
and backward loops, and then attempts to improve them, by eliminating
the manipulation of these temporary quantities where possible, by floating
invariant computations out of conditional structures, etc. See Figure 74.
The variable t -26, used previously in the updating of x, is eliminated, t -23
is similarly eliminated from the backward loop.

We proceed with exit-loop translation of the forward loop exactly as
though it was the entirety of the computation. The next step, it will be
recalled, is to distribute the forward loop, with the aim of isolating the
portion of the forward loop that is relevant to the computation of its num-
ber of iterations, or equivalently in this case, to the computation of t -44.
See Figure 75. The compiler has distributed the forward loop into three
loops, and has reordered these such that as few as possible precede that in

350 WILLIAMS LUDWELL HARRISON III

($-$-tak

(lambda (x y z)
<t-20 t -22 t -23 t -24 t -25 t -26 t -27 t -28 t -44 i-45>
(se t ! t -44 #f)
(do

(i -45 ??)
(set! t-22[i-45.1] (< y x[i-45.0]))
(cond

(t-22[i-45. I]
(set! x[i-45.1] (I- x[i-45.0]))
(set! t-44[i-45.1] t-44[i-45.0]))

(else
(se t ! t-44[i-45.1] (#or t-44[i-45.0] i-45))
(set! x[i-45.I] x[i-45.0]))))

(se t ! t -20 z)
(do

(i-45 t-44)
(se t ! t -27 (1- y))
(se t ! t -24 (# s e l f - c l o s u r e # t -27 z x [[i - 4 5 . 0]]))
(se t ! t -28 (1 - z))
(se t ! t -25 (# s e l f - c l o s u r e # t -28 x [[i - 4 5 . 0]] y))
(se t ! t -20 (# s e l f - c l o s u r e # t -20 t -24 t - 2 5)))

(return t -20)))

Figure 74: The Forward Loop is Cleaned Up Before Proceeding

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 351

($-$-tak

(lambda (x y z)
<t-20 t -22 t -23 t -24 t -25 t -26 t -27 t -28 t -44 i-45>
(se t ! t -44 #f)
(do

(i-45 ??)
(if
t-22 [i-45. i]
(set! x[i-45.1] (i- x[i-45.0]))
(set! x[i-45.1] x[i-45.0])))

(do (i-45 ??) (set! t-22[i-45.1] (< y x[i-45.0])))
(do

(i-45 ??)
(if
t-22 [i-45. I]
(set ! t-44[i-45.1] t-44[i-45.0])
(set ! t-44 [i-45. I] (#or t-44 [i-45.0] i-45))))

(set! t-20 z)
(do

(i-45 t-44)
(se t ! t -27 (1- y))
(s e t ! t -24 (# s e l f - c l o s u r e # t -27 z x [[i - 4 5 . 0]]))
(set! t-28 (I- z))
(set! t-25 (#self-closure# t-28 x[[i-45.0]] y))
(set! t-20 (#self-closure# t-20 t-24 t-25)))

(return t-20)))

Figure 75: The Forward Loop is Distributed, and the Subloops Reordered

352 WILLIAMS LUDWELL HARRISON III

($-$-tak

(lambda (x y z)
<t-20 t -22 t -23 t -24 t -25 t -26 t -27 t -28 t -44 i-45>
(se t ! t -44 #f)
(do (i -45 ??) (se t ! x [i - 4 5 . 1] (1- x [i - 4 5 . 0])))
(do (i-45 ??) (set! t-22[i-45.1] (< y x[i-45.0])))
(do

(i-45 ??)
(i f
t-22 [i-45. I]
(set! t-44[i-45, i] t-44[i-45.0])
(set ! t-44 [i-45. i]

(set! t-20 z)
(do

(i-45
(set!
(set !
(set !
(set!
(set !

(return

(#or t -44 [i -45 .0]))))

t -44)
t-27 (i - y))
t -24 (# s e l f - c l o s u r e # t -27 z x [[i - 4 5 . 0]]))
t-28 (I- z))
t-25 (#self-closure# t-28 x [[i-45.0]] y))
t-20 (#self-closure# t-20 t-24 t-25)))
t -20)))

Figure 76: Exit Path Computations are Deleted in $ -$ - t ak

which t -44 is computed. It turns out that all of the computation in the
forward loop is relevant to the computation of t -44. Had the compiler not
eliminated the temporaries t -26 and t -23, the loops in which x and t -20
are computed, would each contain assignments to two variables and not
merely one. This would defeat the recognition of the recurrence described
by x; the recurrence described by t -20 is intractable to the compiler in any
event.

The next step is to delete any inert computation that arose from the
(former) exit paths of the forward loop. See the discussion of Figure 65 for
an explanation of this transformation, and see Figure 76 for its outcome,
in the case of $-$- tak .

At this point, the compiler examines the first three loops of Figure 76 to
decide if each can be made parallel, either because it describes a familiar
recurrence relation with a parallel solution, or because it is simply a loop
whose iterations are independent of one another. See Figure 77. The com-
piler has found the computations of x, t -22, and t -44 to be an induction
sequence, a parallel loop, and the familiar recurrence described by #or, re-

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 353

($-$-tak

(lambda (x y z)
<t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44 i-45>
(set! t-44 #f)
(do-induction (i-45 ??) (set! x[i-45.1]

(i- x[i-45.0])))
(doall (i-45 ??) (set! t-22[i-45.1] (< y x[i-45.0])))
(do-recurrence

(i-45 ??)
(if
t-22 [i-45. i]
(set ! t-44 [i-45. I] t-44 [i-45. O])
(set ! t-44[i-45.1] (#or t-44[i-45.0]))))

(set! t -20 z)
(do

(i-4S
(set!
(set!
(set!
(set!
(set!

(return

t-44)
t-27 (1- y))
t-24 (#self-closure# t-27 z x[[i-45.0]]))
t-28 (1- z))
t-25 (#self-closure# t-28 x[[i-45.0]] y))
t-20 (#self-closure# t-20 t-24 t-25)))
t -20)))

Figure 77: Parallel Loops (from the Forward Loop) are Recognized

354 WILLIAMS LUDWELL HARRISON III

($-$-tak

(lambda (x y z)
<t-20 t -22 t - 23 t - 24 t - 25 t - 26
t-27 t-28 t-44 i-45 i-46 i-47>
(set! t-44 #f)
(set! t-44 (pos-diff x y))
(do-induction

(i-46 t-44)
(se t ! x [i - 4 6 . 1]

(doa l l (i -47 t -44)
(set! t -20 z)
(do

(i-45 t-44)
(set! t -27 (1- y))

(1- x [i - 4 6 . 0])))
(se t ! t - 2 2 [i - 4 7 . 1] (< y x [i - 4 7 . 0])))

(se t ! t -24 (# s e l f - c l o s u r e # t -27 z x [[i - 4 5 . 0]]))
(set! t-28 (i- z))
(set! t-25 (#self-closure# t-28 x[[i-45.0]] y))
(set! t-20 (#self-closure# t-20 t-24 t-25)))

(return t-20)))

Figure 78: A Closed-Form Solution for t -44 is Found

spectively. At this point, recursion splitting has succeeded. As before, the
compiler will attempt to rewrite the computation of t -44 in as efficient a
form as possible, and will then proceed with the parallelization of the rest
of the procedure.

See Figure 78. Once again, a closed-form solution to the recurrence
described by t -44 has been found, in terms of x and y. The expression
(p o s - d i f f x y) is (- x y) if x is greater than or equal to y, and zero
otherwise. There is some dead code in this figure; in particular, the entire
loop in which t -22 is computed is now dead code, since this variable has
no uses. Parcel will ultimately recognize this and delete it.

Before moving on to the backward loop, the compiler adds code to allo-
cate and initialize the vectors which represent expanded variables, and to
restore the final positions of these vectors to the variables, following the
loop. See Figure 79, and the discussion of Figure 68 for an explanation
of the functions a l l o c a t e and r e s t o r e . The computation of the values
of x has been rewritten as an invocation of the procedure add2-ind. This
procedure takes two arguments: a vector v and an integer k. v [0.0] is as-
sumed to be initialized to an integer value. Upon return, v [i . 0] contains
the value v[0.0] +ik, for every element of the vector. This computation

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 355

($-$- tak

(lambda (x y z)
<t-20 t - 22 t - 23 t -24 t - 25 t - 26 t - 27

t-28 t-44 1-45 i-46 i-47 t-48>
(set! t-44 #f)
(set! t-44 (pos-diff x y))
(set! x (allocate x t-44))
(set! t-22 (allocate #f t-44))
(add2-ind x -I)
(doall (i-47 t-44) (set! t-22[i-47.I] (< y x[i-47.0])))
(set! t-48 x)
(set! x (restore x t-44))
(set! t-20 z)
(set! x (r e a l l o c a t e t -48))
(do

(i-45 t-44)
(set! t-27 (1- y))
(set! t-24 (#self-closure# t-27 z x[[i-45.0]]))
(set! t -28 (1 - z))
(set! t-25 (#se l f - c losure# t-28 x [[i -45 .0]] y))
(set! t-20 (#se l f - c losure# t-20 t-24 t -25)))

(re tu rn t-20)))

Figure 79: The Restructuring of the Forward Loop is Completed

356 WILLIAMS LUDWELL HARRISON ItI

may be performed in parallel, of course.

3.4.4 Variable Expansion and the Bottom of Recursion

Recursion splitting requires some fairly detailed manipulations of the pro-
cedure; a good example is in handling the computat ion that occurs at the
"bottom" of recursion. In this case, the assignment (s e t ! t - 2 0 z) is the
entire computat ion performed at the bo t tom of recursion, and establishes
the first in the sequence of values taken by t -20 , the variable whose final
value is returned by $ -$ - t ak . In general, however, there might be a more
complex computat ion at the bo t tom of recursion, that involves any of the
parameters and local variables of the procedure. In particular, the value
of x might be required for this computation. When, however, execution
of the forward loop is completed, x points to a vector of values; it is the
last of these values that must be assigned to x, so that the computat ion at
the bo t tom of recursion may be performed sensibly. This is the purpose of
the expression (s e t ! x (r e s t o r e x t - 4 4)) . However, the vector which
holds the values of x as computed in the forward loop is needed by the
backward loop; it is therefore saved in the variable t -48 , and the function
r e a l l o c a t e is used to assign this vector to x, just priior to the backward
loop. In reality, r e a l l o c a t e is an identity function, it does nothing; but
for reasons that have to do with the implementation details of Parcel, a
function t e a / l o c a t e is used, to inform the compiler of the purpose of this
expression, for later optimizations.

3.4.5 Parallelization of the Backward Loop

The remainder of the parallelization process is easy. The backward loop
does not need to be subjected to exit-loop translation: its number of iter-
ations is t -44 , the same as that of the forward loop. First, the variables
defined within the backward loop are expanded. See Figure 80. Next, the
backward loop is distributed. See Figure 81. The loops that result from
distribution are classified as parallel, recurrences, and so on: see Figure 82.
All of the loops, except the last, are seen to be parallel, and are marked as
d o a l l forms accordingly. At this point, there are needlessly many loops,
and the compiler remedies this by "undistributing" as much as possible, a
transformation usually called loop fusion [47]. See Figure 83.

The version of the procedure that emerges from recursion splitting is
given in Figure 84. The expanded variables of the backward loop are allo-
cated with routines analogous to a l l o c a t e and r e s t o r e , called a l l o c a t e - r
and r e s t o r e - r respectively. The vectors that represent expanded variables
at run-time are marked as arising either from a forward loop (the default
case, as would apply also to the loop in Figure 60) or a backward loop
created by recursion splitting. These markings are the only difference be-

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 357

($ -$ - t ak

(lambda (x y z)
<t-20 t-22 t-23 t-24 t-25 t-26 t-27
t-28 t-44 i-45 i-46 i-47 t-48>
(set! t-44 #f)
(set! t-44 (pos-diff x y))
(set! x (allocate x t-44))
(set ! t-22 (allocate #f t-44))
(add2-ind x -i)
(doall (i-47 t-44) (set! t-22[i-47.1]
(set! t-48 x)
(set! x (restore x t-44))
(set! t-20 z)
(set! x (reallocate t-48))
(do

(i-45 t-44)
(set ! t-27[i-45, i]
(set! t-24[i-45.1]

(se t ! t-28 [i-45.1]
(se t ! t-25 [i-45.1]

(< y x[i-47.0])))

(1- y))
(#self-closure# t-27 [i-45. I]

z x[[i-45.0]]))
(1- z))
(#self-closure# t-28 [i-45. i]

x [[i-45.0]] y))
(set!
t-20 [i-45. I]
(#self-closure# t-20 [i-45.0]

t-24 [i-45.1]
(return t-20)))

t-25 [i-45. i])))

Figure 80: Variables Defined in the Backward Loop are Expanded

358 WILLIAMS LUDWELL HARRISON III

tween the vectors created by a l l o c a t e and a l l o c a t e - r . The distinction
is important to some recurrence solution routines, which take two argu-
ments, one a vector to be read, the other a vector to be written. In the
event that the input vector represents a variable expanded in the forward
loop, and the output vector a variable expanded in the backward loop, the
proper subscript functions must be selected, based upon the types of these
vectors, so that the input vector is read in the correct "direction".

The final parallel version of $ -$ - t ak is given in Figure 85. A nesting of
parallel loops has occurred because the compiler has wrapped two recursive
calls to $ -$ - t ak in a "cobegin" form, expressed as a doa l l loop of two
iterations. It is very informative to follow the parallel evaluation of this
version of the procedure, to appreciate to what a flood of parallelism it
gives rise, as it makes recursive calls within parallel loops.

3.5 High-Level (Coarse-Grained) Parallelism

It might have occurred to the reader to object that the first two program
examples we have considered hardly call for a machinery of interprocedural
analysis so elaborate as that we constructed in Section 2. These simple
programs contained few procedures and no interprocedurally visible side-
effects; we must turn to a more involved example if we are to see how the
analysis facilitates the discovery of high-level (coarse-grained) parallelism.

We have chosen the boyer benchmark from the Gabriel benchmark suite
[21], for the reason that it comprises a number of procedures, and makes use
of simple, interprocedural side-effects. In particular, we will focus our atten-
tion upon the procedures one-way-unify , o n e - w a y - u n i f y - l s t , r ewr i t e ,
r e u r i t e - a r g s , and rewr i te -wi th- lemmas . See figures 86 and 87. These
procedures, as they are seen by the compiler following parsing, are shown
in figures 88, 89, 90, 91, and 92. We have made some small but signifi-
cant changes to the benchmark as it is found in [21], for the purpose of
illustrating Parcel's treatment of side-effects; these changes have no effect
upon the values computed by the benchmark. In the original benchmark
there are two global variables, temp-temp and u n i f y - s u b s t , both of which
are used in a somewhat local manner. We have made u n i f y - s u b s t a lo-
cal variable of r eu r i t e -w i th - l emmas , as its value is overwritten every time
rewr i t e -wi th - lemmas is invoked. We have therefore made one-way-uni fy
a local procedure of rewr i te -wi th - lemmas (since u n i f y - s u b s t occurs
free in its body), and likewise with o n e - w a y - u n i f y - l s t (since it calls
one-way-unify) . Similarly, the variable temp-temp is used momentar-
ily within one-way-uni fy to hold a temporary quantity, to avoid twice
evaluating an expression. We have therefore given one-way-uni fy a local
variable by the same name, although we could as easily have written a l e t

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 359

form to introduce temp-temp.

($ -$ - t ak

(lambda (x y z)
< t - 20 t - 22 t - 23 t - 24 t - 25 t - 26 t - 27 t - 28 t - 4 4

i-45 i-46 1-47 t-48 i-49 1-50 i-51 i-52 i-53 >
(set! t-44 #f)
(set! t-44 (pos-diff x y))
(set! x (allocate x t-44))
(set! t-22 (allocate #f t-44))
(add2-ind x -I)
(doall (i-47 t-44) (set! t-22[i-47.1] (< y x[i-47.0])))
(se t ! t -48 x)
(se t ! x (r e s t o r e x t - 4 4))
(set! t-20 z)
(set! x (reallocate t-48))
(do (1-49 t-44) (set! t-28[i-49.1] (1- z)))
(do

(1-50 t-44)
(set! t-25[i-50.I]

(#self-closure# t-28[i-50.i]
x [[i - 5 o . 0]] y)))

(do (i-51 t-44) (set! t-27[i-51.i] (i- y)))
(do

(i-52 t-44)
(set ! t-24[i-52.1] (#self-closure# t-27[i-52.1]

z x [[i - 5 2 . 0]])))
(do

(i -53 t -44)
(set!
t-20[i-53,i]
(#self-closure# t-20[i-53.0]

(return t-20)))
t - 2 4 [i - 5 3 . 1] t - 2 5 [i - 5 3 . 1])))

Figure 81: The Backward Loop is Distributed

360 WILLIAMS LUDWELL HARRISON III

($-$-tak

(Lambda (x y z)
< t -20 t -22 t -23 t -24 t -25 t -26 t -27 t -28 t -44

i -45 i -46 i -47 t -48 i -49 i -50 i-51 i -52 i -53 >
(se t ! t -44 #f)
(se t ! t -44 (p o s - d i f f x y))
(se t ! x (a l l o c a t e x t - 4 4))
(se t ! t -22 (a l l o c a t e #f t - 4 4))
(add2-ind x -1)
(doa l l (i -47 t -44) (se t ! t - 2 2 [i - 4 7 . 1] (< y x [i - 4 7 . 0])))
(se t ! t -48 x)
(se t ! x (r e s t o r e x t - 4 4))
(set! t-20 z)
(set! x (reallocate t-48))
(doall (±-49 t-44) (set! t-28[i-49.1] (i- z)))
(doall

(i -50 t -44)
(se t ! t -25[±-50 .1] (# s e l f - c l o s u r e # t -2811-50.1]

x[[i -5o.o]] y)))
(doa l l (i -51 t -44) (se t ! t -2711-51.1] (1- y)))
(doa l l

(±-52 t -44)
(se t ! t - 2 4 [i - 5 2 . 1] (# s e l f - c l o s u r e # t - 2 7 [i - 5 2 . 1]

z x [[1 - 5 2 . 0]])))
(do

(1-53 t -44)
(set!

t -20[i -53.1]
(#self-closure# t -20[i -53.0]

(r e t u r n t -20)))
t -24 [1-53.1] t -25 [±-53.1])))

Figure 82: Parallel Loops and Recurrences are Recognized

A N A L Y S I S A N D P A R A L L E L I Z A T I O N OF SCHEME P R O G R A M S 361

($-$-tak

(lambda (x y z)
< t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44

i-45 i-46 i-47 t-48 i-49 i-SO i-St i-52 i-53 >
(set! t-44 #f)
(set! t-44 (pos-diff x y))
(set! x (allocate x t-44))
(set! t-22 (allocate #f t-44))
(add2-ind x -i)
(doall (i-47 t-44) (set! t-22[i-47.1] (< y x[i-47.0])))
(set! t-48 x)
(set! x (restore x t-44))
(set! t-20 z)
(set! x (reallocate t-48))
(doall

(i-49 t-44)
(set! t-27[i-49.1] (I- y))
(set ! t-24 [i-49. I] (#self-closure# t-27 [i-49. i]

z x[[i-49.0]]))
(set! t-28[i-49.1] (i- z))
(set! t-25[i-49.1] (#self-closure# t-28[i-49.1]

x[[i-49.0]] y)))
(do

(i-53 t-44)
(set !

t-20 [i-53. i]
(#self-closure# t-20 [i-53.0]

(return t-20)))
t -24[i -53.1] t -25 [i -53 .1])))

Figure 83: Parallel Loops are Coalesced

362 WILLIAMS LUDWELL HARRISON III

($-$- tak

(l~mbda (x y m)
< t -20 t -22 t -23 t -24 t -25 t -26 t -27 t -28 t -44

i -45 1-46 1-47 t -48 ±-49 i -50 L-51 ±-52 ±-53 >
(set! t -44 (p o s - d i f f x y))
(set! x (a l loca te x t -44))
(add2-ind x -i)
(set! t-20 (allocate-r z t-44))
(set! t-24 (allocate-r #f t-44))
(set! t-25 (allocate-r #f t-44))
(set! t-27 (allocate-r #f t-44))
(set! t-28 (allocate-r #f t-44))
(doall

(i-49 t-44)
(set! t-27[i-49.1] (i- y))
(set ! t-24[i-49. I] (#self-closure# t-27 [i-49. I]

z x[[i-49.0]]))
(set! t-28[i-49.1] (I- z))
(set ! t-25 [i-49. I] (#self-closure# t-28 [i-49. I]

x[[i-49.0]] y)))
(do

(i-53 t-44)
(set !

t -20 [1-53.1]
(#se l f -c losure# t -20 [1-53.0]

t-24 [i-53.1] t-25 [i-53. I])))
(set ! t-20 (restore-r t-20 t-44))
(return t-20)))

Figure 84: After Recursion Splitting

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 363

($-$-tak

(lambda (x y z)
< t-20 t-22 t-23 t-24 t-25 t-26 t-27 t-28 t-44

i-45 i-46 i-47 t-48 i-49 i-50 i-51 i-52 i-53 i-54 >
(set! t-44 (pos-diff x y))
(set! x (allocate x t-44))
(add2-ind x -1)
(set ! t-20 (allocate-r z t-44))
(set ! t-24 (allocate-r #f t-44))
(set! t-25 (allocate-r #f t-44))
(set! t-27 (allocate-r #f t-44))
(set! t-28 (allocate-r #f t-44))
(doall

(i-49 t-44)
(set! t-28[i-49.1] (i- z))
(set! t-27[i-49.1] (I- y))
(doall

(i-54 2)
(mway

i-54
(0 (set! t-24[i-49.1]

(#self-closure# t-27 [i-49. I]
z x[[i-49.0]])))

(i (set! t-25[i-49.1]
(#self-closure# t-28 [i-49. i]

x[[i-49.0]] y))))))
(do

(i-S3 t-44)
(set !

t-20 [i-53. i]
(#self-closure# t-20 [i-53. O]

t-24 [i-53. I] t-25 [i-53. I])))
(set! t-20 (restore-r t-20 t-44))
(return t-20)))

Figure 85: The Final (Parallel) Version of $-$- tak

364 WILLIAMS LUDWELL HARRISON III

(define
rewrite
(lambda (term)

(cond
((atom? term)
term)

(#t
(rewrite-with-lemmas

(cons (car term) (rewrite-args (cdr term)))
(getprop (car term) 'lemmas))))))

(define
rewrite-args
(lambda (lst)

(cond
((null? lst)
#f)

(#t
(cons (rewrite (car lst)) (rewrite-args (cdr lst)))))))

Figure 86: The Procedures r e w r i t e and r e w r i t e - a r g s

These modifications were made by hand for the reason that Parcel is not
equipped to change the status of a variable from global to local (under the
assumption that a programmer will avoid global variables when they are
not needed), although the conditions under which such a transformation
may be applied are easily expression in terms of procedure strings and stack
configurations.

Let's first consider the variable u n i f y - s u b s t . It occurs as a free vari-
able in the procedure one-way-uni fy , where it is modified as well as used.
Nevertheless, analysis by g5 or g7 (as defined in Section 2) reveals that the
procedures rewrite, rewrite-args, and rewrite-with-lemmas have no
side-effects upon this variable. Recall the test embodied in Theorem 7 for
side-effects: the closure which captures unify-subst makes no (net) down-
ward movement into rewrite, rewrite-args or rewrite-with-lemmas
before being applied. As a diversion, we might consider annotating this
program using the "type" system of side-effects described in [23]. We
would find that, because it is captured by a closure which modifies it,
the variable u n i f y - s u b s t induces side-effects in all the routines that are
(indirect) callers of one-way-uni fy , including r e w r i t e , r e w r i t e - a r g s and
r ewr i t e -wi th - l emmas . This program is therefore an example in which the
automatic side-effect analysis of Parcel has greater accuracy than is possible
for the user to achieve manually, using the system of [23].

Let us turn to the procedure r e w r i t e - a r g s of Figure 91. This is a simple
and somewhat typical procedure, that might have been the result of macro-

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 365

(define
rewrit e-with-lemmas
(lambda (term ist)

(define nnify-subst #f)
(define

one-way-unify
(lambda (terml term2)

(define temp-temp)
(c ond

((atom? term2)
(c ond

((set! temp-temp (assq term2 unify-subst))
(equal? terml (cdr temp-temp)))

(#t
(set! unify-subst (cons (cons term2 termS) unify-subst))
t)))

((atom? terml)
#f)

((eq? (car terml) (car term2))
(one-way-unify-lst (cdr terml) (cdr term2)))

(#t
f))))

(define
one-way-unify-let
(lambda (istl let2)

(cond
((null? istl)
#t)

((one-way-unify (car istl) (car let2))
(one-way-unify-lst (cdr Istl) (cdr let2)))

(#t
f))))

(cond
((null? ist)
term)

((one-way-unify term (cadr (car ist)))
(rewrite (apply-subst unify-subst (caddr (car ist)))))

(#t
(rewrite-with-lemmas term (cdr Ist))))))

Figure 87: The Procedure rewrite-with-lemmas, and its Subroutines

366 WILLIAMS LUDWELL HARRISON III

($- $-rewrit e-with-lemmas

(lambda (term ist)
< unify-subst one-way-unify one-way-unify-lst

t-139 t-140 t-141 t-142 t-143 t-144 t-145 t-146 t-147 >
(set! unify-subst (id #f))
(set ! one-way-unify

(id #<$-$-rewrite-with-lemmas-one-way-unify>))
(set ! one-way-unify-lst

(id #<$-$-rewrite-with-lemmas-one-way-unify-lst>))
(set! t-140 (null? ist))
(cond

(t-140
(set! t-139 (id term)))

(else
(set! t-143 (car ist))
(set! t-142 (cadr t-143))
(set ! t-141 (one-way-unify term t-142))
(cond

(t-141
(set! t-146 (car lst))
(set! t-145 (caddr t-146))
(set ! t-144 (apply-subst unify-subst t-145))
(set! t-139 (rewrite t-144)))

(else
(set! t-147 (cdr ist))
(set! t-139 (rewrite-with-lemmas term t-147))))))

(return t-189)))

Figure 88: The Procedure $-$-rewrite-with-lemmas After Parsing

A N A L Y S I S A N D P A R A L L E L I Z A T I O N OF SCHEME P R O G R A M S 367

($-$-rewrite-with-lemmas-one-way-unify-lst
=

(lambda (istl Ist2)
<t-132 t-133 t-134 t-135 t-136 t-137 t-138>
(set! t-133 (null? Istl))
(cond

(t-133
(set! t-132 (id # t)))

(else
(set! t-135 (car l s t l))
(set! t-136 (car l s t2))
(set! t-134 (one-way-unify t-135 t-136))
(cond

(t-134
(set! t-137 (cdr lstl))
(set! t-138 (cdr lst2))
(set! t-132 (one-way-unify-lst t-137 t-138))

(else
(s e t ! t - 132 (id # f))))))

(r e t u r n t -132)))

Figure 89: $-$-rewrite-with-lemmas-one-way-unify-lst

expanding an expression like (mapcar r e w r i t e l s t) . It is recursive, but
not tail-recursive, and so the compiler will treat it by recursion splitting.
See Figure 93. Here, the forward and backward loops have been formed. As
always, the forward loop will be subjected to exit-loop translation; the #or
expression is placed along what was formerly the path taken at the "bot-
tom" of recursion. Ultimately, t -204 wilt hold the number of iterations of
this procedure. The progress of recursion splitting is straightforward. The
variables defined in the forward loop are expanded (Figure 94), some tradi-
tional optimizations are applied to clean up unneeded temporary variables
(Figure 95), the forward loop is distributed (Figure 96), and the resulting
subloops are reordered so that the one in which t -204 is computed is pre-
ceded by as few as possible (Figure 97). Next, any computation that was
not performed by the original loop, that falls along what were previously
exit paths from the loop, is eliminated (Figure 98). Each of the subloops
that was created by distribution of the forward loop is then examined, to
see if it is a d o a l l loop or a familiar recurrence relation (Figure 99). At this
point, we see that the compiler has succeeded in uncovering parallelism that
is quite coarse in granularity: the call to S - S - r e w r i t e within the forward
loop has been placed in a d o a l l loop. Since S - S - r e w r i t e may ultimately
invoke S -S - rewr i t e , $ - $ - r e w r i t e - a r g s , and $ -$ - rewr i t e -wi th - l emmas
recursively, this can give rise to a flurry of nested parallel activity at run-
time.

368 WILLIAMS LUDWELL HARRISON III

($-$-rewrit e-with-lemmas-one-way-unify

(lambda (terml term2)
<temp-temp t-120 t-121 t-122 t-123 t-124
t-125 t-126 t-127 t-128 t-129>
(set! t-121 (atom? term2))
(cond

(t-121
(set! temp-temp (assq term2 unify-subst))
(cond

(temp-temp
(set! t -126 (cdr temp-temp))
(set! t-120 (equal? terml t-126)))

(else
(set! t-127 (cons term2 terml))
(set! unify-subst (cons t-127 unify-subst))
(set! t-120 (id #t)))))

(else
(set! t-122 (atom? term1))
(cond

(t-122
(set! t-120 (id #f)))

(else
(set! t-124 (car terml))
(set! t-125 (car term2))
(set! t-123 (eq? t-124 t-125))
(cond

(t-123
(set! t-128 (cdr terml))
(set! t-129 (cdr term2))
(set ! t-120 (one-way-unify-lst t-128 t-129)))

(else
(set! t-120 (id #f))))))))

(return t-120)))

Figure 90: The Procedure $-$-rewrite-with-lemmas-one-way-unify Af-
ter Parsing

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 369

($-$-rewrite-args
=

(lambda (ist)
<t-f06 t-lOT t-f08 t-109 t-llO t-111>
(set! t-lOT (null? ist))
(cond

(t-107
(set! t-106 (id #f)))

(else
(set! t-llO (car Ist))
(set! t-f08 (rewrite t-llO))
(set! t-111 (cdr ist))
(set! t-i09 (rewrite-args t-111))
(set! t-106 (cons t-108 t-109))))

(return t-106)))

Figure 91: The Procedure $-$-rewrite-args After Parsing

(S-S-rewrite

(lambda (term)
<t-97 t-98 t-99 t-lO0 t-101 t-102 t-f03 t-f04>
(set! t-98 (atom? term))
(cond

(t-98
(set! t-97 (id term)))

(else
(set! t-101 (car term))
(set! t-f03 (cdr term))
(set ! t-I02 (rewrite-args t-f03))
(set! t-99 (cons t-101 t-f02))
(set! t-104 (car term))
(set! t-lO0 (getprop t-104 'lemmas))
(set! t-97 (rewrite-with-lemmas t-99 t-lO0))))

(return t-97)))

Figure 92: The Procedure S-S-rewrite After Parsing

370 WILLIAMS LUDWELL HARRISON III

($-$-re~rrite-args

(lambda (l s t)
<t-106 t-108 t-109 t - l l 0 t - l l l t-204 1-205>
(set! t-204 #f)
(do

(i-205 ??)
(cond

(1st
(set! t-llO (car Ist))
(set! t-108 (rewrite t-llO))
(set! t-111 (cdr lst))
(set! 1st t-111))

(else
(set! t-204 (#or t-204 1-205)))))

(set! t-106 #f)
(do (i-205 t-204)

(set! t-109 t-106)
(set! t-f06 (cons t-108 t-f09)))

(return t-I06)))

Figure 93: The Forward and Backward Loops are Formed

As might have been expected, the compiler discovers that t -204 may
be computed directly by the expression (l e n g t h l s t) ; see Figure 100.
Before moving on to the backward loop, the compiler fuses loops where
possible, among those that originated from the forward loop (Figure 101),
adds code to allocate and restore the expanded variables of the forward
loop (Figure 102), and translates any recognized recurrences among the
subloops originating from the forward loop (Figure 103).

The treatment of the backward loop is much simpler, by contrast: the
variable t -106 is expanded (Figure 104), the recurrence it describes is rec-
ognized (Figure 99), and finally this recurrence is rewritten as a call to the
run-time procedure cons - r em- ind (Figure 106). c o n s - r e m - i n d is a simple
version of cons - rem-rec , used in the translation of q u i c k s o r t in subsec-
tion 3.3.9. Its two arguments are an input vector x of values, and an output
vector y. A list of length equal to that of x is constructed, whose top level
contains the values in x, in reverse order; this list is appended to the head
of the value x [0 .0] , and the result is pointed to by y[N.0] , where N is
the number of iterations of the loop in which x and y are expanded. This
procedure, like cons - rem-rec , solves a recurrence for its remote term; it is
for this reason that only the last position of y is given a value. The final
version of $ - $ - r e w r i t e - a r g s is shown in Figure 107.

There are two important points to be made by this example. First,

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 371

($-$-rewrite-args

(lambda (ist)
<t-f06 t-f08 t-109 t-llO t-lll t-204 i-205>
(set! t-204 #f)
(do

(i-205 ??)
(cond

(ist[i-2OS.O]
(set! t-ii0[i-205.1] (car ist[i-205.0]))
(set! t-i08[i-205.1] (rewrite t-Ii0[i-205.1]))
(set! t-lii[i-205.1] (cdr ist[i-205.0]))
(set! Ist[i-205.1] t-iii[i-205.1])
(set! t-204[i-205.1] t-204[i-205.0]))

(else
(set!
(set!
(set!

(set! t-106
(do

t-204 [i-205.
ist [i-205.1]
t- 108 [i-205.
#f)

i] (#or t-204[i-205.0] i-205))
ist [i-205. O])

1] t -108 [i -205 .0]))))

(i-205 t-204)
(set! t-109 t-106)
(set! t-106 (cons t -108[[i -205.1]] t -109)))

(re turn t-106)))

Figure 94: Variables Defined in the Forward Loop are Expanded

($-$-rewrite-args

(lambda (ist)
<t-f06 t-f08 t-f09 t-llO t-lll t-204 i-205>
(set! t-204 #f)
(do

(i -205 ??)
(cond

(ist [i-205.0]
(set! t-II0[i-205.1] (car ist[i-205.0]))
(set! t-I08[i-205.1] (rewrite t-ii0[i-205.1]))
(set! Ist[i-205.1] (cdr ist[i-205.0]))
(set! t-204[i-205.1] t-204[i-205.0]))

(else
(set! t-204[i-205.1] (#or t-204[i-205.0] i-205))
(set! ist[i-205.1] ist[i-205.0])
(set! t-I08[i-205.1] t-I08[i-205.0]))))

(set! t-106 #f)
(do (i-205 t-204) (set! t-f06 (cons t-i08[[i-205.1]] t-106)))
(return t-f06)))

Figure 95: The Forward Loop is Cleaned up Before Proceeding

372 WILLIAMS LUDWELL HARRISON III

($-$-rewrite-args
=

(lambda (Ist)
<t-f06 t-f08 t-f09 t-llO t-lll t-204 i-205>
(set ! t-204 #f)
(do

(i-205 ?7)
(i:f

ist [i-205. O]
(set! ist[i-205.1] (cdr ist[i-205.0]))
(set! ist[i-205.1] Ist[i-205.0])))

(do (i-205 ??)
(if ist [i-205.0]

(set ! t-llO [i-205. i] (car ist [i-205. O]))))
(do

(i-205 ??)
(i f

ist [i-205. O]
(set! t-I08[i-205.1] (rewrite t-llO[i-205.1]))
(set ! t-lOS [i-205. I] t-lOS [i-205. O])))

(do
(i-205 ??)
(i:f

ist [i-205. O]
(set ! t-204 [i-205. i] t-204 [i-205. O])
(set ! t-204 [i-205. I] (#or t-204 [i-205. O] i-205))))

(set! t-f06 #f)
(do (i-205 t-204) (set! t-f06 (cons t-I08[[i-205.1]] t-f06)))
(return t-f06)))

Figure 96: The Forward Loop is Distr ibuted

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 373

($-$-rewrite-args

(lambda (ist)
<t-106 t-108 t-I09 t-110 t-111 t-204 i-205>
(set! t-204 #f)
(do

(i-205 ??)
(i : f

ist [i-205. O]
(set! ist[i-205.1] (cdr ist[i-205.0]))
(set ! ist [i-205.1] ist [i-205.0])))

(do
(1-205 ??)
(if

Ist [i-205. O]
(set ! t-204[i-205, i] t-204[i-205.0])
(set ! t-204 [i-205. I] (#or t-204 [i-205.0] i-205))))

(do (i-205 ??)
(if ist [i-205.0]

(set! t-ii0[i-205.1] (car ist[i-205.0]))))
(do

(i-20S ??)
(if

ist [i-205.0]
(set! t-I08[i-205.1] (rewrite t-II0[i-205.1]))
(set! t-I08[i-205.1] t-I08[i-205.0])))

(set! t-f06 #f)
(do (i-205 t-204) (set! t-106 (cons t-i08[[i-205.1]] t-106)))
(return t-f06)))

Figure 97: Subloops of the Forward Loop are Reordered

374 WILLIAMS LUDWELL HARRISON III

($-$-rewrite-args

(lambda (ist)
<t-f06 t-108 t-f09 t-llO t-lll t-204 1-205 i-206 i-207>
(set! t-204 #f)
(do (i-205 77) (set! ist[i-205.1] (cdr Ist[i-205.0])))
(do

(i-205 77)
(i:f
Ist [i-205. O]
(set ! t-204 [i-205.1] t-204 [i-205.0])
(set! t-204[i-205.1] (#or t-204[i-205.0] i-205))))

(do (i-206 t-204)
(set! t-Ii0[i-206.1] (car ist[i-206.0])))

(do (i-207 t-204)
(set! t-i08[i-207.I] (rewrite t-Ii0[i-207.i])))

(set! t-f06 #f)
(do (i-205 t-204)

(set! t-106 (cons t-108[[i-205.1]] t-f06)))
(return t-106)))

Figure 98: Exit-Path Computations are Eliminated

($-$-rewrite-args
=

(lambda (ist)
<t-106 t-108 t-109 t-110 t-111 t-204 i-205 1-206 i-207>
(set! t-204 #f)
(do-induction (i-205 ??)

(set! ist[i-205.1] (cdr Ist[i-205.0])))
(do-recurrence

(1-205 ?7)
(i f
Ist [i-205. O]
(set ! t-204[i-205.1] t-204[i-205.0])
(set! t-204[i-205.1] (#or t-204[i-205.0] i-205))))

(doall (i-206 t-204)
(set! t-II0[i-206.1] (car ist[i-206.0])))

(doall (i-207 t-204)
(set! t-108[i-207.1] (rewrite t-Ii0[i-207.1])))

(set! t-106 #f)
(do (i-205 t-204)

(set! t-f06 (cons t-I08[[i-205.1]] t-106)))
(return t-f06)))

Figure 99: Doall Loops and Recurrences are Recognized

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 375

($-$-rewrite-args

(lambda (ist)
<t-f06 t-f08 t-f09 t-llO t-lll
t-204 i-205 i-206 i-207 i-208>
(set! t-204 #f)
(set! t-204 (length ist))
(do-induction (i-208 t-204)

(set! ist[i-208.1] (cdr ist[i-208.0])))
(doall (i-206 t-204)

(set! t-Ii0[i-206.1] (car ist[i-206.0])))
(doall (i-207 t-204)

(set! t-i08[i-207.1] (rewrite t-ii0[i-207.I])))
(set! t-i06 #f)
(do (i-205 t-204)

(set! t-f06 (cons t-I08[[i-205.1]] t-f06)))
(return t-106)))

Figure 100: A Closed-Form Solution is found for t -204

($-$-rewrite-args
=

(lambda (ist)
<t-f06 t-f08 t-f09 t-llO t-lll
t-204 i-205 i-206 i-20Z i-208>
(set! t-204 #f)
(set! t-204 (length ist))
(do-induction (i-208 t-204)

(set! Ist[i-208.1]
(doall

(i-206 t-204)
(set ! t-llO [i-206. I]
(set! t-I08[i-206.1]

(set! t-f06 #f)
(do (i-205 t-204)

(set! t-f06 (cons t-I08[[i-205.1]] t-f06)))
(return t-f06)))

(cdr Ist[i-208.0])))

(car ist [i-206. O]))
(rewrite t-llO [i-206. i])))

Figure 101: Subloops of the Forward Loop are Fused

376 WILLIAMS LUDWELL HARRISON III

($-$-rewrite-args

(lambda (ist)
<t-106 t-108 t-109 t-llO t-111 t-204
i-205 i-206 i-207 i-208 t-209>
(set! t-204 #f)
(set! t-204 (length Ist))
(set! ist (allocate Ist t-204))
(set! t-f08 (allocate #f t-204))
(set! t-llO (allocate #f t-204))
(do-induction (i-208 t-204)

(set! ist[i-208.1] (cdr ist[i-208.0])))
(doall

(i-206 t-204)
(set! t-Ii0[i-206.1] (car Ist[i-206.0]))
(set! t-i08[i-206.1] (rewrite t-II0[i-206.1])))

(set! t-209 t-lOS)
(set! t-lOS (restore t-f08 t-204))
(set! t-f06 #f)
(set! t-f08 (reallocate t-209))
(do (i-205 t-204)

(set! t-f06 (cons t-i08[[i-205.1]] t-f06)))
(return t-f06)))

Figure 102: a l l o c a t e and r e s t o r e Forms are Int roduced

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 377

($-$-rewrite-args
=

(lambda (ist)
<t-106 t-108 t-109 t-110 t-111 t-204
i-205 i-206 i-207 i-208 t-209>
(set! t-204 #f)
(set! t-204 (length ist))
(set! ist (allocate ist t-204))
(set! t-lOS (allocate #f t-204))
(set! t-llO (allocate #f t-204))
(cdr-ind Ist i)
(doall

(i-206 t-204)
(set! t-110[i-206.1]
(set! t-I08[i-206.1]

(set! t-209 t-f08)
(set! t-lOS (restore t-f08 t-204))
(set! t-f06 #f)
(set! t-lOS (reallocate t-209))
(do (i-205 t-204)

(set! t-f06 (cons t-108[[i-205.1]] t-f06)))
(return t-106)))

(car ist [i-206.0]))
(rewrite t-llO [1-206. i])))

Figure 103: Recurrences from the Forward Loop are Translated

from Parcel's perspective, there is no difference between the extraction
of coarse- and fine-grained parallelism: within $ - $ - r e w r i t e - a r g s , which
during its execution may initiate a lengthy and interprocedurally complex
subcomputat ion at each invocation it makes of S - S - r e w r i t e , the compiler
uncovered parallelism by applying exactly the techniques that were applied
to tak, an "innermost" procedure. Of course, the scheduling implications
of coarse- and fine-grained parallelism may be different, but this mat ter is
left to the run-time system in Parcel, which is presented with a parallel
and sequential version of each procedure, and has a flexible mechanism for
selecting between them according to the utilization of processors at run-
time.

Second, consider the collection of procedures represented in Figures 88
through 92. Suppose that of these, the compiler is successful in discover-
ing parallelism only within $ - $ - r e w r i t e - a r g s . Nevertheless, because of
recursion among these procedures, this may well give a satisfactory, if not
abundant, degree of parallelism at run-time. The point is simply this: it is
not necessary for the compiler to detect parallelism within every procedure
of a program, in order to be successful in parallelizing the program as a
whole.

378 WILLIAMS LUDWELL HARRISON III

($-$-rewrite-args
=

(lambda (let)
<t-f06 t-108 t-f09 t-llO t-lll t-204
i-205 i-206 i-207 i-208 t-209>
(set! t-204 #f)
(set! t-204 (length let))
(set! let (allocate let t-204))
(set! t-i08 (allocate #f t-204))
(set! t-110 (allocate #f t-204))
(cdr-ind let 1)
(doall

(i-206 t-204)
(set! t-ii0[i-206.1]
(set! t-I08[i-206.1]

(set! t-209 t-108)
(set! t-108 (restore t-108 t-204))
(set! t-106 #f)
(set! t-f08 (reallocate t-209))
(do

(i -205 t -204)
(set ! t - 1 0 6 [i - 2 0 5 . 1]

(car let [1-206. O]))
(rewrite t-llO [i-206. i])))

(cons t -108 [[i -205 .1]] t -106 [i -205. O])))
(re tu rn t -106)))

Figure 104: Variables Defined in the Backward Loop are Expanded

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 379

($-$-rewrite-args
=

(lambda (Ist)
< t-106 t-108 t-109 t-llO t-lll t-204 i-205

i-206 i-207 i-208 t-209 i-210 t-211 >
(set! t-204 #f)
(set! t-204 (length ist))
(set! Ist (allocate ist t-204))
(set! t-f08 (allocate #f t-204))
(set! t-llO (allocate #f t-204))
(cdr-ind ist I)
(doall

(i-206 t-204)
(set! t-Ii0[i-206.13 (car ist[i-206.0]))
(set! t-i08[i-206.1] (rewrite t-Ii0[i-206.1])))

(set! t -209 t-108)
(set! t-f08 (restore t-108 t-204))
(set! t-f06 #f)
(set! t-f08 (reallocate t-209))
(do-rem-induction

(i-210 t-204)
(set! t-211[i-210.1]

(cons t - 1 0 8 [[i - 2 1 0 . 1]] t - 2 1 1 [i - 2 1 0 . 0])))
(set ! t -106 (append2 t-106 t -211))
(return t-106)))

Figure 105: Doalls and Recurrences from the Backward Loop are Recog-
nized

380 WILLIAMS LUDWELL HARRISON III

($-$-rewrite-args

(lambda (let)
< t-f06 t-108 t-f09 t-llO t-lll t-204 i-205

i-206 i-207 i-208 t-209 i-210 t-211 >
(set! t-204 #f)
(set! t-204 (length let))
(set! let (allocate let t-204))
(set! t-I08 (allocate #f t-204))
(set! t-llO (allocate #f t-204))
(cdr-ind let i)
(doall

(i-206 t-204)
(se t ! t -110[i -206 .1] (car l s t [i - 2 0 6 . 0]))
(se t ! t -108[i -206 .1] (rewr i te t - 1 1 0 [i - 2 0 6 . 1])))

(se t ! t -209 t -108)
(se t ! t -108 (r e s to r e t-108 t -204))
(set! t -106 #f)
(se t ! t -108 (r e a l l o c a t e t -209))
(se t ! t -211 (a l l o c a t e - r #f t -204))
(cons-rem-ind t -108 t-211)
(se t ! t -211 (r e s t o r e - r t -211 t -204))
(se t ! t -106 (append2 t-106 t -211))
(r e tu rn t -106)))

Figure 106: Recurrences ~ o m t h e Backward Loop are Translated

($-$-rewrite-args

(lambda (let)
< t-106 t-108 t-109 t-110 t-111 t-204 i-205

i-206 i-207 i-208 t-209 i-210 t-211 >
(set! t-204 (length let))
(set! let (allocate let t-204))
(set! t-lOS (allocate #f t-204))
(set! t-110 (allocate #f t-204))
(cdr-ind let 1)
(doall

(i-206 t -204)
(set! t-II0[i-206.1] (car Ist[i-206.0]))
(set! t-108[i-206.1] (rewrite t-ii0[i-206.1])))

(set! t-211 (allocate-r #f t-204))
(cons-rem-ind t-108 t-211)
(set! t-106 (restore-r t-211 t-204))
(return t-106)))

Figure 107: The Final, Parallel Version of $ - $ - r e w r i t e - a r g s

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 381

3.6 O r g a n i z a t i o n of t h e C o m p i l e r

Having now seen them performed upon a number of procedures, the
reader could probably sketch the algorithms for exit-loop translation and
recursion splitting, informally. We will do so now.

A l g o r i t h m 1 (Exit-Loop Translation:)

.

.

.

4.

5.

.

7.

.

Select an index variable i and a variable n to hold the number of
iterations of the loop.

Replace each exit branch from the loop by an assignment of the form
(s e t ! n (#or n i)) ; let control flow from this assignment to the
bottom of the loop.

Perform variable expansion upon all variables defined in the loop.

Perform loop distribution.

Reorder the resulting subloops so that as few as possible precede that
in which n is computed.

Mark each of the loops which precedes that in which n is computed as
a recurrence relation for which a parallel solution is available, or a
doaU loop. Fail if any cannot be so marked.

Let v l , . . . , Vk, n be the variables which are computed in the loops which
precede that in which n is computed (inclusive of that in which n
is computed). I f n (which is computed in terms of vl through Vk)
describes a recurrence for which a closed form solution exists, emit
that solution in place of the loop which computes n; else rewrite the
computation of v t , . . . , v k , n so that the first non-nuU value of n is
found in parallel (as a "first-one" recurrence).

Make n the number of iterations of each of the remaining loops (those
that follow that in which n is computed). Treat these loops by recur-
rence and doall recognition, recurrence translation, loop fusion, etc.

A l g o r i t h m 2 (Recursion Splitting:)

1. Let p be the procedure at hand. Select a fence F, a set of self-recursive
calls to p, such that there is at most one member of F along any
control path through the body of p.

382 WILLIAMS LUDWELL HARRISON III

Parser
Interprocedural Analysis
Preparatory Optimizations

Contour Merging
Tail-recursion Elimination
Expression Simplification / Strength Reduction
Invariant Floating
Copy Propagation
Common Subexpression Elimination
Dead Code Elimination

Parallelizing Transformations
Exit Loop Translation
Kecursion Splitting
Cobegin Insertion

Figure 108: The Organization of the Parcel Compiler

.

.

4.

Split the procedure into a forward and backward loop, using the mem-
bers of the fence as the points of division.

Perform exit-loop translation upon the forward loop, as per A~o-
rithm 1; at Step 3 of that algorithm, replace every reference made
in iteration i of the backward loop to a variable defined in the for-
ward loop, by a reference to the last value assumed by that variable in
iteration n - i of the forward loop. Fail if exit-loop translation fails.

Expand the variables defined in the backward loop, and apply loop
distribution, recurrence and doall recognition, loop fusion, etc.

The organization of Parcel as a whole is given in Figure 108. As men-
tioned above, the preparatory optimizations are applied in a cycle, until the
program stabilizes into a version which is unaffected by further a t tempts at
optimization. Exit-loop translation is applied to the loops of a procedure,
from the innermost loops to the outermost.

3.7 S-expressions in Parcel

The Parcel compiler permits the user to specify whether cons cells will be
regarded as mutable or immutable. If they are regarded as mutable, then
they are implemented in the conventional way, as a record of two fields, and
their dependence implications are analyzed as described in subsection 2.14.
In that case, however, recurrences over list da ta will not be recognized by

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 383

1

x : (a b ¢ 1o 1o
d e f g

y = (a b c d e f g)

Figure 109: Two S-expressions Using Parcel's Representation

the compiler, so that some of Parcel's run-time functionality will go un-
used. On the other hand, if cons cells are regarded as immutable, then an
alternative representation is given to them, that facilitates the paralleliza-
tion of code which performs list-manipulating operations (car, cdr, cons,
append, etc.); this representation is infeasible in the presence of destructive
list operations. (Better would be for the compiler, by analysis, to partit ion
the cons cells of the program into those which may be operated upon de-
structively, and those which are not. The appropriate representation would
then be chosen accordingly.)

It is worth mentioning at the outset, that list-manipulation does not dom-
inate modern Lisp code the way it might, say, programs writ ten in Lisp 1.5;
this owes to the data structuring facilities available in modern dialects (e.g.,
d e f i n e - s t r u c t u r e , object-oriented extensions). It is important, however,
to a balanced strategy of parallelization, to address recurrence relations,
such as those defined over s-expressions, which if neglected, introduce se-
quential bottlenecks into otherwise nicely parallel code.

Each pointer in this representation, whether a variable, a car or cdr
pointer, etc., comprises three fields: a tag, a length, and an address. The
tag indicates that the object pointed to is a proper (nil-terminated) list,
an improper (non-nil terminated) list, or an object of a different type al-
together. The length field may have a non-zero value only if the object
pointed to is a list; its meaning will be explained shortly. The address field
is the location in memory of the object pointed to (except in the case of
immediate data). Figure 109 shows two s-expressions, x and y, constructed
using such cons cells. Beside each arc (pointer) in the diagram is shown
the corresponding length field, x and y have length 4 and 7 respectively.

384 WILLIAMS LUDWELL HARRISON III

A heavy line separating two cells indicates that the cells occupy adjacent
memory locations (where the unit of memory is taken to be a single cons
cell). Therefore, y occupies two contiguous blocks of memory, one of length
3, the other of length 4. 24

The reader may have noticed that the meaning of the length field asso-
ciated with a cdr pointer seems to be different from that of the length field
associated with a car or variable pointer (such as x or y). The length field
of a car or variable pointer indicates the number of cells in the top level
of the s-expression pointed to; that of a cdr pointer indicates the number
of cells "remaining" (to the "right") in the contiguous block containing the
cdr pointer. For instance, the cell whose car is d in Figure 109 has a cdr
pointer with a length field of 3; there are three cells to the right of this cell
in the contiguous block containing it.

This representation permits two lists to share a cell without sharing the
entire subexpression rooted at that cell. Furthermore, because our version
of the comparator eq? examines length fields as well as addresses, such a
cell will appear not to be eq? with the same cell in another s-expression
that shares it, but that does not share the entire sub-expression rooted at
it. For instance, (eq? (c d r x) (cd r y)) returns #f, where x and y are
as shown in Figure 109. When we examine the mechanics of append in this
representation, we will see that this behavior preserves the conventional
semantics of eq?.

All pointers to atoms have a length field of zero; #f is the pointer whose
tag indicates a proper list, and whose length is zero.

Another feature of this representation is that we may access any cell in
the top level of a list in t ime proportional to the number of contiguous
blocks of which the list is composed, and not to the number of cells in its
top level. Recall, for example, that the procedure c d r - i n d , described in
subsection 3.3, must compute (cdikr v [0 . 0]) for 0 < i _ N - 1, where N
is the length of its input vector v. Assuming that v [0.0] has relatively few
blocks in its top level, this operation will take roughly constant t ime for all
i . Furthermore, the routines c o n s - r e m - r e c and c o n s - r e m - i n d described
above produce single, contiguous blocks. The hope, then, is that lists which
are to be consumed by c d r - i n d and similar routines, will have been pro-
duced by routines such as c o n s - r e m - r e c , c o n s - r e m - i n d , etc., al though
experimentat ion is needed to see if such hope is warranted.

A minor benefit of the representation is that the predicate equa l? which
compares s-expressions for isomorphism may be speeded by including a

24This representation bears a resemblance to cdr-coding [42] and vector-coding [25],
but has both a different motivation and different properties. Our motivation is not to
save memory, but rather to facilitate the parallel creation and access of lists.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 385

z

2 1

4 'io I 1o I 3 2 1

a b I I
o 1o
e f g

x = (a b c d) |
y = (a b c d e f g) ! 2 I

1o
1 j

Figure 110: The Result of appending to y

comparison of lengths at every car-wise traversal. In fact, that the length
of each list is available in constant time is of general utility; for example,
many a loop in the restructured code produced by the compiler has as
its number of iterations, the length of a list, or a simple function of the
length; likewise, many of the techniques for solving recurrences involving
operations upon lists make use of the length fields (for example, c d r - i n d ,
cons - r em- rec and c o n s - r e m - i n d operate upon the length fields of their
inputs and outputs).

The unusual sublist sharing permit ted by this representation helps to
regain some efficiency advantages sacrificed by forbidding r p l a c d (and, of
course, does so without the side-effects for which r p l a c d is well known).
Let's consider two common operations involving rp lacd : the (destructive)
addition of cells to the end of a list, and the (destructive) elimination of
cells from the end of a list. In both cases, the disadvantage of aliased
side-effects is offset by the fact that no copying of cells is necessary. Let's
examine the analogous operations in Parcel's representation (that is, the
non-destructive counterparts of these operations). Figure 110 shows the
result of performing the operation (s e t ! z (append y ' (h i j))) , where
y is as shown in Figure 109. No new cells have been created: the list ' (h ±

386 WILLIAMS LUDWELL HARRISON III

j) is merely tacked onto the end of y by walking to the end of y, discovering
that its final cdr is unused, and placing the pointer to ' (h i j) in this cdr
pointer. A pointer to y, with a length field of 10, is re turned as the value
of z. Furthermore, the operation requires only time proportional to the
number of contiguous blocks of which y is composed (in this case, 2). The
variable y is not altered, as the end of y is defined, not by the presence of a
null cdr pointer, but by its length and tag. As pointed out above, the cells
common to y and z will appear to eq? to have been copied, just as in the
conventional version of append. Of course, if the final cell of y was in use,
as would be the case if we tried the operation (s e t ! w (append y ' (k 1
m))) after forming z as above, or if y were an improper list, append would
copy the cells of y, as does the conventional append.

The second use of r p l a c d we would like to emulate (non-destructively)
is the removal of cells from the end of a list. It is easy to see that by merely
subtracting from the length of a list, we delete cells from its end. Thus, in
Figure 109 above, it could be that x is the result of performing (firstn y
4), where (firstn a b) returns the first b cells of a. For example, (firstn
s (I- (length s))) returns a list consisting of all but the last cell of s
(and in constant time). As before, s is not affected and the conventional
meaning of eq? is preserved.

Unfortunately, by composing append's and firstn's, it is possible to
violate the usual meaning of eq?. For example, the expression

(eq? (firstn (append x y) (length x)) x)

can re turn true using Parcel 's representation, but cannot re turn true using
a conventional representation, if x is non-empty.

It should be clear that r p l a c d is difficult to perform using this represen-
tation, as it may affect the length of every list sharing a cell, and to update
all such pointers is impractical. A more subtle problem exists with r p l a c a .
Consider the result of (s e t ! w (append y y)) , where y is as shown in
Figure 109. This will produce a list of length 14, with only 7 cells in its top
level! See Fig 111. Now, the operation (r p l a c a w 'oops) would change
two cells in the top level of w, and one in the top level of y, which is clearly
not what would happen with a conventional representation (where only one
cell in w would be altered, and none in y). In short, this representation is
probably not suitable for use with the r p l a c operations.

3.8 R e l a t i o n t o P r e v i o u s W o r k

The approaches taken by various investigators to the problem of paral-
lelism in Lisp may be divided according to two orthogonal criteria: the

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 387

w

4 -o 3 2

c I,,,, L I
x = I0 I0 ;0 I0

d e f g
y = (a b c d e f g)

w = (a b c d e f g a b c d e f g)

Figure 111: An Unusual Case of Sublist Sharing

mechanism(s) by which parallelism is exploited, and the degree to which
parallelism is exploited automatically. In Multilisp [24, 38], a flexible mech-
anism called a f u t u r e is used to permit the overlapping of the production
of a quantity with its consumption. It might be, for example, that a func-
tion returns a quanti ty which will not be needed (in fully evaluated form),
for some time following the function's return; by enclosing the expression
whose value is to be returned in a f u t u r e , the overlap may be turned into
speedup. Another example of such a mechanism for explicit parallelism is
the qlambda construct of Qlisp [22]. Using qlambda, one may spawn an
asynchronous process which will run in the lexical environment in which
the qlambda is closed. The p c a l l s tatement (described in both [22] and
[24]) is similar in power to the cobegin-style parallelism discussed in sub-
section 3.3, but there in no form in Multilisp or Qlisp analogous to the
d o a l l construct of which Parcel makes such wide use, nor to the many
recurrence solution routines that are part of its run-time system. Both
f u t u r e and qlambda are less rigidly structured than any of the constructs
for parallelism employed by Parcel. On the one hand, this has an advantage
in expressiveness: a f u t u r e obeys the rules of indefinite extent that pertain
to all Scheme objects, and thus fits neatly into the language, especially in
the absence of side-effects. On the other hand, the modes of parallelism
used in Parcel are machine-oriented, and are designed for efficiency in im-
plementation. The formation of a f u t u r e entails (in general) both closure
formation and scheduling overhead, and introduces at most one additional,
parallel strand of execution. The starting of a d o a l l loop may result in
many concurrent streams of execution, and (in the case of the machines for
which Parcel is targeted) consumes but a few instructions of overhead. The
a construct ("apply-to-all") of Connection Machine Lisp [7] may be seen

388 WILLIAMS LUDWELL HARRISON III

as a special case of a d o a l l loop. CM Lisp's ~ operator has two variants.
The first is similar to the reduce operator above (~ requires both commu-
tativity and associativity of the operator of reduction); the other variant of

has no analogue in Parcel (it is specific to the manipulation of xectors).
SIMD machines execute such forms efficiently when conditional branching
within the function being mapped (or the operator of reduction) is lim-
ited; ordinarily, this restricts one to the mapping of primitive functions, or
simple user functions in which conditional execution is controlled by mode
vectors (boolean vectors which "turn off" processors not participating in a
computation).

Most work on parallelizing Lisp to date has left the job of identifying and
exploiting parallelism to the user. All of the constructs described above,
for example, come from dialects of Lisp which have been extended for the
expression of parallelism. Some work has been done on the automatic in-
sertion of forms such as f u t u r e and qlambda; see [35] and [34]. These
approaches leave the structure of the program relatively unaltered. In Cu-
rare [33], the problem of parallelizing tail-recursive functions which operate
destructively upon list structures is addressed. As mentioned in subsec-
tion 2.14, Parcel's interprocedural analysis of object lifetimes and side-
effects is of greater generality than methods based upon conventional alias
analysis (such as that described in [33]), because while aliasing relations
are subsumed by the Parcel analysis of side-effects, it is able to distinguish
among instances of dynamically created objects, and to limit the visibility
of side-effects according to the lifetimes of the objects involved. This is
essential to the automatic extraction of high-level parallelism. Of course,
much work has been done on program transformation and optimization;
the approaches taken may be divided broadly into two categories. In [31]
and [39] techniques for the automatic parallelization of Fortran programs
are discussed; these operate upon a program represented as a control-flow
or dependence graph, and may be seen as extensions of traditional tech-
niques for program optimization. Such is the approach described in this
paper, and in [33]. Another category of program transformation operates
more directly upon the syntax of a program, and makes use of pattern
matching in lieu of use-definition and control-flow information (i.e., in lieu
of semantic analysis); for this reason, such techniques are applied primar-
ily to functional (side-effect free) languages. See [20]. A mixed strategy
for parallelism detection, namely a compiler which accepts a language that
includes constructs for parallelism, is feasible as well; see [37]. The non-
determinism that results from the addition of annotations for parallelism
may complicate the analysis of dependences sufficiently that sequential and
parallelizing optimizations are severely inhibited. The interesting trade-offs
of this interaction appear to be relatively unexplored.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 389

Finally, the reader may wish to see [5] and [29] for work on the compi-
lation of Scheme for sequential machines. Many Scheme compilers work
by conversion of the input program to continuation passing style. This
approach is not taken in Parcel, for the reason that many transforma-
tions performed in our compiler, including traditional optimizations such
as invariant floating, global common subexpression elimination, and partic-
ularly parallelizing transformations, are most naturally expressed in terms
of a conventional control flow model (i.e., a control flow graph), and are fa-
cilitated by increased visibility of the computation. Rather than coalescing
units of control flow into larger, nested structures over which transforma-
tions can be applied, CPS conversion appears to cause fragmentation of
the computation that limits the scope of optimization and restructuring.
Indeed, great effort is spent in Parcel in merging procedure contours, so
that the compiler can manipulate procedure bodies that are as large as
possible, and as free from branching and procedure application as possi-
ble. On the other hand, many traditional optimizations have been recast
into the CPS framework (see the above references), and it may be that the
transformations we are performing could be so recast as well.

4 Preliminary Performance Results

We have constructed a code generator and parallel run-time system for
the Alliant FX/8 [2], an 8-processor shared memory multiprocessor, in or-
der to test the compilation strategy of the Parcel compiler. The run-time
system consists of a parallel stop-and-copy garbage collector, a microtask
scheduler, and a library of parallel recurrence solution routines, in addition
to the usual (sequential) functionality of a Scheme run-time system, such
as I/O. The table in Figure 112 lists the running time of an Alliant FX/8
under normal, daytime loading, executing a few of the Gabriel benchmarks
[21] as compiled by Parcel. At the time of this writing, the run-time system
is still under development, and isn't able to execute the entire Gabriel suite
of benchmarks; in any event, a detailed study of the run-time behavior of
the object codes produced by the Parcel compiler is called for, and is beyond
the scope of this work. Nevertheless, the reader may compare these run-
ning times to those of commercially developed Lisp compilers for sequential
machines, to appreciate the efficiency of the object codes produced by the
Parcel compiler.

390 WILLIAMS LUDWELL HARRISON III

P a r c e l - F X / 8

boyer 1.80 + 0.00
dde r iv 0.48 + 0.00
de r iv 0.58 + 0.00
id ly2 0.28 + 0.00
rdiv2 0.25 + 0.00
tak 0.11 + 0.00

Figure 112: Preliminary Performance Figures for Parcel - CPU+GC Sec-
onds

5 C o n c l u s i o n s

We have presented a comprehensive approach to the interprocedural anal-
ysis and automatic parallelization of Scheme programs. There are a number
of conclusions to be drawn from this work.

First, we conclude that automatic parallelization can be profitably ap-
plied to languages other than Fortran. In fact, the simplicity and clarity
of their semantics make Scheme programs ideal as input to a parallelizing
compiler.

Second, we conclude that the heavy use of procedures by Scheme pro-
grammers, and in the implementation of the advanced features of the lan-
guage, means that aggressive interprocedural analysis is essential to the
successful optimization of Scheme programs for parallel and sequential ex-
ecution. To answer this requirement, we have introduced procedure strings
and stack configurations as a natural and powerful framework in which to
reason about object lifetimes and interprocedural side-effects. Because it
restricts the visibility of side-effects according to the lifetimes of mutable
objects, the system of interprocedural analysis we have constructed is able
to reveal high-level parallelism in programs that make use of side-effects. It
is likewise well suited to problems of memory management, both the prob-
lem of placing objects on a stack where their lifetimes permit, and of placing
objects in a hierarchical shared memory according to the visibility required
of them. In fact, the generality of Scheme's semantics would allow us easily
to use this framework for the analysis of object lifetimes and side-effects
in, for example, C programs. In short, it can provide the theoretical basis
for parallelization and memory management of programs that manipulate
pointers and dynamically allocated storage, since these manipulations can
be reasoned about in terms of Scheme's more general feature of first-class
procedures. The framework also accommodates Scheme's first-class contin-

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 391

uations naturally; this gives hope that it will apply to other, usually more
restricted mechanisms for causing interprocedural movement of control.

Third, we conclude that in parallelizing Scheme (or Lisp) programs a
compiler must treat control structures more complex than the conventional
do loop of Fortran. In particular, while and repeat structures (which
may arise from tail-recursion) and recursion (other than tail-recursion) are
rich sources of parallelism, but the extraction of this parallelism often re-
quires extensive transformation of the program, as the examples we have
presented demonstrate. The techniques of exit-loop translation and recur-
sion splitting we have introduced are a natural extension of the techniques
for parallelizing Fortran programs developed by Kuck and his colleagues,
to the control structures found commonly in Scheme programs. In fact,
when augmented with numerous "sequential" optimizations performed in
Parcel, exit-loop translation and recursion splitting may be seen as the
bridge over which Scheme programs must pass to be eligible for restruc-
turing by the techniques that have been so well-developed for Fortran (or
straightforward adaptations of those techniques). Like our framework of
interprocedural analysis, exit-loop translation and recursion splitting are
directly applicable to other languages that provide iterative structures and
recursion.

Finally, we conclude that agressive "sequential" optimizations are impor-
tant to the successful parallelization of Scheme programs, for two reasons.
First, transformations which do not introduce parallelism on their own,
may nonetheless facilitate parallelization by simplifiying code, eliminating
spurious control and data dependences, and rearranging computations so
that they are more "visible" to the compiler. Second, the use of several
versions of procedures (one parallel, one sequential) is an effective means of
balancing the opposing requirements of creating parallel activity, when the
target machine is underutilized, and executing efficient sequential code in
each processor, when the target machine is saturated with parallel activity.
If the parallelized procedures produced by Parcel were not complemented
by optimized sequential ones, the performance of its object codes would be
unbalanced and awkward for the run-time system to manage, as the degree
of parallelism would be grossly out of proportion to the target machine size,
and the extensive restructuring performed in parallelizing a program would
come back as sheer overhead during execution.

6 A c k n o w l e d g e m e n t s

The author wishes to acknowledge David Padua for the many hours he
gave to the creation, expression and correction of this work. The author also
wishes to acknowledge Todd Allen, Michael Burke, Ronald Cytron, Perry

392 WILLIAMS LUDWELL HARRISON III

Emrath, Samuel Kamin, Clyde Kruskal, David Kuck, Tim McDaniel, Sam
Midkiff, Uday Reddy, and David Sehr for their encouragement and their
many insightful comments and suggestions.

References

1. Butterfly Parallel Processor Overview. BBN Laboratories Inc., Cam-
bridge, Massachusetts (1985).

2. FX/Series Architecture Manual. Alliant Computer Systems Corpora-
tion, Acton, Massachusetts (January 1986).

3. Harrison III, Williams Ludwell. Compiling Lisp for Evaluation on a
Tightly Coupled Multiprocessor. Technical Report 565, Center for
Supercomputing Research and Development, University of Illinois at
Urbana-Champaign (March 1986).

4. Harrison III, Williams Ludwell and Padua, David A. Parcel: project
for the automatic restructuring and concurrent evaluation of lisp. In
Proceedings of the 1988 International Conference on Supercomputing,
Association for Computing Machinery (July 1988).

5. Steele Jr., Guy L. RABBIT: a Compiler for Scheme. Technical Re-
port AI Memo 474, Massachusetts Institute of Technology (May 1978).

6. Steele Jr., Guy L. Common Lisp: the Language. Digital Press (1984).

7. Steele Jr., Guy L. and Hillis, W. D. Connection machine lisp: fine-
grained parallel symbolic processing. In Proceedings of the 1986 Con-
ference on Lisp and Functional Programming (August 1986) 279-297.

8. Steele Jr., Guy L. and Sussman, Gerald Jay. The Revised Report on
Scheme. Technical Report AI Memo 452, Massachusetts Institute of
Technology (January 1978).

9. Abelson, Harold and Sussman, Gerald J. Structure and Interpretation
of Computer Programs. The MIT Electrical Engineering and Computer
Science Series, MIT Press, Cambridge, Massachusetts (1985).

10. Aho, Alfred V. and Ullman, Jeffrey D. Principles of Compiler Design.
Addison Wesley Publishing Company, Reading, Massachusetts (1979).

11. Allison, Lloyd. A Practical Introduction to Denotational Semantics.
Cambridge Computer Science Texts 23, Cambridge University Press,
Cambridge (1986).

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 393

12. Banerjee, Uptal D. Data Dependence in Ordinary Programs. Master's
thesis, University of Illinois at Urbana-Champaign (November 1976).

13. Banerjee, Uptal D. Speedup of Ordinary Programs. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign (October 1979).

14. Burke, Michael. An Interval-Based Approach to Exhaustive and In-
crementM Interprocedural Data Flow Analysis. Technical Report RC
12702 (#58665), IBM T.J. Watson Research Center (September 1987).

15. Burn, G. L. Abstract Interpretation and the Parallel Evaluation of
Functional Languages. PhD thesis, Imperial College, University of Lon-
don (march 1987).

16. Church, Alonzo. The Calculi of Lambda-Conversion. Princeton Uni-
versity Press, Princeton, New Jersey (1941).

17. Cousot, P. and Cousot, R. Abstract interpretation: a unified lattice
model for static analysis of programs by construction of approximation
of fixpoints. In Conference Record of the Fourth ACM Symposium on
Principles of Programming Languages (January 1977) 238-252.

18. Cousot, P. and Cousot, R. Systematic design of program analysis
frameworks. In Conference Record of the Sixth ACM Symposium on
Principles of Programming Languages (January 1979) 269-282.

19. Cytron, Ronald G. and Ferrante, Jeanne. What's in a name? or the
value of renaming for parallelism detection and storage management. In
Proceedings of the 198 7 International Conference on Parallel Processing
(August 1987) 19-27.

20. Darlington, John and Burstall, Richard M. A system which automati-
cally improves programs. Acta Informatica, 6, 41 (1976).

21. Gabriel, Richard P. Performance and Evaluation of Lisp Systems. MIT
Press, Cambridge, Massachusetts (1985).

22. Gabriel, Richard P. and McCarthy, John. Queue-based multiprocessing
lisp. In Proceedings of the 1984 Conference on Lisp and Functional
Programming (January 1984) 25-44.

23. Gifford, D. K., Jouvelot, P., Lucassen, J. M., and Sheldon, M. A.
FX-87 Reference Manual Technical Report MIT/LCS/TR-407, Mas-
sachusetts Institute of Technology (January 1987).

394 WILLIAMS LUDWELL HARRISON III

24. Halstead, Robert H. Multilisp: a language for concurrent symbolic com-
putation. A CM Transactions on Programming Languages and Systems,
7, 4 (October 1985) 501-538.

25. Hansen, W. J. Compact list representation: definition, garbage collec-
tion and system implementation. Communications of the ACM, 12, 9
(September 1969).

26. Hecht, M. S. Flow Analysis of Computer Programs. Elsevier North-
Holland (1977).

27. Hillis, W. Daniel. The Connection Machine. MIT Press, Cambridge,
Massachusetts (1985).

28. Hudak, Paul and Young, Jonathan. A collecting interpretation of ex-
pressions (without powerdomains). In Conference Record of the Thir-
teenth ACM Symposium on Principles of Programming Languages
(January 1988).

29. Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., and Adams, N.
Orbit: an optimizing compiler for scheme. In Proceedings of the SIG-
PLAN 1986 Symposium on Compiler Construction (July 1986) 162-
175.

30. Kuck, David J., Davidson, Edward S., Lawrie, Duncan H., and Sameh,
Ahmed H. Supercomputing today and the cedar approach. Science,
231 (February 1986) 967-974.

31. Kuck, David J., Kuhn, Robert H., Leasure, Bruce, and Wolfe,
Michael J. The structure of an advanced vectorized for pipelined pro-
cessors. In Fourth International Computer Softward and Applications
Conference (October 1980).

32. Ladner, R. E. and Fischer, M. J. Parallel prefix computation. Journal
of the ACM (October 1980) 831-838.

33. Larus, J. and Hilfinger, P. N. Restructuring lisp programs for concur-
rent execution (summary). In Conference Record of the ACM SIG-
PLAN Symposium on Parallel Programming (1988).

34. Marti, J. and Fitch, J. The bath concurrent lisp machine. In EURO-
CAM '83 (Lecture Notes in Computer Science), Springer Verlag (1983).

35. McGehearty, P. F. and Krall, E. J. Potentials for parallel execution
of common lisp programs. In Proceedings of the 1986 International
Conference on Parallel Processing (1986) 696-702.

ANALYSIS AND PARALLELIZATION OF SCHEME PROGRAMS 395

36. Midkiff, Samuel P. and Padua, David A. Compiler algorithms for syn-
chronization. IEEE Transactions on Computers, C-36, 12 (December
1987) 1485-1495.

37. Midkiff, Samuel P. and Padua, David A. The Further Concurrenti-
zation of Parallel Programs. Technical Report, Center for Supercom-
puting Research and Development, University of Illinois at Urbana-
Champaign (1988).

38. Miller, James Slocum. MultiScheme: A Parallel Processing System
Based on MIT Scheme. PhD thesis, Massachusetts Institute of Tech-
nology (1987).

39. Padua, David A. and Wolfe, Michael J. Advanced compiler optimiza-
tions for supercomputers. Communications of the ACM, 29, 12 (De-
cember 1986).

40. Pfister, G. F., Brantley, D. A., et al. The ibm research parallel processor
prototype (rp3). In Proceedings of the 1985 International Conference
on Parallel Processing (1985) 764-771.

41. Rees, J., Clinger, W., et al.
algorithmic language scheme.
1986) 37-76.

Revised revised revised report on the
SIGPLAN Notices, 21, 12 (December

42. Roads, C. B. 3600 Technical Summary. Symbolics Corporation, Cam-
bridge, Massachusetts (February 1983).

43. Scott, Dana S. Domains for Denotational Semantics. Technical Report,
Carnegie-Mellon University (June 1982).

44. Stoy, J. E. Denotational Semantics: the Schott-Strachey Approach to
Programming Language Theory. MIT Press (1977).

45. Triolet, Remi. Contributions to Automatic ParMlelization of Fortran
Programs with Procedure Calls. PhD thesis, University of Paris VI
(I.P.) (1984).

46. Wegman, Mark and Zadeck, Kenneth. Constant propagation with con-
ditional branches. In Conference Record of the Twelfth ACM Sympo-
sium on Principles of Programming Languages (January 1985) 291-299.

47. Wolfe, Michael J. Optimizing Supercompilers for Supercomputers.
PhD thesis, University of Illinois at Urbana-Champaign (October
1982).

396 WILLIAMS LUDWELL HARRISON III

7 V i t a

Williams Ludwell Harrison III was born on June 2, 1960 in Lafayette,
Indiana. He graduated from Wheaton Central High School in 1978, and
from the University of Illinois at Urbana-Champaign in 1983, obtaining a
Bachelor of Arts in English Literature and Political Science. He entered the
graduate school of the University of Illinois at Urbana-Champaign in the
Fall of 1983. His doctoral research was directed and supported by Professor
David A. Padua. He is now with the Center for Supercomputing Research
and Development of the University of Illinois at Urbana-Champaign as a
Senior Software Engineer, and the Department of Computer Science as an
Adjunct Assistant Professor.

