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Analysis of fully developed opposing mixed convection 
between inclined parallel plates 

A. S. Lavine,  Los Angeles,  CA,  U S A  

Abstract. An exact solution is presented of fully developed, laminar 
flow between inclined parallel plates with a uniform wall heat flux 
boundary condition. The flow is downward and the heat flux is into 
the channel, so that natural convection opposes the forced flow. 
The solution depends on the two parameters P1 = Gr sin O/Re and 
P2 = Gr cos O/Re 2 Pr. Four different flow reversal regimes are ob- 
served: 1) no reversal, 2) top reversal, 3) bottom reversal, and 4) top 
and bottom reversal. Velocity profiles, temperature profiles, wall fric- 
tion, and Nusselt numbers are presented. Despite the simplicity of 
the problem which has been analyzed, it does display some 
features which have been observed in real mixed convection flows, 
such as flow reversal and nonmonotonic dependence on tilt angle. 

Berechnung der roll entwickelten entgegengesetzt geriehteten 
Misch-Konvektion zwischeu geneigten parallelen Platten 

Zusammenfassung. Es wird eine exakte L6sung ftir voll entwickelte 
laminare Str6mung zwischen geneigten parallelen Platten mit ein- 
heitlichem Wand-Wfirmestrom als Randbedingung dargestellt. Die 
Str6mung ist abwfirts gerichtet und der Wfirmestrom fiihrt in den 
Kanal, so daB die freie Konvektion der erzwungenen entgegenge- 
setzt gerichtet ist. Die L6sung hfingt yon den beiden Parametern 
P1 = Gr sin O/Re und P2 = Gr cos O/Re 2 Pr  ab. Vier verschiedene 
Bereiche der Str6mungsumkehr wurden betrachtet: 1) keine Rich- 
tungsumkehr, 2) Umkehr an der Oberseite, 3) Umkehr an der 
Unterseite und 4) Umkehr an Ober- und Unterseite. Es wurden 
Geschwindigkeits- und Temperaturprofile, Wandreibung und 
Nusselt-Zahlen dargestellt. Trotz der Einfachheit des analysierten 
Problems werden einige Dinge dargestellt, welche in realer gemisch- 
ter Konvektion untersucht wurden, so z. B. Str6mungsumkehr und 
die nicht-monotone Abhfingigkeit yore Schr/igungswinkel. 

Nomenclature 

f friction factor = %/(�89 0o ff2) 
9 gravitational acceleration constant = 9.8 m/s 2 
Gr Grashof number = g fl q L4/k v 2 
k fluid thermal conductivity 
L channel width 
m = (2/)1) ~ 
N u  Nusselt number = 2 q  L/k(T ,~  - Tb) 
p fluid thermodynamic pressure 
P nondimensional pressure 

= [P -- ~o 9 ( x  sin 0 -- y cos O)]/Pr Oo ~2 
Pr  Prandtl number = v/c~ 
P1 = Gr sin O/Re 
P2 = Gr cos O/Re ~ Pr  
q wall heat flux 

R e  Reynolds number = ~ L / v  
T fluid temperature 
T b fluid bulk temperature 
T o constant reference temperature 
T w fluid temperature 
u axial velocity 
~i average velocity 
U nondimensional velocity= u / ~  
x axial coordinate 
X nondimensional axial coordinate = x c~/~ L 2 
y transverse coordinate 
Y nondimensional transverse coordinate= y / L  
c~ fluid thermal diffusivity 
/3 fluid thermal expansion coefficient 
0 tilt anne, measured counterclockwise from horizontal in Fig. 1 
v fluid kinematic viscosity 
Qo fluid density evaluated at T o 
% wall shear stress 
~b nondimensional temperature = ( T  - To)/( q L /k )  

1 

~b b nondimensional bulk temperature = ~ U q~ d Y 
0 

~b w nondimensional wall temperature = (Tw - To)/(q L /k )  

1 Introduction 

Mixed convect ion  in ducted flow m ay  occur in m a n y  appli- 
cations,  such as in heat  exchangers,  chemical  processing 
equipment ,  t r anspor t  of heated or cooled fluids, solar collec- 
tors, and  microelect ronic  cooling. F low reversals have been 
observed to occur near  the duct  wall when buoyancy  opposes 
the forced flow, or  near  the duct  centerl ine when  b u o y a n c y  
aids the forced flow. These flow reversals are of subs tant ia l  
significance because they m ay  strongly affect wall friction, 
pressure drop,  heat  transfer, occurrence of extreme tempera-  
tures, and  stabil i ty of the flow. 

This paper  presents  an  exact so lut ion for laminar ,  fully 
developed, oppos ing  mixed convect ion  flow between in- 
clined parallel  plates. The p rob lem is highly idealized, and  in 
fact l am ina r  flow would  no t  exist under  some of the condi-  
t ions considered. Nonetheless,  the so lu t ion  does provide in- 
sight in to  p h e n o m e n a  which occur in more  realistic oppos-  
ing mixed convect ion  flows. F o r  instance,  the so lu t ion  is 
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shown to depend nonmonotonically on inclination angle, 
and the conditions under which flow reversals occur are 
determined. 

Mixed convection in ducts and channels has received a 
great deal of attention in the literature. The majority of the 
work has addressed either the vertical or the horizontal 
configuration. The case of fully developed mixed convection 
between horizontal parallel plates with a linear axial temper- 
ature distribution was solved by Gill and Del Casal [1]. 
Ostrach [2] solved the problem of fully developed mixed 
convection between vertical parallel plates with and without 
heat sources. Cebeci et al. [3] performed numerical calcula- 
tions of developing laminar mixed convection between 
vertical parallel plates for both aiding and opposing condi- 
tions. Wirtz and McKinley [4] conducted an experimental 
study of opposing mixed convection between vertical parallel 
plates with one plate heated and the other adiabatic. In all 
of these studies flow reversal was observed under some con- 
ditions. 

There have been a variety of experimental, analytical, and 
numerical investigations of opposing mixed convection in 
vertical pipes [5-9]. Flow reversals were predicted and were 
observed experimentally. 

Mixed convection in inclined geometries has not been 
studied as exhaustively as for vertical and horizontal con- 
figurations. Most of the studies which have been conducted 
are for aiding flow. Bohne and Obermeier [10] performed an 
experimental investigation of aiding and opposing mixed 
convection in an inclined Cylindrical annulus. Lavine et al. 
[11, 12] performed an experimental investigation of the oppos- 
ing case, for a circular pipe. These three studies indicate that 
some aspects of the flow behavior depend nonmonotonically 
on tilt angle. The simple opposing mixed convection flow 
addressed in this paper does display this feature. 

2 P r o b l e m  d e s c r i p t i o n  

The problem to be solved is that of fully developed, laminar 
flow between inclined parallel plates with a uniform wall 
heat flux boundary condition (Fig. 1). The flow is downward 
and the heat flux is into the channel, so that natural convec- 

Fig. 1. The parallel plate configuration 

tion opposes the forced flow. For simplicity, only the case of 
equal heat fluxes at the upper and lower walls will be con- 
sidered. The assumption of fully developed flow means that 
the axial (x-direction) velocity depends only on the trans- 
verse coordinate, y. Then from continuity, the transverse 
velocity component must be zero. The temperature is as- 
sumed to be a function of x plus a function of y. No assump- 
tions are made with regard to the pressure variation (and in 
fact it is found not to be a linear function of x, as is often 
assumed). The flow is then described by the following non- 
dimensional equations and boundary conditions, where it 
has been further assumed that the flow is steady-state and 
incompressible, with constant properties and negligible 
viscous dissipation, and that the Boussinesq approximation 
holds. 

8p d2O 
- P ~ + - -  (1)  

~X dY  2 ' 

~P 
- P2 4',  (2)  

~Y 

U - - -  (3)  
~X ~y2 ' 

1 

U d r  = 1, (4) 
0 

0 ~ -  1 = 
U ( 0 ) = U ( 1 ) = 0 ,  - ~y  = 1. (5)  

Integrating Eq. (3) over the channel cross-section, and mak- 
ing use of Eq. (4), the boundary conditions for if, and the 
assumption that the temperature is a function of x plus a 
function of y, it can be shown that: 

s 0  
- -  = 2 .  (6)  
~X 

These equations have been made nondimensional in such 
a way that the solution depends only on the two p~rameters 
1~ and Pz, not independently on the four fundamental pa- 
rameters Re, Gr, Pr, and the tilt angle 0. The parameters P1 
and P2 are defined as P~ = Gr sin O/Re and P2 = Gr cos O/Re z Pr. 
(Choudhury and Patankar [13] used essentially the same 
parameters for developing aiding mixed convection jn a pipe.) 
Note that the case of upward flow with cooled walls (also an 
opposing flow) would correspond to negative values of Gr 
and 0, so that P1 would remain positive, while P2 would 
become negative. The solution would be identical to the case 
considered here, except that the velocity and temperature 
profiles would be reflected about the channel centerline. 
For instance, when the downward, heated flow exhibits flow 
reversal at the upper wall, the upward, cooled flow would 
exhibit reversal at the lower wall. 

It is possible, of course, to make use of some different pair 
of parameters which are a combination of/'1 and P2, such as 
replacing/'1 or P2 with P3 = P1/P2 = Re Pr tan 0. The advantage 
to doing so is that the Grashof number dependence can then 
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be isolated in one parameter. However, the pair of param- 
eters/ '1, P2 has the desirable feature that the limits of hori- 
zontal and vertical channel flow can be recovered as P~ goes 
to zero and P2 goes to zero, respectively. I f P  a and P3 had been 
used, then it would be difficult to recover the horizontal 
limit, since both P1 and P3 go to zero as 0 goes to zero (and 
the solution depends on their ratio, P2). Furthermore, if the 
pair P2, P3 had been used, it would be difficult to recover the 
vertical limit, since P2 goes to zero and P3 goes to infinity as 
0 goes to 90 degrees (and the solution depends on their 
product,/'1). It should also be noted that the forced convec- 
tion limit is obtained as/'1 and P2 both go to zero. The case 
of natural convection corresponds not to Re = 0, but rather 
to the situation in which there is no imposed pressure gra- 
dient. There would be a net flow in the upward (negative x) 
direction. This limit cannot be recovered from the solution 
which will be presented here because the character of the 
solution changes when Re is negative (i.e. P~ negative). The 
aiding mixed convection case (Gr or 0 negative) cannot be 
recovered for the same reason. Finally, it should be noted 
that the 0 dependence necessarily appears in both param- 
eters, and cannot be accounted for simply by multiplying the 
Grashof  number by sin 0. 

3 Results and discussion 

The solution to the above equations can be found by differ- 
entiating Eqs. (1) and (2) with respect to Y and X respective- 
ly, and equating them. Differentiating the resulting equality 
once more with respect to Y yields d g U / d Y  4 -= P1 ~2~/~y2. 
Then making use of Eqs. (3) and (6) yields d4U/dY 4 = 2 P1 U. 
This differential equation can be solved for U, and then ~b 
and P can be determined. The solution is: 

U = a [sinh (m Y) + sin (mY)] 

+ b [cosh(mY) - cos(mY)] + m - sin(mY), (7) 

~b = ~ -  a [sinh(mY) -s in(mY)]  + b [cosh(mY) + cos(mY)] 

_ (1 } 2p2 1 m \ ~ - p T j S i n ( m Y )  - Y + 2 X  + A,  (8) 

m P 2  fa  [cosh (m Y) + cos (m Y)] P 
P1 

(!-  cos(mYt} + b [ s i n h ( m Y ) + s i n ( m Y ) ] + m \ 2  pz / 

(2 P2 y 2 ) - - P I ( A X + X 2 ) + B  (9 ) +e2 XY+AY-  

where A and B are constants (dependent on P1 and P2) 
chosen such that the initial conditions for ~b and P are satis- 
fied. The quantity m satisfies m 4 = 2 P1, and the constants a 
and b are the solutions of: 

a [sinh (m) + sin (m)] + b [cosh (m) - cos (m)] 

(; = - m - sin (m), (10) 

a [cosh (m) - cos (m)] + b [sinh (m) - sin (m)] 

 )cos,o, 
The solution for the horizontal case (P1 = 0) can be found 

by expanding the above solution for small m, or more simp- 
ly, by solving the equations from scratch for/ '1 = 0 [1]. 

The wall friction and Nusselt number will also be dis- 
cussed. They are given by: 

f R e  - Zw ~ L  du dU o, 1 1 -2 - + 2  = + 2  (12) 
26o U v - -~Y O,L -- dY  

where the plus and minus signs correspond to the bot tom 
and top walls, respectively. Then 

2 m I 2 a + m ( 1 - - ~ )  1 at Y = 0  

f -  

= - 2 m t a  [cosh (m) + cos (m)] + b [sinh (m) + sin (m)] f Re 

m ( 1 - ~ - ) c o s ( m ) ~  at Y = I  (13, + 
\ z r l /  J 

and 

N u -  2 q L  2 
k(Tw - Tb) ((~w -- ~b) (14) 

where 
1 

G = ~ U ( ~ d Y  and r  (15) 
o 

The average of the top and bot tom wall friction is also of 
interest. It is given by: 

f R e  = 0.5 [ f Re (Y = 0) + fRe(Y = 1)] 

= mZ [cos (m) - cosh (m) - sin (m) sinh (m)] 
cos (m) cosh (m) - 1 (16) 

Thus, the average wall friction is seen to be independent of 
the parameter P2. 

3.1 Flow reversal regimes 

Starting from forced convection flow, and increasing 
buoyancy effects (say by increasing the wall heat flux), flow 
reversal will first occur at the top wall, since thermal strati- 
fication causes the fluid to be hottest there. The condition for 
the onset of flow reversal at the upper wall is (dU/dY)h  = O, 
or f R e  at Y =  1 (as given by Eq.(13)) equal to zero. This 
yields the following relationship between/'1 and P2 for the 
onset of flow reversal at the upper wall: 

1~ cos(m) - cosh(m) -- sin(m) sinh(m) 
P2 = (17) 

2 cos(m) - cosh(m) + sin(m) sinh(m) 
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where it should be recalled that m 4 - - 2 P : .  This curve has 
been plotted in Fig. 2 (solid line). (The dashed line at Pt = 250 
will be discussed shortly.) As/ '1 increases beyond the range 
of the graph, the curve goes through maxima and minima, 
and flow regimes occur which have multiple reversal regions 
within the cross-section. However, these regimes have not 
been investigated due to the likelihood that they would not be 
observed in reality. Returning to the range shown on the 
graph, the portion of the curve for Pa < 250 separates the no 
flow reversal regime from the regime for which reversal 
occurs at the top wall only. This transition has already been 
discussed, and is to be expected. The significance of that 
portion of the curve for which P1 > 250 is less obvious. This 
curve separates a regime of reversal at the top and bot tom 
walls from a regime of reversal at the bot tom wall only. The 
existence of a regime in which reversal occurs at the top and 
bot tom walls is to be expected: For  a vertical channel the 
flow is symmetric about the channel centerline, so that when 
flow reversal occurs it must occur at both walls. Thus it is 

reasonable to expect flow reversal at both the top and 
bot tom walls for some range of parameters for an inclined 
channel, as well. The regime in which flow reversal occurs 
only at the bot tom wall is somewhat unexpected. What  is 
especially surprising is the nature of the transition from top 
wall reversal to bottom wall reversal (dashed line). As/ '1 is 
increased from zero, flow reversal first appears at the top 
wall, and the reversal strength grows (i.e. the magnitude of 
the negative velocity increases and the reversal encom- 
passes more of the channel cross-section). The wall friction 
approaches plus and minus infinity at the bot tom and top 
walls, respectively, as P: approaches a constant value of 
approx. 250. At this value of P:, a discontinuous change 
occurs in the velocity profile: the reversal at the top wall 
disappears and a reversal appears at the bot tom wall. Of 
course such an event would not occur in reality, but this 
aspect of the solution may suggest the occurrence of instabil- 
ity in a real system. Mathematically, what is happening is 
that the denominator  of the constants a and b (Eqs. (10) and 
(11)), namely [cosh (m) cos (m) -11 ,  is going to zero. The first 
nonzero root occurs for m = 4.73, or /'1 = 250.2819508 (to 
ten significant digits). 

Figure 2 also indicates the occurrence of flow reversal at 
the upper wall in a horizontal channel (/'1 = 0), for P2 > 36. 
This same result was found by Gill and Del Casal [1]. It may 
seem peculiar that flow reversal is predicted for a horizontal 
channel, since there is no buoyancy force acting in the axial 
direction. However, it is the sum of the axial buoyancy force 
and the axial pressure gradient which determines the axial 
velocity. The axial pressure gradient can be locally positive 
(i,e. opposing the main flow) in the upper region of the chan- 
nel. This occurs for the following reason. The pressure varia- 
tion in the y-direction is hydrostatic, and 8p/Sy is therefore 
negative. Since the temperature increases with x (and the 
density therefore decreases with x), 8p/Sy becomes less nega- 
tive, that is, it increases with x. If 8p/Oy increases with x then 
8p/Sx must increase with y. If this effect is extreme enough, 
then 8p/Sx may actually be positive in the upper portion of 
the channel. The result is a flow reversal at the upper wall, 
for P2 > 36. In reality, mixed convection in a horizontal chan- 
nel will be unstable if the Rayleigh number exceeds a critical 
value. In order for P2 to exceed 36 while the Rayleigh number 
remains below its critical value, the parameter RePr must be 
small. Under realistic conditions, flow reversal would prob- 
ably not be observed in a horizontal channel. 

3.2 Velocity and temperature profiles 

Velocity and temperature profiles will now be presented in 
Figs. 3 -  6. The temperature profiles will be given as # - #b, 
to eliminate the x-dependence of the temperature. Each 
graph is for a constant value of/ '1,  with P2 as a parameter; 
in other words, for points along a vertical line in the flow 
regime map, Fig. 2. Figures 3 and 4 show velocity and tern- 
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perature profiles for P1 = 100. For  P2 = 0 (vertical channel), 
the velocity profile is symmetric about  the centerline. As P2 
increases, the velocity near the upper wall (Y = 1) decreases, 
and the velocity peak increases in magnitude and shifts to- 
ward the lower wall (g  = 0). Ultimately, flow reversal occurs 
near the upper wall. In Fig. 4, the temperature at the upper 
wall is seen to be greater than the temperature at the lower 
wall, and as P2 increases the temperature difference between 
the two walls increases. Note that it is possible for the tem- 
perature to be everywhere greater than the bulk tempera- 
ture, because the velocity is negative over part  of the channel 
cross-section. 

As P1 increases, the following trends are observed: Flow 
reversal is initiated for lower and lower values of Pz (Fig. 2). 
The flow reversals encompass more of the channel cross- 
section (but never more than the top half). The maximum 
and minimum values of the velocity profile increase in 
magnitude, and the cross-sectional temperature variation 
becomes larger. As/ '1 approaches the critical value of 250 
(from below), the flow reversal encompasses the entire top 
half of the channel, the velocity extrema go to plus and 
minus infinity, and the temperature difference between the 
top and bot tom walls also goes to infinity (with the top wall 
hotter). 

At the critical Pa value of 250, a discontinuous change 
occurs from top flow reversal to bot t tom flow reversal, with 
the temperature hotter at the bottom wall. Figure 5 shows the 
velocity profiles for P1 = 251, just beyond the transition to 
the bot tom flow reversal regime. The nature of these profiles 
is opposite to those for/'1 < 250, as described above. In Fig. 5, 
the magnitudes of the velocities are seen to be extremely 
large. The magnitudes of the temperatures (not shown) are 
also very large. For  instance, for/ '1 = 251 and P2 = 100, the 
nondimensional temperature varies from 26,900 at the 
bot tom wall to 26,700 at the top wall. As P~ increases beyond 
the value of 250, the velocity and temperature magnitudes 
decrease. 

Figure 6 shows the velocity and temperature profiles for 
/'1 = 1000, corresponding to the top and bot tom flow reversal 
regime. The transition to this regime from the bot tom only 
reversal regime is continuous, with flow reversal gradually 
appearing at the upper wall and strengthening. The reversal 
at the top wall is seen to still be smaller than the reversal at 
the bot tom wall for the case shown. Similarly, the fluid is still 
somewhat hotter at the bot tom wall. These graphs also illus- 
trate another  feature of the solution, namely that as P1 ap- 
proaches infinity, the solution becomes independent of P2. 

3.3 Wall friction and heat transfer 

Figure 7 shows the wall friction (in terms of fRe) at the 
bot tom and top walls. The wall friction is plotted as a func- 
tion of P1, with P2 as a parameter.  For  P2 = 0 (vertical 
channel), the wall friction is the same at both walls. For  
PI = P2 =0 ,  f R e  is 12 at both walls, corresponding to the 
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forced convection solution. As P1 increases, with P2 still equal 
to zero, the wall friction decreases, and becomes negative 
when flow reversal ensues at/ '1 = 250. For  nonzero Pz, how- 
ever, the behavior of the wall friction is much different. As 
explained previously, the wall friction at the lower wall in- 
creases, approaching infinity as P1 goes to 250, while the wall 
friction at the upper wall decreases toward minus infinity. 
This corresponds to the strengthening of the flow reversal at 
the upper wall, and the consequent acceleration near the 
lower wall. When P1 becomes greater than 250, the wall 
friction changes sign, and returns from plus or minus infin- 
ity. This of course corresponds to flow reversal at the bot tom 
wall. As Pa increases, the wall friction becomes negative at 
both walls, corresponding to the top and bot tom flow 
reversal regime. 

Since the top and bot tom wall friction are the same for 
P2 = 0, they are also equal to the average wall friction, fRe. 
Recall that fRe  (given by Eq. (16)) is independent of P2, 
despite the fact that the top and bot tom wall friction are each 
separately dependent on P2- Thus, the curve for P2 = 0 in 
Fig. 7 is also the curve for fRe  for any value of P2 (i.e., it is 
Eq. (16)). Note that fRe  goes to zero at the critical value of 
/'1 = 250, while the top and bot tom wall friction are going to 
plus and minus infinity (for nonzero Pz). Thus, for P1 = 250, 
the total axial buoyancy force is exactly balanced by the 
total axial pressure force (where "total" implies an integral 
over the cross-section). For  Pa > 250, the average wall fric- 
tion is negative. The pressure force required to drive the flow 
would then be less than the axial buoyancy force. 

Figure 8 shows the top and bot tom wall Nusselt numbers 
as functions of/'1, with P2 as a parameter. For  P2 = 0 (vertical 
channel), the Nusselt number at both walls decreases 
gradually from the forced convection value of 8.235 as Pa 
increases from zero. For  nonzero P2, the top wall Nusselt 
number at first decreases as P1 increases, due to the flow 
deceleration at the top wall. Similarly, the bot tom wall 
Nusselt number at first increases due to flow acceleration 
near the bottom. At P~ = 250, both Nusselt numbers go to 
zero. They then increase as/'1 increases further, with the top 
wall Nusselt number now greater than the bot tom wall 
Nusselt number, since flow reversal occurs at the  bot tom 
wall. The average Nusselt number (Fig. 9) behaves in a simi- 
lar fashion, and approaches the vertical channel value as P1 
goes to infinity. 

3.4 Dependence on Re, Gr, Pr and 0 

By presenting the results as functions of the two parameters 
P1 and P2, some of the physical significance of the results is 
obscured. It is of interest to explore the effect of the more 
readily understandable parameters, Re, Gr, Pr, and 0. 
Figure l0 illustrates the routes through the Pa-P2 plane 
which are followed if three of these parameters are held 
constant while the fourth is varied. If Gr is varied while the 
other parameters are held constant, a ray is followed out from 



A. S. Lavine : Analysis of fully developed opposing mixed convection between inclined parallel plates 

~nn [] 0=0 o 

~, 0=15 ~ 
x 0=45 ~ 

+ 0=75 ~ 
! 2 ~ O  0=90  ~ 

0', . 

Fig. 10. Flow regimes: dependence on Re, Gr, Pr, 0 

XY 
-2 , I i , 

0 0.2 0.4 0.6 0.8 1.0 
Y = 

Fig. 12. Velocity profiles (Re = 10, Gr = 3000, Pr = 1) 

255 

50 

[3 B o t t o m  ~ Top x Average 

40 i . . . . .  * . . . . .  e~ . . . .  -{3 . . . . .  . . . . . .  a- . . . .  -[3 . . . .  

. . . . .  -X- . . . . .  X - - -  " ' "  

- - - x  . . . . .  . . . . . .  K- . . . . .  x . . . . .  * . . . . .  K - - - : ; :  

l 

- r  . . . . .  . q .  . . . . .  . r  . . . . .  r  

0 ~ ~ /  :0 

~e --- Nu ~ - - ~  ~, -----e -'~ 

-10 I q 
0 o 3 0  ~ 600 9 0  ~ 

T i l t  a n g l e  = 

Fig. II .  f R e  and Nu vs. tilt angle (Re = 10, Gr = 2000, Pr = t) 

30: 

II) 
rY 

10 

10 

. . . . .  ~ . . . . .  a-  . . . .  ..~, , 

10 

L0  �9 ,, / '  " ' ,a  | 

: o . . . .  , a  5 

- . .  " 0 0 '  

or" 

-20 
El 

o , o ,  \ / 

-60 i i 
0 o 30  o 600 90  o 

T i l t  o n g l e  �9 ,- 

F i g .  13. f R e  and Nu vs. tilt angle (Re = 10, Gr = 3000, Pr = 1) 

! 

the origin, that  is P= = C �9 P1 where C is a cons tan t  which 
depends  on  the other  parameters .  In  this case all four flow 
reversal regimes are traversed. If Re is varied while the other  
parameters  are held constant ,  the curve ~ = D.  p2 is fol- 
lowed. As Re decreases from infinity (P1 = P2 = 0) at least 
three of the flow regimes are encountered,  bu t  whether  or no t  
the top and  b o t t o m  flow reversal regime is entered depends  
on  the values of the other  parameters .  If Pr is varied while 
the other  parameters  are held constant ,  then  a line of con-  
s tant  P1 is followed, so the sequence of flow reversal regimes 
depends  on  the value of P1. If 0 is varied while the other  
parameters  are held constant ,  an  ellipse E �9 P~ + F �9 P~ = 1 
is followed. Two such curves are shown with dashed lines in 
Fig. 10. Clearly, it is possible to encoun te r  var ious  sequences 
of the flow reversal regimes, depending  on  the values of Re, 

Gr, and  Pr. 
These dashed curves, for varying 0, will n o w  be investi-  

gated in more  detail. The curve labelled A is for Re = 10, 

Gr = 2000, P r  = 1. As 0 varies f rom 0 to 90 degrees (clock- 
wise direct ion in  Fig. 10), the flow regime changes from no  
reversal, to reversal at the top wall, back to no  reversal. The 
wall friction and  Nussel t  num be r s  are i l lustrated in Fig. 11 as 
funct ions of tilt angle. The friction at the top wall becomes 
negative when  flow reversal occurs, bu t  the average wall 
friction remains  positive. The shape of the Nussel t  n u m b e r  
curves is very similar to that  of the wall friction. Note  that  
the bo t tom wall friction and  Nussel t  n u m b e r  vary n o n -  
mono ton ica l ly  with 0, while the top wall and  average value 
vary monotonica l ly .  

The dashed curve labelled B corresponds  to Re = 10, 
Gr = 3000, Pr = 1. As 0 varies f rom 0 to 90 degrees (clock- 
wise direction), all four  flow regimes are encountered.  This is 
i l lustrated in Fig. 12, which shows the velocity profiles. Fo r  
0 = 0 degrees, there is no  flow reversal. F o r  0 = 15 degrees 
there is a small  reversal at the upper  wall, and  there is a 
larger reversal at the upper  wall for 0 = 45 degrees. F low 
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reversal occurs at the bot tom wall for 0 = 75 degrees, and for 
0 = 90 degrees there is flow reversal at both walls, although 
it is so small as to be invisible. Figure 13 shows the corre- 
sponding wall friction and Nusselt numbers as functions of 
tilt angle. The top and bot tom wall frictions go to minus and 
plus infinity respectively, and then change sign and return 
from infinity when the transition from top to bot tom flow 
reversal occurs (at 0 = 56 degrees). The average friction goes 
to zero at this point. The Nusselt numbers are seen to de- 
crease to zero at the transition point and then increase again. 

4 Concluding remarks 

The exact solution has been derived for laminar opposing 
mixed convection between inclined parallel plates with a 
uniform wall heat flux boundary  condition. The limiting 
cases of horizontal and vertical channels and forced convec- 
tion can be recovered. The solution depends on the two 
parameters P1 = Gr sin O/Re and P2 = Gr c o s  O/Re 2 Pr. Four  
different flow reversal regimes have been described and ex- 
plored. They are 1) no reversal, 2) top reversal, 3) bot tom 
reversal, and 4) top and bot tom reversal. (More reversal 
regimes exist, but were not discussed because of their assumed 
instability). The dependence of the velocity and temperature 
profiles and the wall friction and heat transfer on the param- 
eters/'1 and Pz has been presented. The average wall friction 
was found to depend only on P1. At/ '1  = 250, the solution 
undergoes a discontinuous change between the top reversal 
and the bot tom reversal regime. At this point, the top and 
bot tom wall frictions go to plus or minus infinity, the aver- 
age wall friction goes to zero, and the Nusselt numbers go to 
zero. The dependence on the four fundamental parameters 
Re, Gr, Pr, and 0 has been briefly discussed. In particular, 
when 0 is varied while holding the other three parameters 
constant, the sequence of flow regimes which is encountered 
depends on the values of Re, Gr, and Pr. The wall friction 
and Nusselt numbers may vary monotonically or non- 
monotonically with tilt angle, again depending on the values 
of the other parameters, and on whether it is the top, bottom, 
or average value which is being considered. 

The problem which has been solved is highly idealized: 
the predicted solution would probably be unstable for some 
ranges of the governing parameters. Furthermore, when flow 
reversal occurs, the fully developed condition can only exist 
very far from the inlet and the outlet, so that fully developed 
flow would not exist in many real systems. Despite the sim- 
plicity of the problem which has been analyzed, it does dis- 
play some features which have been observed in real mixed 
convection flows, such as flow reversal and nonmonotonic  
dependence on tilt angle. The onset of the various flow 
reversal regimes in the present problem may indicate the 
presence of instability in a real system. As an example, con- 
sider Wirtz and McKinley's [4] experimental study of oppos- 
ing mixed convection between vertical parallel plates. They 

reported that for Re = 260 and 560, the flow became un- 
steady at Gr = 6.9 x 104 and 1.5 x 105, respectively. (These 
values have been converted to the definitions of Re and Gr 
used here.) These both correspond to/ '1 = 270, which is quite 
close to the value of/'1 = 250 for which flow reversal is pre- 
dicted to occur in a vertical channel. It should be noted that 
in Wirtz and McKinley's study, one plate was heated and the 
other was insulated. Due to radiation, there was some heat 
flux into the fluid at the insulated plate, and there was a 
decline in the heat flux near the end of the plates. Taking all 
of this into account does not change the conclusion that the 
experimental flow became unsteady at a value of P1 very near 
the value at which flow reversal is predicted analytically. 

The solution presented here may also prove useful as 
a guide for more complex numerical calculations. For  in- 
stance, the existence of the discontinuous change (at 
/'1 = 250) in the solution presented here suggests a potential 
difficulty with the convergence of numerical calculations. If 
a similar discontinuous change occurs in a problem being 
studied numerically, then the numerical solution algorithm 
would probably not converge if it had to cross over this 
discontinuity. Therefore, care should be taken in choosing 
the initial flow field to be as close as possible to the final 
result. 

It is hoped that the simple solution presented here will 
serve as a foundation for more complex and realistic studies 
of opposing mixed convection in inclined ducts or channels. 
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