
X3J13 Document 88-002R
June 1988

Common Lisp Object System Specification

1. Programmer Interface Concepts

Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene,
Gregor Kiczales, and David A. Moon.

For information about obtaining the sources for this document, send an
Internet message to common-lisp-object-system-specification-request/a~sail.
stanford.edu.

The authors wish to thank Patrick Dussud, Kenneth Kahn, Jim Kempf, Larry
Masinter, Mark Stefik, Daniel L. Weinreb, and Jon L. White for their contribu-
tions to this document.

At the X3J13 meeting on June 15, I988, the following motion was adopted:

"The X3J13 Committee hereby accepts chapters 1 and 2 of the Common Lisp
Object System, as defined in document 88-002R, for inclusion in the Common
Lisp language being specified by this committee. Subsequent changes will be
handled through the usual editorial and cleanup processes."

Programmer Interface Concepts 1-245

X3J13 D o c u m e n t 88-002R

J u n e 1988

C o n t e n t s

I n t r o d u c t i o n . 248
E r r o r T e r m i n o l o g y . 249

Classes . 252
De f in ing Classes . 253

C r e a t i n g I n s t a n c e s of Classes 254
Slots . 254

A c c e s s i n g Slots . 255
I n h e r i t a n c e . 257

I n h e r i t a n c e of M e t h o d s . 257

I n h e r i t a n c e of S lo ts a n d S lo t O p t i o n s 257
I n h e r i t a n c e of Class O p t i o n s 259
E x a m p l e s . 259

I n t e g r a t i n g Types a n d Classes . 260
D e t e r m i n i n g the Class P r e c e d e n c e Lis t 263

Topo log i ca l S o r t i n g . 263
E x a m p l e s . 264

G e n e r i c F u n c t i o n s a n d M e t h o d s 267
I n t r o d u c t i o n to G e n e r i c F u n c t i o n s 267
I n t r o d u c t i o n to M e t h o d s . 268

A g r e e m e n t on P a r a m e t e r Spec ia l i ze r s a n d Qua l i f i e r s 271
C o n g r u e n t L a m b d a - L i s t s for Al l M e t h o d s of a G e n e r i c F u n c t i o n . , . 271
K e y w o r d A r g u m e n t s i n G e n e r i c F u n c t i o n s a n d M e t h o d s 272

M e t h o d S e l e c t i o n a n d C o m b i n a t i o n 274
D e t e r m i n i n g the Effec t ive M e t h o d 274

S t a n d a r d M e t h o d C o m b i n a t i o n 276
D e c l a r a t i v e M e t h o d C o m b i n a t i o n 278

B u i l t - i n M e t h o d C o m b i n a t i o n Types 278
Me ta -Ob jec t s . 281

M e t a c l a s s e s . 281

S t a n d a r d M e t a c l a s s e s . 281
S t a n d a r d M e t a - o b j e c t s . 281

Objec t C r e a t i o n a n d I n i t i a l i z a t i o n 283
I n i t i a l i z a t i o n A r g u m e n t s . 284
D e c l a r i n g the V a l i d i t y of I n i t i a l i z a t i o n A r g u m e n t s 285
D e f a u l t i n g of I n i t i a l i z a t i o n A r g u m e n t s 286
Ru les for I n i t i a l i z a t i o n A r g u m e n t s 287
S h a r e d - I n i t i a l i z e . 288

I n i t i a l i z e - I n s t a n c e . 289
D e f i n i t i o n s of M a k e - I n s t a n c e a n d I n i t i a l i z e - I n s t a n c e 290

R e d e f i n i n g Classes . 293
M o d i f y i n g the S t r u c t u r e of I n s t a n c e s 294

1-246 C o m m o n Lisp Ob jec t Sys t em Spec i f i c a t i on

X3J13 D o c u m e n t 88-002R
J u n e 1988

I n i t i a l i z i n g N e w l y A d d e d L o c a l S l o t s 294
C u s t o m i z i n g C l a s s R e d e f i n i t i o n 295
E x t e n s i o n s . 295

C h a n g i n g t h e C l a s s o f a n I n s t a n c e 296
M o d i f y i n g t h e S t r u c t u r e o f t h e I n s t a n c e 296
I n i t i a l i z i n g N e w l y A d d e d L o c a l S l o t s 296
C u s t o m i z i n g t h e C h a n g e o f C l a s s o f a n I n s t a n c e 297

R e i n i t i a l i z i n g a n I n s t a n c e . 298
C u s t o m i z i n g R e i n i t i a l i z a t i o n 298

P r o g r a m m e r I n t e r f a c e C o n c e p t s 1-247

X3J13 Document 88-002R
June 1988

I n t r o d u c t i o n

The Common Lisp Object System is an object~oriented extension to Common
Lisp as defined in Common Lisp: The Language, by Guy L. Steele Jr. It is
based on generic functions, multiple inheritance, declarative method com~
bination, and a meta-object protocol.

The first two chapters of this specification present a description of the
standard Programmer Interface for the Common Lisp Object System. The
first chapter contains a description of the concepts of the Common Lisp
Object System, and the second contains a description of the functions and
macros in the Common Lisp Object System Programmer Interface. The
chapter ~'The Common Lisp Object System Meta-Object Protocol" describes
how the Common Lisp Object System can be customized.

The fundamental objects of the Common Lisp Object System are classes,
instances, generic functions, and methods.

A class object determines the structure and behavior of a set of other
objects, which are called its instances. Every Common Lisp object is an
instance of a class. The class of an object determines the set of operations
that can be performed on the object.

A generic function is a function whose behavior depends on the classes or
identities of the arguments supplied to it. A generic function object contains
a set of methods, a lambda-list, a method combination type, and other
information. The methods define the class~specific behavior and operations
of the generic function; a method is said to specialize a generic function.
When invoked, a generic function executes a subset of its methods based on
the classes of its arguments.

A generic function can be used in the same ways that an ordinary function
can be used in Common Lisp; in particular, a generic function can be used
as an argument to funca l l and apply and can be given a global or a local
name.

A method is an object that contains a method function, a sequence of
parameter specializers that specify when the given method is applicable,
and a sequence of qualifiers that is used by the method combinat ion
facility to distinguish among methods. Each required formal parameter of
each method has an associated parameter specializer, and the method will be
invoked only on arguments that satisfy its parameter speciatizers.

The method combination facility controls the selection of methods, the order
in which they are run, and the values that are returned by the generic
function. The Common Lisp Object System offers a default method combina-
tion type and provides a facility for declaring new types of method combina-
tion.

1-248 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

Error Terminology

The terminology used in this document to describe erroneous situations
differs from the terminology used in Common Lisp: The Language, by Guy L.
Steele Jr. This terminology involves situations; a situation is the evalua-
tion of an expression in some specific context. For example, a situation might
be the invocation of a function on arguments that fail to satisfy some
specified constraints.

In the specification of the Common Lisp Object System, the behavior of
programs in all situations is described, and the options available to the
implementor are defined. No implementation is allowed to extend the syntax
or semantics of the Object System except as explicitly defined in the Object
System specification. In particular, no implementation is allowed to extend
the syntax of the Object System in such a way that ambiguity between the
specified syntax of Object System and those extensions is possible.

"When situation S occurs, an error is signaled."

This terminology has the following meaning:

• If this situation occurs, an error will be signaled in the interpreter and
in code compiled under all compiler safety optimization levels.

® Valid programs may rely on the fact that an error will be signaled in the
interpreter and in code compiled under all compiler safety optimization
levels.

• Every implementation is required to detect such an error in the inter-
preter and in code compiled under all compiler safety optimization
levels.

"When situation S occurs, an error should be signaled."

This terminology has the following meaning:

• If this situation occurs, an error will be signaled at least in the inter-
preter and in code compiled under the safest compiler safety optimiza-
tion level.

• Valid programs may not rely on the fact that an error will be signaled.

• Every implementation is required to detect such an error at least in the
interpreter and in code compiled under the safest compiler safety opti-
mization level.

• When an error is not signaled, the results are undefined (see below).

Programmer Interface Concepts 1-249

X3J13 Document 88-002R
June 1988

i l l i l l

"When situation S occurs, the results are undefined."

This terminology has the following meaning:

• If this situation occurs, the results are unpredictable. The results may
range from harmless to fatal.

• Implementations are allowed to detect this situation and signal an
error, but no implementation is required to detect the situation.

• No valid program may depend on the effects of this situation, and all
valid programs are required to t reat the effects of this situation as
unpredictable.

"When situation S occurs, the results are unspecified."

This terminology has the following meaning:

• The effects of this situation are not specified in the Object System. but
the effects are harmless.

• Implementations are allowed to specify the effects of this situation.

• No portable program can depend on the effects of this situation, and all
portable programs are required to treat the situation as unpredictable
but harmless.

"The Common Lisp Object System may be extended to cover situation S."

The meaning of this terminology is that an implementation is free to treat
situation S in one of three ways:

• When situation S occurs, an error is signaled at least in the interpreter
and in code compiled under the safest compiler safety optimization
level.

• When situation S occurs, the results are undefined.

• When situation S occurs, the results are defined and specified.

In addition, this terminology has the following meaning:

• No portable program can depend on the effects of this situation, and all
portable programs are required to treat the situation as undefined.

"Implementations are free to extend the syntax S."

This terminology has the following meaning:

• Implementations are allowed to define unambiguous extensions to
syntax S.

1-250 Common Lisp Object System Specification

X3J] 3 Document 88-002R
June 1988

i ,

• No portable program can depend on this extension, all portable
programs are required to treat the syntax as meaningless.

The Common Lisp Object System specification may disallow certain exten-
sions while allowing others.

Programmer Interface Concepts 1-251

X3J13 Document 88-002R
June 1988

Classes

A class is an object tha t de termines the s t ruc tu re and behav ior of a set of
o ther objects, which are called its instances.

A class can inher i t s t r uc tu re and behav ior from o ther classes. A class whose
definition refers to o ther classes for the purpose of inher i t ing from them is
said to be a subc lass of each of those classes. The classes tha t are designated
for purposes of inhe r i t ance are said to be superc lasses of the inher i t ing
class.

A class can have a name. The func t ion c l a s s - n a m e takes a class object and
re turns its name. The name of an anonymous class is nil. A symbol can name
a class. The funct ion f ind -c l a s s takes a symbol and re turns the class tha t the
symbol names. A class has a proper name if the name is a symbol and if the
name of the class names tha t class. Tha t is, a class C has the proper name
S if S = (class-name C) and C = (find-class S). Not ice tha t it is
possible for (f i n d - c l a s s S 1) - (f i n d - c l a s s ,92) and $1~$2 . If
C = (f i n d - c l a s s S), we say tha t C is the class n a m e d S.

A class C1 is a direct superc lass of a class C2 if C2 explici t ly designates C~
as a superctass in its definition. In this case C2 is a direct subc lass of C~. A
class C, is a superc lass of a class C1 if there exists a series of classes C2
C~ 1 such tha t Ci_~ is a d i rect superclass of Ci for 1 ~< i < n. In this case, C1
is a subc lass of C,. A class is considered ne i ther a superclass nor a subclass
of itself. Tha t is, if Q is a superclass of C2, then C1 ¢ C2. The set of classes
consis t ing of some given class C along with all of its superclasses is called
"~C and its superclasses ."

Each class has a class precedence list, which is a to ta l order ing on the set
of the given class and its superclasses. The total order ing is expressed as a
list ordered from most specific to least specific. The class precedence list is
used in several ways. In general , more specific classes can shadow, or
override, fea tures tha t would o therwise be inher i ted from less specific
classes. The method select ion and combina t ion process uses the class
precedence list to order methods from most specific to least specific.

When a class is defined, the order in which its d i rect superclasses are
ment ioned in the defining form is important . Each class has a local
precedence order, which is a list consis t ing of the class followed by its
direct superclasses in the order ment ioned in the defining form.

A class precedence list is a lways cons is ten t with the local p recedence order
of each class in the list. The classes in each local precedence order appear

1-252 Common Lisp Object System Specif icat ion

X3J13 Document 88-002R
June 1988

within the class precedence list in the same order. If the local precedence
orders are inconsistent with each other, no class precedence list can be
constructed, and an error is signaled. The class precedence list and its
computation is discussed in the section "Determining the Class Precedence
List."

Classes are organized into a directed acyclic graph. There are two distin-
guished classes, named t and s tandard-ob jec t . The class named t has no
superclasses. It is a superclass of every class except itself. The class named
s t anda rd -ob j ec t is an instance of the class s t anda rd -c l a s s and is a super-
class of every class that is an instance of s t anda rd -c l a s s except itself.

There is a mapping from the Common Lisp Object System class space into the
Common Lisp type space. Many of the standard Common Lisp types specified
in Common Lisp: The Language have a corresponding class that has the same
name as the type. Some Common Lisp types do not have a corresponding
class. The integration of the type and class systems is discussed in the
section "Integrating Types and Classes."

Classes are represented by objects that are themselves instances of classes.
The class of the class of an object is termed the rnetaclass of that object.
When no misinterpretation is possible, the term metaclass will be used to
refer to a class that has instances that are themselves classes. The metaclass
determines the form of inheritance used by the classes that are its instances
and the representation of the instances of those classes. The Common Lisp
Object System provides a default metaclass, s t andard-c lass , that is appro-
priate for most programs. The meta-object protocol provides mechanisms for
defining and using new metaclasses.

Except where otherwise specified, all classes mentioned in this chapter are
instances of the class s t andard -c la s s , all generic functions are instances of
the class s t a n d a r d - g e n e r i c - f u n c t i o n , and all methods are instances of the
class s t a n d a r d - m e t h o d .

Defining Classes

The macro defclass is used to define a new named class. The syntax for
defc lass is given in Figure 2-1.

The definition of a class includes:

• The name of the new class. For newly defined classes this name is a
proper name.

• The list of the direct superclasses of the new class.

Programmer Interface Concepts 1-253

X3J13 Document 88-002R
J u n e 1988

• A set of slot specifiers. Each slot specifier includes the name of the slot
and zero or more slot options. A slot opt ion per ta ins only to a single
slot. If a class defini t ion conta ins two slot specifiers with the same
name, an e r ror is signaled.

• A set of class options. Each class opt ion per ta ins to the class as a
whole.

slot options and class options of the d e f e l a s s form provide mechanisms The
for the following:

Supplying a defaul t init ial value form for a given slot.

• Request ing tha t methods for generic funct ions be au tomat ica l ly
genera ted for reading or wri t ing slots.

• Control l ing whe ther a given slot is shared by instances of the class or
whe the r each ins tance of the class has its own slot.

• Supplying a set of in i t ia l izat ion a rguments and ini t ia l izat ion a rgument
defaults to be used in ins tance creat ion.

• Indicat ing tha t the metaclass is to be o ther than the default .

• Indica t ing the expected type for the value s tored in the slot.

• Indica t ing the documen ta t ion s t r ing for the slot.

Creat ing I n s t a n c e s of Classes

The generic funct ion r n a k e - l n s t a n e e creates and re turns a new ins tance of
a class. The Object System provides several mechanisms for specifying how
a new ins tance is to be init ialized. For example, it is possible to specify the
init ial values for slots in newly crea ted ins tances e i ther by giving a rguments
to m a k e - i n s t a n c e or by providing defaul t init ial values. Fu r the r initializa-
t ion act ivi t ies can be performed by methods wr i t ten for gener ic funct ions
tha t are par t of the in i t ia l iza t ion protocol. The complete in i t ia l izat ion
protocol is described in the sect ion "Object Crea t ion and Ini t ia l iza t ion."

Slots

An object tha t has s tandard-c lass as its metaclass has zero or more named
slots. The slots of an object are de termined by the class of the object. Each
slot can hold one value. The name of a slot is a symbol tha t is syntac t ica l ly
valid for use as a Common Lisp var iable name.

When a slot does not have a value, the slot is said to be unbound. When an
unbound slot is read, the generic funct ion s l o t - u n b o u n d is invoked. The
system-supplied pr imary method tbr s l o t - u n b o u n d signals an error.

1-254 Common Lisp Object System Specif icat ion

X3J13 Document 88-002R
J u n e 1988

i i

The defaul t init ial va lue form for a slot is ,defined by the : i n i t f o r m slot
option. When the : i n i t f o r m form is used to supply a value, it is eva lua ted in
tile lexicat e n v i r o n m e n t in which the d e f c l a s s form was evaluated . The
: i n i t f o r m a long with the lexical e n v i r o n m e n t in which the d e f c l a s s form
was eva lua ted is called a captured : i n i t f o r m . See the sect ion "()bject
Crea t ion and In i t i a l i za t ion" for more details.

A local slot is defined to be a slot tha t is visible to exac t ly one ins tance ,
namely the one in which the slot is al located. A shared slot is defined to be
a slot t ha t is visible to more t han one ins tance of a given class and its
subclasses .

A class is said to define a slot with a given name when the d e f c l a s s form for
tha t c lass con ta ins a slot specifier with tha t name. Defining a local s lot does
not immedia te ly c rea te a slot: it causes a slot to be c rea ted each t ime an
ins tance of the class is created. Defining a shared slot immedia te ly c rea tes
a slot.

The : a l l o c a t i o n slot opt ion to d e f c l a s s cont ro ls the kind of slot tha t is
defined. If the va lue of the : a l l o c a t i o n slot op t ion is : i n s t a n c e , a local slot
is created. I f the va lue of : a l l o c a t i o n is :c lass , a shared slot is created.

A slot is said to be accessible in an ins tance of a class if the slot is defined
by the class of the ins tance or is inher i t ed from a superc lass of t h a t class. At
most one slot of a given name can be access ible in an ins tance. A shared slot
defined by a class is access ib le in all ins tances of tha t class. A deta i led
exp lana t ion of the i n h e r i t a n c e of slots is g iven in the sect ion " I n h e r i t a n c e
of Slots and Slot Opt ions ."

Access ing Slots

Slots can be accessed in two ways: by use of the p r imi t ive funct ion slot-
value and by use of gener ic f \mct ions g e n e r a t e d by the d e f c l a s s form.

The funct ion s l o t - v a l u e can be used with any of the slot names specified in
the d e f c l a s s form to access a specific slot access ib le in an ins tance of the
given class.

The macro d e f c l a s s provides syn tax for g e n e r a t i n g methods to read and
wri te slots. I f a reader is requested, a me thod is a u t o m a t i c a l l y gene ra t ed for
r ead ing the va lue of the slot, but no me thod for s tor ing a va lue into it is
genera ted . If a wri ter is requested, a me thod is a u t o m a t i c a l l y gene ra t ed for
s to r ing a va lue in to the slot, bu t no method for r ead ing i ts va lue is genera ted.
I f an accessor is requested, a me thod for r ead ing the va lue of the slot and
a method for s to r ing a va lue into the slot a re a u t o m a t i c a l l y genera ted .
Reader and wr i t e r me thods are implemen ted us ing s l o t - v a l u e .

P r o g r a m m e r In t e r f ace Concepts 1-255

X3J13 Document 88-002R
June 1988

When a reader or writer is specified for a slot, the name of the generic
function to which the generated method belongs is directly specified. If the
name specified for the writer option is the symbol n a m e , the name of the
generic function for writing the slot is the symbol n a m e , and the generic
function takes two arguments: the new value and the instance, in that order.
If the name specified for the accessor option is the symbol n a m e , the name
of the generic function for reading the slot is the symbol n a m e , and the name
of the generic function for writing the slot is the list (setf name).

A generic function created or modified by supplying reader, writer, or
accessor slot options can be treated exactly as an ordinary generic function.

Note that s lo t -va lue can be used to read or write the value of a slot whether
or not reader or writer methods exist for that slot. When s lo t -va lue is used,
no reader or writer methods are invoked.

The macro wi th -s lo t s can be used to establish a lexicat environment in
which specified slots are lexically available as if they were variables. The
macro wi th -s lo t s invokes the function s lo t -va lue to access the specified
slots.

The macro w i t h - a c c e s s o r s can be used to establish a lexical environment
in which specified slots are lexically available through their accessors as if
they were variables. The macro w i t h - a c c e s s o r s invokes the appropriate
accessors to access the specified slots. Any accessors specified by wi th-
a cce s so r s must already have been defined before they are used.

1-256 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

I n h e r i t a n c e

A class can inher i t methods, slots, and some d e f c l a s s options from its
superclasses. The fol lowing sect ions describe the inher i t ance of methods,
the inhe r i t ance of slots and slot options, and the inher i t ance of class options.

Inheritance o f M e t h o d s

A subclass inher i t s methods in the sense tha t any method applicable to all
ins tances of a class is also applicable to all ins tances of any subclass of tha t
class.

The inhe r i t ance of methods acts the same way regardless of whe the r the
method was created by using one of the method-defining forms or by using
one of the d e f c l a s s opt ions tha t causes methods to be genera ted automat i -
cally.

The inhe r i t ance of methods is described in detai l in the sect ion '~Method
Select ion and Combinat ion ."

Inheritance o f S l o t s a n d S lo t O p t i o n s

The set of the names of all slots accessible in an ins tance of a class C is the
un ion of the sets of names of slots defined by C and its superclasses. The
s t r u c t u r e of an ins tance is the set of names of local slots in tha t instance.

In the simplest case, only one class among C and its superclasses defines a
slot with a given slot name. If a slot is defined by a superclass of C, the slot
is said to be i n h e r i t e d . The charac te r i s t i c s of the slot are de termined by the
slot specifier of the defining class. Consider the defining class for a slot S. If
the va lue of the : a l l o c a t i o n slot opt ion is :instance, then S is a local slot
and each ins tance of C has its own slot named S tha t stores its own value.
If the value of the : a l l o c a t i o n slot opt ion is :class, then S is a shared slot,
the class tha t defined S s tores the value, and all ins tances of C can access
tha t single slot. If the : a l l o c a t i o n slot opt ion is omitted, : i n s t a n c e is used.

In general , more than one class among C and its superclasses can define a
slot with a given name. In such cases, only one slot with the given name is
accessible in an ins tance of C, and the charac te r i s t i cs of t ha t slot are a
combina t ion of the several slot specifiers, computed as follows:

• All the slot specifiers for a given slot name are ordered from most
specific to least specific, accord ing to the order in C's class precedence
list of the classes tha t define them. All references to the specificity of
slot specifiers immediate ly below refers to this ordering.

P rog rammer In te r face Concepts 1-257

X3J13 Document 88-002R
June 1988

• The a l locat ion of a slot is cont ro l led by the most specific slot specifier.
If the most specific slot specifier does not conta in an : a l l o c a t i o n slot
option, : i n s t a n c e is used. Less specific slot specifiers do not affect the
al location.

• The defaul t initial value form fbr a slot is the value of the : i n i t f o r m slot
opt ion in the most specific slot specifier tha t conta ins one. If no slot
specifier conta ins an : i n i t f o r m slot option, the slot has no defaul t
initial value form.

• The contents of a slot will a lways be of type (and T~... 7;~) where
T1 . . . ~ are the values of the : t ype slot options conta ined in all of the
slot specifiers. If no slot specifier conta ins the : t ype slot option, the
contents of the slot will a lways be of type t. The resul t of a t tempt ing to
store in a slot a value that does not satisfy the type of the slot is
undefined.

• The set of ini t ia l izat ion arguments tha t ini t ial ize a given slot is the
union of the ini t ia l izat ion arguments declared in the : i n i t a r g slot
opt ions in all the slot specifiers.

• The documenta t ion str ing for a slot is the value of the : d o c u m e n t a t i o n
slot opt ion in the most specific slot specifier tha t conta ins one. If no slot
specifier conta ins a : d o c u m e n t a t i o n slot option, the slot has no docu-
menta t ion string.

A consequence of the a l locat ion rule is tha t a shared slot can be shadowed.
For example, if a class C1 defines a slot named S whose value for the
: a l l o c a t i o n slot opt ion is :class, tha t slot is accessible in instances of CI and
all of its subclasses, However, if C2 is a subclass of C1 and also defines a slot
named S, C~ 's slot is not shared by instances of C2 and its subclasses. When
a class CI defines a shared slot, any subclass C2 of C1 will share this single
slot unless the de f e l a s s form for C~ specifies a slot of the same name or there
is a superclass of C2 tha t precedes CI in the class precedence list of C~ tha t
defines a slot of the same name.

A consequence of the type rule is tha t the value of a slot satisfies the type
cons t ra in t of each slot specifier t ha t cont r ibutes to tha t slot. Because the
resul t of a t tempt ing to store in a slot a value tha t does not satisfy the type
cons t ra in t for the slot is undefined, the value in a slot might fail to satisfy
its type constra int .

The : r e a d e r , :wr i t e r , and : a c e e s s o r slot options create methods r a the r
than define the charac ter i s t ics of a slot. Reader and wr i te r methods are
inher i ted in the sense described in the sect ion " Inhe r i t ance of Methods ."

1-258 Common Lisp Object System Specif icat ion

X3J13 Documen t 88-002R
J u n e 1988

Methods tha t access slots use only the name of the slot and the type of the
s lot ' s value. Suppose a superc lass provides a method tha t expects to access
a shared slot of a given name, and a subclass defines a local slot with the
same name. If the me thod provided by the superc lass is used on an ins tance
of the subclass , the method accesses the local slot.

Inheritance of Class Options

The : d e f a u l t - i n i t a r g s class opt ion is inheri ted. The set of defaul ted init ial-
izat ion a r g u m e n t s for a class is the un ion of the sets of in i t ia l iza t ion
a r g u m e n t s specified in the :default-initargs class opt ions of the class and
its superc lasses . When more than one defaul t ini t ial va lue form is suppl ied
for a given in i t ia l iza t ion a rgumen t , the defaul t ini t ial va lue form tha t is used
is the one suppl ied by the class t ha t is mos t specific accord ing to the class
p recedence list.

I r a g iven :default-initargs class opt ion specifies an in i t ia l iza t ion a r g u m e n t
of the same name more t han once, an e r ro r is s ignaled.

Examples

(d e f e l a s s C1 ()
((S 1 : i n i t f o r m 5. 4 : t y p e n u m b e r)
(82 :allocation : class)))

(defclass C2 (CI)

(($I : initform 5 : type integer)

($2 :allocation : instance)

($3 :accessor C2-$3)))

Ins t ances of the class C1 have a local slot named S1, whose defaul t ini t ial
va lue is 5.4 and whose va lue should a lways be a number . The class C1 also
has a shared slot named $2.

There is a local slot named S1 in ins tances of C2. The defaul t ini t ial va lue
of S l is 5. The va lue of $1 will be of type (and i n t e g e r number) . There a re
also local s lots named S2 and $3 in ins tances of C2. The class C2 has a
me thod for C2-S3 for r ead ing the va lue of slot $3; the re is also a me thod for
(s e r f C2-S3) t ha t wr i tes the va lue of S3.

P r o g r a m m e r In te r face Concepts 1-259

X3J13 Documen t 88-002R
J u n e 1988

i

Integrating Types and Classes

The Common Lisp Object Sys tem maps the space of classes in to the Common
Lisp type space. Every class t ha t has a proper name has a cor responding type
with the same name.

The proper name of every class is a val id type specifier. In addit ion, every
class object is a valid type specifier. Thus the express ion (t y p e p object class)
eva lua tes to t rue if the class of object is class i t se l f or a subclass of class. The
eva lua t ion of the express ion (s u b t y p e p class1 class2) r e tu rns the va lues t t
if class1 is a subclass of class2 or if they are the same class; o therwise it
r e tu rns the va lues ni l t. I f I is an ins tance of some class C named S and C
is an ins tance of standard-class, the eva lua t ion of the express ion (t yp e - o f
I) will r e tu rn S if S is the proper name of C; if S is not the proper name of
C, the express ion (t y p e - o f I) will r e t u r n C.

Because the names of classes and class objects are type specifiers, they may
be used in the special form t h e and in type dec lara t ions .

M a n y but not all of the predefined Common Lisp type specifiers have a
cor responding class wi th the same proper name as the type. These type
specifiers are l isted in F igure 1-1. For example , the type array has a corres-
ponding class named a r r a y . No type specifier t ha t is a list, such as (r e c t o r
d o u b l e - f l o a t 1@0), has a cor responding class. The form deftype does not
c rea te any classes.

Each class tha t cor responds to a predefined Common Lisp type specifier can
be implemented in one of th ree ways, at the d iscre t ion of each implementa-
tion. I t can be a s t a n d a r d class (of the k ind defined by de fe l a s s) , a struc-
ture class (defined by d e f s t r u e t) , or a bui l t - in class (implemented in a
special, non-extens ib le way).

A buil t- in class is one whose ins tances have res t r ic ted capabi l i t ies or special
represen ta t ions . A t t empt ing to use defclass to define subclasses of a buil t- in
class s ignals an error. Cal l ing m a k e - i n s t a n c e to c rea te an ins tance of a
built-in class s ignals an error . Cal l ing s l o t - v a l u e on an ins tance of a bui l t - in
class s ignals an error . Redefining a built-in class or us ing change-class to
change the class of an ins tance to or f rom a built-in class s ignals an error .
However , built-in classes can be used as p a r a m e t e r special izers in methods.

I t is possible to de te rmine whe the r a class is a buil t- in class by check ing the
metac lass . A s t andard class is an ins tance of standard-class, a buil t- in class
is an ins tance of b u i l t - i n - c l a s s , and a s t r u c t u r e class is an in s t ance of
s t r u c t u r e - c l a s s .

1-260 Common Lisp Object Sys tem Specif icat ion

X3J13 Document 88-002R
June 1988

Each structure type created by de f s t ruc t without using the : type option has
a corresponding class. This class is an instance of s t ruc tu re -c lass . The
• include option of de f s t ruc t creates a direct subclass of the class that
corresponds to the included structure.

The purpose of specifying that many of the standard Common Lisp type
specifiers have a corresponding class is to enable users to write methods that
discriminate on these types. Method selection requires that a class
precedence list can be determined for each class.

The hierarchical relationships among the Common Lisp type specifiers are
mirrored by relationships among the classes corresponding to those types.
The existing type hierarchy is used for determining the class precedence list
for each class that corresponds to a predefined Common Lisp type. In some
cases, Commou Lisp." The Language does not specify a local precedence order
for two supertypes of a given type specifier. For example, null is a subtype
of both symbol and list, but Common Lisp: The Language does not specify
whether symbol is more specific or less specific than list. The Common Lisp
Object System specification defines those relationships for all such classes.

The following figure lists the set of classes required by the Object System
that correspond to predefined Common Lisp type specifiers. The superclasses
of each such class are presented in order from most specific to most general,
thereby defining the class precedence list for the class. The local precedence
order for each class that corresponds to a Common Lisp type specifier can be
derived from this table.

P r e d e f i n e d C o m m o n L i sp T y p e C la s s P r e c e d e n c e Lis t fo r C o r r e s p o n d i n g Class
array (array t)
bit-vector (bit-vector vector array sequence t)
character (character t)
complex (complex number t)
cons (cons list sequence t)
float (float number t)
integer (integer rational number t)
list (list sequence t)
null (null symbol list sequence t)
number (number t)
ratio (ratio rational number t)
rational (rational number t)
sequence (sequence t)
string (string vector array sequence t)
symbol (symbol t)
t (t)
vector (vector array sequence t)

Figure 1-1.

Programmer Interface Concepts 1-261

X3J13 Document 88-002R
June 1988

Individual implementations may be extended to define other type specifiers
to have a corresponding class. Individual implementations can be extended
to add other subclass relationships and to add other elements to the class
precedence lists in the above table, as long as they do not violate the type
relationships and disjointness requirements specified by Common Lisp: The
Language. A standard class defined with no direct superclasses is guaran-
teed to be disjoint from all of the classes in the table, except for the class
named t.

The following Common Lisp types will have corresponding classes when
Common Lisp is modified to define them each as being disjoint from c o n s ,
symbol, a r r a y , n u m b e r , and c h a r a c t e r :

• f u n c t i o n

• h a s h - t a b l e

• p a c k a g e

• p a t h n a m e

• r a n d o m - s t a t e

• r e a d t a b l e

• s t r e a m

1-262 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

D e t e r m i n i n g t h e C l a s s P r e c e d e n c e L i s t

The defc lass form for a class provides a total ordering on that class and its
direct superclasses. This ordering is called the l o c a l p r e c e d e n c e order . It is
an ordered list of the class and its direct superclasses. The class precedence
l i s t for a class C is a total ordering on C and its superclasses that is
consistent with the local precedence orders for each of C and its superclass-

A class precedes its direct superclasses, and a direct superclass precedes all
other direct superclasses specified to its right in the superclasses list of the
defclass form. For every class C, define

R . - {(C, C,), (C , , (C,, , , C,,)l

where C1 (2,, are the direct superclasses of C in the order in which they
are mentioned in the defe lass form. These ordered pairs generate the total
ordering on the class C and its direct superclasses.

Let S(. be the set of C and its superclasses. Let R be

~'eS F

The set R may or may not generate a partial ordering, depending on whether
the R,., c e S(,, are consistent; it is assumed that they are consistent and that
R generates a partial ordering. When the R, are not consistent, it is said that
R is inconsistent.

To compute the class precedence list for C, topologically sort the elements
of Sc with respect to the partial ordering generated by R. When the topologi-
cal sort must select a class from a set of two or more classes, none of which
are preceded by other classes with respect to R, the class selected is chosen
deterministically, as described below.

If R is inconsistent, an error is signaled.

Topological Sorting

Topological sorting proceeds by finding a class C in Sc such that no other
class precedes that element according to the elements in R. The class C is
placed first in the result. Remove C from So, and remove all pairs of the form
(C, D), D c So, from R. Repeat the process, adding classes with no predeces-

Programmer Interface Concepts 1-263

X3J13 Document 88-002R
June 1988

sors to the end of the result. Stop when no element can be found tha t has no
predecessor.

If S c is not empty and the process has stopped, the set R is inconsistent. If
every class in the finite set of classes is preceded by another, then R contains
a loop. That is, there is a chain of classes Ct C,, such tha t Ci precedes
C,+1, 1 ~< i < n, and C, precedes C1.

Sometimes there are several classes from S~. with no predecessors. In this
case select the one tha t has a direct subclass r ightmost in the class
precedence list computed so far. Because a direct superclass precedes all
other direct superclasses to its right, there can be only one such candidate
class. If there is no such candidate class, R does not generate a part ial
ordering- - the Re, c e Sc, are inconsistent .

In more precise terms, let {h~ N,~ }, m >~ 2, be the classes from Sc with no
predecessors. Let (C~... Cn), n >~ 1, be the class precedence list constructed
so far. C~ is the most specific class, and C~ is the]east specific. Let 1 ~ j ~< n
be the largest number such tha t there exists an i where 1 ~< i ~< m and Ni is
a direct superclass of Cj; N, is placed next.

The effect of this rule for selecting from a set of classes with no predecessors
is tha t the classes in a simple superclass chain are adjacent in the class
precedence list and tha t classes in each relat ively separated subgraph are
adjacent in the class precedence list. For example, let T1 and T2 be subgraphs
whose only element in common is the class J. Suppose tha t no superclass of
J appears in ei ther T 1 or T2. Let C~ be the bottom of T1; and let C2 be the
bottom of T~. Suppose C is a class whose direct superclasses are C~ and C2 in
tha t order, then the class precedence list for C will s tar t with C and will be
followed by all classes in T1 except J. All the classes of T 2 will be next. The
class J and its superclasses will appear last.

Examples

This example determines a class precedence list for the class p i e . The
following classes are defined:

(defclass pie (apple cinnamon ()
(defclass apple (fruit) ())
(defclass cinnamon (spice) ()
(defclass fruit (food) ())
(defclass spice (food) ())
(defclass food () ())

1-264 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

food, stan-
cinnamon),

The set S - {pie, apple, cinnamon, fruit, spice,
dard-object, t}.ThesetR {(pie, apple), (apple,
(apple, fruit), (cinnamon, spice), (fruit, food), (spice,
food), (food, standard-object), (standard-object, t)}.

The class pie is not preceded by anything, so it comes first; the result so far
is (p i e) . Remove p i e from S and pairs mentioning p i e from R to get
S= {apple, cinnamon, fruit, spice, food, standard-object,
t} and R = {(apple, cinnamon), (apple, fruit), (cinnamon,
spice), (fruit, food), (spice, food), (food, standard-
object), (standard-object, t)}.

The class apple is not preceded by anything, so it is next; the result is (pie
appl e). Removing appl e and the relevant pairs results in S = { c i nnamon,
fruit, spice, food, standard-object, t} and R = {(cinnamon,
spice), (fruit, food), (spice, food), (food, standard-
object), (standard-object, t)}.

The classes cinnamon and fruit are not preceded by anything, so the one
with a direct subclass rightmost in the class precedence list computed so far
goes next. The class a p p l e is a direct subclass of f r u i t , and the class p i e
is a direct subclass of c innamon. Because a p p l e appears to the right of p i e
in the precedence list, f r u i t goes next, and the result so far is (p i e a p p l e
fruit). S= {cinnamon, spice, food, standard-object, t};
R {(cinnamon, spice), (spice, food), (food, standard-
object), (standard-object, t)}.

The class cinnamon is next, giving the result so far as (pie apple fruit
cinnamon). At this point S= {spice, food, standard-object, t};
R- {(spice, food), (food, standard-object), (standard-
object, t)}.

The classes spice, food, standard-object, and t are added in that
order, and the class precedence list is (pie apple fruit cinnamon spice
food standard-object t).

It is possible to write a set of class definitions that cannot be ordered. For
example:

(defclass new-class (fruit apple) ())
(defelass apple (fruit) ())

The class fruit must precede apple because the local ordering of super-
classes must be preserved. The class apple must precede fruit because a

Programmer Interface Concepts 1-265

X3J13 Document 88-002R
June 1988

class always precedes its own superclasses. When this situation occurs, an
error is signaled when the system tries to compute the class precedence list.

The following might appear to be a conflicting set of definitions:

(defclass pie (apple cinnamon) ())
(defclass pastry (cinnamon apple) ())
(defciass apple () ())
(defclass cinnamon () ())

The class precedence list for pie is (pie apple cinnamon standard-
object t).

The class precedence list for pastry is (pastry cinnamon apple stan-
dard-object t).

It is not a problem for a p p l e to precede c innamon in the ordering of the
superclasses of p i e but not in the ordering for p a s t r y . However, it is not
possible to build a new class that has both p i e and p a s t r y as superclasses.

1-266 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

Generic Funct ions and Methods

A generic function is a function whose behavior depends on the classes or
identities of the arguments supplied to it. The methods define the class-
specific behavior and operations of the generic function. The following
sections describe generic functions and methods.

In troduc t ion to Generic F u n c t i o n s

A generic flmction object contains a set of methods, a lambda-list, a method
combination type, and other information.

Like an ordinary Lisp function, a generic function takes arguments,
performs a series of operations, and perhaps returns useful values. An
ordinary function has a single body of code that is always executed when the
function is called. A generic function has a set of bodies of code of which a
subset is selected for execution. The selected bodies of code and the manner
of their combination are determined by the classes or identities of one or
more of the arguments to the generic function and by its method combina-
tion type.

Ordinary functions and generic functions are called with identical syntax.

Generic functions are true functions that can be passed as arguments and
used as the first argument to funca l l and apply.

In Common Lisp, a name can be given to an ordinary function in one of two
ways: a g l o b a l name can be given to a function using the defun construct;
a local name can be given using the flet or labels special forms. A generic
function can be given a global name using the d e f m e t h o d or defgeneric
construct. A generic function can be given a local name using the generic-
flet, gener ic- labels , or w i t h - a d d e d - m e t h o d s special forms. The name of a
generic function, like the name of an ordinary function, can be either a
symbol or a two-element list whose first element is s e t f and whose second
element is a symbol. This is true for both local and global names.

The generic- f let special form creates new local generic functions using the
set of methods specified by the method definitions in the gener ic - f l e t form.
The scoping of generic function names within a gener ic - f l e t is the same as
for flet.

The gener ic - labe l s special form creates a set of new mutually recursive
local generic functions using the set of methods specified by the method
definitions in the gene r l c - l abe l s form. The scoping of generic function
names within a gene r i c - l abe l s form is the same as for labels .

Programmer Interface Concepts 1-267

X3J13 Document 88-002R
June 1988

The w i th -added -me thods special form creates new local generic functions
by adding the set of methods specified by the method definitions with a given
name in the w i th - added -me thods form to copies of the methods of the
lexically visible generic function of the same name. If there is a lexicalty
visible ordinary function of the same name as one of specified generic
functions, that function becomes the method function of the default method
for the new generic function of that name.

The gene r i c - func t ion macro creates an anonymous generic function with
the set of methods specified by the method definitions in the generic-
f unc t i on form.

When a defgener ic form is evaluated, one of three actions is taken:

• If a generic function of the given name already exists, the existing
generic function object is modified. Methods specified by the current
defgener ic form are added, and any methods in the existing generic
function that were defined by a previous defgener ic form are removed.
Methods added by the current defgener ic form might replace methods
defined by d e f m e t h o d or defclass. No other methods in the generic
function are affected or replaced.

• If the given name names a non-generic function, a macro, or a special
form, an error is signaled.

• Otherwise a generic function is created with the methods specified by
the method definitions in the defgener ic form.

Some forms specify the options of a generic function, such as the type of
method combination it uses or its argument precedence order. These forms
will be referred to as "forms that specify generic function options." These
forms are: defgener ic , gene r i c - func t ion , generic- t ier , generic-labels ,
and wi th -added-me thods .

Some forms define methods for a generic function. These forms will be
referred to as "method-defining forms." These forms are: defgener ic , clef-
me thod , gene r i c - func t ion , generic-f le t , gener ic- labels , wi th-added-
me thods , and defclass. Note that all the method-defining forms except
defclass and d e f m e t h o d can specify generic function options and so are
also forms that specify generic function options.

I n t r o d u c t i o n to Methods

A method object contains a method function, a sequence of parameter
specializers that specify when the given method is applicable, a lambda-list,
and a sequence of qualifiers that are used by the method combination
facility to distinguish among methods.

1-268 Common Lisp Object System Specification

X3J13 Document 88-002R
J u n e 1988

A method object is not a funct ion and canno t be invoked as a funct ion.
Var ious mechanisms in the Object System take a method object and invoke
its method funct ion, as is the case when a gener ic func t ion is invoked. When
this occurs it is said tha t the method is invoked or called.

A method-defining form conta ins the code tha t is to be run when the
a rguments to the generic func t ion cause the method tha t it defines to be
invoked. When a method-defining form is evaluated, a method object is
c rea ted and one of four ac t ions is taken:

• If a gener ic func t ion of the given name a l ready exists and if a method
object a l ready exists t ha t agrees with the new one on pa rame te r special-
izers and qualifiers, the new method object replaces the old one. For a
defini t ion of one method agree ing wi th a n o t h e r on pa rame te r special-
izers and qualifiers, see the sect ion "Agreemen t on P a r a m e t e r Special-
izers and Qualif iers ."

• If a gener ic func t ion of the given name a l ready exists and if there is no
method object tha t agrees with the new one on pa rame te r special izers
and qualifiers, the exist ing gener ic func t ion object is modified to
con ta in the new method object.

• If the given name names a non-gener ic funct ion, a macro, or a special
form, an e r ro r is s{gnaled.

• Otherwise a gener ic func t ion is c rea ted with the methods specified by
the method-defining form.

If the lambda-list of a new method is not cong ruen t with the lambda-list of
the gener ic funct ion, an e r ro r is signaled. I f a method-defining form tha t
canno t specify gener ic func t ion opt ions c rea tes a new gener ic funct ion, a
lambdadis t for t ha t gener ic func t ion is der ived from the lambda-lists of the
methods in the method-defining form in such a way as to be congruen t wi th
them. For a discussion of congruence, see the sect ion " C o n g r u e n t Lambda-
lists for All Methods of a Gener ic Func t ion . "

Each method has a specialized lambda-list, which determines when tha t
method can be applied. A specialized lambda-list is l ike an o rd ina ry lambda-
list except t ha t a specialized parameter may occur ins tead of the name of
a requi red parameter . A specialized pa rame te r is a list (variable-name pa-
rameter-specializer-name), where parameter-specializer-name is one of the fol-
lowing:

• A name tha t names a class

• (eql form)

A pa rame te r special izer name denotes a pa rame te r special izer as follows:

P rog rammer In te r face Concepts 1-269

X3J13 Document 88-002R
June 1988

• A name that names a class denotes that class.

• The list (eql form) denotes (eql object), where object is the result of
evaluating form. The form form is evaluated in the lexical environment
in which the method-defining form is evaluated. Note that form is
evaluated only once, at the time the method is defined, not each time the
generic function is called.

Parameter specializer names are used in macros intended as the user-level
interface (defmethod), while parameter specializers are used in the func-
tional interface.

Only required parameters may be specialized, and there must be a parameter
specializer for each required parameter. For notational simplicity, if some
required parameter in a specialized lambda-list in a method-defining form is
simply a variable name, its parameter speciatizer defaults to the class named
t.

Given a generic function and a set of arguments, an applicable method is
a method for that generic function whose parameter specializers are satisfied
by their corresponding arguments. The following definition specifies what it
means for a method to be applicable and for an argument to satisfy a
parameter specializer.

Let (A1 An } be the required arguments to a generic function in order.
Let (P1 Pn } be the parameter specializers corresponding to the required
parameters of the method M in order. The method M is applicable when
each A~ satisfies P~. If P~ is a class, and if A~ is an instance of a class C, then
it is said that As satisfies P~ when C = P~ or when C is a subclass of P . If P~
is (eql object), then it is said that A~ satisfies P~ when the function eql a~)plied
to A~ and object is true.

Because a parameter specializer is a type specifier, the function typep can
be used during method selection to determine whether an argument satisfies
a parameter specializer. In general a parameter specializer cannot be a type
specifier list, such as (vector single-float). The only parameter specializer
that can be a list is (eql object). This requires that Common Lisp be modified
to include the type specifier eql to be defined as if the following were
evaluated:

(deftype eql (object)~(member ,object))

A method all of whose parameter specializers are the class named t is called
a default method; it is always applicable but may be shadowed by a more
specific method.

1-270 Common Lisp Object System Specification

X3J13 Documen t 88-002R
June 1988

i i i H ,llm,,,,

Methods can have qualifiers, which give the method combina t ion
p rocedure a way to dis t inguish among methods. A method tha t has one or
more qualif iers is called a qualified method. A method with no qualifiers is
called an unqualified method. A qualif ier is any object o the r t han a list,
tha t is, any non-ni l atom. The qualifiers defined by s tandard method com-
b ina t ion and by the buil t- in method combina t ion types are symbols.

In this specification, the terms primary method and auxiliary method are
used to pa r t i t ion methods wi thin a method combina t ion type accord ing to
the i r in tended use. In s tandard method combinat ion , p r imary methods are
unqual i f ied methods and auxi l i a ry methods are methods with a single quali-
fier t ha t is one of :around, :before, or :after. When a method combina t ion
type is defined using the shor t form of def ine-method-combinat ion,
pr imary methods are methods qualified with the name of the type of method
combinat ion , and auxi l i a ry methods have the qualif ier :around. Thus the
terms primary method and auxiliary method have only a re la t ive defini-
t ion wi th in a given me thod combina t ion type.

Agreement on Parameter Specializers and Qualifiers

Two methods are said to agree with each o the r on pa rame te r special izers and
qualifiers if the fol lowing condi t ions hold:

1. Both methods have the same number of requi red parameters . Suppose the
pa rame te r special izers of the two methods are P1.1.-. P~,, and P2.1. • • P~,n.

2. For each 1 ~< i ~< n, t~. i agrees with P2.i. The pa rame te r special izer Pt,i
agrees with P2,i if P~.~ and P2,~ are the same class or if Pi~i = (eql object1) ,
P2~ = (eql object2), and (eql object1 objects). Otherwise P~,i and P~,~ do not
agree.

3. The lists of qualifiers of bo th methods conta in the same non-ni l a toms in
the same order. Tha t is, the lists are equal.

Congruent Lambda-l ists for All Methods of a Generic Funct ion

These rules define the congruence of a set of lambda-lists, including the
lambda-list of each method for a given gener ic func t ion and the lambda-tist
specified for the generic funct ion itself, if given.

1. Each lambda-list must have the same number of required parameters .

2. Each lambda-list must have the same number of opt ional parameters .
Each method can supply its own defaul t for an opt ional parameter .

3. If any lambda-list ment ions & r e s t or &key , each lambda-list mus t
ment ion one or both of them.

P rog rammer In te r face Concepts 1-271

X3J13 Document 88-002R
June 1988

i

4. If the generic function lambda-list mentions &key, each method must
accept all of the keyword names mentioned after &key, either by accept-
ing them explicitly, by specifying &al low-o ther -keys , or by specifying
&rest but not &key. Each method can accept additional keyword
arguments of its own. The checking of the validity of keyword names is
done in the generic function, not in each method. A method is invoked as
if the keyword argument pair whose keyword is :allow-other-keys and
whose value is t were supplied, though no such argument pair will be
passed.

5. The use of &a l low-o the r -keys need not be consistent across lambda-lists.
If &a l low-o the r -keys is mentioned in the lambda-list of any applicable
method or of the generic function, any keyword arguments may be men-
tioned in the call to the generic function.

6. The use of &aux need not be consistent across methods.

If a method-defining form that cannot specify generic function options
creates a generic function, and if the lambda-list for the method mentions
keyword arguments, the lambda-list of the generic function will mention
&key (but no keyword arguments).

Keyword Arguments in Generic Funct ions and Methods

When a generic function or any of its methods mentions &key in a lambda-
list, the specific set of keyword arguments accepted by the generic function
varies according to the applicable methods, The set of keyword arguments
accepted by the generic function for a particular call is the union of the
keyword arguments accepted by all applicable methods and the keyword
arguments mentioned after &key in the generic function definition, if any.
A method that has &res t but not &key does not affect the set of acceptable
keyword arguments. If the lambda-list of any applicable method or of the
generic function definition contains &al low-o ther -keys , all keyword
arguments are accepted by the generic function.

The lambda-list congruence rules require that each method accept all of the
keyword arguments mentioned after &key in the generic function defini-
tion, by accepting them explicitly, by specifying &allow-other-keys, or by
specifying &rest but not &key. Each method can accept additional keyword
arguments of its own, in addition to the keyword arguments mentioned in
the generic function definition.

If a generic function is passed a keyword argument that no applicable
method accepts, an error is signaled.

1-272 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

For example, suppose there are two methods defined for w i d t h as follows:

(defmethod width ((c character-class) &key font)...)
(defmethod width ((p picture-class) &key pixel-size) ...)

Assume that there are no other methods and no generic function definition
for wid th . The evaluation of the following form will signal an error because
the keyword~rgumen t : p i x e l - s i z e is not accepted by the applicable
method.

(w i d t h (m a k e - i n s t a n c e ' c h a r a c t e r - c l a s s : c h a r # \ Q)
: f o n t ' b a s k e r v i l l e : p i x e l - s i z e 10)

The evaluation of the following form will signal an error.

(w i d t h (m a k e - i n s t a n c e ' p i c t u r e - c l a s s : g l y p h (g l y p h # \ Q))
: f o n t ' b a s k e r v i l l e : p i x e t - s i z e 10)

The evaluation of the following form wilt not signal an error if the class
named c h a r a c t e r - p i c t u r e - c l a s s is a subclass of both p i c t u r e - c l a s s
and c h a r a c t e r - c l a s s .

(w i d t h (m a k e - i n s t a n c e ' c h a r a c t e r - p i c t u r e - c l a s s : c h a r # \ Q)
: f o n t ' b a s k e r v i l l e : p i x e l - s i z e 10)

Programmer Interface Concepts 1-273

X3Jt3 Document 88-002R
June 1988

i l l i

Method Select ion and Combination

When a generic function is called with particular arguments, it must deter-
mine the code to execute. This code is called the effective method for those
arguments. The effective method is a combination of the applicable
methods in the generic function. A combination of methods is a Lisp ex-
pression that contains calls to some or all of the methods. If a generic
function is called and no methods apply, the generic function no-appli-
cable-method is invoked.

When the effective method has been determined, it is invoked with the same
arguments that were passed to the generic function. Whatever values it
returns are returned as the values of the generic function.

Determining the Effective Method

The effective method is determined by the following three-step procedure:

1. Select the applicable methods.

2. Sort the applicable methods by precedence order, putting the most specific
method first.

3. Apply method combination to the sorted list of applicable methods,
producing the effective method.

Selecting the applicable methods. This step is described in the section
"Introduction to Methods."

Sorting the applicable methods by precedence order. To compare the
precedence of two methods, their parameter specializers are examined in
order. The default examination order is from left to right, but an alternative
order may be specified by the :argument-precedence-order option to
defgeneric or to any of the other forms that specify generic function
options.

The corresponding parameter specializers from each method are compared.
When a pair of parameter specializers are equal, the next pair are compared
for equality. If all corresponding parameter specializers are equal, the two
methods must have different qualifiers; in this case, either method can be
selected to precede the other.

If some corresponding parameter specializers are not equal, the first pair of
parameter specializers that are not equal determines the precedence. If both
parameter specializers are classes, the more specific of the two methods is

1-274 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

the method whose parameter specializer appears earlier in the class
precedence list of the corresponding argument. Because of the way in which
the set of applicable methods is chosen, the parameter specializers are
guaranteed to be present in the class precedence list of the class of the
argument.

If just one parameter specializer is (eql object), the method with that pa-
rameter specializer precedes the other method. If both parameter special-
izers are eql forms, the specializers must be the same (otherwise the two
methods would not both have been applicable to this argument).

The resulting list of applicable methods has the most specific method first
and the least specific method last.

Applying method combination to the sorted list of applicable methods.
In the simple case--if standard method combination is used and all applic-
able methods are primary methods--the effective method is the most specific
method. That method can call the next most specific method by using the
function cal l -next-method, The method that ca l l -nex t -me thod will call is
referred to as the next method. The predicate next-method-p tests whether
a next method exists. If cal l -next-method is called and there is no next most
specific method, the generic function n o - n e x t - m e t h o d is invoked.

In general, the effective method is some combination of the applicable
methods. It is defined by a Lisp form that contains calls to some or all of the
applicable methods, returns the value or values that will be returned as the
value or values of the generic function, and optionally makes some of the
methods accessible by means of cal l-next-method. This Lisp form is the
body of the effective method; it is augmented with an appropriate lambda-list
to make it a function.

The role of each method in the effective method is determined by its method
qualifiers and the specificity of the method. A qualifier serves to mark a
method, and the meaning of a qualifier is determined by the way that these
marks are used by this step of the procedure. If an applicable method has an
unrecognized qualifier, this step signals an error and does not include that
method in the effective method.

When standard method combination is used together with qualified methods,
the effective method is produced as described in the section "Standard
Method Combination."

Another type of method combination can be specified by using the :method-
combinat ion option of defgeneric or of any of the other forms that specify
generic function options. In this way this step of the procedure can be
customized.

Programmer Interface Concepts 1-275

X3J13 Document 88-002R
June 1988

ii

New types of method combination can be defined by using the define-meth-
od-combination macro.

The recta-object level also offers a mechanism for defining new types of
method combination. The generic function compute-effect ive-method
receives as arguments the generic function, the method combination object,
and the sorted list of applicable methods. It returns the Lisp form that
defines the effective method. A method for compute-effect ive-method can
be defined directly by using de fme thod or indirectly by using define-meth-
od-combination. A method combination object is an object that encap-
sulates the method combination type and options specified by the :method-
combina t ion option to forms that specify generic function options.

Implementat ion Note:

In the simplest implementation, the generic function would compute
the effective method each time it was called. In practice, this will be too
inefficient for some implementations. Instead, these implementations
might employ a variety of optimizations of the three-step procedure.
Some illustrative examples of such optimizations are the following:

• Use a hash table keyed by the class of the arguments to store the
effective method,

• Compile the effective method and save the resulting compiled
function in a table.

• Recognize the Lisp form as an instance of a pattern of control
structure and substitute a closure that implements that structure.

• Examine the parameter specializers of all methods for the generic
function and enumerate all possible effective methods. Combine
the effective methods, together with code to select from among
them, into a single function and compile that function. Call that
function whenever the generic function is called.

Standard Method Combination

Standard method combination is supported by the class standard-generic-
function. It is used if no other type of method combination is specified or if
the built-in method combination type s t a n d a r d is specified.

Primary methods define the main action of the effective method, while
auxiliary methods modify that action in one of three ways. A primary
method has no method qualifiers.

An auxiliary method is a method whose method quatifier is :before, :af ter ,
or :around. Standard method combination allows no more than one quali-

1-276 Common Lisp Object System Specification

X3J13 D o c u m e n t 88-002R
J u n e 1988

tier per method; if a method defini t ion specifies more than one qualif ier per
method, an e r ro r is s ignaled.
• A : b e f o r e me thod has the keyword : b e f o r e as its only qualifier. A

: b e f o r e me thod specifies code tha t is to be run beibre any p r ima ry
methods .

• An : a f t e r method has the keyword : a f t e r as its only qualifier. An : a f t e r
me thod specifies code t h a t is to be run af ter p r ima ry methods.

• An : a r o u n d method has the keyword : a r o u n d as its only qualifier. An
: a r o u n d me thod specifies code tha t is to be run ins tead of o the r appli-
cable me thods but which is able to cause some of them to be run.

semant i c s of s t anda rd me thod combina t ion is as follows:

I f the re are any : a r o u n d methods , the mos t specific : a r o u n d method is
called. I t suppl ies the va lue or va lues of the gener ic funct ion.

Ins ide the body of an : a r o u n d method, c a l l - n e x t - m e t h o d can be used
to call the nex t method. When the nex t me thod re tu rns , the : a r o u n d
method can execute mode code, pe rhaps based on the r e tu rned va lue or
values. The gener ic func t ion n o - n e x t - m e t h o d is invoked if c a l l - n e x t -
m e t h o d is used and there is no appl icable me thod to call. The funct ion
n e x t - m e t h o d - p may be used to de te rmine whe the r a nex t me thod
exists.

I f an : a r o u n d method invokes c a l l - n e x t - m e t h o d , the nex t mos t
specific : a r o u n d me thod is called, if one is appl icable . If there are no
: a r o u n d methods or if c a l l - n e x t - m e t h o d is cal led by the leas t specific
: a r o u n d method, the o the r methods are cal led as follows:

- - All the : b e f o r e methods are called, in most-specific-first order. The i r
va lues are ignored. An e r ro r is s ignaled if c a l l - n e x t - m e t h o d is used
in a : b e f o r e method.

- - The mos t specific p r i m a r y me thod is called. Inside the body of a
p r i m a r y method, c a l l - n e x t - m e t h o d m a y be used to call the nex t
mos t specific p r i m a r y method. When tha t method re turns , the
p rev ious p r i m a r y method can execute more code, pe rhaps based on
the r e t u r n e d va lue or values . The gener ic func t ion n o - n e x t - m e t h -
od is invoked if c a l l - n e x t - m e t h o d is used and there are no more
appl icab le p r ima ry methods. The func t ion n e x t - m e t h o d - p may be
used to de t e rmine w h e t h e r a nex t me thod exists. I f c a l l - n e x t - m e t h -
od is not used, only the mos t specific p r imary me thod is called.

- - All the : a f t e r methods are cal led in most-specif ic- last order. The i r
va lues a re ignored. An e r ro r is s ignaled if c a l l - n e x t - m e t h o d is used
in an : a f t e r method.

The

O

O

O

P r o g r a m m e r In t e r f ace Concepts 1-277

X3J13 Document 88-002R
June 1988

• If no :around methods were invoked, the most specific primary method
supplies the value or values returned by the generic function. The value
or values returned by the invocation of c a l l - n e x t - m e t h o d in the least
specific :around method are those returned by the most specific
primary method.

In standard method combination, if there is an applicable method but no
applicable primary method, an error is signaled.

The :before methods are run in most-specific-first order while the :after
methods are run in least-specific-first order. The design rationale for this
difference can be illustrated with an example. Suppose class C1 modifies the
behavior of its superclass, C2, by adding :before and :af ter methods.
Whether the behavior of the class Cz is defined directly by methods on C2 or
is inherited from its superclasses does not affect the relative order Of invoca-
tion of methods on instances of the class C~. Class C1 's :before method runs
before all of class C2's methods. Class C1's :af ter method runs after all of
class C2's methods.

By contrast, all : a round methods run before any other methods run. Thus
a less specific :around method runs before a more specific primary method.

If only primary methods are used and if c a l l - n e x t - m e t h o d is not used, only
the most specific method is invoked; that is, more specific methods shadow
more general ones.

Declarat ive Method Combinat ion

The macro d e f i n e - m e t h o d - c o m b i n a t i o n defines new forms of method com-
bination. It provides a mechanism for customizing the production of the
effective method. The default procedure for producing an effective method
is described in the section '~Determining the Effective Method." There are
two forms of def ine -method-combinat ion . The short form is a simple
facility while the long form is more powerful and more verbose. The long
form resembles de fmac ro in that the body is an expression that computes a
Lisp form; it provides mechanisms for implementing arbitrary control struc-
tures within method combination and for arbitrary processing of method
qualifiers. The syntax and use of both forms of d e f i n e - m e t h o d - c o m b i n a -
t ion are explained in Chapter 2.

Built- in Method C o m b i n a t i o n Types

The Common Lisp Object System provides a set of built-in method combina-
tion types. To specify that a generic function is to use one of these method
combination types, the name of the method combination type is given as the
argument to the : m e t h o d - c o m b i n a t i o n option to defgener ic or to the

1-278 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

: m e t h o d - c o m b i n a t i o n option to any of the other forms that specify generic
function options.

The names of the built-in method combination types are + , and, append ,
list, max , min , nconc , or , p rogn , and s t anda rd .

The semantics of the s t a n d a r d built-in method combination type was de-
scribed in the section ~Standard Method Combination." The other built-in
method combination types are called simple built-in method combination
types.

The simple built-in method combination types act as though they were
defined by the short form of d e f i n e - m e t h o d - c o m b i n a t i o n . They recognize
two roles for methods:

• A n : a r o u n d method has the keyword symbol : a round as its sole quali-
fier. The meaning of : a r o u n d methods is the same as in standard method
combination. Use of the functions c a l l - n e x t - m e t h o d and nex t -
m e t h o d - p is supported in : a r o u n d methods.

• A primary method has the name of the method combination type as its
sole qualifier. For example, the built-in method combination type and
recognizes methods whose sole qualifier is and; these are primary
methods. Use of the functions c a l l - n e x t - m e t h o d and n e x t - m e t h o d - p
is not supported in primary methods.

The semantics of the simple built-in method combination types is as follows:

• If there are any : a round methods, the most specific : a round method is
called. It supplies the value or values of the generic function.

• Inside the body of an : a r o u n d method, the function c a l l - n e x t - m e t h o d
can be used to call the next method. The generic function no -nex t -
m e t h o d is invoked if c a l l - n e x t - m e t h o d is used and there is no appli-
cable method to call. The function n e x t - m e t h o d - p may be used to
determine whether a next method exists. When the next method
returns, the a r o u n d method can execute more code, perhaps based on
the returned value or values.

® If an : a r o u n d method invokes c a l l - n e x t - m e t h o d , the next most
specific : a r o u n d method is called, if one is applicable. If there are no
: a r o u n d methods of if c a l l - n e x t - m e t h o d is called by the least specific
: a r o u n d method, a Lisp form derived from the name of the built-in
method combination type and from the list of applicable primary
methods is evaluated to produce the value of the generic function.
Suppose the name of the method combination type is operator and the
call to the generic function is of the form

Programmer Interface Concepts 1-279

X3J13 Document 88-002R
June 1988

(generic-function ar..a,,)

Let M1 M~ be the applicable primary methods in order; then the
derived Lisp form is

(operator (MI al...a,~}...(Mt~ al...a,~})

If the expression (M, al...an > is evaluated, the method M, will be applied
to the arguments al...%. For example, if operator is or, the expression
(M~ al...an } is evaluated only if (Mj al ...a,, >, I ~< j < i, returned nil.

The default order for the primary methods is :most-specific-first .
However, the order can be reversed by supplying :most-specif ic- last
as the second argument to the :me thod -combina t i on option.

The simple built-in method combination types require exactly one qualifier
per method. An error is signaled if there are applicable methods with no
qualifiers or with qualifiers that are not supported by the method combina-
tion type. An error is signaled if there are applicable : a round methods and
no applicable primary methods.

1-280 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

i i i

Meta-Objects

The implementation of the Object System manipulates classes, methods, and
generic functions. The meta-object protocol specifies a set of generic
functions defined by methods on classes; the behavior of those generic
ihnctions defines the behavior of the Object System. The instances of the
classes on which those methods are defined are called meta-objects. Pro-
gramming at the meta-object protocol level involves defining new classes of
meta-objects along with methods specialized on these classes.

Metaclasses

The metaclass of an object is the class of its class. The metaclass determines
the representation of instances of its instances and the forms of inheritance
used by its instances for slot descriptions and method inheritance. The
metaclass mechanism can be used to provide particular forms of optimiza-
tion or to tailor the Common Lisp Object System for particular uses. The
protocol for defining metaclasses is discussed in the chapter "The Common
Lisp Object System Meta-Object Protocol."

Standard Metaclasses

The Common Lisp Object System provides a number of predefined metaclass-
es. These include the classes standard-class, built-ln-class, and struc-
ture-class:

• The class standard-class is the default class of classes defined by
defclass.

• The class bui l t - in-c lass is the class whose instances are classes that
have special implementations with restricted capabilities. Any class
that corresponds to a standard Common Lisp type specified in Common
Lisp: The Language might be an instance of bui l t - in-class . The
predefined Common Lisp type specifiers that are required to have cor-
responding classes are listed in Figure 1-1. It is implementation depen-
dent whether each of these classes is implemented as a built-in class.

• All classes defined by means of d e f s t r u c t are instances of structure-
class.

Standard Meta-objects

The Object System supplies a set of meta-objects, called s t a n d a r d meta-
objects. These include the class s t a n d a r d - o b j e c t and instances of the

Programmer Interface Concepts 1-281

X3J13 Document 88-002R
June 1988

classes s t a n d a r d - m e t h o d ,
combina t ion .

s t anda rd -gene r i c - func t ion , and me thod -

• The class s t a n d a r d - m e t h o d is the default class of methods defined by
the forms de fme thod , defgener ic , gene r i c - func t ion , generic-f le t ,
generic- labels , and w i th -added -me thods .

• The class s t a n d a r d - g e n e r i c - f u n c t i o n is the default class of generic
functions defined by the forms de fme thod , defgener ic , gener ic-
func t ion , gener ic-f le t , gener ic- labels , w i th -added-me thods , and
defclass.

• The class named s t a n d a r d - o b j e c t is an instance of the class s t anda rd -
class and is a superclass of every class that is an instance of s t anda rd -
class except itself and s t ruc tu re - c l a s s .

• Every method combination object is an instance of a subclass of the
class m e t h o d - c o m b i n a t i o n .

1-282 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

Object Creation and Initialization

The generic function make-instance creates and returns a new instance of
a class. The first argument is a class or the name of a class, and the remaining
arguments form an initialization argument list.

The initialization of a new instance consists of several distinct steps, includ-
ing the following: combining the explicitly supplied initialization arguments
with default values for the unsupplied initialization arguments, checking
the validity of the initialization arguments, allocating storage for the
instance, filling slots with values, and executing user-supplied methods that
perform additional initialization. Each step of make-instance is implemen-
ted by a generic function to provide a mechanism for customizing that step.
In addition, make-instance is itself a generic function and thus also can be
customized.

The Object System specifies system-supplied primary methods for each step
and thus specifies a welt-defined standard behavior for the entire initializa-
tion process. The standard behavior provides four simple mechanisms for
controlling initialization:

• Declaring a symbol to be an initialization argument for a slot. An
initialization argument is declared by using the :initarg slot option to
defclass . This provides a mechanism for supplying a value for a slot in
a call to make-instance.

• Supplying a default value form for an initialization argument. Default
value forms fbr initialization arguments are defined by using the :de-
f a u l t - i n i t a r g s class option to defclass . If an initialization argument is
not explicitly provided as an argument to make-instance, the default
value form is evaluated in the lexical environment of the defc lass form
that defined it, and the resulting value is used as the value of the
initialization argument.

• Supplying a default initial value form for a slot. A default initial value
form for a slot is defined by using the : i n i t fo rm slot option to defclass .
If no initialization argument associated with that slot is given as an
argument to make-instance or is defaulted by :de fau l t - in i t a rgs , this
default initial value form is evaluated in the lexical environment of the
defc lass form that defined it, and the resulting value is stored in the
slot. The : i n i t fo rm form for a local slot may be used when creating an
instance, when updating an instance to conform to a redefined class, or
when updating an instance to conform to the definition of a different

Programmer Interface Concepts 1-283

X3J13 Document 88-002R
June 1988

class. The : in i t fbrm fbrm for a shared slot may be used when defining
or re-defining the class.

• Defining methods for in i t i a l i ze - ins t ance and shared- ln i t ia l ize . The
slot-filling behavior described above is implemented by a system-
supplied primary method for in i t i a l i ze - ins t ance which invokes
shared- in i t ia l ize . The generic function sha red- in i t i a l i ze implements
the parts of initialization shared by these four situations: when making
an instance, when re-initializing an instance, when updating an
instance to conform to a redefined class, and when updating an instance
to conform to the definition of a different class. The system-supplied
primary method for sha red- in i t i a l i ze directly implements the slot-fill-
ing behavior described above, and in i t i a l i ze - ins t ance simply invokes
shared- in i t ia l ize .

Initialization Arguments

An initialization argument controls object creation and initialization. It is
often convenient to use keyword symbols to name initialization arguments,
but the name of an initialization argument can be any symbol, including nil.
An initialization argument can be used in two ways: to fill a slot with a value
or to provide an argument for an initialization method. A single initializa-
tion argument can be used for both purposes.

An in i t ia l i za t ion a r g u m e n t l is t is a list of al ternat ing initialization
argument names and values. Its s tructure is identical to a property list and
also to the portion of an argument list processed for &key parameters. As in
those lists, if an initialization argument name appears more than once in an
initialization argument list, the leftmost occurrence supplies the value and
the remaining occurrences are ignored. The arguments to m a k e - i n s t a n c e
(after the first argument) tbrm an initialization argument list. Error-check-
ing of initialization argument names is disabled if the keyword argument
pair whose keyword is : a l l ow-o the r -keys and whose value is non-nil
appears in the initialization argument list.

An initialization argument can be associated with a slot. If the initialization
argument has a value in the initialization argument list, the value is stored
into the slot of the newly created object, overriding any : in i t fo rm form
associated with the slot. A single initialization argument can initialize more
than one slot. An initialization argument that initializes a shared slot stores
its value into the shared slot, replacing any previous value.

An initialization argument can be associated with a method. When an object
is created and a part icular initialization argument is supplied, the generic
functions in i t i a l i ze - ins tance , shared- in i t ia l ize , and a l l o c a t e - i n s t a n c e

1-284 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

are called with that initialization argument 's name and value as a keyword
argument pair. If a value for the initialization argument is not supplied in
the initialization argument list, the method's lambda-list supplies a default
value.

Initialization arguments are used in four situations: when making an
instance, when re-initializing an instance, when updating an instance to
conform to a redefined class, and when updating an instance to conform to
the definition of a different class.

Because initialization arguments are used to control the creation and ini-
tialization of an instance of some part icular class, we say that an initializa-
tion argument is ~an initialization argument for" that class.

Declaring the Validity of Initialization Arguments

Initialization arguments are checked for validity in each of the four situa-
tions that use them. An initialization argument may be valid in one situation
and not another. For example, the system-supplied primary method for
make-instance defined for the class s t a n d a r d - c l a s s checks the validity of
its initialization arguments and signals an error if an initialization
argument is supplied that is not declared as valid in that situation.

There are two means for declaring initialization arguments valid.

• Initialization arguments tha t fill slots are declared as valid by the
:initarg slot option to defclass . The :initarg slot option is inherited
from superclasses. Thus the set of valid initialization arguments that fill
slots for a class is the union of the initialization arguments that fill slots
declared as valid by that class and its superclasses. Initialization
arguments that fill slots are valid in all four contexts.

• Initialization arguments that supply arguments to methods are
declared as valid by defining those methods. The keyword name of each
keyword parameter specified in the method's lambda-list becomes an
initialization argument for all classes for which the method is appli-
cable. Thus method inheri tance controls the set of valid initialization
arguments that supply arguments to methods. The generic functions for
which method definitions serve to declare init ialization arguments
valid are as follows:

- M a k i n g an instance of a class: allocate-instance, initialize-
instance, and shared-initialize. Initialization arguments declared
as valid by these methods are valid when making an instance of a
class.

- -Re- in i t ia l iz ing an instance: reinitialize-instance and shared-

Programmer Interface Concepts 1-285

X3J13 Document 88-002R
June 1988

initialize. Initialization arguments declared as valid by these
methods are valid when re-initializing an instance.

- - U p d a t i n g an instance to conform to a redefined class: update-
instance-for-redefined-class and shared-initialize. Initializa-
tion arguments declared as valid by these methods are valid when
updating an instance to conform to a redefined class.

....... Updating an instance to conform to the definition of a different
class: update-instance-for-different-class and shared-initialize.
Initialization arguments declared as valid by these methods are
valid when updating an instance to conform to the definition of a
different class.

The set of valid initialization arguments for a class is the set of valid
initialization arguments that either fill slots or supply arguments to
methods, along with the predefined initialization argument :allow-other-
keys. The default value for : a l l ow-o the r -keys is nil. The meaning of
: a l low-o the r -keys is the same as when it is passed to an ordinary function.

Defaulting of Initialization Arguments

A default value form can be supplied for an initialization argument by
using the :default-initargs class option. If an initialization argument is
declared valid by some part icular class, its default value form might be
specified by a different class. In this case :default-initargs is used to supply
a default value for an inherited initialization argument.

The :default-initargs option is used only to provide default values for
initialization arguments; it does not declare a symbol as a valid initializa-
tion argument name. Furthermore, the :default-initargs option is used only
to provide default values for initialization arguments when making an
instance.

The argument to the :default-initargs class option is a list of al ternat ing
initialization argument names and forms. Each form is the default value
form for the corresponding initialization argument. The default value form
of an initialization argument is used and evaluated only if that initialization
argument does not appear in the arguments to make-instance and is not
defaulted by a more specific class. The default value form is evaluated in the
lexical environment of the defc lass form that supplied it; the resulting value
is used as the initialization argument 's value.

The initialization arguments supplied to make-instance are combined with
defaulted initialization arguments to produce a defaulted ini t ial izat ion
argument list. A defaulted initialization argument list is a list of alternat-
ing initialization argument names and values in which unsupplied initializa-

1-286 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

tion arguments are defaulted and in which the explicitly supplied initializa-
tion arguments appear earlier in the list than the defaulted initialization
arguments. Defaulted initialization arguments are ordered according to the
order in the class precedence list of the classes that supplied the default
values.

There is a distinction between the purposes of the :default-initargs and the
:initform options with respect to the initialization of slots. The :default-
initargs class option provides a mechanism for the user to give a default
value form for an initialization argument without knowing whether the
initialization argument initializes a slot or is passed to a method. If that
initialization argument is not explicitly supplied in a call to m a k e -
ins t ance , the default value form is used, just as if it had been supplied in the
call. In contrast, the : i n i t fo rm slot option provides a mechanism for the user
to give a default initial value form for a slot. An :initform form is used to
initialize a slot only if no initialization argument associated with that slot
is given as an argument to make- ins tance or is defaulted by :default-
initargs.

The order of evaluation of default value forms for initialization arguments
and the order of evaluation of :initform forms are undefined. If the order of
evaluation is important, init ial ize- instance or shared-initialize methods
should be used instead.

Rules for Init ial ization Arguments

The :initarg slot option may be specified more than once for a given slot.

The following rules specify when initialization arguments may be multiply
defined:

• A given initialization argument can be used to initialize more than one
slot if the same initialization argument name appears in more than one
:initarg slot option.

• A given initialization argument name can appear in the lambda-list of
more than one initialization method.

• A given initialization argument name can appear both in an :initarg
slot option and in the lambda-tist of an initialization method.

If two or more initialization arguments that initialize the same slot are given
in the arguments to make- instance , the leftmost of these initialization
arguments in the initialization argument list supplies the value, even if the
initialization arguments have different names.

If two or more different initialization arguments that initialize the same slot
have default values and none is given explicitly in the arguments to m a k e -

Programmer Interface Concepts 1-287

X3J13 Document 88-002R
June 1988

instance, the initialization argument that appears in a :defau l t - in i ta rgs
class option in the most specific of the classes supplies the value. If a single
:defau l t - in ta rgs class option specifies two or more initialization arguments
that initialize the same slot and none is given explicitly in the arguments to
make-instance, the leftmost in the :defau l t - in i ta rgs class option supplies
the value, and the values of the remaining default value forms are ignored.

Initialization arguments given explicitly in the arguments to m a k e -
i n s t ance appear to the left of defaulted initialization arguments. Suppose
that the classes C, and C2 supply the values of defaulted initialization
arguments for different slots, and suppose that C1 is more specific than C2;
then the defaulted initialization argument whose value is supplied by C, is
to the left of the defaulted initialization argument whose value is supplied
by C2 in the defaulted initialization argument list. If a single :defaul t-
initargs class option supplies the values of initialization arguments for two
different slots, the initialization argument whose value is specified farther
to the left in the de fau l t - in i t a rgs class option appears farther to the left in
the defaulted initialization argument list.

If a slot has both an : in i t form form and an : ini targ slot option, and the
initialization argument is defaulted using :default-initargs or is supplied to
make-instance, the captured : in i t form form is neither used nor evaluated.

The following is an example of the above rules:

(defclass q () ((x :initarg a)))

(defclass r (q) ((x :initarg b))
(:default-initargs a I b 2))

Form
Defaulted Initialization
Argument List Contents of Slot

(make-instance 'r) (a I b 2) I
(make-instance 'r 'a 3) (a 3 b 2) 5
(make-instance 'r 'b 4) (b 4 a I) 4
(make-instance 'r 'a I 'a 2) (a I a 2 b 2) I

Shared-Initialize

The generic function shared-initialize is used to fill the slots of an instance
using initialization arguments and : in i t form forms when an instance is
created, when an instance is created, when an instance is re-initialized,
when an instance is updated to conform to a redefined class, and when an

1-288 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

instance is updated to conform to a different class. It uses standard method
combination. It takes the following arguments: the instance to be initialized,
a specification of a set of names of slots accessible in that instance, and any
number of initialization arguments. The arguments after the first two must
form an initialization argument list.

The second argument to shared- ini t ia l ize may be one of the following:

• It can be list of slot names, which specifies the set of those slot names.

• It can be nil, which specifies the empty set of slot names.

• It can be the symbol t, which specifies the set of all of the slots.

There is a system-supplied primary method for shared- ini t ia l ize whose first
parameter specializer is the class s t anda rd -ob j ec t . This method behaves as
follows on each slot, whether shared or local:

• If an initialization argument in the initialization argument list specifies
a value for that slot, that value is stored into the slot, even if a value
has already been stored in the slot before the method is run. The
affected slots are independent of which slots are indicated by the second
argument to shared-init ia l lze .

• Any slots indicated by the second argument that are still unbound at
this point are initialized according to their : in i t fo rm forms. For any
such slot tha t has an : i n i t fo rm form, that form is evaluated in the
lexical environment of its defining defc lass form and the result is
stored into the slot. For example, if a :before method stores a value in
the slot, the : i n i t fo rm form will not be used to supply a value for the
slot. If the second argument specifies a name that does not correspond
to any slots accessible in the instance, the results are unspecified.

• The rules mentioned in the section '~Rules for Initialization
Arguments" are obeyed.

The generic function sha red- in i t i a l i ze is called by the system~supplied
primary methods for r e in i t l a l i ze - in s t ance , u p d a t e - i n s t a n c e - f o r -
d i f fe ren t -c lass , u p d a t e - i n s t a n c e - f o r - r e d e f i n e d - c l a s s , and init ial ize-
ins tance . Thus, methods can be written for shared- ini t ia l ize to specify
actions that should be taken in all of these contexts.

In i t ia l i ze - Ins tance

The generic function in i t ia l i ze - ins tance is called by m a k e - i n s t a n c e to
initialize a newly created instance. It uses standard method combination.
Methods for in i t ia l i ze - ins tance can be defined in order to perform any
initialization that cannot be achieved with the simple slot-filling mechan-
isms.

Programmer Interface Concepts 1-289

X3J13 Document 88-002R
June 1988

During initialization, ini t ia l ize- instance is invoked after the following
actions have been taken:

• The defaulted initialization argument list has been computed by com-
bining the supplied initialization argument list with any default initial-
ization arguments for the class.

• The validity of the defaulted initialization argument list has been
checked. If any of the initialization arguments has not been declared as
valid, an error is signaled.

• A new instance whose slots are unbound has been created.

The generic function ini t ia l ize- instance is called with the new instance
and the defaulted initialization arguments. There is a system-supplied
primary method for in i t ia l ize- instance whose parameter specializer is the
class s t anda rd -ob jec t . This method calls the generic function shared-
initialize to fill in the slots according to the initialization arguments and the
:initform forms for the slots; the generic function shared-init ial ize is
called with the following arguments: the instance, t, and the defaulted
initialization arguments.

Note that ini t ia l ize- instance provides the defaulted initialization argument
list in its call to shared-init ial ize, so the first step performed by the system-
supplied primary method for shared-init ial ize takes into account both the
initialization arguments provided in the call to make- ins tance and the
defaulted initialization argument list.

Methods for ini tal ize- instance can be defined to specify actions to be taken
when an instance is initialized, If only :a f te r methods for initialize-
instance are defined, they will be run after the system-supplied primary
method for initialization and therefore will not interfere with the default
behavior of ini t ia l ize- instance.

The Object System provides two functions that are useful in the bodies of
ini t ia l ize- instance methods. The function slot-boundp returns a boolean
value that indicates whether a specified slot has a value; this provides a
mechanism for writing : a f t e r methods for in i t ia l ize- instance that initialize
slots only if they have not already been initialized. The function slot-
makunbound causes the slot to have no value.

Definit ions of Make-Instance and Init ia l ize-Instance

The generic function make- ins tance behaves as if it were defined as
follows, except that certain optimizations are permitted:

1-290 Common Lisp Object System Specification

X3J13 Document88-002R
June 1988

defmethod make-instance
((class standard-class) &rest initargs)

(setq initargs (default-initargs class initargs))

(let ((instance
(apply #'allocate-instance class initargs)))

(apply #'initialize-instance instance initargs)
instance))

defmethod make-instance
((class-name symbol) &rest initargs)

apply #'make-instance (find-class class-name) initargs))

The elided code in the definition of make- instance checks the supplied
initialization arguments to determine whether an initialization argument
was supplied that neither filled a slot nor supplied an argument to an
applicable method. This check could be implemented using the generic
functions class-prototype, compute-appl icable-methods, funct ion-
keywords, and class-slot-initargs. See Chapter 3 for a description of this
initialization argument check.

The generic function init ial ize- instance behaves as if it were defined as
fbllows, except that certain optimizations are permitted:

(de fmethod initial ize- instance
((instance standard-object) &rest initargs)

(apply #'shared-initialize instance t initargs)))

These procedures can be customized at either the Programmer Interface
level, the meta-object level, or both.

Customizing at the Programmer Interface level includes using the
:initform, :initarg, and :default-initargs options to defclass, as well as
defining methods for make- ins tance and initialize-instance. It is also
possible to define methods for shared-initialize, which would be invoked by
the generic functions reinit ial ize-instance, update-instance-for-redefi-
ned-class, update-instance-for-different-class, and inltialize-instance.
The meta-object level supports additional customization by allowing
methods to be defined on make- instance , default-initargs, and allocate-
instance. Chapters 2 and 3 document each of these generic functions and
the system-supplied primary methods.

Implementations are permitted to make certain optimizations to initialize-
instance and shared-initialize. The description of shared-initialize in
Chapter 2 mentions the possible optimizations.

Programmer Interface Concepts 1-291

X3J13 Document 88-002R
June 1988

Because of optimization, the check for valid initialization arguments might
not be implemented using the generic functions class-prototype, com-
pute-applicable-methods, funct ion-keywords, and class-slot-initargs.
In addition, methods for the generic function default-initargs, and the
system-supplied primary methods for al locate-instance, initialize-
instance, and shared-initialize might not be called on every call to make-
instance or might not receive exactly the arguments that would be
expected.

1-292 Common Lisp Object System Specification

X3J13 Document 88-002R
J u n e 1988

i i l l

Redefining Classes

A class tha t is an ins tance of standard-c lass can be redefined if the new
class will also be an ins tance of standard-class . Redefining a class modifies
the exist ing class object to reflect the new class definition; it does not create
a new class object for the class. Any method object c rea ted by a : r e a d e r ,
:wr i t e r , or : a c c e s s o r opt ion specified by the old de f c l a s s form is removed
from the cor responding generic funct ion. Methods specified by the new
defclass form are added.

When the class C is redefined, changes are propagated to its ins tances and
to ins tances of any of its subclasses. Updat ing such an ins tance occurs a t an
implementa t ion-dependent time, but no la ter than the next t ime a slot of tha t
ins tance is read or wri t ten. Updat ing an ins tance does not change its
ident i ty as defined by the eq funct ion. The updat ing process may change the
slots of tha t pa r t i cu la r ins tance, but it does not c rea te a new instance.
W h e t h e r upda t ing an ins tance consumes s torage is implementa t ion depen-
dent.

Note tha t redefining a class may cause slots to be added or deleted. If a class
is redefined in a way tha t changes the set of local slots accessible in in-
s tances, the ins tances will be updated. It is implementa t ion dependent
whe the r ins tances are updated if a class is redefined in a way tha t does not
change the set of local slots accessible in instances.

The va lue of a slot t ha t is specified as shared both in the old class and in the
new class is re ta ined. If such a shared slot was unbound in the old class, it
will be unbound in the new class. Slots tha t were local in the old class and
tha t are shared in the new class are initialized. Newly added shared slots are
init ialized.

Each newly added shared slot is set to the resul t of eva lua t ing the cap tured
: i n i t f o r m form for the slot tha t was specified in the defclass form for the
new class. If there is no : i n i t f o r m form, the slot is unbound.

If a class is redefined in such a way tha t the set of local slots accessible in
an ins tance of the class is changed, a two-step process of updat ing the
ins tances of the class takes place. The process may be explici t ly s tar ted by
invoking the gener ic func t ion m a k e - i n s t a n c e s - o b s o l e t e . This two-step
process can happen in o the r c i rcumstances in some implementat ions . For
example, in some implementa t ions this two-step process will be t r iggered if
the order of slots in s torage is changed.

P rog rammer In te r face Concepts 1-293

X3J13 Document 88-002R
June 1988

The first step modifies the structure of the instance by adding new local slots
and discarding local slots that are not defined in the new version of the class.
The second step initializes the newly added local slots and performs any
other user-defined actions. These two steps are further specified in the next
two sections.

Modifying the S t r u c t u r e of Instances

The first step modifies the structure of instances of the redefined class to
conform to its new class definition. Local slots specified by the new class
definition that are not specified as either local or shared by the old class are
added, and slots not specified as either local or shared by the new class
definition that are specified as local by the old class are discarded. The
names of these added and discarded slots are passed as arguments to update-
instance-for-redefined-class as described in the next section.

The values of local slots specified by both the new and old classes are
retained. If such a local slot was unbound, it remains unbound.

The value of a slot that is specified as shared in the old class and as local in
the new class is retained. If such a shared slot was unbound, the local slot
will be unbound.

Initializing Newly Added Local Slots

The second step initializes the newly added local slots and performs any
other user-defined actions. This step is implemented by the generic function
update-instance-for-redefined-class, which is called after completion of
the first step of modifying the structure of the instance.

The generic function update-instance-for-redefined-class takes four
required arguments: the instance being updated after it has undergone the
first step, a list of the names of local slots that were added, a list of the names
of local slots that were discarded, and a property list containing the slot
names and values of slots that were discarded and had values. Included
among the discarded slots are slots that were local in the old class and that
are shared in the new class.

The generic function update-instance-for-redefined-class also takes any
number of initialization arguments. When it is called by the system to update
an instance whose class has been redefined, no initialization arguments are
provided.

There is a system-supplied primary method for update-instance-for-
redefined-class whose parameter specializer for its instance argument is
the class standard-object. First this method checks the validity of initial-
ization arguments and signals an error if an initialization argument is

1-294 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

supplied that is not declared as val id (See the section "Declaring the
Validity of Initialization Arguments" for more information,) Then it calls
the generic function shared-initialize with the following arguments: the
instance, the list of names of the newly added slots, and the initialization
arguments is received.

Customizing Class Redefinition

Methods for u p d a t e - i n s t a n c e - f o r - r e d e f i n e d - c l a s s may be defned to
specify actions to be taken when an instance is updated. If only : a f t e r
methods for u p d a t e - i n s t a n c e - f o r - r e d e f i n e d - c l a s s are defined, they will be
run after the system-supplied primary method for initialization and
therefore will not interfere with the default behavior of update- instance-
fo r - redef ined-c lass . Because no initialization arguments are passed to
update-instance-for-redefined-class when it is called by the system, the
:initform forms for slots that are filled by :before methods for update-
instance-for-redefined-class will not be evaluated by shared- in i t ia l ize .

Methods for shared-initialize may be defined to customize class redefini-
tion. See the section "Shared-Initialize" for more information.

Extens ions

There are two allowed extensions to class redefinition:

• The Object System may be extended to permit the new class to be an
instance of a metaclass other than the metaclass of the old class.

• The Object System may be extended to support an updating process
when either the old or the new class is an instance of a class other than
s t a n d a r d - c l a s s that is not a built-in class.

Programmer Interface Concepts 1-295

X3J13 Document 88-002R
June 1988

i i

Changing of the Class of an Ins tance

The function change-class can be used to change the class of an instance
from its current class, Cfrom, to a different class, Cto; it changes the structure
of the instance to conform to the definition of the class Cto.

Note that changing the class of an instance may cause slots to be added or
deleted.

When change-class is invoked on an instance, a two-step updating process
takes place. The first step modifies the structure of the instance by adding
new local slots and discarding local slots that are not specified in the new
version of the instance. The second step initializes the newly added local
slots and performs any other user-defined actions. These two steps are
further described in the two following sections.

Modifying the S t r u c t u r e of the Instance

In order to make the instance conform to the class Cto, local slots specified
by the class Cto that are not specified by the class Cf,~om are added, and local
slots not specified by the class Cto that are specified by the class Cfrom are
discarded.

The values of local slots specified by both the class Cto and the class Cf~om are
retained. If such a local slot was unbound, it remains unbound.

The values of slots specified as shared in the class Qro~ and as local in the
class Cto are retained.

This first step of the update does not affect the values of any shared slots.

Ini t ia l iz ing Newly Added Local Slots

The second step of the update initializes the newly added slots and performs
any other user-defined actions. This step is implemented by the generic
function update-instance-for-different-class. The generic function up-
date-instance-for-different-class is invoked by change-class after the
first step of the update has been completed.

The generic function update-instance-for-different-class is invoked on
two arguments computed by change-class. The first argument passed is a
copy of the instance being updated and is an instance of the class Cfrom ; this
copy has dynamic extent within the generic function change-class. The
second argument is the instance as updated so far by change-class and is
an instance of the class Cto.

1-296 Common Lisp Object System Specification

X3J13 Document 88-002R
June 1988

I H , , ,

The generic function upda te - ins t ance - fo r -d i f f e ren t -c l a s s also takes any
number of initialization arguments. When it is called by change-c lass , no
initialization arguments are provided.

There is a system-supplied primary method for upda te - ins t ance - fo r -
d i f ferent -c lass that has two parameter specializers, each of which is the
class s t andard-ob jec t . First this method checks the validity of initializa-
tion arguments and signals an error if an initialization argument is supplied
that is not declared as valid. (See the section "Declaring the Validity of
Initialization Arguments" for more information.) Then it calls the generic
function shared- in i t ia l ize with the following arguments: the instance, a list
of names of the newly added slots, and the initialization arguments it
received.

Cus tomiz ing the Change of Class of an I n s t a n c e

Methods for upda te - ins t ance - fo r -d i f f e ren t -c l a s s may be defined to
specify actions to be taken when an instance is updated. If only :af ter
methods for upda te - ins t ance - fo r -d i f f e ren t -c l a s s are defined, they will be
run after the system~supplied primary method for initialization and will not
interfere with the default behavior of upda te - ins tance- for -d i f fe ren t -
class. Because no initialization arguments are passed to upda te - ins t ance -
for -d i f fe rent -c lass when it is called by change-c lass , the : in i t form forms
for slots that are filled by :before methods for upda te - ins tance- fo r -
d i f ferent -c lass will not be evaluated by shared-ini t ia l ize .

Methods for shared- in i t ia l ize may be defined to customize class redefini-
tion. See the section "Shared-Initialize" for more information.

Programmer Interface Concepts 1-297

R e i n i t i a l i z i n g an I n s t a n c e

The generic function re in i t ia l ize - instance may be used to change the
values of slots according to initialization arguments.

The process of reinitialization changes the values of some slots and performs
any user-defined actions. It does not modify the structure of an instance to
add or delete slots, and it does not use any : initform forms to initialize slots.

The generic function re in i t ia l ize- instance may be called directly. It takes
one required argument, the instance. It also takes any number of initializa-
tion arguments to be used by methods for re in i t ia l ize- instance or for
shared-init ial ize . The arguments after the required instance must form an
initialization argument list.

There is a system-supplied primary method for re ini t ia l ize- instance whose
parameter speciatizer is the class s tandard-objec t . First this method
checks the validity of initialization arguments and signals an error if an
initialization argument is supplied that is not declared as valid. (See the
section ~Declaring the Validity of Initialization Arguments" for more in-
formation.) Then it calls the generic function shared-init ia l ize with the
following arguments: the instance, nil, and the initialization arguments it
received.

C u s t o m i z i n g Reini t ia l izat ion

Methods for re in i t ia l ize- instance may be defined to specify actions to be
taken when an instance is updated. If only :af ter methods for reinitialize-
ins tance are defined, they will be run after the system-supplied primary
method for initialization and therefore will not interfere with the default
behavior of reini t ia l ize- instance .

Methods for shared- ini t ia l ize may be defined to customize class redefini-
tion. See the section ~Shared-Initialize" for more information.

1-298 Common Lisp Object System Specification

