
Lisp and Symbolic Computation, 2, 9-50 (1989)
© 1989 Kluwer Academic Publishers--Manufactured in The Netherlands.

MIX: A SELF-APPLICABLE PARTIAL
EVALUATOR FOR EXPERIMENTS IN
COMPILER GENERATION

NElL D. JONES, PETER SESTOFT and HARALD SONDERGAARD*
DIKU, University of Copenhagen~ Universitetsparken 1, DK-2100 Copenhagen O, Denmark
(neil @ diku. dk, sestof + @ diku. dk,harald @ munnari, au)

Abstract, The program transformation principle called partial evaluation has interesting applications in
compilation and compiler generation. Self-applicable partial evaluators may be used for transforming
interpreters into corresponding compilers and even for the generation of compiler generators. This is useful
because interpreters are significantly easier to write than compilers, but run much slower than compiled
code. A major difficulty in writing compilers (and compiler generators) is the thinking in terms of distinct
binding times: run time and compile time (and compiler generation time). The paper gives an introduction
to partial evaluation and describes a fully automatic though experimental partial evaluator, called mix, able
to generate stand-alone compilers as well as a compiler generator. Mix partially evaluates programs written
in Mixwell, essentially a first-order subset of statically scoped pure Lisp. For compiler generation purposes
it is necessary that the partial evaluator be self-applicable. Even though the potential utility of a self-applic-
able partial evaluator has been recognized since 1971, a 1984 version of mix appears to be the first successful
implementation. The overall structure of mix and the basic ideas behind its way of working are sketched.
Finally, some results of using a version of mix are reported.

Since the ear ly 1970s it has been k n o w n tha t in theory, the p r o g r a m t r ans fo rma t ion
pr inciple called partial evaluation can be used for compi l ing and compi le r genera t ion ,
and even for the au toma t i c genera t ion o f a compi le r genera tor . A par t ia l eva lua to r
able to genera te s t and-a lone compi le rs and compi le r genera tors had not , however ,
been successfully implemented before 1984 when the first mix system was b rough t to
work at the Univers i ty o f Copenhagen .

In this paper we discuss par t ia l eva lua t ion and its app l ica t ions to compi ler genera-
t ion and sketch the pa r t i a l eva lua to r we developed, cal led the mix system. The results
we r epor t are sufficiently r emarkab le to jus t i fy fur ther research into using par t ia l
eva lua t ion for compi le r genera t ion purposes . We also ment ion o ther appl ica t ions .
The descr ip t ion here is essential ly a snapsho t o f the mix system and its app l ica t ions
as o f ear ly 1987.

A par t ia l eva lua to r m a y be thought o f as a " smar t in te rpre te r . " I f an o rd ina ry
in te rpre te r is given a p r o g r a m and only part o f this p r o g r a m ' s input da ta , it will leave

* Current address: Computer Science DepartmenL University of Melbourne, Parkville, Victoria 3052,
Australia.

l0 JONES, SESTOFT, AND SONDERGAARD

the program unevaluated and report an error. A partial evaluator will attempt to
evaluate the given program as far as the available input allows, yielding a new
program as result.

In our terminology, partial evaluation of a subject program with respect to known
values of some of its input parameters results in a residualprogram. Running a correct
residual program on any remaining input yields the same result as running the original
subject program on all of its input. Thus, a residual program is a specialization of the
subject program to known, fixed values of some of its parameters. A partial evaluator
is a program that performs partial evaluation given a subject program and fixed values
for some of its parameters.

The relevance of partial evaluators for compilation, compiler generation, and
compiler generator generation stems from the following fact. Consider an interpreter
for a given programming language $. The result of specializing of this interpreter to
a known source program s (written in S) ah'ead), is a target program for s, written in
the same language as the interpreter. Thus, partial evaluation of an interpreter with
respect to a fixed source program amounts to compilation of the source program.
From this viewpoint, then, partial evaluation and compilation are nothing but special
cases of program transformation for the purpose of optimization.

Furthermore, partially evaluating a partial evaluator with respect to a fixed inter-
preter yields a compiler for the language implemented by the interpreter. And, even
more mind-boggling, partially evaluating the partial evaluator with respect to itself
yields a compiler generator, namely, a program that transforms interpreters into
compilers. We return to these applications in Section 3.

It is nearly always easier to implement a new language by writing an interpreter
than by writing a compiler for the language since in the latter case, one has to think
of two binding times, compile time and run time. Interpretive implementations have
only one binding time, but are often too inefficient for practical use. One potential
significance of a good partial evaluator thus is that it allows for the automatic
construction of efficient compilers from more intelligible interpretive specifications of
programming languages. This is achieved by the automatic splitting of the inter-
preter's single binding time into two: compile time and run time. (This is called a
"staging transformation" in Jorring and Scherlis [27].

The improvement is potentially very large, since it is not unusual for an interpreter
to spend only a very small fraction of its time performing the operations required by
the program being interpreted, the remaining time being used for various sorts of
bookkeeping.

It could be argued that the restriction to language definitions in interpretive form
is too limiting, since in practice one often chooses to define languages by denotational
or axiomatic semantics, rather than operationally. However, denotational semantics
may provide executable specifications of programming languages, as is shown by the
existence of several semantics-based compiler generators that may in principle all be
regarded as interpreters (we discuss this in Section 9). In such applications the
potential improvement is even larger than with traditional interpreters.

MIX 11

The interesting question of course is basically empiric: How good are the programs
that may be generated by partial evaluation techniques? Our experience (based on
simple but nontrivial languages) is that mix-produced compilers turn out to be
natural in structure, reasonably efficient, and able to produce efficient target programs
that run up to one order of magnitude faster than the interpreted source programs.
We demonstrate this by an example in Section 5 and various tables in Section 8.

The paper is organized as follows. The first three sections set up a formal frame-
work and use it to define partial evaluation and discuss its applications to compilation
and compiler generation. Other applications are barely touched upon, but a bit is said
in Section 4, which lists related work, and in Section 9. Mix partially evaluates
programs in a programming language called Mixwell and is itself written in this
language. We introduce Mixwell in Section 5. An analysis of the problems in partially
evaluating first-order functional languages is undertaken in Section 6. In Section 7 we
outline the structure of mix, and the paper is concluded by an assessment in Section
8 and a discussion of directions for future research in Section 9.

Both practice and theory of partial evaluation would certainly benefit from further
experimental work. The current version of mix is available from the University of
Copenhagen through the authors.

1. Preliminaries

In this section a framework is set up for discussing partial evaluation and its applica-
tions. Our definition of a programming language may appear to be a bit pedantic at
first sight. A precise notation is necessary, however, since more than one language
may be discussed at the same time, and programs can play multiple roles: sometimes
as active agents, sometimes as passive data, and sometimes even as both at once. The
following definitions are inspired by both recursive function theory and Lisp. In
recursive function theory, programs in the form of numerical indexes are handled as
both active agents (functions) and passive objects (data) in ways resembling ours. In
Lisp, programs are data structures, thus avoiding the need for the complex encodings
typically used in recursive function theory. Connections between our formulations
and recursive function theory will be discussed further in Section 4.

We assume there is given a fixed set D whose elements may represent programs in
various languages, as well as their input and their output. The set D should be closed
under formation of sequences (d~ dn) of elements of D, and may be the set of
all Lisp lists, for instance.

Parentheses will usually be put to use only when necessary to disambiguate ex-
pressions. We write X ~ Y to denote the set of all total functions from × to Y, and
X - ~ Y for the partial functions. A function-type expression X ~ Y ~ Z is paren-
thesized as X -~ (Y ~ Z), and a double function application f x y is parenthesized
(f x) y (where f, x, and y have types f: X ~ Y ~ Z, x: ×, y: Y for some X, Y, and Z).

We identify a programming language I with its semantic function on whole
programs:

12 JONES, SESTOFT, AND SONDERGAARD

L: D - ~ D - - ~ D .

The well-formed L-programs are those to which L assigns a meaning, i.e,
L - p r o g r a m s = d o m a i n L.

The input-output function computed by E ~ L-programs is (L #): D - ~ D (which
is partial since { may loop). Thus, L E (d I dn) denotes the output (if any)
obtained by running the L-program { on input data (d , , . . . ,do). For an example,
consider the following program "power" to compute x to the nth power:

p o w e r =

Yf n x) = z f n = 0 t h e n 1

else/feven(n) then f(n/2, x) 2

else x*f(n-1, x)

The result of running the program power is the result of applying its first function f
(the goal function) to the program's input values. For example, k power (3, 2) = 8.
We take k power d to be undefined if d is not a list of length two, both of whose
elements are positive integers. In Sections 2 and 3, the equality sign always means
strong equality: Either both sides are undefined, or else they are defined and equal.

2. Partial evaluation

We proceed to give formal definitions of residual programs and partial evaluation.

Definition 2.1. Let ~ be an L-program and let d l, d 2 e D. Then an L-program r is a
residualprogramfor ~ with respect to d~ iff for all d 2 ~ D,

L ~ <d,, d2) = L r d 2 . []

Definition 2.2. A P-program p is an L-partial evaluator iff

P p (f , d,) is a residual L-program for f with respect to dl

for all L-programs E and values d, e D. We refer to the program E as the subject
program. []

So a partial evaluator takes a subject program and part of its input and produces a
residual program; the residual program applied to any remaining input produces the
same result as the subject program applied to all of its input. A consequence of
Definition 2.2 is that the following characteristic equation for the partial evaluator p
holds:

MIX 13

L E <~d,,d2) = L (P p <~, d ,)) d2. (2.1)

For a simple example, let the L-program { be power from Section 1, and suppose we
are given that n equals 5. A trivial residual program residl may easily be constructed
by adding a single equation to power, resulting in the program below:

resid~ =

g (x) = f(5, x)

f(n,x) = (f n = 0 t h e n 1

else ~even(n) then f(n/2, x) 2

else x,f(n-1, x)

The general possibility of partial evaluation in recursive function theory is known as
the S-m-n theorem, discussed in Section 4 and traditionally proved in just this way,
by adding equations.

A less trivial residual program may be obtained by symbolic evaluation of the
program reside. This is possible since the program's control flow is completely
determined by n, and it yields an equivalent program with only one equation:

resid2 = g (x) = x , (x2) 2

Partial evaluation thus can be viewed as substitution of known values for some
parameters, possibly followed by equivalence preserving program transformations. It
can result in residual programs which are faster (though sometimes larger) than the
original. Examples may be found in Beckman et al. [2] and in Emanuelson and
Haraldsson [13].

Partial evaluation followed by evaluation of the resulting program may be faster
than normal evaluation because of the optimizing transformations. Actually this
phenomenon occurs in the example runs described in Section 8. This should not be
surprising. For example, it is often faster to compile and then run the resulting target
program than to interpret.

We should stress that Definition 2.2 does not say anything about the optimizing
power of a partial evatuator. The quality and efficiency of the residual programs
produced by a partial evaluator wholly depends on the transformations built into the
partial evaluator and on its strategies for applying the transformations.

In practice it seems difficult to obtain efficient residual programs without com-
promising termination properties. For instance, a residual program in a call-by-value
language may terminate more often than the original subject program because of the
call-by-name nature of symbolic evaluation.

14 JONES, SESTOFT, AND S~NDERGAARD

When evaluated with call-by-value, the example program below will loop for all
inputs (x,g):

f(x, y) = head(pair(x, g (x)))

g(x) = g(x)

But given that x -- 7, say, the program can be partially evaluated, using the
"obvious" reduction of head (pair(x, g (x))), to given a program that terminates for
all inputs g and returns 7:

fT(Y)--7

We will accept this as a residual program, although it would not be a correct one
according to Definition 2.1: it terminates too often. However, this is not considered
a serious problem in applications.

Further, it is difficult to make a partial evaluator do powerful transtbrmations and
terminate, even when applied to subject programs that always terminate themselves.
Hence, Definition 2.2 needs to be relaxed in practice to say that provided the partial
evaluator terminates, the result is a residual program. By such a relaxed definition,
however, a program that loops on all input is trivially a partial evaluator, which we
do not want.

It would be useful to include in the definition of partial evaluation some of its
desired properties to exclude "trivial" partial evaluators. Heering uses the setting of
equational logic and initial algebra specifications to give a precise meaning to the
vague requirement that a partial evaluator should make maximal use of the known
input. He shows that in general a finite set of reduction rules is not sufficient to reduce
every open term to a (minimal) normal form [23]. As a consequence it is not possible
to obtain an "optimal" partial evaluator in general. This impedes a precise and
complete definition of nontrivial partial evaluation that would help us in developing
one. The problems we have met in this connection will be discussed further in Section
6.

3. Compilation and compiler generation

We now turn to the applications of partial evaluation to compiler generation. First
we give simple formal definitions of interpreters and compilers.

3.1. Interpreters and compilers

Let L and S be programming languages (S is intended to be a "source" language).

MIX 15

Definition 3.1. An L-program int is an S-&terpreter iff

k i n t ~s, d) = S s d

for all S-programs s and data d ~ D.

(3.1)

[]

By this definition, an interpreter takes as input both the program to be interpreted and
its input data. We will call int and L-self-interpreter iff S = k (sometimes the term
"metacircular interpreter" is used). The set of interpreters for the language S (written
in L) is denoted by

Now let T be a programming language (intended to be a target language).

Definition 3.2. An k-program c is an S-to-T compiler iff

1. L c s e T-programs for all S-programs s, and
2. T(L c s) d = S s d for all S-programs s and data d ~ D. []

The result t -- L c s of running a compiler thus is a (target) T-program t with the
same input-output behavior as the (source) program s. The set of S-to-T compilers
written in k is denoted by

3.2. Compilation by partial evaluation of an &terpreter

Let the P-program p be an k-partial evaluator. I f an S-interpreter int is partially
evaluated with respect to a given S-program s, the result will be an k-program with
the same input-output behavior as s, since

S s d = L int <s, d)

= L (P p (int, s)) d

by (3.1)

by (2.1)

Note that the last line describes the application of a certain L-program (namely the
program P p ~int, s)) to the input d. The result of this is the same as the result of

16 JONES, SESTOFT, AND SONDERGAARD

applying the S-program s to d, and therefore we may reasonably call the resulting
program target

target = P p (int, s>

since it is an L-program with the same input-output behavior as S-program s. In other
words we have compiled the source S-program s into an L-program target by partially
evaluating the S-interpreter with respect to the source program s. For concrete
examples, see Figure 2 (source program s), Figure 3 (interpreter int), and Figure 4
(target program target) below.

3.3. Compiler generation

Definition 3.3. An L-program mix is an L-autoprojector iff it is an L-partial evaluator.
We will refer to the language L as the subject language. []

An autoprojector is thus a partial evaluator for the language in which it is itself
written. The term is from Ershov [15]: "auto" comes from the program's self-appli-
cability, and "projector" from the fact that the residual program for f(x, y) with
respect to x is a program computing a function whose graph is the projection (along
the x-axis) of f's graph, in an analytical geometry sense.

In the following we wilt assume that a hypothetical autoprojector mix is given. By
letting mix play the role of the partial evaluator p from Section 2, it holds that

target = L mix (int, s>. (3.2)

This application does not depend on mix's self-applicability, but for the following it
in essential that mix is an autoprojector. A compiler from S to L may be generated
by computing

comp = L mix (mix, int > (3.3)

that is, by partially evaluating the autoprojector itself with respect to the S-inter-
preter. To see this, observe that

L c o m p s = L (L mix (mix, int>)s by (3.3)

= L mix (int, s> by (2.1)

= target by (3.2)

so comp is a stand-alone compiler that given s will produce a target program for s.
Expressed symbolically:

MIX 17

comp 6 ~
LL~

Note that we now have two possibilities of compiling s by means of partial evaluation:
either by running mix on (int, s), or by generating comp (using mix) and applying
that to s. The resulting target programs will not only be equivalent; they will even be
textually identical.

However, producing the target program by applying the compiler comp to s can
be expected to be more efficient than by computing k mix (int, s). The reason is that
mix is a general-purpose partial evaluator, while comp is a rather specialized version
of mix, predisposed to partially evaluate a fixed interpreter int which is given varying
S-programs as known input. The presumption that comp is faster is well borne out
by the experimental results reported in Section 8.

3.4. Compiler generator* generation

By similar reasoning a compiler generator may be obtained:

cogen = L mix (mix, mix). (3.4)

It holds that

comp = L cogen int.

To see this, observe that

k cogen int = k (k mix (mix, mix)) int by (3.4)

= k mix <{mix, int) by (2.1)

= comp by (3.3)

The function computed by the L-program cogen thus transforms an interpreter into
a compiler that defines the same language:

s U L cogen:
L

Note that this leaves us with two possible ways of producing the compiler comp:
either by running mix on (mix, int) as in Section 3.3 or by generating eogen (by mix)
and applying that to int. The resulting compilers will be textually identical in the two
cases. Applying cogen is the faster of the two methods (as is illustrated by the results
in Section 8).

18 JONES, SESTOFT, AND SONDERGAARD

It is interesting to compare the types of the functions computed by mix and by
cooen. Let rep(A - ~ B) _~ k-programs denote the set of program representations
of partial functions from A to B, and let rep (A --} B) _ k-programs denote the set
of representations of total functions from A to 13. As can be seen, the function k
cooen computed by cooen is a curried version of that computed by mix:

L mix : rep (X x y - --+ Z) x X ~ r e p (Y - - * Z)

L cogen : rep (X x y - ~ Z) --+ r e p (X - - , r e p (Y - -+ Z)) .

In fact, c o g e n is more than a compiler generator. It is a realization of a general
intensional currying function, able to transform a program for a two-place function
f into a program which, when given data x = x 0, will yield as output a program for
the function 2y.f(x0, y). In particular, cogen transforms an interpreter into its curried
form, a compiler. Also note that

c o g e n = L c o g e n mix .

In this sense cooen can be seen as a compiler generator generator generator

4. Historical notes

Theory. The concept of partial evaluation is certainly very old and has seeds from the
lambda calculus and recursive function theory. To our knowledge the first explicit
statement of its possibility was given when Kleene formulated and proved the S-m-n
theorem [30] (see the end of this section). An early use of partial evaluation as a
programming aid was suggested in Lombardi's papers on incremental computation
[35,361.

Futamura saw that compiling may in principle be done by partial evaluation, and
also that compilers may be generated by self-application of the partial evaluator [18].
Turchin was probably the first to realize that even a compiler generator could be built
automatically by applying a partial evaluator to itself [491. In any case these appli-
cations seem to have been independently discovered in the USSR, Japan, and Sweden
in the mid 1970s and subsequently communicated in Beckman et al. [2], Ershov [14],
and Turchin [50]. However, it was not until Ershov's expository paper that the ideas
became widely accessible in the West [15]. Ershov coined the term "mixed computa-
tion" for what we call partial evaluation.

A consensus has been established as to how partial evaluation should be given
precise definitions in imperative and functional programming. The case of logic
programming has been less clear. Early attempts at a definition identified partial
evaluation with a number of transformations typically employed. Recently, however,
a precise "declarative" definition of partial evaluation of logic programs with
negation has been suggested [34].

MIX 19

Practice. In the mid 1970s, projects aimed at putting partial evaluation to practical
use were initiated in Sweden. A large partial evaluator for Lisp as used in practice,
with imperative features and property lists, was described in Beckman et al. [2]. This
work included the use of partial evaluators to translate programs in various lan-
guages, as did Haraldsson [22], Emanuelson and Haraldsson [13], and (in the United
States) Turchin et al. [51]. At the same time, trends to recognize partial evaluation as
an important tool appeared among dedicated builders of compiler generators [39,40].

Partial evaluation of Prolog was taken up in Komorowski [31], and Kahn de-
veloped a partial evaluator for Lisp in Prolog [28]. Partial evaluation of an imperative
language was addressed in Ershov [15] and Butyonkov [5].

The following indirect method for compiling Prolog programs was suggested by
Kahn and Cartsson. A Prolog interpreter (written in Lisp) is first partially evaluated
with respect to a Prolog program, yielding an equivalent Lisp program, which is then
compiled into machine language using an existing Lisp compiler.

The resulting target programs are said to run faster than those produced by
Warren's seminal Prolog compiler, but compilation itself is slower by two orders of
magnitude [29,55].

Gallagher discussed partial evaluation of Prolog meta programs [20]. Partial evalu-
ation can make meta programming more efficient, since the specialization in effect
removes layers of interpretation.

Autoprojectors. Venken described a partial evaluator for Prolog in Prolog [52], as did
Takeuchi and Furukawa, who applied theirs to the specialization of meta programs
as suggested above [48]. Both were examples of autoprojectors, as was Safra and
Shapiro's partial evaluator for Concurrent Prolog [43], one use of which was the
transformation described in Codish and Shapiro [9].

To our knowledge all of these systems require considerable human assistance. None
of them appear to have been successfully self-applied.

A nontrivial self-applicable partial evaluator was developed in 1984 by the authors
and communicated in Jones et al. [26]. The system was called mix (following Ershov's
terminology) and was a preliminary version of the fully automatic system described
in the present paper. It generated good compilers by self-application, with the proviso
that the user had to annotate function calls to indicate whether they were intended to
be unfolded or not. A detailed description was given in Sestoft [44].

Survey. Ershov [15] and Futamura [19] are good survey papers of the area. The latter
includes a bibliography. For an extensive bibliography of partial evaluation literature
in English, see Sestoft and Sondergaard [46]; for one including references to papers
in Russian as welt, see Sestoft and Zamulin [47].

Connections with recursive function theory. The partial recursive functions have been
studied extensively using a framework very similar to our own, but usually with
function arguments, results and program encodings drawn from the natural numbers
N = (0, 1, 2 , . . . } [41,30]. A wide variety of formalizations proposed in the 1930s

20 JONES, SESTOFT, AND SONDERGAARD

as candidates to define the class of all computable partial functions have turned out
to be equivalent (leading to the famous Church-Turing thesis).

In recursive function theory, one assumes given an enumeration of programs P0,
P~, Pz not further specified except that for each i and k there is an associated
function (p!k): N k ~ IN, namely the partial function of k arguments computed by P~.
The superscript (k) of ~oi is dropped when the number of arguments is clear from
context. The Church-Turing thesis can be stated as follows: let Pi be the ith machine
in a standard enumeration of all Turing machines, and let ~0! k) be the k argument
function computed by P~. Then a partial function f: N k - ~ N is computable iff it
equals ~0} k) for some i.

The first similarity with the framework presented in Section 1 is immediate: The
given enumeration of Turing machines defines a programming language with data
domain D = N and semantic function L: N - -~ N - --, N where

L f d = q~t(d)

This is extendable to multiargument functions by defining

L g' (x ~ , . . . , x k) = ~o~k)(xl , xk)

where (_, _) is one of the standard tupling functions well known in recursive
function theory. The following theorems are proven in Rogers [41] for the Turing
machine enumeration:

Existence o f a universal machine: There exists a z such that for all x and y,
q~z(x,y) = ~0×(y) if q&(y) is defined, and q~z(x,y) is undefined if Ox(Y) is undefined.

In our terminology the universal machine z satisfies L z (z ,y) = L x y for all x, y. In
other words, L-program z is an L-interpreter; a universal machine is what was called
a metacircular or se/f-interpreter in Section 3. Another central theorem:

The S -m-n theorem." For each m,n there exists a total recursive function s~ of m + 1
arguments such that for all x, y ~ , . . . ,Ym, z ~ , . . . ,zn,

~Px(Y~, • • . , Ym, Zl ,Z~) = q~.~(x,y~ y.,)(Z~ Z~,)

For m = n = l, the theorem simply asserts the existence of an autoprojector, i.e., an
L-partial evaluator for k. To see this, note that the recursivity ofsl~ implies that it must
have a program. Calling this "mix" and replacing q~, by / x, the equation above is just
our definition of an autoprojector:

Lx <~y, z) = L (L m i x (x , y)) z

Further, any "acceptable numbering" [41, p. 41] of all recursive functions satisfies the

MIX 21

same two theorems, so the existence of self-interpreters and a (perhaps trivial) mix
program is quite natural.

The standard proof of the S -m-n theorem in essence uses the trivial construction
of Section 2, which suffices for the purposes of recursive function theory. Our goals
are more ambitious: to ensure that s~ (x, gl Ym) is an efficient program, and to
ensure it is an efficient program even in case x is mix (self-application).

5. The language Mixwell

The choice of subject language for an autoprojector is crucial. On the one hand, the
language should be simple to process. On the other hand it should be rich enough to
express a nontrivial autoprojector. Any hope that a weak subject language could do
must be given up because it has to be self-interpretable. This is due to the fact that a
good autoprojector must be a generalized self-interpreter: applied to a program and
all of its input, the autoprojector should do a standard evaluation, yielding a constant
program as result. As a consequence of being self-interpretable, the subject language
must be too complex to allow expressing its own halting function [24].

Applicative languages seem preferable to imperative ones owing to the ease with
which source-to-source transformations may be performed. This is because ~¢ the
property that equals can be substituted for equals without disturbing the meaning of
the enclosing expression (usually referred to as referential transparency). So trans-
formations of subterms can be done without context information.

5.1. Description of Mixwell

The subject language of mix is called Mixwell and may be thought of as essentially
a subset of (pure) first-order statically scoped Lisp (or Scheme). A Mixwell program
takes the form of a system of recursive equations as shown here in abstract form
(examples in concrete syntax follow):

f l (x l x~) = e~

fh (Xl Xp) = eh

Here the f, are function symbols, the x I are variables (formal parameters) of the
functions, and e~ is called the body expression of f,. Expression values range over
D = {d I d is a Lisp S-expression}. Expressions are constructed from variables (atoms)
and constants of form (quote d) by operators: car, cdr, cons, equal, and atom (as
known from Lisp) in addition to if and call. The operator if is used in a conditional
(ifeoel e2), whereas callis used in a function call (callfjel e 2 . . . en). The variant callx
is used to call external functions (e.g., gensym).

Variables have static scope. All operators are strict, except if, which is strict only

22 JONES, SESTOFT, AND SONDERGAARD

in the first operand. In particular, call is strict, which implies a call-by-value
semantics. Mixwell is first order: functions cannot be manipulated as data objects.
The program's input is through the first function's variables.

An example Mixwell program in concrete syntax is given in Figure 1. The
arguments of lookup (and hence of the program) are: a name N, a list Ns = (N1 N2
• . . Nn) of names, and a parallel list Vs = (V l V 2. . . Vn) of values. I fN appears in Ns
then V~ is returned, where i is the least index with N = N,, else error is returned:

((l o o k u p (N NsVs) = (if (equal Ns (quote n i l))

(quote error)

(i f (equal N (car Ns))

(car Vs)

(call l o o k u p N (cdr Ns) (cdr V s))))))

Figure 1. An example program written in Mixwell.

5.2• Mixwell +

For the sake of partial evaluation it is important that Mixwell be simple, but the above
example shows that such simplicity may impair readability, We resolve this dilemma
by allowing certain forms of simple syntactic extensions, translatable by machine into
Mixwell. We call the extended language Mixwell + . The extensions include:

• :: as an infix form of cons
• 'd for (quote d), with d ~ D
• (l iste 1 % . . . e N) f o r (e 1 : : (% : : . . . (e N : : ' n i l) . . .))
• = as an infix form of equal, and (null e) for (e = 'nil)
• a conditional

(if e I then e 2 elsf e s then e 4. . . else e 2 N + l)

• a case expression
(case e of pat I :e 1 . . . patN :eN [o therw ise eN+l])

• let and where expressions o f fo rm

(let pat 1 = e l • . . patN = eN in e)
(e where pat 1 = el . • . patN = eN)

Here pat~.is a pattern which is built by pairing (indicated by ".") and which contains
variables that become bound to expressions selecting substructures of the value of e~.
For example, (let (a b) = c in e is equivalent to e with all free occurrences of a and
b replaced by (car c) and (car (cdr c)), respectively. In a case expression two further
forms of patterns are allowed: a constant pattern of form 'd, which is matched only
by the S-expression d, and a pattern of form (atom? N) which is matched by any atom,
that atom becoming bound to N as a result of matching.

MIX 23

5.3. An example

To give a nontrivial example program in Mixwell + , we present an interpreter fo r
another simple language M. This will also give us the opportunity to show an
input/output example for a compilation done by partial evaluation of an interpreter.
The language M has a syntax defined by the following grammar:

(p r o g r a m) :: = (read (variable) and evaluate (expression))

(expression) :: = (variable)
(c o n (constant))
((opera tor) (expression) (expression))
(if (expression) (expression) (expression))
(rnin (variable) s u c h t h a t (expression) = O)

(o p e r a t o r) : : = + 1 - I*

(variable) : := (Lisp a tom)

The intended semantics of M should be clear from the syntax. The only data type is
P,~, the nonnegative integers. A program reads one input value into a variable and
returns the value of the body expression. For simplicity the syntactic category
(constant) denotes lists of l's: the nonnegative integer value m is indicated in unary
as a list of m l's. In the if expression, a nonzero first operand is regarded as denoting
"true." The rain expression evaluates the constituent expression for values 0, 1
of the variable until the value of the expression is zero, and then returns the current
value of the variable; it fails to terminate if the expression is nonzero for all values of
the variable. Plus and times are the usual arithmetic operations, but note that " - "
denotes cutoff subtraction: x - y is zero if and only if y ~> x.

Figure 2 shows an example program written in M. Given a value x ~ N, the program
evaluates min {y s N I x 2 - y2 = 5}, provided the value exists.

(read x and evaluate

(min y such that (- (, xx)(+ (, yy)(con(11111)))) = 0))

Figure 2. A program written in M.

Figure 3 shows an interpreter for M written in Mixwell + . The kernel is the function
evaJ which uses a traditional interpretation loop. Again, values are represented by
lists. The mutually recursive functions f and g implement the "iterating" expression
(rain (variable) s u c h that (expression) = 0). To keep the example simple, very
little checking is done by the interpreter: it gives meaningful results only on M

24 JONES, SESTOFT, AND SONDERGAARD

(
(run (P X) = (let (read N and evaluate E) = P in (calleval E (list N) (l is tX))))

(evat (E Ns Vs)
= (case E of

(atom? N)
('con C)
('+El 52)
(' -E l E2)
(' ,El E2)
('if E0 E1 E2)

('min N such that E = O):
otherwise

(call lookup N Ns Vs)
C
(call add (call eval E1 Ns Vs)(call eval E2 Ns Vs))
(ca//sub (calleval E1 Ns Vs)(calleval E2 Ns Vs))
(call mul (call eval E1 Ns Vs)(ca//eval E2 Ns Vs))
(i f (call eval E0 Ns Vs) then (call eval E1 Ns Vs))

else (call eval E2 Ns Vs))
(ca/ i f E (N :: Ns)('nil::Vs)); Bind N to 0

: 'error))

(lookup (N Ns Vs)
= (let (N1.Nr) = Ns

(Vl .Vr) = Vs in
(i f (null Ns) then 'error
elsf (N = N1) then V1
else (call lookup N Nr Vr))))

(f (E Ns Vs) = (call g (call eval E Ns Vs) E Ns Vs)) Evaluate E

(g (WE NsVs)
(let (Vl.Vr) = Vs in

(i f (null W) then V1
else (ca/If E Ns (('1 : :V1)::Vr)))))

;Exit if E = O, else
;increment N by 1

(add(X Y) = . . .)
(sub(X Y) = . . .)
(mul(X Y) = . . .)

)

Figure 3. Interpreter for M written in Mixwell +.

MIX 25

programs that are (syntactically) well formed, and in which every variable v used is
declared by an enclosing " m i n v s u c h t h a t . . . "' or " r e a d v a n d e v a l u a t e . . . "
expression. The M program in Figure 2 can now be translated into Mixwell by
partially evaluating the interpreter in Figure 3 with P being the M program and ×
being unknown. As can be seen by trying out this symbolic evaluation by hand, much
of the processing in the interpreter can be performed even though the input to the M
program is unknown (i.e., × is unknown in the interpreter).

For example, the interpreter's main loop, including the matching of program pieces
done by the case expression in function eval, can be performed completely and hence
does not appear in the residual program. The same holds for the loop in the lookup
function. On the other hand, the actions that depend on the unknown input to the M
program cannot be performed by partial evaluation and thus must appear in the
residual program. For example, the actions done in functions f and 9 which imple-
ment the ra in expression depend on the unknown input and cannot be performed.
Hence the conditional expression from the body of the g function that appears in the
residual program shown in Figure 4.

We have described the compilation from M to Mixwell by partial evaluation of the
above interpreter,

target = L mix <int, s)

where int is the interpreter in Figure 3 and s is the M source program in Figure 2. The
compilation can also be done using a compiler comp produced by the mix-generated
compiler generator cogen, first making the compiler,

comp = L cogen int

((run (X) = (call f (list 'nil X)))

(f (Vs)
= (i f ('nil = (call sub (call mul (cadr Vs) (cadr Vs))

(call add (call mul (car Vs) (car Vs))
'(1 1 1 1 1)))

then (car Vs)
else (call f (('1 :: (car Vs)) :: (cdr Vs)))))

(add (X Y) = . . .)
(mul (X Y) = . .)
(sub (X Y) = .))

Figure 4. Target program m Mixwelt +.

26 JONES, SESTOFT, AND SONDERGAARD

then using it to compile

t a r g e t = L c o m p s.

The resulting target programs will be identical. The target program shown in Figure
4 can be produced by our partial evaluator mix by either of the above methods. It is
given in Mixwell + for readability.

To see how much the running time may be reduced by using the target program
(Figure 4) instead of the interpreter and the source program (Figures 3 and 2), we may
do a very crude time analysis.

We count one time step for each car, cot, cons, quote, =, and call, the only
exception being that the functions add, sub, and mul are counted as taking one time
step for each call to any of them. By this scheme the target program executes 20 steps
per iteration of its main loop, while the interpreter executes 119 steps, the ratio being
6.0, a sixfold reduction in running time.

This ratio tends to grow as the source program or the source language get larger,
since relatively more interpretation time is needed for syntax analysis and environ-
ment references. Speedup factors between 30 and 200 are reported in Emanuelson and
Haraldsson [13] for specialized versions of a general pattern matcher parameterized
with a pattern expression to be matched.

6. Methods and problems

We now turn to the basic principles and problems involved in partially evaluating sets
of recursive equations. The basic transformations used in the particular partial
evaluator mix are symbolic evaluation and unfolding. These techniques are well
known from the field of program transformation [7].

It should be noted that not all of the following is based on solid mathematical
foundations. Some of the techniques described are heuristically based and in need of
deeper analysis. Also, no completely satisfactory strategy for handling call unfolding
and call specialization has been found. The automatic strategy described below works
well on a large class of programs but may fail on other programs. A consequence of
these problems is that the partial evaluator as implemented does not have the ideal
termination properties required by Definition 2.2. It may fail to terminate even when
a residual program exists, and may produce a residual program that terminates more
often than the subject program.

A system-oriented mix description is given in Section 7. Note that in Sections 6-8,
the language l is fixed, so k = Mixwell.

6.1. Specializing functions by symbolic evaluation

Given a subject program as a system of recursive equations, each of form

MIX 27

f(x 1 Xn) = e

and given available input to this program, the residual program is naturally another
system of equations, where each equation is a specialization of one of the original
ones;

f'(Yl Ym) = e'.

Here f' represents a specialized version of f, and the variables of f' are a subset of the
variables of f. For example, if it is discovered that in one call to f, the first argument
always has value 5, independently of the value of the subject program's unavailable
input, the partial evaluator can exploit this fact by constructing an f-variant f' with
the first variable removed, and in which e' is a simplified version of e. A function f
may have several specialized versions, each corresponding to a tuple of known values
of some of its variables, or none.

The body e' of a specialized version of a function f(xl xn) = e is obtained by
symbolic evaluation of its body expression e.

Symbolic evaluation deals with expressions (i.e., pieces of Mixwell programs) as
values, and is always done in a symbolic environment which is a set of bindings of
variables to expressions:

e n v = xo eo}

In this way, the symbolic environment in mix contains information known during
function specialization about the arguments Xl xn of f (namely, their symbolic
values). In a more sophisticated partial evaluator, symbolic environments containing
other kinds of information may be used, as in Beckman et at. [2].

For a simple example of symbolic evaluation, let S~e~ represent the result of
symbolically evaluating expression e in a given symbolic environment. A natural way
to symbolically evaluate (cor e) is

S~(car e)~ = let e' = S~e~ in

case e' of (6.1)

~(quote(x. y))~]: ~(quote x)~]

~(cons e, e2)~: ~el~

otherwise ~(car e')~

Note that the result is an expression, i.e., a piece of text. So if the result S~e~ of
symbolically evaluating expression e is the expression (cons el e2) for some ex-
pressions el and e2, then S~(cor e)} is the expression el. The semantic brackets "~"

28 JONES, SESTOFT, AND SONDERGAARD

and "~" denote quasi-quotation as usual: Metalanguage variables (here e, e', x, y, el,
and e2) may appear inside the brackets, and then stand for the expressions they are
bound to, whereas object language operators stand for themselves.

If an expression e to be symbolically evaluated contains a function call, it must be
decided whether the call should be unfolded or suspended. Unfolding the call means
replacing it by the called function's body, with argument expressions substituted for
variables. If suspended, a specialized version of the call will appear in the residual
program.

Those variables of f that are present in f' are called dynamic variables, and the
others are called static. The value of a static variable is known during function
specialization: It depends only on the available input. The value of a dynamic variable
is considered unknown: it may depend on the unavailable input also. By the tech-
niques used by mix, all the specialized versions of a function f have the same sequence
of dynamic variables. (However, this is not necessary in principle). The generated
variants of a subject program function make up a kind of tabulation of the possible
values of its static variables. This technique is called polyvariant mixed computation
by Bulyonkov [5] and is similar to function tabulation [19]. Theoretical treatments of
polyvariant specialization can be found in Bulyonkov [6] and Jones [25].

6.2. The treatment of function calls

Some partial evaluators determine for each defined function whether all calls to it
should be unfolded or suspended during partial evaluation. Other partial evaluators
make this decision each time a call is encountered during function specialization. A
key feature of the mix approach is to take a decision on this for each function call
appearing in the text of the subject program, so that the decision may be made in
advance of function specialization.

Consider a function call expression (caflf el • . . en) to be specialized. Two obvious
possibilities are either to produce a residual call (to a specialized version of f), or to
unfold the call. To do the unfolding, the equatio n f(xl Xn) = e defining f is
found, and (call f el . . . %) is replaced by the result of symbolically evaluating e in
the local symbolic environment {xl ~-~ S~el ~ xn ~ S~en~}.

The problem. The problem of finding a good call unfolding strategy is very subtle. In
this context there are at least three pitfalls to avoid.

First, a too conservative strategy leads to trivial residual programs as shown in
Section 2.

Second, a too liberal strategy leads to loops during function specialization in which
the same function is unfolded infinitely. In fact, only an extremely conservative
strategy will avoid this danger. To see this, consider a partial evaluation with respect
to a known x of

MIX 29

f(x, y) = / f p(y) then x else g(O)

g(x) = 9(x + l)

where p(y) in fact holds for all y, but the expression happens to be too complicated
for a partial evaluator to realize this (it may express a deep number theoretic
theorem). So f is total. Partial evaluation of t with respect to x, however, is likely to
proceed infinitely. This will happen even in case the partial evaluator uses the very
conservative rule that calls are unfolded only when all their arguments have known
values. In the example, it is easy to see that 0 is everywhere undefined, but definedness
is in general not decidable. Adopting a rule like "never unfold calls" is out of the
question, because it leads to trivial partial evaluation. Therefore, one must live with
the risk of nontermination or impose some termination condition, for example,
stipulate some arbitrary upper limit for the number of unfoldings to be performed.

Finally, the residual programs can easily turn out to be less" efficient than the
original subject programs, owing to the call-by-name nature of symbolic evaluation.
As an illustration of the last point:

f(n) = / f n = 0 then 1 else g(f(n-1))

g(n) = n + n + 1

should not be unfolded to

I f (n) = zfn = O t h e n t e l s e f(n - 1)+ f(n - 1) + 1]
L J

since the first runs in linear time while the second requires exponential time. For-
tunately, it is not difficult to avoid such duplicated function calls in a Lisp-like
language, because the duplicates are easily recognized during symbolic evaluation. In
fact, any risk of duplication can be detected even before symbolic evaluation.

Approaches to a solution. This still leaves the basic problem of when to unfold function
calls. There are (at least) five possible ways. The first possibility is to unfold during
function specialization only calls in which all arguments have known values, and then
possibly do further unfolding in a separate stage after function specialization. This
way the issues of function specialization and call unfolding are effectively separated,
and the method is quite safe. Unfortunately it gives very many residual functions and
has turned out to be too inefficient in our experiments. The conclusion is that also
(some) calls not all of whose arguments have known values have to be unfolded

30 JONES, SESTOFT, AND SONDERGAARD

during function specialization. We see four possible ways to make the decision on
which calls to unfold:

la. Interactively, during function specialization, according to advice given by the user.
lb. By hand annotation in advance of function specialization, individually marking all

calls in the subject program as "to be unfolded" or "to be suspended."
2a. Dynamically, using some dynamically determined (automatic) unfolding strategy

during function specialization.
2b. By automatic static annotation, i.e., by applying a preprocessor to mark subject

program calls "to be unfolded" or "to be suspended."

Method la was used in the early program transformation systems, and much
current research in this field concerns systematizing and automating methods that
work well by hand, to reduce the complexity of what the user sees.

The first self-applicable version of mix used method lb. However, it is difficult to
see just which calls should be unfolded (and far too hard for inexperienced users).
Automatic unfolding is necessary for practical use, and especially if mix-produced
programs are to be partially evaluated yet further. This is because call annotation by
hand then requires a user's full understanding of machine-generated programs, which
is unreasonable. We therefore tried method 2a, but found it too expensive in terms of
partial evaluation time.

The current version of mix uses preprocessing to add "unfold" call annotations
(method 2b); then it does a straightforward symbolic evaluation as described above,
blindly obeying the annotations; and finally it postprocesses the residual program so
produced, to find (further) calls that can profitably be unfolded. This is all done
automatically.

6.3. Some principles for call unfolding

Consider a call appearing in a recursively defined function:

f (x l xn) = . . . f (e l , . . . , e n) . . .

If there exists an argument x~ which always decreases (according to some well-founded
partial ordering), then the call may safely be unfolded, provided x~ is evaluable to a
constant during function specialization. For example, the program power in Section
1 may be unfolded when n is static (has a known value), but not when n is dynamic.

This applies also to partial evaluation of interpreters. Consider the computation of

t a rge t = L m i x (i n t , s) .

For the great majority of programming languages, an interpreter can perform/
evaluate some commands/expressions on the basis of their subcomponents, without
reference to other parts of the enclosing program s (except that it uses the information

MIX 31

carried by the environment). Thus recursive calls by the interpreter that "descend" to
smaller parts of s may always safely be unfolded, but whenever the interpreter shifts
its attention to a different or a larger part of s, its corresponding call may not be
unfolded, owing to the risk of infinite expansion. This justifies marking individual
calls rather than entire functions.

For example, in Figure 3 some of the calls implementing the rain expressions
should not be unfolded because of the risk of infinite expansion, but most of the others
may. The problem arises because of the mixture of static actions (dependent only on
the source program) and program execution actions usually found in interpreters.

One unfolding method is rather simple, but works surprisingly well in practice. A
conservative strategy is used to make call annotations in a preprocessing step, and
further unfoldings after function specialization are based on an analysis of the call
graph of the first version of the residual program. We return to this analysis in Section
6.5, and a more complete description is given in Section 7.

The conservative strategy for call annotation is to mark a call as "to be suspended"
unless either (1) it can be seen that all its arguments are static, or (2) a static argument
is bound to a proper substructure of itself in a directly recursive call. If by this, infinite
unfolding results during function specialization, then the subject program already
contained a function that would be infinitely evaluated for any value of the program's
dynamic parameters (though this does not imply that the subject program would run
forever: the function might never be called).

Clearly some kind of program analysis is required to gather the information about
which variables will be static (i.e., will have known values during function specializa-
tion). This turns out to have other uses as well, and is now described.

6.4. Preproeessing: Binding time analysis

The preprocessing, which we call binding time analysis, can be done by itbstraet
interpretation of the subject program [l 1]. The program is evaluated on the two-
element data domain {Static, Dynamic} to yield information about which arguments
to functions will be definitely known during function specialization, and which are
possibly unknown. Function variables corresponding to argument positions can
thereby be classified as static or dynamic. These variable descriptions are obtained for
the interpreter given in Figure 3: run(S, D), eval(S, S, D), lookup (S, S, D), f(S, S,
D), g(D, S, S, D), add(D, D), sub(D, D), mul(D, D), where S =Stat ic and
D = Dynamic.

This information is used during specialization of functions and for the preprocess-
or's (conservative) call marking: Calls having only static arguments and calls one of
whose static arguments is broken down recursively are marked for subsequent unfold-
ing.

Further, all operators are annotated during this preprocessing, as static or dynamic,
resulting in a heavily annotated version of the subject program. An operator an-
notated as static can be evaluated during function specialization, whereas one an-

32 JONES, SESTOFT, AND SONDERGAARD

notated as dynamic cannot. The intention is that the abstract interpretation yields
global information about the subject program's run-time behavior, and the annota-
tions represent this information locally. This simplifies the basic transformations used
during function specialization.

6.5. Postprocessing: Call graph analysis

The strategy for marking calls during binding time analysis is rather conservative, so
it is profitable to do more unfolding after the specialization phase. Hence partial
evaluation has three phases: preprocessing, specialization, and final unfolding.

Due to the conservative strategy for call marking, many of the generated function
body expressions will be fairly simple, often just a call to another specialized function.
Such a call may be replaced by the called function's body (with appropriate sub-
stitution of argument expressions for variables), since this reduces the number of
functions and calls. The call-by-name nature of such unfolding may make the residual
program terminate more often than the subject program. This is regarded as of minor
concern. However, for this reason the partial evaluator mix does not comply strictly
with Definition 2.2 of partial evaluator.

For the final unfolding and reduction step, an analysis of the intermediate residual
program must be done. This analysis works by finding a cutpoint in each elementary
cycle in the program's call graph (one that does not properly contain another cycle).
A cutpoint is a residual function name, and the intention is that all calls to such a
function should be suspended (i.e., should not be unfolded).

Call unfolding can now be done as another symbolic evaluation: A call is suspended
only if it was selected for suspension by the call graph analysis, or if unfolding would
produce call duplication. By selecting a cutpoint from each elementary cycle, infinite
unfolding is prevented, and hence the method is safe. More details appear in Section
7.

6.6. Special problems caused by self-application

A separate binding time analysis phase for the classification of parameters and
operators is in principle unnecessary since this classification could be done dynami-
cally (and with more precision) during the specialization phase. However, it seems to
be necessary for successful and efficient self-application of the partial evaluator that
the classification is determined statically, in a separate phase. Readers willing to
accept this on faith may skip the rest of the section and thus escape some rather
intricate and subtle argumentation.

Consider the generation of a compiler comp (from some S-interpreter int):

comp = L mix~ (m i x 2, in t) .

Here mix~ = mix 2 = mix--the subscripts are for reference only. Assume we determine

MIX 33

dynamically (i.e., during function specialization) whether the arguments of every
individual operator are static or dynamic. Now, mix~ as well as mix 2 contain some
procedure for simplifying expressions such as (car e), for example (6.1). Simplification
depends on the residual (reduced) form S[e~ of e, which in turn depends on the form
of e and the value of the subject program's known input.

The expressions occurring in mix 2 are straightforwardly reduced .by mix~, but
consider mix 2 being partiallyevaluated on int as above. Now focus on the application
of mix2's reduction procedure for car on an expression (car e) in int. Let us assume
that in int, this "car" is applied to int's first parameter (an S source program s).

During compilation one applies mix to int and a source program to get

target = L mix (int, s).

Thus, when the source program s is present, the car operator of int can be evaluated
by mix. But during compiler generation, while generating

camp = L mix I (mix2, int),

the source program s is not available and therefore even the form of the residual
expression SEe ~ for e in int is unknown. Therefore, the reduction procedure (in mix2)
for car cannot be executed by mixl, and the compiler produced (i.e., the residual
program for mix2) will contain a copy of the entire reduction procedure for car for
this single occurrence of car in int.

This procedure will be entirely superfluous when running the produced compiler on
an S source program s, since that program will be available, and a single car operator
could replace the reduction procedure comprising several lines of Mixwell text. In
fact, the problem is even worse, because (ear(calf e)) in the interpreter int will be
"reduced" to the reduction procedure for car with the entire reduction procedure for
cdr instantiated in several places. Thus, the size of residual expressions in the compiler
depends in an exponential way on the complexity of expressions in the interpreter, and
this is clearly not acceptable, particularly since deeply nested Cor/cdr expressions are
very common.

If, on the other hand, static operator classification is used, then it is possible to
annotate int as well as mix 2. By this, a car operator in int working on int's static input
(the S source program) will be annotated as static (as "car s"), and partial evaluation
of mix 2 on int wilt produce a single car operator in the compiler instead of a copy of
the reduction procedure. Note that the crucial point is that the annotations of int are
available to mix2, not that the annotations of mix 2 are available to mix~. Thus, the
above discussion applies only to the case when mix is itself partially evaluated; this
problem really is one of self-application.

7. The algorithms used in mix

Partial evaluation using mix is most easily understood as a sequence of phases, each
performing a translation, an analysis, or a transformation of the subject program (i.e.,

34 JONES, SESTOFT, AND SONDERGAARD

the program to be partially evaluated). In this section we first give a brief overview
of the structure of mix, and then describe each of the phases. Our partial evaluation
algorithm proceeds in five phases:

1. Binding time analysis bta
2. Program annotation ann

3. Function specialization f sp

4. Call graph analysis cga
5. Call unfolding and reduction unf

The five phases constitute three program transformation steps, the first one and the
last one consisting of an analysis phase and a synthesis phase. The purpose and
input/output behavior of each is briefly described here, with more details to follow.

Suppose we want to partially evaluate an L-program f (recall that L = Mixwell)
with respect to known argument 6 i. This yields a residual program r, satisfying
krd2 = L f (dl , d2) for all d2. We will now consider the three transformations
making f into r.

The first transformation consists of binding time analysis and program annotation.
Its output is an annotated version of f , namely, f , = ann (f , bta (f , vd)) , where bta
(f , v6) is the information obtained by binding time analysis when the input par-
ameters o f f are described by the tuple vd of {Static, Dynamic} descriptions. That is,
f~ is a copy of the subject program, marked with additional information:

• each function argument has been classified as static or dynamic (S or D),
• each operator (cons, car, if, etc,) has been similarly classified.
• argument lists have been permuted so all static arguments come first, and
• calls have been marked "to be unfolded" (call) or "to be suspended" (callr).

The second transformation is the function specialization phase, which is the heart of
partial evaluation. It produces an intermediate residual program, r', for f , , given the
annotated program and the input available for partial evaluation.

The third transformation comprises call graph analysis together with call unfolding
and reduction. To produce a (better) final residual program r, more function calls are
unfolded and redundant code is reduced in the intermediate residual program. Call
graph analysis of r' yields as output a set cga (r') of function names. The idea is that
avoiding unfolding of calls to these will prevent infinite expansion. The final phase
applies this information to r', yielding the final residual program

r = u n f (r', cga r').

From this description we see that the partial evaluator mix takes three arguments, not
two. The three arguments are

MIX 35

• the subject program (to be partially evaluated,
• the input description vd which is a tuple of {Static, Dynamic) descriptions,
• the values of those input parameters described as Static.

Below we describe each of the five phases of mix, and then in Section 7.6 we discuss
how this multiphase partial evaluator can be self-applied.

7.1. Binding time analysis

Input is the subject program ~' (the program to be partially evaluated) and a descrip-
tion of which of its parameters will be available (known) during partial evaluation and
which will not. The net result of the binding time analysis is used for annotating the
subject program.

Binding time analysis is based on an abstract interpretation using the two-value
domain {Static, Dynamic}. The result of this analysis describes every variable x~j of
every function f~ as either Static or Dynamic. Here Static means that the possible
values of the variable (definitely) depend only on the input available during partial
evaluation. Conversely, Dynamic means that the possible values (may) depend also
on input unavailable during partial evaluation.

The binding time analysis keeps a partial description of the variables, initially
describing all variables as Static, except those variables of the goal function whose
values are unavailable during partial evaluation. The program is abstractly inter-
preted starting with the goal function, and if it is discovered that a variable v currently
described as Static may take on a value dependent on a Dynamic variable, then v's
description is changed to Dynamic, and the descriptions of all variables that depend
on v are recomputed. Every recomputation is preceded by the change of at least one
variable from Static to Dynamic, and since there are finitely many variables and they
never change back, the analysis will terminate.

The abstract interpretation classifies an expression e as static if and only if:

• e is a constant (quote d), where d is an S-expression, or
• e is a static variable, or
• e has form (ca# f et . . . en) and el en are all static, or
• e has form (op el . • . %), where op # call, and el en are all static.

7.2. The annotation phase

Input is the subject program ~ and the variable description just computed. Output is
an #-version ~a in which all expressions and function calls are annotated for use by the
function specialization phase, and argument lists are permuted so all static arguments
come first.

36 JONES, SESTOFT, AND SI~iNDERGAARD

Operator annotation. An operator in an expression other than a call is marked as static
if it Can be evaluated during function specialization, namely, if its performance
depends only on the available input. Otherwise the operator is marked as dynamic.

Static applicability of operators is determined using the variable description found
by the binding time analysis. A non-call expression (op e l . • . %) is rewritten (ops 01
• . . %) if all of el • • . en are static, and as (opdel . . . %) otherwise. The only
deviation f rom this pattern is the conditional, which is nonstrict in its second and third
argument• It is rewritten as (ffseoe~e2) if e0 is static, and as (ffdeoe~e2) if e 0 is
dynamic, independently of the classification of e~ and e 2.

Function call annotations. A function call (call f e I . . . en) is marked as unfoldable if
there is no risk of infinite expansion during function specialization, and residual
otherwise. A simple (and rather conservative) scheme for recognizing this is based on
the concept of an inductive variable.

We say that a variable of a function f is inductive in a recursive call f rom f to itself
if in that call the variable's new value is a proper substructure of its previous value.
Then a call expression (call I 01 . . . %) is unfoldable if either it is a direct recursive
call to f with at least one inductive variable (the rest being unchanged) among those
described as Static, or if there are no variables described as Dynamic. In all other
cases, the expression is replaced by (col# f el • • . en), indicating that the call should
not be unfolded. With annotations made this way, for "reasonable programs" infinite
unfolding will not take place in the function specialization phase unless this can
happen independently of the values of the dynamic data.

Furthermore, care is taken that duplication of calls cannot occur during function
specialization. This may require changing more calls to calif. The detection of such
situations is a recent enhancement to mix; for a discussion and algorithms, see Sestoft
[45].

7.3. The function specialization phase

Input to this phase consists of the annotated subject program E~ together with actual
values for some of the subject program's parameters. Output is an intermediate
residual program r' which is a system of specialized versions of (,'s functions.

A function that is specialized from the function f(svl svm, dr1 dvn) = e
has form

fsvv (dv l d %) = e'

where Isw is a new function name composed from the name I of the function in [and
a sequence svv of values of f 's static variables svl svm. The variables of fsvv are
t 's dynamic variables dr1 dvn, and e ' = S~e~ is the result of symbolically
evallaating the right side e of the original function definition f (. . .) = e using the
known values svv for f's static variables svl svm.

MIX 37

The classification of all variables as static or dynamic makes it easier to build
residual programs, and the basic transformation rules become very simple. For
example, the argument of cars will always be a known value, and so cars can be
evaluated during partial evaluation, whereas a card expression will be left as residual.
Therefore, the case expression (6.1) for S~(car e)]~ is replaced by two simpler rules:

S~(cars e)~ = [(quote x)~ where (x. y) = S[e~, and

S[(card e)~ = [(car e')~ where e' = S[e~.

The set of function specializations is computed by maintaining a set Pending to
record all the function specializations still to be computed. A pair (f, svv) being in
Pending means that a version f~vv (d v ~ , . . . ,dvo) = e' of function f specialized to the
values svv of the static variables of f is needed. Initially, Pending contains one pair
consisting of the goal function and the argument values that are available for partial
evaluation. When a nonunfoldable call (callr g s e l . . , sere d e 1 . . , d%) is symbolically
evaluated, it is recorded that a new specialized function gsw is needed by adding the
pair (g, svv) to Pending, where svv = (S[se~ S~sem~) is a list of values of g's
static variables. In reality, the composite function names of form f,w that may be very
large and cumbersome to read are (consistently) replaced by new shorter function
names.

Since Pending may grow and shrink indefinitely, the function specialization phase
may loop in an attempt to produce infinitely many different specialized functions.
This happens only on programs that compose static data under the control of
dynamic data. Work is under way to reduce the frequency of such undesirable
behavior.

7.4. Call graph analysis

Input to this phase is the intermediate residual program r'. Output is a list of function
names from r' that are cutpoints of recursive call chains. This is for use by the
subsequent call unfolding and reduction phase.

The call graph of a program is a directed multigraph that has the program's
functions as nodes and has an edge from node f to node g for each call to g in the
body of f. A recursive call chain in a program is a cycle in the call graph.

The cutpoints of recursive call chains are found by a depth-first traversal of the call
graph of the intermediate residual program r'. A visit to a function f entails marking
that function "visited", and then examining all function calls in its body. Consider a
call from f to a function g. If g is already on the path traversed from the goal function
to f (inclusive), then g is taken to be cutpoint of a recursive call chain. If g is not on
that path and has not been visited previously, then g is visited. When there are no
more functions that can be visited from f, the algorithm backs up to the function from
which f was visited (or terminates i f f is the goal function). During this, every function
is visited at most once, and hence the process terminates.

38 JONES, SESTOFT, AND S~ONDERGAARD

7.5. The call unfolding and reduction phase

Input to this phase consists of the intermediate residual program r' (resulting from the
function specialization phase) and the list ofcutpoints of recursive call chains. Output
is the final residual program, r, obtained from the intermediate residual program r' by
unfolding function calls and reducing the resulting expressions by symbolic evalua-
tion.

A function call (ca# f el . . . en) in r' is unfolded if f is not head of a recursive call
chain and if unfolding will not lead to duplication of a function call (or of a
voluminous expression) when the expressions e~ en are substituted for the
variables in f's body. Since infinite unfolding would involve every function in some
recursive call chain, and hence a cutpoint, it cannot take place. Similarly, no call
duplication can be introduced by the call unfolding phase.

7.6. Muhiphase partial evaluation

We now relate this more complex picture of partial evaluation (in multiple phases) to
the simpler descriptions given in Sections 2 and 3. In particular, we will show the
multiphase analogs of

target = L mix(int, s) ,

comp = L mix (mix, int), and

cogen = L mix (mix, mix).

(3.2)

(3.3)

(3.4)

Simple partial evaluation, including compilation. Bta, ann, and so forth are functions,
so if we let

and

pre ({, vd) = ann (~, bta (Y, v d))

post r = unf (r, cga r),

then we can write

resid = let Ea = pre (f , vd) in

let r' =fsp (fa , d l) in post r'.

Here vd e {Static, Dynamic}* is a description of the parameters of {, and the

MIX 39

metanotation l e t . . , i n . . . is used to indicate the partitioning into phases. It would
certainly be possible to program mix so that mix yields resid in exactly this way, thus
satisfying the equations of Sections 2 and 3 quite literally, by letting

L mix ({, vd, d~ > = let fa = pre ({, vd> in

let r' =fsp (~,, d l) inpost r'.

It sometimes happens (especially in compiling, where { is an interpreter and d 1 a
source program) that the same program { is to be partially evaluated for many
different values ofd~, so it is usually profitable to compute g,, = pre (& vd) = ann
((. bta (C, vd)) as a separate first step. Compilation, using mix on an interpreter int
and source program s, is an instance of this process. That is, int~ should be precom-
puted, describing the first parameters as static and the second as dynamic:

target = let int a = pre (int , (Static, Dynamic)) in (7.1)

let r' =fsp (int, , s) inpost r'.

Compiler generation by partial evaluation. At compiler generation time, int is known,
but s is not. As before, it is desirable to precompute int, = pre (int,
(Static, Dynamic)) , so we assume this has been done as the first step of compiler
generation. The remaining computation

let r' =fsp (int a, s) in post r'

depends on both inta and s, but only int~ is available. For efficiency we use partial
evaluation to exploit the target program's dependency on int (since s changes more
frequently than int). Suppose fsp is an L-program computing functionfsp, so we have
L fsp = fsp. Now construct

comp = let int~ = pre (int, (Static, Dynamic)) in

L mix (fsp. (Static, Dynamic), in t .)

= let inta = pre (int. (Static, Dynamic)) in

let fspa = pre (fsp, (Static, Dynamic)) in

let r' =fsp (fspa, int~) in post r' (7.2)

It is not hard to see (by (2.1)) that comp really is the first pass of a compiler, and

40 JONES, SESTOFT, AND SONDERGAARD

target = let r' = L c o m p s in post r'. (7.3)

Finally, note that fspa is independent of int. In summary, we have:

• fspa = pre (fsp, (Static, Dynamic)) is independent of int and so may be computed
prior to compiler generation (i.e., at compiler generator generation time).

• At compiler generation time we compute

comp = let inta = pre (int, (Static, Dynamic)) in

let fsp~ = pre (fsp, (Stat ic , D y n a m i c)) in

let r' = fsp (fsPa, int~) in post r'.

Generation o f the compiler generator. Section 3.4 described producing a compiler
generator cogen from mix by partially evaluating mix with respect to itself. By steps
exactly parallel to the preceding, we obtain

cogen = let fsPa = pre (fsp, (Stat ic , D y n a m i c)) in

let r' =j&p (fspa, fsp~) in post r', (7.4)

and this is in fact the way the first version of cogen was obtained. Given cogen,
compiler generation may be done more efficiently than above:

comp = let int~ = pre (int, (Static, Dynamic)) in

let r' = L cogen int~ in post r', (7.5)

and the compiler generator itself may be regenerated:

cogen = let fsp~ = pre (fsp, (Stat ic , D y n a m i c)) in

let r' = L cogen fsp~ in post r'. (7.6)

8. Assessment of the partial evaluator mix

In this section we evaluate the structure and performance of mix, and we mention
some of the tasks mix has been applied to.

MIX 41

8.1. Ideas behind mix

The aim has been to construct an autoprojector, well suited for the special purpose of
compiler generation, rather than a general-purpose partial evaluator. This makes the
task easier in some respects, but, in general, the development of a good autoprojector
is harder than that of a partial evaluator. The reason is that owing to the self-appli-
cation an attempt to increase the quality (by including more powerful transforma-
tions) very often implies overwhelming penalties as regards efficiency.

The structure of mix has intentionally been kept as simple as possible, partly for
this reason and partly to allow for experimentation with different binding time
analyses, basic transformations, call unfolding strategies etc., and their combination.

Program transformation is concerned with deriving equivalent programs that
behave better according to some performance criteria. These criteria are implicit in the
transformation rules used; so the basic transformations together with the call unfold-
ing strategy determine the strength of the partial evaluator. One may think of the
transformations performed by mix as split into two categories. One consists of simple
local reductions, while the other is concerned with function transformation and
includes unfolding of calls and specialization of functions. Although unfolding and
specialization constitute a limited class of transformations, they may imply consider-
able changes in program topology.

The use of binding time analysis appears to be novel in comparison to other
approaches to program transformation. It serves three purposes: to classify function
variables, thereby determining the list of residual variables for each function; to
annotate all operators as "static" or "dynamic"; and to gather information used to
attach unfold/suspend annotations to function calls. As a result of binding time
analysis, we have been able to reduce the transformation rules used to an extremely
simple subset. If binding time analysis is not applied, the generated compilers in our
experiments have turned out to be typically two orders of magnitude larger, and much
less efficient.

The call unfolding strategy seems appropriate, and when given suitably written
subject programs, mix gives good results. The target programs and compilers
produced are reasonably small and efficient. While they sometimes contain inelegant
code, they contain little unnecessary code, as is witnessed by the fact that compilation
speed is of the right order of magnitude, about 100 lines/second on a Vax 785 for a
toy language. On the whole they look like traditional recursive descent compilers,
except that more optimization is done while generating code than usual in compilers.
Since the compiler is a specialized version of mix, it inherits the transformational
capabilities built into the partial evaluator.

8.2. Performance of mix

To illustrate the performance of mix in compilation and compiler generation we give
some tables of program size and run times. In particular, we give the total run times

42 JONES, SESTOFT, AND SONDERGAARD

for each o f the runs (7. l) t h r o u g h (7.6) d iscussed in sect ion 7.6, and show how the r u n

t ime is c o m p o s e d o f p reprocess ing t ime, f u n c t i o n spec ia l iza t ion t ime, a n d post-
process ing t ime.

The in te rp re te r int used in the runs be low in te rpre t s a t iny impera t ive l anguage

(called M P) wi th a s s ignmen t , a cond i t i ona l , a whi le - loop, a n d wi th S-express ions as
the on ly da t a type. The M P source p r o g r a m s used c o m p u t e s x to the y th power by
e n u m e r a t i n g all different tuptes o f l eng th y wi th e lements chosen f rom a set o f
ca rd ina l i ty x. The runs i nvo lv ing s a n d t a roe t in F igure 6 c o m p u t e 55 = 3125.

The size o f a Mixwel l p r o g r a m is g iven by two figures: the n u m b e r o f func t ions in
the p r o g r a m , a n d the l eng th in l ines when t rans la ted in to Lisp a n d " p r e t t y p r i n t e d "

(F igure 5). The p r o g r a m s genera ted by mix are seen to have a very m a n a g e a b l e size,
cons ide r ing tha t t a roe t resul ts f rom " c o m b i n i n g " int a n d the source p r o g r a m s, tha t

Program No. of functions No. of lines Ratio (lines)

s - approx, 30 1.2
target 6 36

int 9 176 1,7
comp 24 303

fsp 27 533 2.0
cogen 49 1062

Figure 5. Size of programs.

Run

output = L in(s,data)

= L target data

target = L fsp(int~,s)

= L comps

comp = L fsp(fsp~,inta)

= L cogen inta

cogen = L fsp(fsp~,fsp,)

= L cogen fspa

Run time (cpu secs.): i Speed Run Plus run time
processing + g.c. = total -up No. for pre andpost

19.62 + 2.20 = 21.82

0.56 + 2.I4 = 2.70
!8.1

0.66 + 0.00 = 0.66 (7.1) pre(int): 0.50
post(target): 0 2 6

1.9
0.34 + 0.00 = 0.34 (7.3) post(target): 0.26

7.56 + 3.00 = 10.56 (7.2) pre(int): 0.50
pre(fsp): 2.60

2.3 post(comp): 2,02
3.18 + 1.42 = 4.60 (7.5) pre(int): 0.50

post(comp): 2.02

37.32 + 21.72 = 59.04 (7.4)

1,6

pre(fsp): 2.60
post(cogen) 10.70

19.84 + 16.46 = 36.30 (7.6) pre(fsp): 2.60
post(cogen): 10.70

Total Speed
-up

21.82
8.1

2.70

1.42

2.4
0.60

15.68

2.2
7.12

72.34

1.5
49.60

Figure 6. Run times

MIX 43

comp results from combining fsp and int, and that cogen results from combining two
copies of fsp.

The run time results (Figure 6) were obtained with the Franz Lisp system running
under Unix on a Vax 785. The Mixwell programs were (straightforwardly) translated
into applicative Lisp programs and compiled to have fast (direct) function calls. Run
times are given in form processing time + garbage collection time = total run time (in
cpu seconds). The left side of the table shows the bare run time of the function
specialization phase fsp and of the residual programs (comp and cogen) derived from
it, whereas the right side gives the additional time spent on pre- and postprocessing
and the total run times for the runs (7.1) through (7.6) of Section 7.6. The correspond-
ing speed-up ratios are also given, and are seen to be all greater than 1.

Recall that the runs being compared pairwise produce identical results. For
example, the target program generated by compilation (run (7.3)) is not only equi-
valent to but in fact identical to the target program generated by partial evaluation
(run (7.l)). Thus, the two target programs are known to be of exactly the same
efficiency and quality. The only difference is in the time it takes to generate them.

The run-time results in Figure 6 show that

• The overhead of interpretation is removed by compiling the source program s into
a target program target. The speed-up is more than 8 times, which is quite
satisfactory.

• Compilation by a mix-generated stand-alone compiler (7.3) is twice as fast as
compilation by partial evaluation (7.1).

• Generating a compiler using the mix-generated compiler generator (7.5) is faster
than generating a compiler by partially evaluating the partial evaluator with respect
to the interpreter (7.2).

• Similarly, regenerating the compiler generator cogen by using the compiler genera-
tor (7.6) is faster than generating it using mix alone (7.4).

Also note that compilation by partial evaluation followed by a run of the target
program (4.12 seconds in all) is faster than interpretation of the source program (21.28
seconds).

Even generation of a compiler followed by compilation and a run of the target
program (10.42 seconds in all) is faster than interpretation of the source program.

The results, and in particular the run time results, justify our approach: compiling
by means of a mix-generated compiler is faster than compiling using a general partial
evaluator, as it is done by Kahn and Carlsson [29] or Takeuchi and Furukawa [48].

8.3. Applications of mix

Mix has been used on a variety of problems, all of an experimental nature but some
more applied than others. Mostly it has been used to generate compilers and target
programs for various languages (imperative, functional and pattern matching).

One larger application has been context-free parsing [12]. A general-purpose con-

44 JONES, SESTOFT, AND SIONDERGAARD

text-free parser resembling Earley's was partially evaluated with respect to a fixed
grammar G, automatically yielding a much more efficient parser, specialized to the
syntax defined by G. Further, application of cogen to the general parser yielded a
parser generator:

speci f icparser = L mix <~generalparser, G)

parsergenerator = L mix <mix, generalparser)

= L cogen generalparser

Another application has been improvement of the important but computation-inten-
sive ray-tracing technique of computer graphics [37]. Here the ray tracer was partially
evaluated with respect to a given scene. For this purpose, Mogensen has written a
rather larger version of mix than the one described here, using C as implementation
language instead of Lisp. The subject language is still functional and allows computa-
tion with floating point numbers. Mogensen's version of mix is also self-applicable,
but does not automatically determine call unfolding. Significant improvements in
computation time have been reported.

9. Perspectives and directions for future research

We conclude by putting the present work a little into perspective. We review the
programming language we have used. Also, other applications are mentioned, and we
discuss the practicability of some of these.

9.1. Subject language

As regards the choice of language which mix accepts and in which it is written, we
think that the following characteristics of Mixwell have contributed much to the
practicability of the project:

• Programs can accept programs as input data and produce them as output.
• Mixwell's simple semantics makes it easy to perform symbolic evaluation and to

design a good binding time analysis. In particular, good unfolding properties seem
essential.

• The recursion natural to the partial evaluation process is easy to program.
• The referential transparency of the language facilitates specialization of an arbi-

trary program part without disturbing other parts.

It would be very desirable to have a self-applicable partial evaluator for an imperative
language, because target programs would then come out in a language that we know

MIX 45

how to implement efficiently. It seems, however, more difficult to build an autoprojec-
tor for an imperative langauge, and the problem is still open as far as we know. One
difficulty is recognizing "descents" by an imperative program into a smaller part of
a structured static argument. Also, the referential opacity of such a language necessi-
tates more sophisticated symbolic environments for use during function specialization
and more sophisticated partial evaluation techniques.

A self-applicable partial evaluator for a higher-order functional language, or one
for a language that includes function invocation by pattern matching would also be
very desirable, owing to the power and conciseness of such languages. It would
probably be harder to write than one based on Mixwelt, because of more complex
control flow and data descriptions needed for these.

Logic programming languages also seem to have all of the above mentioned useful
characteristics, so a nontrivial self-applicable partial evaluator for Prolog should be
possible. Performing constant propagation in a Prolog program is not hard, but
unfolding problems become more difficult than in Mixwell, owing to Prolog's more
complicated parameter concept and control flow. In particular, an automatic binding
time analysis for Prolog programs could be expected to be somewhat harder.

9.2. Meta programming without loss of ejficiency

As is well known, many programming language definitions (though not all) are
effectively computable. Thus, for many well-defined classes of language definitions,
one may in principle write (in some language L) a metainterpreter mint, such that
given a language definition def that defines a language S and a program s in S,

L mint (def, s, d) = S s d.

This was first established for denotational semantics in Mosses [39], with def being a
lambda term, and the approach has been developed further in, e.g., Paulson [40],
Christiansen and Jones [8], Vickers [53], Watt [56], and Lee and Pleban [33]. There
have, however, been substantial efficiency problems with such approaches, some of
which have been overcome by more or less formalized binding time splits, for example,
by compiling def into a lower-level and more directly executable language.

Efficiency analysis. The reason why such a metainterpreter is inefficient is not hard to
see. It spends most of its computational efforts scanning and decomposing def, to see
which of the definition's rules to apply to execute the operations given in textual form
in s. And aside from the operations that scan and decompose def, most of the
remaining operations will, as in any interpreter, scan and decompose s. Only a
vanishingly small fraction of mint's computational time is spent performing the
computational operations actually specified by s.

Consequently, the primary efficiency barrier to overcome in implementing a
language by this technique is to remove the operations needed to analyze the language

46 JONES, SESTOFT, AND SONDERGAARD

definition and the program being executed, since these are uninteresting with respect
to the computational task to be realized by s, In other words, a binding time split has
to be done, to move these irrelevant operations to an earlier stage in the process of
transforming s into executable form, so the computation that s specifies can be carried
out with minimal overhead. Analogies from traditional optimizing compilers include
code motion and constant propagation [1]. Notions similar to the binding time split
have appeared in the area of program transformation. A generalized view leads to the
notion of staging transformations [27], and a similar theme is developed by Wand [54].

As already mentioned, the reason for the unacceptable inefficiency of metainter-
preters is the time spent in the (meta) interpretation loop. Assume that we have a fixed
language definition clef and program s to be implemented. Then the running time of
the metainterpreter k mint (def, s, d) can be expected to be a near-linear function of
the number of fundamental operations specified by the program s on given input data
d (although with a very large constant multiplier).

We would expect that also the running time of a target program for s is linearly
dependent on the number of operations specified by s, only with a much smaller
multiplier. Our chief goal is thus to reduce a linear factor, a goal much less ambitious
and, we hope, requiring considerably less sophisticated methods than those needed for
program transformation in general.

Hierarchies of metalanguages. It is becoming increasingly popular to solve a wide-
spectrum problem not by writing a collection of special-purpose programs, but rather
by devising a problem-oriented language in which the user can interactively express a
wide variety of computational requests. The current broad interest in developing
expert systems exemplifies this way of solving problems.

A problem-oriented language needs a processor, and these processors usually work
interpretively, alternating between reading and deciphering the user's requests, con-
sulting databases, and doing problem-related computing. For some sophisticated
problem-oriented languages, the system spends a considerable amount of time inter-
preting rather than computing or searching, and here automatic optimization of
system programs could yield substantial benefits.

Further, expert and other programming systems are being constructed more and
more with the use of a hierarchy of metalanguages, each used to control the sequence
and choice of operations at the next lower level [43]. In this context the efficiency
problem becomes more serious, and the benefits of automatic program optimization
are correspondingly greater, since widespread use of meta programming can easily
lead to multiple layers of interpretation, each multiplying the total computation time
by an essential factor. On the other hand, program specialization can (and has been
shown to) eliminate an entire level of interpretation, so that meta programming may
be used without order-of-magnitude loss of efficiency [48].

9.3. Partial evaluation and program transformation

It is interesting to compare the state of the art in partial evaluation with that of the

MIX 47

field of program transformation in general. It is commonly agreed that completely
automated program transformation has not been achieved on a significant scale. Why
then do we consider it reasonable to attempt to transform a semantic definition of an
entire programming language into a prototype compiler? Are we guilty of wishful
thinking, or are there some essential differences between language implementation
and transformation of more general programs?

Program transformation is concerned with rather radical changes to a program's
structure, so the final program may have properties very different from those of the
original one. A common goal, for instance, is to change a program's running time as
a function of input size, often from exponential to polynomial or from polynomial to
linear.

We have argued that partial evaluation can achieve order-of-magnitude linear
speedups (e.g., of target programs over interpreters) but it seems unlikely that partial
evaluation can yield nonlinear speedups in general. One reason is that partial evalu-
ation uses only a single transformation technique, essentially a generalization of
well-known compiler optimizations.

So the goals of partial evaluation are in a sense more modest and, we think,
achievable by simpler methods than those of program transformation in general.

Generation of automatic program transformers. Partial evaluation may be used to
obtain program transformers in a simple way. Assume we are given a self-interpreter
sint. Now

tra = L m i x (m i x , sint)

= L c o g e n sint

is a source-to-source compiler or, in other words, a (machine-generated) program
transformer. The output of tra will be a program that is functionally equivalent to that
given to tra, but may differ in structure, size, efficiency, and other properties. The
relation between the input and output program is determined rather implicitly, by the
way sint is written and by the transformations that are built into mix.

As to potential applications of this idea, sint could be modified to accept an
extended language or to do additional run-time actions, thus achieving some of the
goals of meta programming. That is, tra would transform (compile) a program in the
extended language into an L program, while removing those actions of the interpreter
sint that can be done already at "compile time."

9.4. Current activities in partial evaluation

The work reported here is currently being extended in numerous ways: to use restric-
ted term rewriting systems as subject language [4]; to allow for data structures that
may be partially static and partially dynamic [38]; and to ensure better termination
properties of partial evaluation by improved binding time analyses [25].

48 JONES, SESTOFT, AND SONDERGAARD

Work closely related to that reported here is being done by several researchers.
Romanenko has implemented a self-applicable partial evaluator similar to the one
reported here, improving it in various ways, except that hand-made call annotations
are still needed [42]. Similarly, Consel reports a self-applicable partial evaluator for
an extendible first-order subset of Scheme without side effects. It incorporates so-
called filters, which are hand-made annotations that allow the user to guide partial
evaluation with high precision [t0].

Recently, successful self-application of Prolog partial evaluators has been reported
[16,17]. As with previous versions of mix, annotations are called for to guide the
partial evaluator, so automatic compiler generation has not quite been achieved using
Prolog partial evaluators, but that gap may be closing. Recent activities in partial
evaluation of logic programs (besides those just mentioned) are represented by the ten
papers in a special issue of New Generation Computing 6, (2, 3), June 1988.

The selection of papers in Bjorner et at. [3] represents other current activities in
partial evaluation.

10. Conclusion

We have discussed partial evaluation of programs in statically scoped Lisp-like
languages and described a fully automatic self-applicable partial evaluator, mix, that
has beefi successfully applied to generate compilers for small languages, and even to
generate a compiler generator. We assessed mix and gave tables of running times and
space usage to illustrate its behavior.

As a basis for this, we introduced a formal framework for partial evaluation,
compilation, and compiler generation which enabled the presentation of mix's appli-
cations. We also described the language Mixwell that was designed as the subject
language for mix. Finally we discussed further applications and problems in the area
of partial evaluation.

Acknowledgments

Many people have contributed to the mix project in many different ways. Special
thanks go to Nils Andersen, Anders Bondorf, Olivier Danvy, Andrei Ershov, Carsten
Gomard, Niels Carsten, Kehler Holst, Kim Hoglund, Torben Mogensen, Marek
Ry6ko, Carolyn Talcott, Rodney Topor, and Valentin Turchin.

References

1. Aho, A. V., Sethi, R., and J. D. Ullman, Compilers: Principles, Techniques and Tools, Addison-Wesley,
Reading, Massachusetts, 1986.

2, Beckman, L., Haraldsson, A., Oskarsson, 0., and Sandewall, E. A partial evaluator, and its use as a

MIX 49

programming tool. Artificial Intelligence 7, 4 (1976), 319-357.
3. Bjorner, D , Ershov, A. P., and Jones, N. D. (Eds.). Partial Evaluation and Mixed Computation, G1.

Avern~es, Denmark, 1987. North-Holland, Amsterdam, 1988 (to appear).
4. Bondorf, A. Towards a self-applicable partial evaluator for term rewriting systems. In [3].
5. Bulyonkov, M. A. Polyvariant mixed computation for analyzer programs. Acta lnformatica 2I (I984),

473-484.
6. Bulyonkov, M. A. A theoretical approach to polyvariant mixed computation. In [3].
7. Burstall, R. M., and Darlington, J. A transformational system for developing reeursive programs~

Journal of the ACM 24 (1977), 44-67.
8. Christiansen, H., and Jones, N. D. Control flow treatment in a simple semantics-directed compiler

generator. Proe IFIP WG 2.2: Formal Description of Programming Concepts II (D. Bj~rner, Ed.),
North-Holland, Amsterdam, 1983, pp. 73-99.

9. Codish, M., and Shapiro, E. Compiling or-parallelism into and-parallelism. Prnc. Third International
Conference on Logic programming, London, United Kingdom, (E. Shapiro, Ed.), Lecture Notes in
Computer Science, Vol. 225, Springer-Verlag, New York, 1986, pp. 283-297.

10. Consel, C. New insights into partial evaluation: the Schism experiment. ESOP '88, European Syrup. on
Programming, Nancy, France (H. Ganzinger, Ed.). Lecture Notes in Computer Science, Vol. 300,
Springer-Verlag, New York, 1988, pp. 236-246.

11. Cousot, P., and Cousot, R. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. Proc. Fourth ACM Syrup. Principles of
Programming Languages, Los Angeles, California i977, pp. 238-252.

12. Dybkj~er, H. Parsers and partial evaluation: An experiment. DIKU student report No. 85-7-15,
University of Copenhagen, Denmark, 1985.

13. Emanuelson, P, and Haraldsson, A. On compiling embedded languages in Lisp. Proc. 1980 Lisp
Conference, Stanford, California, 1980, pp. 208-215.

14. Ershov, A. P. On the essence of compilation. Formal Description of Programming Concepts (E. J.
Neuhold, Ed.). North-Holland, Amsterdam, 1978, pp. 39t-420.

15. Ershov, A. P. Mixed computation: Potential applications and problems for study. Theoretical
Computer Science 18 (1982), 41-67.

16. Fujita, H., and Furukawa, K. A self-applicable partial evaluator and its use in incremental compilation.
New Generation Computing 6 (2, 3), (June 1988) (to appear).

17. Fuller, D. A., and Abramsky, S. Mixed computation of Prolog programs. New Generation Computing
6 (2, 3) (June 1988) (to appear).

18. Futamura, Y. Partial evaluation of computation process--an approach to a compiler-compiler.
Systems, Computers, Controls 2 (5) (1971), 45-50.

19. Futamura, Y. Partial computation of programs. Proc. RIMS Syrup. Software Science and Engineering
(E. Goto et al., Eds.). Lecture Notes in Computer Science, Vol. 147, Springer-Verlag, 1983, pp. 1-35.

20. Gallagher, J. Transforming logic programs by specialising interpreters. ECAI-86, Proc. 7th European
Conference on Artificial Intelligence, 1986, pp. 109-122.

21. Ganzinger, H., and Jones, N. D. (Eds.). Programs as Data Objects, Copenhagen, Denmark. Lecture
Notes in Computer Science, Vol. 217. Springer-Verlag, New York, 1986.

22. Haraldsson, A. A partial evaluator, and its use for compiling iterative statements in Lisp. Proc. Fifth
ACM Syrup. Principles of Programming Languages, Tucson, Arizona, 1978, pp. 195-202.

23. Heering, J. Partial evaluation and ~o-completeness of algebraic specifications. Theoretical Computer
Science 43 (1986), 149-167.

24. Hoare, C. A. R., and Allison, D. Incomputability. Computing Surveys 4 (3) (1972), 169-178.
25. Jones, N. D. Automatic program specialization: A re-examination fi'om basic principles. In [3].
26. Jones, N. D., Sestoft, P., and S~ndergaard, H. An experiment in partial evaluation: The generation of

a compiler generator. Rewriting Techniques and Applications, Dijon, France (J.-P. Jouannaud, Ed.).
Lecture Notes in Computer Science, 202. Springer-Verlag, New York, 1985, pp. 124-140.

27. J~rring, U., and Scherlis, W. L. Compilers and staging transformations. Proc. Thirteenth ACM Symp.
Principles of Programming Languages, St. Petersburg, Florida, t986, pp. 86-96.

28. Kahn, K. M. A partial evaluator of Lisp programs written in Prolog. Proc. First Int. Logic Program-
ming Conf., MarseiUe, France, 1982 (M. Van Caneghem, Ed.), pp. I9-25.

50 JONES, SESTOFT, AND SONDERGAARD

29. Kahn, K. M., and Carlsson, M. The compilation of Prolog programs without the use of a Prolog
compiler. Proc. Int. Conf. Fifth Generation Computer Systems, Tokyo, Japan, 1984, pp. 348-355.

30. Kleene, S. C. Introduction to Metamathematies, Van Nostrand, New York, 1952.
31. Komorowski, H. J. A Specification of an Abstract Prolog Machine and its Application to Partial

Evaluation. Link6ping Studies in Science and Technology Dissertations Vol. 69. University of LinkSp-
ing, Sweden, 1981.

32. Kugler, H.-J. (Ed.), Information Processing 86, Proc. IFIP 86 Conf. North-Holiand, Amsterdam, 1986.
33. Lee, P., and Pleban, U. A realistic compiler generator based on high-level semantics. Proc. Fourteenth

ACM Syrup, Principles of Programming Languages, Munich, FRG, 1987, pp. 284-295.
34. Lloyd, J. W., and Shepherdson, J. C. Partial evaluation in logic programming, Technical Report

CS-87-09, Department of Computer Science, University of Bristol, England, 1987.
35. Lombardi, L. A. Incremental computation. Advances in Computers Vol. 8, (F. L. Alt and M. Rubinoff,

Ed.), Academic, New York, I967, pp. 247-333.
,36. Lombardi, L. A., and Raphael, B. Lisp as the language for an incremental computer. In The Program-

ming Language Lisp: Its Operation and Application (E. C. Berkeley and D. G. Bobrow, Eds.). MIT
Press, Cambridge, Massachusetts, 1964, pp. 204-219.

37. Mogensen, T. The Application of Partial Evaluation to Ray-Tracing. Master's thesis, University of
Copenhagen, Denmark, 1986.

38. Mogensen, T. Partially static structures in a self-applicable partial evaluator. In [3].
39. Mosses, P. D. SIS--Semantics Implementation System, Reference Manual and User Guide, DAIMI

Report MD-30, University of Aarhus, Denmark, 1979.
40. Paulson, L. A semantics-directed compiler generator. Proc. Ninth ACM Symp. Principles of Program-

ming Languages, Albuquerque, New Mexico, 1982, pp, 224-233.
41. Rogers, H. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York, 1967.
42. Romanenko, S. A compiler generator produced by a self-applicable specializer can have a surprisingly

natural and understandable structure. In [3].
43. Safra, S., and Shapiro, E. Meta interpreters for real. In [32] pp. 271-278.
44. Sestoft, P. The structure of a self-applicable partial evaluator. In [21] pp. 236-256.
45. Sestoft, P. Automatic call unfolding in a partial evaluator. In [3].
46. Sestoft, P., and Sondergaard, H. A bibliography on partial evaluation. SIGPLAN Notices 23 (2)

(February I988), 19-27.
47. Sestoft, P., and Zamulin, A. V. Annotated bibliography on partial evaluation and mixed computation.

In [3].
48. Takeuchi, A., and Furukawa, K. Partial evaluation of Prolog programs and its application to meta

programming. In [32] pp. 415-420.
49. TsNIPIASS. Bazisnyi Refal i yego Realizatsiya na Vychislitelnykh Mashinakh. TsNIPIASS, Gosstroi

SSSR, Moscow, 1977.
50. Turchin, V. F. A supercompiler system based on the language Refal. SIGPLAN Notices 14 (2) (1979),

46-54.
51. Turchin, V. F., Nirenberg, R. M., and Turchin, D. V. Experiments with a supercompiler. Proc. 1982

ACM Symp. Lisp and Functional Programming, Pittsburgh, Pennsylvania, 1982, pp. 47-55.
52. Venken, R. A Prolog meta-interpreter for partial evaluation and its application to source to source

transformation and query-optimisation. Proc. ECAI-84, Pisa, Italy (T. O'Shea, Ed.), North-Holland,
Amsterdam, 1984, pp. 91-100.

53. Vickers, T. Quokka: A translator generator using denotational semantics. Australian Computer Journal
18 (1) (1986), 9-17.

54, Wand, M. From interpreter to compiler: A representational derivation. In [21] pp. 306-324.
55. Warren, D. Implementing Prolog--Compiling Predicate Logic Programs, DAI Research Report 39-40,

University of Edinburgh, Scotland, 1977.
56. Watt, D. A, Executable semantic descriptions. Software--Practice and Experience 16 (1) (I 986), 13-43.

