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Abstract, The program transformation principle called partial evaluation has interesting applications in 
compilation and compiler generation. Self-applicable partial evaluators may be used for transforming 
interpreters into corresponding compilers and even for the generation of compiler generators. This is useful 
because interpreters are significantly easier to write than compilers, but run much slower than compiled 
code. A major difficulty in writing compilers (and compiler generators) is the thinking in terms of distinct 
binding times: run time and compile time (and compiler generation time). The paper gives an introduction 
to partial evaluation and describes a fully automatic though experimental partial evaluator, called mix, able 
to generate stand-alone compilers as well as a compiler generator. Mix partially evaluates programs written 
in Mixwell, essentially a first-order subset of statically scoped pure Lisp. For compiler generation purposes 
it is necessary that the partial evaluator be self-applicable. Even though the potential utility of a self-applic- 
able partial evaluator has been recognized since 1971, a 1984 version of mix appears to be the first successful 
implementation. The overall structure of mix and the basic ideas behind its way of working are sketched. 
Finally, some results of using a version of mix are reported. 

Since the ear ly  1970s it has been k n o w n  tha t  in theory,  the p r o g r a m  t r ans fo rma t ion  
pr inciple  called partial evaluation can be used for compi l ing  and  compi le r  genera t ion ,  
and  even for  the au toma t i c  genera t ion  o f  a compi le r  genera tor .  A par t ia l  eva lua to r  
able  to genera te  s t and-a lone  compi le rs  and  compi le r  genera tors  had  not ,  however ,  
been successfully implemented  before  1984 when the first mix system was b rough t  to 
work  at  the Univers i ty  o f  Copenhagen .  

In  this paper  we discuss par t ia l  eva lua t ion  and  its app l ica t ions  to compi ler  genera-  
t ion and  sketch the pa r t i a l  eva lua to r  we developed,  cal led the mix system. The  results 
we r epor t  are sufficiently r emarkab le  to jus t i fy  fur ther  research into using par t ia l  
eva lua t ion  for  compi le r  genera t ion  purposes .  We  also ment ion  o ther  appl ica t ions .  
The  descr ip t ion  here is essential ly a snapsho t  o f  the mix system and  its app l ica t ions  
as o f  ear ly  1987. 

A par t ia l  eva lua to r  m a y  be thought  o f  as a " smar t  in te rpre te r . "  I f  an o rd ina ry  
in te rpre te r  is given a p r o g r a m  and  only  part o f  this p r o g r a m ' s  input  da ta ,  it will leave 
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the program unevaluated and report an error. A partial evaluator will attempt to 
evaluate the given program as far as the available input allows, yielding a new 
program as result. 

In our terminology, partial evaluation of a subject program with respect to known 
values of some of its input parameters results in a residualprogram. Running a correct 
residual program on any remaining input yields the same result as running the original 
subject program on all of its input. Thus, a residual program is a specialization of the 
subject program to known, fixed values of some of its parameters. A partial evaluator 
is a program that performs partial evaluation given a subject program and fixed values 
for some of its parameters. 

The relevance of partial evaluators for compilation, compiler generation, and 
compiler generator generation stems from the following fact. Consider an interpreter 
for a given programming language $. The result of specializing of this interpreter to 
a known source program s (written in S) ah'ead), is a target program for s, written in 
the same language as the interpreter. Thus, partial evaluation of an interpreter with 
respect to a fixed source program amounts to compilation of the source program. 
From this viewpoint, then, partial evaluation and compilation are nothing but special 
cases of program transformation for the purpose of optimization. 

Furthermore, partially evaluating a partial evaluator with respect to a fixed inter- 
preter yields a compiler for the language implemented by the interpreter. And, even 
more mind-boggling, partially evaluating the partial evaluator with respect to itself 
yields a compiler generator, namely, a program that transforms interpreters into 
compilers. We return to these applications in Section 3. 

It is nearly always easier to implement a new language by writing an interpreter 
than by writing a compiler for the language since in the latter case, one has to think 
of two binding times, compile time and run time. Interpretive implementations have 
only one binding time, but are often too inefficient for practical use. One potential 
significance of a good partial evaluator thus is that it allows for the automatic 
construction of efficient compilers from more intelligible interpretive specifications of 
programming languages. This is achieved by the automatic splitting of the inter- 
preter's single binding time into two: compile time and run time. (This is called a 
"staging transformation" in Jorring and Scherlis [27]. 

The improvement is potentially very large, since it is not unusual for an interpreter 
to spend only a very small fraction of its time performing the operations required by 
the program being interpreted, the remaining time being used for various sorts of 
bookkeeping. 

It could be argued that the restriction to language definitions in interpretive form 
is too limiting, since in practice one often chooses to define languages by denotational 
or axiomatic semantics, rather than operationally. However, denotational semantics 
may provide executable specifications of programming languages, as is shown by the 
existence of several semantics-based compiler generators that may in principle all be 
regarded as interpreters (we discuss this in Section 9). In such applications the 
potential improvement is even larger than with traditional interpreters. 



MIX 11 

The interesting question of  course is basically empiric: How good are the programs 
that may be generated by partial evaluation techniques? Our experience (based on 
simple but nontrivial languages) is that mix-produced compilers turn out to be 
natural in structure, reasonably efficient, and able to produce efficient target programs 
that run up to one order of magnitude faster than the interpreted source programs. 
We demonstrate this by an example in Section 5 and various tables in Section 8. 

The paper is organized as follows. The first three sections set up a formal frame- 
work and use it to define partial evaluation and discuss its applications to compilation 
and compiler generation. Other applications are barely touched upon, but a bit is said 
in Section 4, which lists related work, and in Section 9. Mix partially evaluates 
programs in a programming language called Mixwell and is itself written in this 
language. We introduce Mixwell in Section 5. An analysis of  the problems in partially 
evaluating first-order functional languages is undertaken in Section 6. In Section 7 we 
outline the structure of mix, and the paper is concluded by an assessment in Section 
8 and a discussion of directions for future research in Section 9. 

Both practice and theory of partial evaluation would certainly benefit from further 
experimental work. The current version of mix is available from the University of 
Copenhagen through the authors. 

1. Preliminaries 

In this section a framework is set up for discussing partial evaluation and its applica- 
tions. Our definition of a programming language may appear to be a bit pedantic at 
first sight. A precise notation is necessary, however, since more than one language 
may be discussed at the same time, and programs can play multiple roles: sometimes 
as active agents, sometimes as passive data, and sometimes even as both at once. The 
following definitions are inspired by both recursive function theory and Lisp. In 
recursive function theory, programs in the form of numerical indexes are handled as 
both active agents (functions) and passive objects (data) in ways resembling ours. In 
Lisp, programs are data structures, thus avoiding the need for the complex encodings 
typically used in recursive function theory. Connections between our formulations 
and recursive function theory will be discussed further in Section 4. 

We assume there is given a fixed set D whose elements may represent programs in 
various languages, as well as their input and their output. The set D should be closed 
under formation of sequences (d~ . . . . .  dn) of elements of  D, and may be the set of 
all Lisp lists, for instance. 

Parentheses will usually be put to use only when necessary to disambiguate ex- 
pressions. We write X ~ Y to denote the set of all total functions from × to Y, and 
X - ~ Y for the partial functions. A function-type expression X ~ Y ~ Z is paren- 
thesized as X -~ (Y ~ Z), and a double function application f x y is parenthesized 
(f x) y (where f, x, and y have types f: X ~ Y ~ Z, x: ×, y: Y for some X, Y, and Z). 

We identify a programming language I with its semantic function on whole 
programs: 
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L: D -  ~ D - - ~ D .  

The well-formed L-programs are those to which L assigns a meaning, i.e, 
L - p r o g r a m s  = d o m a i n  L. 

The input-output function computed by E ~ L-programs is (L #): D - ~ D (which 
is partial since { may loop). Thus, L E (d I . . . . .  dn) denotes the output (if any) 
obtained by running the L-program { on input data (d , ,  . . . ,do). For  an example, 
consider the following program "power" to compute x to the nth power: 

p o w e r  = 

Yf n x ) = z f n = 0 t h e n  1 

else/feven(n) then f(n/2, x) 2 

else x*f(n-1, x) 

The result of  running the program power is the result of  applying its first function f 
(the goal function) to the program's input values. For example, k power (3, 2) = 8. 
We take k power d to be undefined if d is not a list of length two, both of whose 
elements are positive integers. In Sections 2 and 3, the equality sign always means 
strong equality: Either both sides are undefined, or else they are defined and equal. 

2. Partial evaluation 

We proceed to give formal definitions of residual programs and partial evaluation. 

Definition 2.1. Let ~ be an L-program and let d l, d 2 e D. Then an L-program r is a 
residualprogramfor ~ with respect to d~ iff for all d 2 ~ D, 

L ~ <d,, d2) = L r d 2 .  [ ]  

Definition 2.2. A P-program p is an L-partial evaluator iff 

P p ( f ,  d, ) is a residual L-program for f with respect to dl 

for all L-programs E and values d, e D. We refer to the program E as the subject 
program. [] 

So a partial evaluator takes a subject program and part of  its input and produces a 
residual program; the residual program applied to any remaining input produces the 
same result as the subject program applied to all of  its input. A consequence of  
Definition 2.2 is that the following characteristic equation for the partial evaluator p 
holds: 
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L E  <~d,,d2) = L ( P p  <~, d , ) )  d2. (2.1) 

For a simple example, let the L-program { be power from Section 1, and suppose we 
are given that n equals 5. A trivial residual program residl may easily be constructed 
by adding a single equation to power, resulting in the program below: 

resid~ = 

g (x )  = f(5, x) 

f(n,x)  = ( f n = 0 t h e n  1 

else ~even(n)  then f(n/2, x) 2 

else x,f(n-1, x) 

The general possibility of partial evaluation in recursive function theory is known as 
the S-m-n theorem, discussed in Section 4 and traditionally proved in just this way, 
by adding equations. 

A less trivial residual program may be obtained by symbolic evaluation of the 
program reside. This is possible since the program's control flow is completely 
determined by n, and it yields an equivalent program with only one equation: 

resid2 = g (x )  = x ,  (x2) 2 

Partial evaluation thus can be viewed as substitution of known values for some 
parameters, possibly followed by equivalence preserving program transformations. It 
can result in residual programs which are faster (though sometimes larger) than the 
original. Examples may be found in Beckman et al. [2] and in Emanuelson and 
Haraldsson [13]. 

Partial evaluation followed by evaluation of the resulting program may be faster 
than normal evaluation because of the optimizing transformations. Actually this 
phenomenon occurs in the example runs described in Section 8. This should not be 
surprising. For example, it is often faster to compile and then run the resulting target 
program than to interpret. 

We should stress that Definition 2.2 does not say anything about the optimizing 
power of a partial evatuator. The quality and efficiency of the residual programs 
produced by a partial evaluator wholly depends on the transformations built into the 
partial evaluator and on its strategies for applying the transformations. 

In practice it seems difficult to obtain efficient residual programs without com- 
promising termination properties. For instance, a residual program in a call-by-value 
language may terminate more often than the original subject program because of the 
call-by-name nature of symbolic evaluation. 
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When evaluated with call-by-value, the example program below will loop for all 
inputs (x,g): 

f(x, y) = head(pair(x, g (x ) ) )  

g(x) = g(x) 

But given that x -- 7, say, the program can be partially evaluated, using the 
"obvious" reduction of head (pair(x, g (x))),  to given a program that terminates for 
all inputs g and returns 7: 

fT(Y)--7 

We will accept this as a residual program, although it would not be a correct one 
according to Definition 2.1: it terminates too often. However, this is not considered 
a serious problem in applications. 

Further, it is difficult to make a partial evaluator do powerful transtbrmations and 
terminate, even when applied to subject programs that always terminate themselves. 
Hence, Definition 2.2 needs to be relaxed in practice to say that provided the partial 
evaluator terminates, the result is a residual program. By such a relaxed definition, 
however, a program that loops on all input is trivially a partial evaluator, which we 
do not want. 

It would be useful to include in the definition of  partial evaluation some of its 
desired properties to exclude "trivial" partial evaluators. Heering uses the setting of 
equational logic and initial algebra specifications to give a precise meaning to the 
vague requirement that a partial evaluator should make maximal use of the known 
input. He shows that in general a finite set of  reduction rules is not sufficient to reduce 
every open term to a (minimal) normal form [23]. As a consequence it is not possible 
to obtain an "optimal" partial evaluator in general. This impedes a precise and 
complete definition of  nontrivial partial evaluation that would help us in developing 
one. The problems we have met in this connection will be discussed further in Section 
6. 

3. Compilation and compiler generation 

We now turn to the applications of partial evaluation to compiler generation. First 
we give simple formal definitions of interpreters and compilers. 

3.1. Interpreters and compilers 

Let L and S be programming languages (S is intended to be a "source" language). 
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Definition 3.1. An L-program int is an S-&terpreter iff 

k i n t  ~s, d )  = S s d 

for all S-programs s and data d ~ D. 

(3.1) 

[] 

By this definition, an interpreter takes as input both the program to be interpreted and 
its input data. We will call int and L-self-interpreter iff S = k (sometimes the term 
"metacircular interpreter" is used). The set of  interpreters for the language S (written 
in L) is denoted by 

Now let T be a programming language (intended to be a target language). 

Definition 3.2. An k-program c is an S-to-T compiler iff 

1. L c s e T-programs for all S-programs s, and 
2. T(L c s) d = S s d for all S-programs s and data d ~ D. [] 

The result t -- L c s of running a compiler thus is a (target) T-program t with the 
same input-output  behavior as the (source) program s. The set of  S-to-T compilers 
written in k is denoted by 

3.2. Compilation by partial evaluation of an &terpreter 

Let the P-program p be an k-partial evaluator. I f  an S-interpreter int is partially 
evaluated with respect to a given S-program s, the result will be an k-program with 
the same input-output  behavior as s, since 

S s d = L int <s, d )  

= L (P p (int, s ) )  d 

by (3.1) 

by (2.1) 

Note  that the last line describes the application of  a certain L-program (namely the 
program P p ~int, s ) )  to the input d. The result of  this is the same as the result of  
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applying the S-program s to d, and therefore we may reasonably call the resulting 
program target 

target = P p (int, s> 

since it is an L-program with the same input-output behavior as S-program s. In other 
words we have compiled the source S-program s into an L-program target by partially 
evaluating the S-interpreter with respect to the source program s. For concrete 
examples, see Figure 2 (source program s), Figure 3 (interpreter int), and Figure 4 
(target program target) below. 

3.3. Compiler generation 

Definition 3.3. An L-program mix is an L-autoprojector iff it is an L-partial evaluator. 
We will refer to the language L as the subject language. [] 

An autoprojector is thus a partial evaluator for the language in which it is itself 
written. The term is from Ershov [15]: "auto"  comes from the program's self-appli- 
cability, and "projector" from the fact that the residual program for f(x, y) with 
respect to x is a program computing a function whose graph is the projection (along 
the x-axis) of f's graph, in an analytical geometry sense. 

In the following we wilt assume that a hypothetical autoprojector mix is given. By 
letting mix play the role of the partial evaluator p from Section 2, it holds that 

target = L mix ( int,  s>. (3.2) 

This application does not depend on mix's self-applicability, but for the following it 
in essential that mix is an autoprojector. A compiler from S to L may be generated 
by computing 

comp = L mix (mix,  int > (3.3) 

that is, by partially evaluating the autoprojector itself with respect to the S-inter- 
preter. To see this, observe that 

L c o m p s  = L (L mix (mix,  int>)s by (3.3) 

= L mix (int, s> by (2.1) 

= target by (3.2) 

so comp is a stand-alone compiler that given s will produce a target program for s. 
Expressed symbolically: 
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comp 6 ~ 
LL~ 

Note that we now have two possibilities of compiling s by means of partial evaluation: 
either by running mix on (int, s), or by generating comp (using mix) and applying 
that to s. The resulting target programs will not only be equivalent; they will even be 
textually identical. 

However, producing the target program by applying the compiler comp to s can 
be expected to be more efficient than by computing k mix (int, s). The reason is that 
mix is a general-purpose partial evaluator, while comp is a rather specialized version 
of mix, predisposed to partially evaluate a fixed interpreter int which is given varying 
S-programs as known input. The presumption that comp is faster is well borne out 
by the experimental results reported in Section 8. 

3.4. Compiler generator* generation 

By similar reasoning a compiler generator may be obtained: 

cogen = L mix (mix, mix). (3.4) 

It holds that 

comp = L cogen int. 

To see this, observe that 

k cogen int = k (k mix (mix, mix)) int by (3.4) 

= k mix <{mix, int) by (2.1) 

= comp by (3.3) 

The function computed by the L-program cogen thus transforms an interpreter into 
a compiler that defines the same language: 

s U L cogen: 
L 

Note that this leaves us with two possible ways of producing the compiler comp: 
either by running mix on (mix, int) as in Section 3.3 or by generating eogen (by mix) 
and applying that to int. The resulting compilers will be textually identical in the two 
cases. Applying cogen is the faster of the two methods (as is illustrated by the results 
in Section 8). 
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It is interesting to compare the types of the functions computed by mix and by 
cooen. Let rep(A - ~ B) _~ k-programs denote the set of program representations 
of partial functions from A to B, and let rep (A --} B) _ k-programs denote the set 
of representations of total functions from A to 13. As can be seen, the function k 
cooen computed by cooen is a curried version of  that computed by mix: 

L mix :  rep (X  x y - --+ Z) x X ~ r e p ( Y  - - *  Z) 

L cogen :  rep (X  x y -  ~ Z )  --+ r e p ( X - - ,  r e p ( Y  - -+ Z ) ) .  

In fact, c o g e n  is more than a compiler generator. It is a realization of a general 
intensional currying function, able to transform a program for a two-place function 
f into a program which, when given data x = x 0, will yield as output a program for 
the function 2y.f(x0, y). In particular, cogen transforms an interpreter into its curried 
form, a compiler. Also note that 

c o g e n  = L c o g e n  mix .  

In this sense cooen can be seen as a compiler generator generator generator . . . .  

4. Historical notes 

Theory. The concept of partial evaluation is certainly very old and has seeds from the 
lambda calculus and recursive function theory. To our knowledge the first explicit 
statement of its possibility was given when Kleene formulated and proved the S-m-n 
theorem [30] (see the end of this section). An early use of partial evaluation as a 
programming aid was suggested in Lombardi's papers on incremental computation 
[35,361. 

Futamura saw that compiling may in principle be done by partial evaluation, and 
also that compilers may be generated by self-application of  the partial evaluator [18]. 
Turchin was probably the first to realize that even a compiler generator could be built 
automatically by applying a partial evaluator to itself [491. In any case these appli- 
cations seem to have been independently discovered in the USSR, Japan, and Sweden 
in the mid 1970s and subsequently communicated in Beckman et al. [2], Ershov [14], 
and Turchin [50]. However, it was not until Ershov's expository paper that the ideas 
became widely accessible in the West [15]. Ershov coined the term "mixed computa- 
tion" for what we call partial evaluation. 

A consensus has been established as to how partial evaluation should be given 
precise definitions in imperative and functional programming. The case of logic 
programming has been less clear. Early attempts at a definition identified partial 
evaluation with a number of transformations typically employed. Recently, however, 
a precise "declarative" definition of partial evaluation of logic programs with 
negation has been suggested [34]. 
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Practice. In the mid 1970s, projects aimed at putting partial evaluation to practical 
use were initiated in Sweden. A large partial evaluator for Lisp as used in practice, 
with imperative features and property lists, was described in Beckman et al. [2]. This 
work included the use of partial evaluators to translate programs in various lan- 
guages, as did Haraldsson [22], Emanuelson and Haraldsson [13], and (in the United 
States) Turchin et al. [51]. At the same time, trends to recognize partial evaluation as 
an important tool appeared among dedicated builders of compiler generators [39,40]. 

Partial evaluation of Prolog was taken up in Komorowski [31], and Kahn de- 
veloped a partial evaluator for Lisp in Prolog [28]. Partial evaluation of an imperative 
language was addressed in Ershov [15] and Butyonkov [5]. 

The following indirect method for compiling Prolog programs was suggested by 
Kahn and Cartsson. A Prolog interpreter (written in Lisp) is first partially evaluated 
with respect to a Prolog program, yielding an equivalent Lisp program, which is then 
compiled into machine language using an existing Lisp compiler. 

The resulting target programs are said to run faster than those produced by 
Warren's seminal Prolog compiler, but compilation itself is slower by two orders of 
magnitude [29,55]. 

Gallagher discussed partial evaluation of Prolog meta programs [20]. Partial evalu- 
ation can make meta programming more efficient, since the specialization in effect 
removes layers of interpretation. 

Autoprojectors. Venken described a partial evaluator for Prolog in Prolog [52], as did 
Takeuchi and Furukawa, who applied theirs to the specialization of meta programs 
as suggested above [48]. Both were examples of autoprojectors, as was Safra and 
Shapiro's partial evaluator for Concurrent Prolog [43], one use of which was the 
transformation described in Codish and Shapiro [9]. 

To our knowledge all of these systems require considerable human assistance. None 
of them appear to have been successfully self-applied. 

A nontrivial self-applicable partial evaluator was developed in 1984 by the authors 
and communicated in Jones et al. [26]. The system was called mix (following Ershov's 
terminology) and was a preliminary version of the fully automatic system described 
in the present paper. It generated good compilers by self-application, with the proviso 
that the user had to annotate function calls to indicate whether they were intended to 
be unfolded or not. A detailed description was given in Sestoft [44]. 

Survey. Ershov [15] and Futamura [19] are good survey papers of the area. The latter 
includes a bibliography. For an extensive bibliography of partial evaluation literature 
in English, see Sestoft and Sondergaard [46]; for one including references to papers 
in Russian as welt, see Sestoft and Zamulin [47]. 

Connections with recursive function theory. The partial recursive functions have been 
studied extensively using a framework very similar to our own, but usually with 
function arguments, results and program encodings drawn from the natural numbers 
N = (0, 1, 2 , . . .  } [41,30]. A wide variety of formalizations proposed in the 1930s 
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as candidates to define the class of  all computable partial functions have turned out 
to be equivalent (leading to the famous Church-Turing thesis). 

In recursive function theory, one assumes given an enumeration of programs P0, 
P~, Pz . . . . .  not further specified except that for each i and k there is an associated 
function (p!k): N k ~ IN, namely the partial function of k arguments computed by P~. 
The superscript (k) of ~oi is dropped when the number of arguments is clear from 
context. The Church-Turing thesis can be stated as follows: let Pi be the ith machine 
in a standard enumeration of all Turing machines, and let ~0! k) be the k argument 
function computed by P~. Then a partial function f: N k - ~ N is computable iff it 
equals ~0} k) for some i. 

The first similarity with the framework presented in Section 1 is immediate: The 
given enumeration of  Turing machines defines a programming language with data 
domain D = N and semantic function L: N - -~ N - --, N where 

L f d  = q~t(d) 

This is extendable to multiargument functions by defining 

L g' ( x ~ , . . . ,  x k )  = ~o~k)(xl . . . .  , xk) 

where (_, . . . .  _)  is one of  the standard tupling functions well known in recursive 
function theory. The following theorems are proven in Rogers [41] for the Turing 
machine enumeration: 

Existence o f  a universal machine: There exists a z such that for all x and y, 
q~z(x,y) = ~0×(y) if q&(y) is defined, and q~z(x,y) is undefined if Ox(Y) is undefined. 

In our terminology the universal machine z satisfies L z (z ,y )  = L x y for all x, y. In 
other words, L-program z is an L-interpreter; a universal machine is what was called 
a metacircular or se/f-interpreter in Section 3. Another central theorem: 

The S -m-n  theorem." For each m,n there exists a total recursive function s~ of  m + 1 
arguments such that for all x, y ~ , . . .  ,Ym, z ~ , . . .  ,zn, 

~Px(Y~, • • . ,  Ym, Zl . . . .  ,Z~) = q~.~(x,y~ . . . . .  y.,)(Z~ . . . . .  Z~,) 

For m = n = l, the theorem simply asserts the existence of an autoprojector, i.e., an 
L-partial evaluator for k. To see this, note that the recursivity ofsl~ implies that it must 
have a program. Calling this "mix" and replacing q~, by / x, the equation above is just 
our definition of  an autoprojector: 

Lx <~y, z )  = L ( L  m i x  ( x ,  y ) ) z  

Further, any "acceptable numbering" [41, p. 41] of all recursive functions satisfies the 
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same two theorems, so the existence of self-interpreters and a (perhaps trivial) mix 
program is quite natural. 

The standard proof  of  the S -m-n  theorem in essence uses the trivial construction 
of Section 2, which suffices for the purposes of  recursive function theory. Our goals 
are more ambitious: to ensure that s~ (x, gl . . . . .  Ym) is an efficient program, and to 
ensure it is an efficient program even in case x is mix (self-application). 

5. The language Mixwell 

The choice of subject language for an autoprojector is crucial. On the one hand, the 
language should be simple to process. On the other hand it should be rich enough to 
express a nontrivial autoprojector. Any hope that a weak subject language could do 
must be given up because it has to be self-interpretable. This is due to the fact that a 
good autoprojector must be a generalized self-interpreter: applied to a program and 
all of its input, the autoprojector should do a standard evaluation, yielding a constant 
program as result. As a consequence of  being self-interpretable, the subject language 
must be too complex to allow expressing its own halting function [24]. 

Applicative languages seem preferable to imperative ones owing to the ease with 
which source-to-source transformations may be performed. This is because ~¢ the 
property that equals can be substituted for equals without disturbing the meaning of 
the enclosing expression (usually referred to as referential transparency). So trans- 
formations of  subterms can be done without context information. 

5.1. Description of Mixwell 

The subject language of  mix is called Mixwell and may be thought of as essentially 
a subset of  (pure) first-order statically scoped Lisp (or Scheme). A Mixwell program 
takes the form of  a system of  recursive equations as shown here in abstract form 
(examples in concrete syntax follow): 

f l  ( x l  . . . . .  x~  ) = e~ 

fh (Xl  . . . . .  Xp) = eh 

Here the f, are function symbols, the x I are variables (formal parameters) of  the 
functions, and e~ is called the body expression of f,. Expression values range over 
D = {d I d is a Lisp S-expression}. Expressions are constructed from variables (atoms) 
and constants of  form (quote d) by operators: car, cdr, cons, equal, and atom (as 
known from Lisp) in addition to if and call. The operator if is used in a conditional 
(ifeoel e2), whereas callis used in a function call (callfjel e 2 . . . en). The variant callx 
is used to call external functions (e.g., gensym). 

Variables have static scope. All operators are strict, except if, which is strict only 
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in the first operand. In particular, call is strict, which implies a call-by-value 
semantics. Mixwell is first order: functions cannot be manipulated as data objects. 
The program's input is through the first function's variables. 

An example Mixwell program in concrete syntax is given in Figure 1. The 
arguments of  lookup (and hence of  the program) are: a name N, a list Ns = (N1 N2 
• . . Nn) of names, and a parallel list Vs = (V l V 2. . . Vn) of values. I fN appears in Ns 
then V~ is returned, where i is the least index with N = N,, else error is returned: 

( ( l o o k u p  (N NsVs)  = (if (equal Ns (quote n i l ) )  

(quote error) 

( i f  (equal N (car Ns))  

(car Vs) 

(call l o o k u p  N (cdr Ns) (cdr V s ) ) ) ) ) )  

Figure 1. An example program written in Mixwell. 

5.2• Mixwell + 

For the sake of  partial evaluation it is important that Mixwell be simple, but the above 
example shows that such simplicity may impair readability, We resolve this dilemma 
by allowing certain forms of  simple syntactic extensions, translatable by machine into 
Mixwell. We call the extended language Mixwell + . The extensions include: 

• :: as an infix form of cons 
• 'd for (quote d), with d ~ D 
• (l iste 1 % . . . e N ) f o r ( e  1 : : ( % : : . . . ( e N : : ' n i l )  . . . ) )  
• = as an infix form of equal, and (null e) for (e = 'nil) 
• a conditional 

(if e I then e 2 elsf e s then e 4. . . else e 2 N + l  ) 

• a case expression 
(case e of  pat  I :e 1 . . . patN :eN [o therw ise  eN+l ]) 

• let and where expressions o f  fo rm 

(let pat  1 = e l • . .  patN = eN in e) 
(e where pat 1 = el .  • .  patN = eN) 

Here pat~.is a pattern which is built by pairing (indicated by ".") and which contains 
variables that become bound to expressions selecting substructures of the value of e~. 
For  example, (let (a b) = c in e is equivalent to e with all free occurrences of a and 
b replaced by (car c) and (car (cdr c)), respectively. In a case expression two further 
forms of  patterns are allowed: a constant pattern of  form 'd, which is matched only 
by the S-expression d, and a pattern of form (atom? N) which is matched by any atom, 
that atom becoming bound to N as a result of  matching. 
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5.3. An example 

To give a nontrivial example program in Mixwell + , we present an interpreter fo r  
another simple language M. This will also give us the opportunity to show an 
input/output example for a compilation done by partial evaluation of  an interpreter. 
The language M has a syntax defined by the following grammar: 

( p r o g r a m )  :: = (read (variable) and evaluate (expression)) 

(expression) :: = (variable) 
( c o n  (constant))  
( (opera tor )  (expression) (expression)) 
(if (expression) (expression) (expression)) 
(rnin (variable)  s u c h  t h a t  (expression) = O) 

( o p e r a t o r ) : :  = + 1 -  I* 

(variable) : := (Lisp a tom)  

The intended semantics of  M should be clear from the syntax. The only data type is 
P,~, the nonnegative integers. A program reads one input value into a variable and 
returns the value of  the body expression. For  simplicity the syntactic category 
(constant)  denotes lists of  l's: the nonnegative integer value m is indicated in unary 
as a list of  m l's. In the if expression, a nonzero first operand is regarded as denoting 
"true."  The rain expression evaluates the constituent expression for values 0, 1 . . . .  
of  the variable until the value of the expression is zero, and then returns the current 
value of the variable; it fails to terminate if the expression is nonzero for all values of  
the variable. Plus and times are the usual arithmetic operations, but note that " - "  
denotes cutoff subtraction: x - y is zero if and only if y ~> x. 

Figure 2 shows an example program written in M. Given a value x ~ N, the program 
evaluates min {y s N I x 2 - y2 = 5}, provided the value exists. 

( read  x and evaluate 

(min y such that ( -  (, xx)(+ (,  yy)(con(11111)))) = 0)) 

Figure 2. A program written in M. 

Figure 3 shows an interpreter for M written in Mixwell + . The kernel is the function 
evaJ which uses a traditional interpretation loop. Again, values are represented by 
lists. The mutually recursive functions f and g implement the "iterating" expression 
(rain (variable)  s u c h  that  (expression) = 0). To keep the example simple, very 
little checking is done by the interpreter: it gives meaningful results only on M 
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( 
(run (P X) = (let (read N and evaluate E) = P in (calleval E (list N) ( l is tX))))  

(evat (E Ns Vs) 
= (case E of  

(atom? N) 
( 'con C) 
( '+El  52) 
( ' -E l  E2) 
( ' ,El E2) 
('if E0 E1 E2) 

('min N such that  E = O): 
otherwise 

(call lookup N Ns Vs) 
C 
(call add (call eval E1 Ns Vs)(call eval E2 Ns Vs)) 
(ca//sub (calleval E1 Ns Vs)(calleval E2 Ns Vs)) 
(call mul (call eval E1 Ns Vs)(ca//eval E2 Ns Vs)) 
( i f  (call eval E0 Ns Vs) then (call eval E1 Ns Vs)) 

else (call eval E2 Ns Vs)) 
(ca/ i f  E (N :: Ns)('nil::Vs)); Bind N to 0 

: 'error)) 

(lookup (N Ns Vs) 
= (let (N1.Nr) = Ns 

(Vl .Vr) = Vs in 
( i f  (null Ns) then 'error 
elsf (N = N1) then V1 
else (call lookup N Nr Vr)))) 

(f (E Ns Vs) = (call g (call eval E Ns Vs) E Ns Vs)) Evaluate E 

(g (WE NsVs) 
(let (Vl.Vr) = Vs in 

( i f  (null W) then V1 
else (ca/If E Ns (('1 : :V1)::Vr)))))  

;Exit if E = O, else 
;increment N by 1 

(add(X Y) = . . . )  
(sub(X Y) = . . . )  
(mul(X Y) = . . .) 

) 

Figure 3. Interpreter for M written in Mixwell +. 
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programs that are (syntactically) well formed, and in which every variable v used is 
declared by an enclosing " m i n  v s u c h  t h a t . . .  "' or " r e a d  v a n d  e v a l u a t e . . .  " 
expression. The M program in Figure 2 can now be translated into Mixwell by 
partially evaluating the interpreter in Figure 3 with P being the M program and × 
being unknown. As can be seen by trying out this symbolic evaluation by hand, much 
of the processing in the interpreter can be performed even though the input to the M 
program is unknown (i.e., × is unknown in the interpreter). 

For example, the interpreter's main loop, including the matching of program pieces 
done by the case expression in function eval, can be performed completely and hence 
does not appear in the residual program. The same holds for the loop in the lookup 
function. On the other hand, the actions that depend on the unknown input to the M 
program cannot be performed by partial evaluation and thus must appear in the 
residual program. For example, the actions done in functions f and 9 which imple- 
ment the ra in  expression depend on the unknown input and cannot be performed. 
Hence the conditional expression from the body of the g function that appears in the 
residual program shown in Figure 4. 

We have described the compilation from M to Mixwell by partial evaluation of the 
above interpreter, 

target = L mix <int, s) 

where int is the interpreter in Figure 3 and s is the M source program in Figure 2. The 
compilation can also be done using a compiler comp produced by the mix-generated 
compiler generator cogen, first making the compiler, 

comp = L cogen int 

( (run (X) = (call f (list 'nil X)))  

(f (Vs) 
= (i f  ('nil = (call sub (call mul (cadr Vs) (cadr Vs)) 

(call add (call mul (car Vs) (car Vs)) 
'(1 1 1 1 1)))  

then (car Vs) 
else (call f (('1 :: (car Vs)) :: (cdr Vs)) ) ) )  

(add (X Y) = . . . )  
(mul (X Y) = . .) 
(sub (X Y) = .) ) 

Figure 4. Target program m Mixwelt +. 
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then using it to compile 

t a r g e t  = L c o m p  s. 

The resulting target programs will be identical. The target program shown in Figure 
4 can be produced by our partial evaluator mix by either of the above methods. It is 
given in Mixwell + for readability. 

To see how much the running time may be reduced by using the target program 
(Figure 4) instead of the interpreter and the source program (Figures 3 and 2), we may 
do a very crude time analysis. 

We count one time step for each car, cot, cons, quote, =,  and call, the only 
exception being that the functions add, sub, and mul are counted as taking one time 
step for each call to any of them. By this scheme the target program executes 20 steps 
per iteration of  its main loop, while the interpreter executes 119 steps, the ratio being 
6.0, a sixfold reduction in running time. 

This ratio tends to grow as the source program or the source language get larger, 
since relatively more interpretation time is needed for syntax analysis and environ- 
ment references. Speedup factors between 30 and 200 are reported in Emanuelson and 
Haraldsson [13] for specialized versions of a general pattern matcher parameterized 
with a pattern expression to be matched. 

6. Methods and problems 

We now turn to the basic principles and problems involved in partially evaluating sets 
of recursive equations. The basic transformations used in the particular partial 
evaluator mix are symbolic evaluation and unfolding. These techniques are well 
known from the field of program transformation [7]. 

It should be noted that not all of  the following is based on solid mathematical 
foundations. Some of the techniques described are heuristically based and in need of 
deeper analysis. Also, no completely satisfactory strategy for handling call unfolding 
and call specialization has been found. The automatic strategy described below works 
well on a large class of programs but may fail on other programs. A consequence of 
these problems is that the partial evaluator as implemented does not have the ideal 
termination properties required by Definition 2.2. It may fail to terminate even when 
a residual program exists, and may produce a residual program that terminates more 
often than the subject program. 

A system-oriented mix description is given in Section 7. Note that in Sections 6-8, 
the language l is fixed, so k = Mixwell. 

6.1. Specializing functions by symbolic evaluation 

Given a subject program as a system of  recursive equations, each of form 
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f(x 1 . . . . .  Xn) = e 

and given available input to this program, the residual program is naturally another 
system of  equations, where each equation is a specialization of one of the original 
ones; 

f'(Yl . . . . .  Ym) = e'. 

Here f' represents a specialized version of f, and the variables of  f' are a subset of  the 
variables of  f. For  example, if it is discovered that in one call to f, the first argument 
always has value 5, independently of the value of the subject program's unavailable 
input, the partial evaluator can exploit this fact by constructing an f-variant f' with 
the first variable removed, and in which e' is a simplified version of e. A function f 
may have several specialized versions, each corresponding to a tuple of  known values 
of some of its variables, or none. 

The body e' of  a specialized version of  a function f(xl . . . . .  xn) = e is obtained by 
symbolic evaluation of  its body expression e. 

Symbolic evaluation deals with expressions (i.e., pieces of Mixwell programs) as 
values, and is always done in a symbolic environment which is a set of  bindings of  
variables to expressions: 

e n v  = . . . . .  xo eo} 

In this way, the symbolic environment in mix contains information known during 
function specialization about the arguments Xl . . . . .  xn of f (namely, their symbolic 
values). In a more sophisticated partial evaluator, symbolic environments containing 
other kinds of information may be used, as in Beckman et at. [2]. 

For  a simple example of symbolic evaluation, let S~e~ represent the result of 
symbolically evaluating expression e in a given symbolic environment. A natural way 
to symbolically evaluate (cor e) is 

S~(car e)~ = let e' = S~e~ in 

case e' of  (6.1) 

~(quote(x. y))~]: ~(quote x)~] 

~(cons e, e2)~: ~el~ 

otherwise ~(car e')~ 

Note that the result is an expression, i.e., a piece of text. So if the result S~e~ of 
symbolically evaluating expression e is the expression (cons el e2) for some ex- 
pressions el and e2, then S~(cor e)} is the expression el. The semantic brackets "~" 
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and "~" denote quasi-quotation as usual: Metalanguage variables (here e, e', x, y, el,  
and e2) may appear inside the brackets, and then stand for the expressions they are 
bound to, whereas object language operators stand for themselves. 

If  an expression e to be symbolically evaluated contains a function call, it must be 
decided whether the call should be unfolded or suspended. Unfolding the call means 
replacing it by the called function's body, with argument expressions substituted for 
variables. If suspended, a specialized version of the call will appear in the residual 
program. 

Those variables of f that are present in f' are called dynamic variables, and the 
others are called static. The value of a static variable is known during function 
specialization: It depends only on the available input. The value of a dynamic variable 
is considered unknown: it may depend on the unavailable input also. By the tech- 
niques used by mix, all the specialized versions of a function f have the same sequence 
of dynamic variables. (However, this is not necessary in principle). The generated 
variants of a subject program function make up a kind of tabulation of the possible 
values of its static variables. This technique is called polyvariant mixed computation 
by Bulyonkov [5] and is similar to function tabulation [19]. Theoretical treatments of  
polyvariant specialization can be found in Bulyonkov [6] and Jones [25]. 

6.2. The treatment of function calls 

Some partial evaluators determine for each defined function whether all calls to it 
should be unfolded or suspended during partial evaluation. Other partial evaluators 
make this decision each time a call is encountered during function specialization. A 
key feature of  the mix approach is to take a decision on this for each function call 
appearing in the text of  the subject program, so that the decision may be made in 
advance of function specialization. 

Consider a function call expression (caflf el • . . en) to be specialized. Two obvious 
possibilities are either to produce a residual call (to a specialized version of f), or to 
unfold the call. To do the unfolding, the equatio n f(xl . . . . .  Xn) = e defining f is 
found, and (call f el . . . %) is replaced by the result of symbolically evaluating e in 
the local symbolic environment {xl ~-~ S~el ~ . . . . .  xn ~ S~en~}. 

The problem. The problem of finding a good call unfolding strategy is very subtle. In 
this context there are at least three pitfalls to avoid. 

First, a too conservative strategy leads to trivial residual programs as shown in 
Section 2. 

Second, a too liberal strategy leads to loops during function specialization in which 
the same function is unfolded infinitely. In fact, only an extremely conservative 
strategy will avoid this danger. To see this, consider a partial evaluation with respect 
to a known x of 
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f(x, y) = / f  p(y) then x else g(O) 

g(x )  = 9(x + l )  

where p(y) in fact holds for all y, but the expression happens to be too complicated 
for a partial evaluator to realize this (it may express a deep number theoretic 
theorem). So f is total. Partial evaluation of t with respect to x, however, is likely to 
proceed infinitely. This will happen even in case the partial evaluator uses the very 
conservative rule that calls are unfolded only when all their arguments have known 
values. In the example, it is easy to see that 0 is everywhere undefined, but definedness 
is in general not decidable. Adopting a rule like "never unfold calls" is out of the 
question, because it leads to trivial partial evaluation. Therefore, one must live with 
the risk of nontermination or impose some termination condition, for example, 
stipulate some arbitrary upper limit for the number of unfoldings to be performed. 

Finally, the residual programs can easily turn out to be less" efficient than the 
original subject programs, owing to the call-by-name nature of symbolic evaluation. 
As an illustration of the last point: 

f(n) = / f n  = 0 then 1 else g(f(n-1)) 

g(n) = n + n +  1 

should not be unfolded to 

I f (n)  = zfn = O t h e n t e l s e  f(n - 1 )+  f(n - 1 ) + 1  ] 
L J 

since the first runs in linear time while the second requires exponential time. For- 
tunately, it is not difficult to avoid such duplicated function calls in a Lisp-like 
language, because the duplicates are easily recognized during symbolic evaluation. In 
fact, any risk of duplication can be detected even before symbolic evaluation. 

Approaches to a solution. This still leaves the basic problem of when to unfold function 
calls. There are (at least) five possible ways. The first possibility is to unfold during 
function specialization only calls in which all arguments have known values, and then 
possibly do further unfolding in a separate stage after function specialization. This 
way the issues of function specialization and call unfolding are effectively separated, 
and the method is quite safe. Unfortunately it gives very many residual functions and 
has turned out to be too inefficient in our experiments. The conclusion is that also 
(some) calls not all of whose arguments have known values have to be unfolded 
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during function specialization. We see four possible ways to make the decision on 
which calls to unfold: 

la. Interactively, during function specialization, according to advice given by the user. 
lb. By hand annotation in advance of function specialization, individually marking all 

calls in the subject program as "to be unfolded" or "to be suspended." 
2a. Dynamically, using some dynamically determined (automatic) unfolding strategy 

during function specialization. 
2b. By automatic static annotation, i.e., by applying a preprocessor to mark subject 

program calls "to be unfolded" or "to be suspended." 

Method la was used in the early program transformation systems, and much 
current research in this field concerns systematizing and automating methods that 
work well by hand, to reduce the complexity of what the user sees. 

The first self-applicable version of mix used method lb. However, it is difficult to 
see just which calls should be unfolded (and far too hard for inexperienced users). 
Automatic unfolding is necessary for practical use, and especially if mix-produced 
programs are to be partially evaluated yet further. This is because call annotation by 
hand then requires a user's full understanding of machine-generated programs, which 
is unreasonable. We therefore tried method 2a, but found it too expensive in terms of 
partial evaluation time. 

The current version of mix uses preprocessing to add "unfold" call annotations 
(method 2b); then it does a straightforward symbolic evaluation as described above, 
blindly obeying the annotations; and finally it postprocesses the residual program so 
produced, to find (further) calls that can profitably be unfolded. This is all done 
automatically. 

6.3. Some principles for call unfolding 

Consider a call appearing in a recursively defined function: 

f (x l  . . . . .  xn) = . . .  f ( e l , . . . ,  e n ) . . .  

If there exists an argument x~ which always decreases (according to some well-founded 
partial ordering), then the call may safely be unfolded, provided x~ is evaluable to a 
constant during function specialization. For example, the program power in Section 
1 may be unfolded when n is static (has a known value), but not when n is dynamic. 

This applies also to partial evaluation of interpreters. Consider the computation of 

t a rge t  = L m i x  ( i n t ,  s ) .  

For the great majority of programming languages, an interpreter can perform/ 
evaluate some commands/expressions on the basis of their subcomponents, without 
reference to other parts of the enclosing program s (except that it uses the information 
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carried by the environment). Thus recursive calls by the interpreter that "descend" to 
smaller parts of s may always safely be unfolded, but whenever the interpreter shifts 
its attention to a different or a larger part of s, its corresponding call may not be 
unfolded, owing to the risk of infinite expansion. This justifies marking individual 
calls rather than entire functions. 

For example, in Figure 3 some of the calls implementing the rain expressions 
should not be unfolded because of the risk of infinite expansion, but most of the others 
may. The problem arises because of the mixture of static actions (dependent only on 
the source program) and program execution actions usually found in interpreters. 

One unfolding method is rather simple, but works surprisingly well in practice. A 
conservative strategy is used to make call annotations in a preprocessing step, and 
further unfoldings after function specialization are based on an analysis of the call 
graph of the first version of the residual program. We return to this analysis in Section 
6.5, and a more complete description is given in Section 7. 

The conservative strategy for call annotation is to mark a call as "to be suspended" 
unless either (1) it can be seen that all its arguments are static, or (2) a static argument 
is bound to a proper substructure of itself in a directly recursive call. If  by this, infinite 
unfolding results during function specialization, then the subject program already 
contained a function that would be infinitely evaluated for any value of the program's 
dynamic parameters (though this does not imply that the subject program would run 
forever: the function might never be called). 

Clearly some kind of program analysis is required to gather the information about 
which variables will be static (i.e., will have known values during function specializa- 
tion). This turns out to have other uses as well, and is now described. 

6.4. Preproeessing: Binding time analysis 

The preprocessing, which we call binding time analysis, can be done by itbstraet 
interpretation of the subject program [l 1]. The program is evaluated on the two- 
element data domain {Static, Dynamic} to yield information about which arguments 
to functions will be definitely known during function specialization, and which are 
possibly unknown. Function variables corresponding to argument positions can 
thereby be classified as static or dynamic. These variable descriptions are obtained for 
the interpreter given in Figure 3: run(S, D), eval(S, S, D), lookup (S, S, D), f(S, S, 
D), g(D, S, S, D), add(D, D), sub(D, D), mul(D, D), where S =Stat ic  and 
D = Dynamic. 

This information is used during specialization of functions and for the preprocess- 
or's (conservative) call marking: Calls having only static arguments and calls one of 
whose static arguments is broken down recursively are marked for subsequent unfold- 
ing. 

Further, all operators are annotated during this preprocessing, as static or dynamic, 
resulting in a heavily annotated version of the subject program. An operator an- 
notated as static can be evaluated during function specialization, whereas one an- 
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notated as dynamic cannot. The intention is that the abstract interpretation yields 
global information about the subject program's run-time behavior, and the annota- 
tions represent this information locally. This simplifies the basic transformations used 
during function specialization. 

6.5. Postprocessing: Call graph analysis 

The strategy for marking calls during binding time analysis is rather conservative, so 
it is profitable to do more unfolding after the specialization phase. Hence partial 
evaluation has three phases: preprocessing, specialization, and final unfolding. 

Due to the conservative strategy for call marking, many of the generated function 
body expressions will be fairly simple, often just a call to another specialized function. 
Such a call may be replaced by the called function's body (with appropriate sub- 
stitution of argument expressions for variables), since this reduces the number of 
functions and calls. The call-by-name nature of such unfolding may make the residual 
program terminate more often than the subject program. This is regarded as of minor 
concern. However, for this reason the partial evaluator mix does not comply strictly 
with Definition 2.2 of partial evaluator. 

For the final unfolding and reduction step, an analysis of the intermediate residual 
program must be done. This analysis works by finding a cutpoint in each elementary 
cycle in the program's call graph (one that does not properly contain another cycle). 
A cutpoint is a residual function name, and the intention is that all calls to such a 
function should be suspended (i.e., should not be unfolded). 

Call unfolding can now be done as another symbolic evaluation: A call is suspended 
only if it was selected for suspension by the call graph analysis, or if unfolding would 
produce call duplication. By selecting a cutpoint from each elementary cycle, infinite 
unfolding is prevented, and hence the method is safe. More details appear in Section 
7. 

6.6. Special problems caused by self-application 

A separate binding time analysis phase for the classification of parameters and 
operators is in principle unnecessary since this classification could be done dynami- 
cally (and with more precision) during the specialization phase. However, it seems to 
be necessary for successful and efficient self-application of the partial evaluator that 
the classification is determined statically, in a separate phase. Readers willing to 
accept this on faith may skip the rest of the section and thus escape some rather 
intricate and subtle argumentation. 

Consider the generation of a compiler comp (from some S-interpreter int): 

comp = L mix~ ( m i x  2, in t ) .  

Here mix~ = mix 2 = mix--the subscripts are for reference only. Assume we determine 
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dynamically (i.e., during function specialization) whether the arguments of every 
individual operator are static or dynamic. Now, mix~ as well as mix 2 contain some 
procedure for simplifying expressions such as (car e), for example (6.1). Simplification 
depends on the residual (reduced) form S[e~ of e, which in turn depends on the form 
of e and the value of the subject program's known input. 

The expressions occurring in mix 2 are straightforwardly reduced .by mix~, but 
consider mix 2 being partiallyevaluated on int as above. Now focus on the application 
of mix2's reduction procedure for car on an expression (car e) in int. Let us assume 
that in int, this "car" is applied to int's first parameter (an S source program s). 

During compilation one applies mix to int and a source program to get 

target = L mix (int, s). 

Thus, when the source program s is present, the car operator of int can be evaluated 
by mix. But during compiler generation, while generating 

camp = L mix I (mix2, int), 

the source program s is not available and therefore even the form of the residual 
expression SEe ~ for e in int is unknown. Therefore, the reduction procedure (in mix2) 
for car cannot be executed by mixl, and the compiler produced (i.e., the residual 
program for mix2) will contain a copy of the entire reduction procedure for car for 
this single occurrence of car in int. 

This procedure will be entirely superfluous when running the produced compiler on 
an S source program s, since that program will be available, and a single car operator 
could replace the reduction procedure comprising several lines of Mixwell text. In 
fact, the problem is even worse, because (ear(calf e)) in the interpreter int will be 
"reduced" to the reduction procedure for car with the entire reduction procedure for 
cdr instantiated in several places. Thus, the size of residual expressions in the compiler 
depends in an exponential way on the complexity of  expressions in the interpreter, and 
this is clearly not acceptable, particularly since deeply nested Cor/cdr expressions are 
very common. 

If, on the other hand, static operator classification is used, then it is possible to 
annotate int as well as mix 2. By this, a car operator in int working on int's static input 
(the S source program) will be annotated as static (as "car s"), and partial evaluation 
of mix 2 on int wilt produce a single car operator in the compiler instead of  a copy of  
the reduction procedure. Note that the crucial point is that the annotations of int are 
available to mix2, not that the annotations of mix 2 are available to mix~. Thus, the 
above discussion applies only to the case when mix is itself partially evaluated; this 
problem really is one of self-application. 

7. The algorithms used in mix 

Partial evaluation using mix is most easily understood as a sequence of  phases, each 
performing a translation, an analysis, or a transformation of the subject program (i.e., 
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the program to be partially evaluated). In this section we first give a brief overview 
of the structure of mix, and then describe each of the phases. Our partial evaluation 
algorithm proceeds in five phases: 

1. Binding time analysis bta 
2. Program annotation ann 

3. Function specialization f sp  

4. Call graph analysis cga 
5. Call unfolding and reduction unf  

The five phases constitute three program transformation steps, the first one and the 
last one consisting of  an analysis phase and a synthesis phase. The purpose and 
input/output behavior of each is briefly described here, with more details to follow. 

Suppose we want to partially evaluate an L-program f (recall that L = Mixwell) 
with respect to known argument 6 i. This yields a residual program r, satisfying 
krd2 = L f (dl ,  d2) for all d2. We will now consider the three transformations 
making f into r. 

The first transformation consists of binding time analysis and program annotation. 
Its output is an annotated version of f ,  namely, f ,  = ann ( f ,  bta ( f ,  vd) ) ,  where bta 
( f ,  v6)  is the information obtained by binding time analysis when the input par- 
ameters o f f  are described by the tuple vd of {Static, Dynamic} descriptions. That is, 
f~ is a copy of the subject program, marked with additional information: 

• each function argument has been classified as static or dynamic (S or D), 
• each operator (cons, car, if, etc,) has been similarly classified. 
• argument lists have been permuted so all static arguments come first, and 
• calls have been marked "to be unfolded" (call) or "to be suspended" (callr). 

The second transformation is the function specialization phase, which is the heart of 
partial evaluation. It produces an intermediate residual program, r', for f , ,  given the 
annotated program and the input available for partial evaluation. 

The third transformation comprises call graph analysis together with call unfolding 
and reduction. To produce a (better) final residual program r, more function calls are 
unfolded and redundant code is reduced in the intermediate residual program. Call 
graph analysis of r' yields as output a set cga (r') of function names. The idea is that 
avoiding unfolding of calls to these will prevent infinite expansion. The final phase 
applies this information to r', yielding the final residual program 

r = u n f (  r', cga r'). 

From this description we see that the partial evaluator mix takes three arguments, not 
two. The three arguments are 
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• the subject program ( to be partially evaluated, 
• the input description vd which is a tuple of {Static, Dynamic) descriptions, 
• the values of those input parameters described as Static. 

Below we describe each of the five phases of mix, and then in Section 7.6 we discuss 
how this multiphase partial evaluator can be self-applied. 

7.1. Binding time analysis 

Input is the subject program ~' (the program to be partially evaluated) and a descrip- 
tion of which of its parameters will be available (known) during partial evaluation and 
which will not. The net result of the binding time analysis is used for annotating the 
subject program. 

Binding time analysis is based on an abstract interpretation using the two-value 
domain {Static, Dynamic}. The result of this analysis describes every variable x~j of 
every function f~ as either Static or Dynamic. Here Static means that the possible 
values of the variable (definitely) depend only on the input available during partial 
evaluation. Conversely, Dynamic means that the possible values (may) depend also 
on input unavailable during partial evaluation. 

The binding time analysis keeps a partial description of the variables, initially 
describing all variables as Static, except those variables of the goal function whose 
values are unavailable during partial evaluation. The program is abstractly inter- 
preted starting with the goal function, and if it is discovered that a variable v currently 
described as Static may take on a value dependent on a Dynamic variable, then v's 
description is changed to Dynamic, and the descriptions of all variables that depend 
on v are recomputed. Every recomputation is preceded by the change of  at least one 
variable from Static to Dynamic, and since there are finitely many variables and they 
never change back, the analysis will terminate. 

The abstract interpretation classifies an expression e as static if and only if: 

• e is a constant (quote d), where d is an S-expression, or 
• e is a static variable, or 
• e has form (ca# f et . . . en) and el . . . . .  en are all static, or 
• e has form (op el . • . %), where op # call, and el . . . . .  en are all static. 

7.2. The annotation phase 

Input is the subject program ~ and the variable description just computed. Output is 
an #-version ~a in which all expressions and function calls are annotated for use by the 
function specialization phase, and argument lists are permuted so all static arguments 
come first. 
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Operator annotation. An operator  in an expression other than a call is marked as static 
if it Can be evaluated during function specialization, namely, if its performance 
depends only on the available input. Otherwise the operator is marked as dynamic. 

Static applicability of  operators is determined using the variable description found 
by the binding time analysis. A non-call expression (op e l .  • . %) is rewritten (ops 01 
• . . %) if all of  el • • . en are static, and as (opdel . . . %) otherwise. The only 
deviation f rom this pattern is the conditional, which is nonstrict in its second and third 
argument• It  is rewritten as (ffseoe~e2) if e0 is static, and as (ffdeoe~e2) if e 0 is 
dynamic, independently of  the classification of e~ and e 2. 

Function call annotations. A function call (call f e I . . . en) is marked as unfoldable if 
there is no risk of  infinite expansion during function specialization, and residual 
otherwise. A simple (and rather conservative) scheme for recognizing this is based on 
the concept of  an inductive variable. 

We say that a variable of  a function f is inductive in a recursive call f rom f to itself 
if in that call the variable's new value is a proper substructure of  its previous value. 
Then a call expression (call I 01 . . . %) is unfoldable if either it is a direct recursive 
call to f with at least one inductive variable (the rest being unchanged) among those 
described as Static, or if there are no variables described as Dynamic. In all other 
cases, the expression is replaced by (col# f el • • . en), indicating that the call should 
not be unfolded. With annotations made this way, for "reasonable programs" infinite 
unfolding will not take place in the function specialization phase unless this can 
happen independently of  the values of  the dynamic data. 

Furthermore,  care is taken that duplication of  calls cannot occur during function 
specialization. This may require changing more calls to calif. The detection of such 
situations is a recent enhancement to mix; for a discussion and algorithms, see Sestoft 
[45]. 

7.3. The function specialization phase 

Input to this phase consists of  the annotated subject program E~ together with actual 
values for some of  the subject program's  parameters. Output  is an intermediate 
residual program r' which is a system of specialized versions of  (,'s functions. 

A function that is specialized from the function f(svl . . . . .  svm, dr1 . . . . .  dvn) = e 
has form 

fsvv (dv l  . . . . .  d % )  = e' 

where Isw is a new function name composed from the name I of  the function in [ and 
a sequence svv of values of  f 's static variables svl . . . . .  svm. The variables of  fsvv are 
t 's dynamic variables dr1 . . . . .  dvn, and e '  = S~e~ is the result of  symbolically 
evallaating the right side e of  the original function definition f ( . . .  ) = e using the 
known values svv for f's static variables svl . . . . .  svm. 
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The classification of  all variables as static or dynamic makes it easier to build 
residual programs, and the basic transformation rules become very simple. For 
example, the argument of cars will always be a known value, and so cars can be 
evaluated during partial evaluation, whereas a card expression will be left as residual. 
Therefore, the case expression (6.1) for S~(car e)]~ is replaced by two simpler rules: 

S~(cars e)~ = [(quote x)~ where (x. y) = S[e~, and 

S[(card e)~ = [(car e')~ where e' = S[e~. 

The set of function specializations is computed by maintaining a set Pending to 
record all the function specializations still to be computed. A pair (f, svv) being in 
Pending means that a version f~vv ( d v ~ , . . .  ,dvo) = e' of function f specialized to the 
values svv of  the static variables of f is needed. Initially, Pending contains one pair 
consisting of the goal function and the argument values that are available for partial 
evaluation. When a nonunfoldable call (callr g s e l . . ,  sere d e 1 . . ,  d%) is symbolically 
evaluated, it is recorded that a new specialized function gsw is needed by adding the 
pair (g, svv) to Pending, where svv = (S[se~ . . . . .  S~sem~) is a list of values of g's 
static variables. In reality, the composite function names of form f,w that may be very 
large and cumbersome to read are (consistently) replaced by new shorter function 
names. 

Since Pending may grow and shrink indefinitely, the function specialization phase 
may loop in an attempt to produce infinitely many different specialized functions. 
This happens only on programs that compose static data under the control of  
dynamic data. Work is under way to reduce the frequency of such undesirable 
behavior. 

7.4. Call graph analysis 

Input to this phase is the intermediate residual program r'. Output is a list of function 
names from r' that are cutpoints of recursive call chains. This is for use by the 
subsequent call unfolding and reduction phase. 

The call graph of a program is a directed multigraph that has the program's 
functions as nodes and has an edge from node f to node g for each call to g in the 
body of f. A recursive call chain in a program is a cycle in the call graph. 

The cutpoints of recursive call chains are found by a depth-first traversal of the call 
graph of the intermediate residual program r'. A visit to a function f entails marking 
that function "visited", and then examining all function calls in its body. Consider a 
call from f to a function g. If  g is already on the path traversed from the goal function 
to f (inclusive), then g is taken to be cutpoint of  a recursive call chain. If  g is not on 
that path and has not been visited previously, then g is visited. When there are no 
more functions that can be visited from f, the algorithm backs up to the function from 
which f was visited (or terminates i f f  is the goal function). During this, every function 
is visited at most once, and hence the process terminates. 
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7.5. The call unfolding and reduction phase 

Input to this phase consists of the intermediate residual program r' (resulting from the 
function specialization phase) and the list ofcutpoints of  recursive call chains. Output 
is the final residual program, r, obtained from the intermediate residual program r' by 
unfolding function calls and reducing the resulting expressions by symbolic evalua- 
tion. 

A function call (ca# f el . . .  en) in r' is unfolded if f is not head of a recursive call 
chain and if unfolding will not lead to duplication of  a function call (or of  a 
voluminous expression) when the expressions e~ . . . . .  en are substituted for the 
variables in f's body. Since infinite unfolding would involve every function in some 
recursive call chain, and hence a cutpoint, it cannot take place. Similarly, no call 
duplication can be introduced by the call unfolding phase. 

7.6. Muhiphase partial evaluation 

We now relate this more complex picture of partial evaluation (in multiple phases) to 
the simpler descriptions given in Sections 2 and 3. In particular, we will show the 
multiphase analogs of 

target = L mix(int, s) ,  

comp = L mix (mix, int), and 

cogen = L mix (mix, mix). 

(3.2) 

(3.3) 

(3.4) 

Simple partial evaluation, including compilation. Bta, ann, and so forth are functions, 
so if we let 

and 

pre ({, vd)  = ann (~, bta (Y, v d ) )  

post r = unf (r, cga r), 

then we can write 

resid = let Ea = pre ( f ,  vd)  in 

let r' =fsp ( fa ,  d l ) in post r'. 

Here vd e {Static, Dynamic}* is a description of the parameters of {, and the 
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metanotation l e t . . ,  i n . . .  is used to indicate the partitioning into phases. It would 
certainly be possible to program mix so that mix yields resid in exactly this way, thus 
satisfying the equations of Sections 2 and 3 quite literally, by letting 

L mix ({, vd, d~ > = let fa = pre ({, vd> in 

let r' =fsp (~,,  d l )  inpost r'. 

It sometimes happens (especially in compiling, where { is an interpreter and d 1 a 
source program) that the same program { is to be partially evaluated for many 
different values ofd~, so it is usually profitable to compute g,, = pre (& vd) = ann 
((.  bta (C, vd) )  as a separate first step. Compilation, using mix on an interpreter int 
and source program s, is an instance of this process. That is, int~ should be precom- 
puted, describing the first parameters as static and the second as dynamic: 

target = let int a = pre ( int ,  (Static, Dynamic ) )  in (7.1) 

let r' =fsp (int, ,  s)  inpost r'. 

Compiler generation by partial evaluation. At compiler generation time, int is known, 
but s is not. As before, it is desirable to precompute int, = pre (int, 
(Static, Dynamic)) ,  so we assume this has been done as the first step of compiler 
generation. The remaining computation 

let r' =fsp (int a, s) in post r' 

depends on both inta and s, but only int~ is available. For efficiency we use partial 
evaluation to exploit the target program's dependency on int (since s changes more 
frequently than int). Suppose fsp is an L-program computing functionfsp, so we have 
L fsp = fsp. Now construct 

comp = let int~ = pre ( int,  (Static, Dynamic ) )  in 

L mix (fsp. (Static, Dynamic),  in t . )  

= let inta = pre ( int.  (Static, Dynamic ) )  in 

let fspa = pre (fsp, (Static, Dynamic ) )  in 

let r' =fsp (fspa, int~) in post r' (7.2) 

It is not hard to see (by (2.1)) that comp really is the first pass of a compiler, and 
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target = let r' = L c o m p s  in post r'. (7.3) 

Finally, note that fspa is independent of  int. In summary, we have: 

• fspa = pre (fsp, (Static, Dynamic))  is independent of int and so may be computed 
prior to compiler generation (i.e., at compiler generator generation time). 

• At compiler generation time we compute 

comp = let inta = pre (int, (Static, Dynamic))  in 

let fsp~ = pre ( fsp,  (Stat ic ,  D y n a m i c ) )  in 

let r' = fsp (fsPa, int~) in post r'. 

Generation o f  the compiler generator. Section 3.4 described producing a compiler 
generator cogen from mix by partially evaluating mix with respect to itself. By steps 
exactly parallel to the preceding, we obtain 

cogen = let fsPa = pre ( fsp, (Stat ic ,  D y n a m i c ) )  in 

let r' =j&p (fspa, fsp~) in post r', (7.4) 

and this is in fact the way the first version of cogen was obtained. Given cogen, 
compiler generation may be done more efficiently than above: 

comp = let int~ = pre (int, (Static, Dynamic))  in 

let r' = L cogen int~ in post r', (7.5) 

and the compiler generator itself may be regenerated: 

cogen = let fsp~ = pre ( fsp,  (Stat ic ,  D y n a m i c ) )  in 

let r' = L cogen fsp~ in post r'. (7.6) 

8. Assessment of  the partial evaluator mix 

In this section we evaluate the structure and performance of mix, and we mention 
some of the tasks mix has been applied to. 
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8.1. Ideas behind mix 

The aim has been to construct an autoprojector, well suited for the special purpose of 
compiler generation, rather than a general-purpose partial evaluator. This makes the 
task easier in some respects, but, in general, the development of a good autoprojector 
is harder than that of a partial evaluator. The reason is that owing to the self-appli- 
cation an attempt to increase the quality (by including more powerful transforma- 
tions) very often implies overwhelming penalties as regards efficiency. 

The structure of mix has intentionally been kept as simple as possible, partly for 
this reason and partly to allow for experimentation with different binding time 
analyses, basic transformations, call unfolding strategies etc., and their combination. 

Program transformation is concerned with deriving equivalent programs that 
behave better according to some performance criteria. These criteria are implicit in the 
transformation rules used; so the basic transformations together with the call unfold- 
ing strategy determine the strength of the partial evaluator. One may think of the 
transformations performed by mix as split into two categories. One consists of simple 
local reductions, while the other is concerned with function transformation and 
includes unfolding of calls and specialization of functions. Although unfolding and 
specialization constitute a limited class of transformations, they may imply consider- 
able changes in program topology. 

The use of binding time analysis appears to be novel in comparison to other 
approaches to program transformation. It serves three purposes: to classify function 
variables, thereby determining the list of residual variables for each function; to 
annotate all operators as "static" or "dynamic"; and to gather information used to 
attach unfold/suspend annotations to function calls. As a result of binding time 
analysis, we have been able to reduce the transformation rules used to an extremely 
simple subset. If binding time analysis is not applied, the generated compilers in our 
experiments have turned out to be typically two orders of magnitude larger, and much 
less efficient. 

The call unfolding strategy seems appropriate, and when given suitably written 
subject programs, mix gives good results. The target programs and compilers 
produced are reasonably small and efficient. While they sometimes contain inelegant 
code, they contain little unnecessary code, as is witnessed by the fact that compilation 
speed is of the right order of magnitude, about 100 lines/second on a Vax 785 for a 
toy language. On the whole they look like traditional recursive descent compilers, 
except that more optimization is done while generating code than usual in compilers. 
Since the compiler is a specialized version of mix, it inherits the transformational 
capabilities built into the partial evaluator. 

8.2. Performance of mix 

To illustrate the performance of mix in compilation and compiler generation we give 
some tables of program size and run times. In particular, we give the total run times 
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for  each o f  the runs  (7. l ) t h r o u g h  (7.6) d iscussed in sect ion 7.6, and  show how the r u n  

t ime is c o m p o s e d  o f  p reprocess ing  t ime, f u n c t i o n  spec ia l iza t ion  t ime, a n d  post-  
process ing  t ime. 

The  in te rp re te r  int  used in the runs  be low in te rpre t s  a t iny  impera t ive  l anguage  

(called M P )  wi th  a s s ignmen t ,  a cond i t i ona l ,  a whi le - loop,  a n d  wi th  S-express ions  as 
the on ly  da t a  type. The  M P  source  p r o g r a m  s used c o m p u t e s  x to the y th  power  by  
e n u m e r a t i n g  all different  tuptes  o f  l eng th  y wi th  e lements  chosen  f rom a set o f  
ca rd ina l i ty  x. The  runs  i nvo lv ing  s a n d  t a roe t  in  F igure  6 c o m p u t e  55 = 3125. 

The  size o f  a Mixwel l  p r o g r a m  is g iven by  two figures: the n u m b e r  o f  func t ions  in 
the p r o g r a m ,  a n d  the l eng th  in  l ines when  t rans la ted  in to  Lisp a n d  " p r e t t y p r i n t e d "  

(F igure  5). The  p r o g r a m s  genera ted  by  mix are seen to have  a very m a n a g e a b l e  size, 
cons ide r ing  tha t  t a roe t  resul ts  f rom " c o m b i n i n g "  int  a n d  the source  p r o g r a m  s, tha t  

Program No. of functions No. of lines Ratio (lines) 

s - approx, 30 1.2 
target 6 36 

int 9 176 1,7 
comp 24 303 

fsp 27 533 2.0 
cogen 49 1062 

Figure 5. Size of programs. 

Run 

output = L in(s,data) 

= L target data 

target = L fsp(int~,s) 

= L comps 

comp = L fsp(fsp~,inta) 

= L cogen inta 

cogen = L fsp(fsp~,fsp,) 

= L cogen fspa 

Run time (cpu secs.): i Speed Run Plus run time 
processing + g.c. = total -up No. for pre andpost 

19.62 + 2.20 = 21.82 

0.56 + 2.I4 = 2.70 
!8.1 

0.66 + 0.00 = 0.66 (7.1) pre(int): 0.50 
post(target): 0 2 6  

1.9 
0.34 + 0.00 = 0.34 (7.3) post(target): 0.26 

7.56 + 3.00 = 10.56 (7.2) pre(int): 0.50 
pre(fsp): 2.60 

2.3 post(comp): 2,02 
3.18 + 1.42 = 4.60 (7.5) pre(int): 0.50 

post(comp): 2.02 

37.32 + 21.72 = 59.04 (7.4) 

1,6 

pre(fsp): 2.60 
post(cogen) 10.70 

19.84 + 16.46 = 36.30 (7.6) pre(fsp): 2.60 
post(cogen): 10.70 

Total Speed 
-up 

21.82 
8.1 

2.70 

1.42 

2.4 
0.60 

15.68 

2.2 
7.12 

72.34 

1.5 
49.60 

Figure 6. Run times 
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comp results from combining fsp and int, and that cogen results from combining two 
copies of fsp. 

The run time results (Figure 6) were obtained with the Franz Lisp system running 
under Unix on a Vax 785. The Mixwell programs were (straightforwardly) translated 
into applicative Lisp programs and compiled to have fast (direct) function calls. Run 
times are given in form processing time + garbage collection time = total run time (in 
cpu seconds). The left side of the table shows the bare run time of the function 
specialization phase fsp and of the residual programs (comp and cogen) derived from 
it, whereas the right side gives the additional time spent on pre- and postprocessing 
and the total run times for the runs (7.1) through (7.6) of Section 7.6. The correspond- 
ing speed-up ratios are also given, and are seen to be all greater than 1. 

Recall that the runs being compared pairwise produce identical results. For 
example, the target program generated by compilation (run (7.3)) is not only equi- 
valent to but in fact identical to the target program generated by partial evaluation 
(run (7.l)). Thus, the two target programs are known to be of exactly the same 
efficiency and quality. The only difference is in the time it takes to generate them. 

The run-time results in Figure 6 show that 

• The overhead of interpretation is removed by compiling the source program s into 
a target program target. The speed-up is more than 8 times, which is quite 
satisfactory. 

• Compilation by a mix-generated stand-alone compiler (7.3) is twice as fast as 
compilation by partial evaluation (7.1). 

• Generating a compiler using the mix-generated compiler generator (7.5) is faster 
than generating a compiler by partially evaluating the partial evaluator with respect 
to the interpreter (7.2). 

• Similarly, regenerating the compiler generator cogen by using the compiler genera- 
tor (7.6) is faster than generating it using mix alone (7.4). 

Also note that compilation by partial evaluation followed by a run of the target 
program (4.12 seconds in all) is faster than interpretation of the source program (21.28 
seconds). 

Even generation of a compiler followed by compilation and a run of the target 
program (10.42 seconds in all) is faster than interpretation of the source program. 

The results, and in particular the run time results, justify our approach: compiling 
by means of a mix-generated compiler is faster than compiling using a general partial 
evaluator, as it is done by Kahn and Carlsson [29] or Takeuchi and Furukawa [48]. 

8.3. Applications of mix 

Mix has been used on a variety of problems, all of an experimental nature but some 
more applied than others. Mostly it has been used to generate compilers and target 
programs for various languages (imperative, functional and pattern matching). 

One larger application has been context-free parsing [12]. A general-purpose con- 
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text-free parser resembling Earley's was partially evaluated with respect to a fixed 
grammar G, automatically yielding a much more efficient parser, specialized to the 
syntax defined by G. Further, application of cogen to the general parser yielded a 
parser generator: 

speci f icparser  = L mix <~generalparser, G) 

parsergenerator = L mix <mix, generalparser) 

= L cogen generalparser 

Another application has been improvement of the important but computation-inten- 
sive ray-tracing technique of computer graphics [37]. Here the ray tracer was partially 
evaluated with respect to a given scene. For this purpose, Mogensen has written a 
rather larger version of mix than the one described here, using C as implementation 
language instead of Lisp. The subject language is still functional and allows computa- 
tion with floating point numbers. Mogensen's version of mix is also self-applicable, 
but does not automatically determine call unfolding. Significant improvements in 
computation time have been reported. 

9. Perspectives and directions for future research 

We conclude by putting the present work a little into perspective. We review the 
programming language we have used. Also, other applications are mentioned, and we 
discuss the practicability of some of these. 

9.1. Subject language 

As regards the choice of language which mix accepts and in which it is written, we 
think that the following characteristics of Mixwell have contributed much to the 
practicability of the project: 

• Programs can accept programs as input data and produce them as output. 
• Mixwell's simple semantics makes it easy to perform symbolic evaluation and to 

design a good binding time analysis. In particular, good unfolding properties seem 
essential. 

• The recursion natural to the partial evaluation process is easy to program. 
• The referential transparency of the language facilitates specialization of an arbi- 

trary program part without disturbing other parts. 

It would be very desirable to have a self-applicable partial evaluator for an imperative 
language, because target programs would then come out in a language that we know 
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how to implement efficiently. It seems, however, more difficult to build an autoprojec- 
tor for an imperative langauge, and the problem is still open as far as we know. One 
difficulty is recognizing "descents" by an imperative program into a smaller part of 
a structured static argument. Also, the referential opacity of such a language necessi- 
tates more sophisticated symbolic environments for use during function specialization 
and more sophisticated partial evaluation techniques. 

A self-applicable partial evaluator for a higher-order functional language, or one 
for a language that includes function invocation by pattern matching would also be 
very desirable, owing to the power and conciseness of such languages. It would 
probably be harder to write than one based on Mixwelt, because of more complex 
control flow and data descriptions needed for these. 

Logic programming languages also seem to have all of the above mentioned useful 
characteristics, so a nontrivial self-applicable partial evaluator for Prolog should be 
possible. Performing constant propagation in a Prolog program is not hard, but 
unfolding problems become more difficult than in Mixwell, owing to Prolog's more 
complicated parameter concept and control flow. In particular, an automatic binding 
time analysis for Prolog programs could be expected to be somewhat harder. 

9.2. Meta programming without loss of ejficiency 

As is well known, many programming language definitions (though not all) are 
effectively computable. Thus, for many well-defined classes of language definitions, 
one may in principle write (in some language L) a metainterpreter mint, such that 
given a language definition def that defines a language S and a program s in S, 

L mint (def,  s, d )  = S s d. 

This was first established for denotational semantics in Mosses [39], with def being a 
lambda term, and the approach has been developed further in, e.g., Paulson [40], 
Christiansen and Jones [8], Vickers [53], Watt [56], and Lee and Pleban [33]. There 
have, however, been substantial efficiency problems with such approaches, some of 
which have been overcome by more or less formalized binding time splits, for example, 
by compiling def into a lower-level and more directly executable language. 

Efficiency analysis. The reason why such a metainterpreter is inefficient is not hard to 
see. It spends most of its computational efforts scanning and decomposing def, to see 
which of the definition's rules to apply to execute the operations given in textual form 
in s. And aside from the operations that scan and decompose def, most of the 
remaining operations will, as in any interpreter, scan and decompose s. Only a 
vanishingly small fraction of mint's computational time is spent performing the 
computational operations actually specified by s. 

Consequently, the primary efficiency barrier to overcome in implementing a 
language by this technique is to remove the operations needed to analyze the language 
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definition and the program being executed, since these are uninteresting with respect 
to the computational task to be realized by s, In other words, a binding time split has 
to be done, to move these irrelevant operations to an earlier stage in the process of 
transforming s into executable form, so the computation that s specifies can be carried 
out with minimal overhead. Analogies from traditional optimizing compilers include 
code motion and constant propagation [1]. Notions similar to the binding time split 
have appeared in the area of program transformation. A generalized view leads to the 
notion of staging transformations [27], and a similar theme is developed by Wand [54]. 

As already mentioned, the reason for the unacceptable inefficiency of metainter- 
preters is the time spent in the (meta) interpretation loop. Assume that we have a fixed 
language definition clef and program s to be implemented. Then the running time of 
the metainterpreter k mint (def, s, d) can be expected to be a near-linear function of 
the number of fundamental operations specified by the program s on given input data 
d (although with a very large constant multiplier). 

We would expect that also the running time of a target program for s is linearly 
dependent on the number of operations specified by s, only with a much smaller 
multiplier. Our chief goal is thus to reduce a linear factor, a goal much less ambitious 
and, we hope, requiring considerably less sophisticated methods than those needed for 
program transformation in general. 

Hierarchies of  metalanguages. It is becoming increasingly popular to solve a wide- 
spectrum problem not by writing a collection of special-purpose programs, but rather 
by devising a problem-oriented language in which the user can interactively express a 
wide variety of computational requests. The current broad interest in developing 
expert systems exemplifies this way of solving problems. 

A problem-oriented language needs a processor, and these processors usually work 
interpretively, alternating between reading and deciphering the user's requests, con- 
sulting databases, and doing problem-related computing. For some sophisticated 
problem-oriented languages, the system spends a considerable amount of time inter- 
preting rather than computing or searching, and here automatic optimization of 
system programs could yield substantial benefits. 

Further, expert and other programming systems are being constructed more and 
more with the use of a hierarchy of metalanguages, each used to control the sequence 
and choice of operations at the next lower level [43]. In this context the efficiency 
problem becomes more serious, and the benefits of automatic program optimization 
are correspondingly greater, since widespread use of meta programming can easily 
lead to multiple layers of interpretation, each multiplying the total computation time 
by an essential factor. On the other hand, program specialization can (and has been 
shown to) eliminate an entire level of interpretation, so that meta programming may 
be used without order-of-magnitude loss of efficiency [48]. 

9.3. Partial evaluation and program transformation 

It is interesting to compare the state of the art in partial evaluation with that of the 
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field of program transformation in general. It is commonly agreed that completely 
automated program transformation has not been achieved on a significant scale. Why 
then do we consider it reasonable to attempt to transform a semantic definition of an 
entire programming language into a prototype compiler? Are we guilty of wishful 
thinking, or are there some essential differences between language implementation 
and transformation of more general programs? 

Program transformation is concerned with rather radical changes to a program's 
structure, so the final program may have properties very different from those of the 
original one. A common goal, for instance, is to change a program's running time as 
a function of input size, often from exponential to polynomial or from polynomial to 
linear. 

We have argued that partial evaluation can achieve order-of-magnitude linear 
speedups (e.g., of target programs over interpreters) but it seems unlikely that partial 
evaluation can yield nonlinear speedups in general. One reason is that partial evalu- 
ation uses only a single transformation technique, essentially a generalization of 
well-known compiler optimizations. 

So the goals of partial evaluation are in a sense more modest and, we think, 
achievable by simpler methods than those of program transformation in general. 

Generation of  automatic program transformers. Partial evaluation may be used to 
obtain program transformers in a simple way. Assume we are given a self-interpreter 
sint. Now 

tra = L m i x  ( m i x ,  sint)  

= L c o g e n  sint  

is a source-to-source compiler or, in other words, a (machine-generated) program 
transformer. The output of tra will be a program that is functionally equivalent to that 
given to tra, but may differ in structure, size, efficiency, and other properties. The 
relation between the input and output program is determined rather implicitly, by the 
way sint is written and by the transformations that are built into mix. 

As to potential applications of this idea, sint could be modified to accept an 
extended language or to do additional run-time actions, thus achieving some of the 
goals of meta programming. That is, tra would transform (compile) a program in the 
extended language into an L program, while removing those actions of the interpreter 
sint that can be done already at "compile time." 

9.4. Current activities in partial evaluation 

The work reported here is currently being extended in numerous ways: to use restric- 
ted term rewriting systems as subject language [4]; to allow for data structures that 
may be partially static and partially dynamic [38]; and to ensure better termination 
properties of partial evaluation by improved binding time analyses [25]. 
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Work closely related to that reported here is being done by several researchers. 
Romanenko has implemented a self-applicable partial evaluator similar to the one 
reported here, improving it in various ways, except that hand-made call annotations 
are still needed [42]. Similarly, Consel reports a self-applicable partial evaluator for 
an extendible first-order subset of Scheme without side effects. It incorporates so- 
called filters, which are hand-made annotations that allow the user to guide partial 
evaluation with high precision [t0]. 

Recently, successful self-application of Prolog partial evaluators has been reported 
[16,17]. As with previous versions of mix, annotations are called for to guide the 
partial evaluator, so automatic compiler generation has not quite been achieved using 
Prolog partial evaluators, but that gap may be closing. Recent activities in partial 
evaluation of logic programs (besides those just mentioned) are represented by the ten 
papers in a special issue of New Generation Computing 6, (2, 3), June 1988. 

The selection of papers in Bjorner et at. [3] represents other current activities in 
partial evaluation. 

10. Conclusion 

We have discussed partial evaluation of programs in statically scoped Lisp-like 
languages and described a fully automatic self-applicable partial evaluator, mix, that 
has beefi successfully applied to generate compilers for small languages, and even to 
generate a compiler generator. We assessed mix and gave tables of running times and 
space usage to illustrate its behavior. 

As a basis for this, we introduced a formal framework for partial evaluation, 
compilation, and compiler generation which enabled the presentation of mix's appli- 
cations. We also described the language Mixwell that was designed as the subject 
language for mix. Finally we discussed further applications and problems in the area 
of partial evaluation. 
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