
LISP AND SYMBOLIC COMPUTATION: An International JournM, 3, 67-99, 1990
@ 1990 K1uwer Academic Publishers - Manufactured in The Netherlands

Control Delimiters and Their Hierarchies

DORAI SITARAM (dori@rice.edu)
MATTHIAS FELLEISEN* (matthias@rice.edu)

Department o/ Computer Science, Rice University, Houston, TX 77251-1892

Keywords: Scheme, Control structure, Continuations, Control delimiters, Engines

Abstract. Since control operators for the unrestricted transfer of control are too pow-
erful in many situations, we propose the control delimiter as a means for restricting
control manipulations and study its use in Lisp- and Scheme-like languages. In a Com-
mon Lisp-like setting, the concept of delimiting control provides a well-suited terminology
for explaining different control constructs. For higher-order languages like Scheme, the
control delimiter is the means for embedding Lisp control constructs faithfully and for
realizing high-level control abstractions elegantly. A deeper analysis of the examples sug-
gests a need for an entire control hierarchy of such delimiters. We show how to implement
such a hierarchy on top of the simple version of a control delimiter.

1 T h e p o w e r o f c o n t r o l o p e r a t o r s

Since it is impossible to anticipate all possible needs for control abstrac-
tions during the design of a programming language, the inclusion of a low-
level, powerful control operator seems to provide the most appropriate so-
lution. Wi th such an operator, a programmer can build the high-level con-
trol abstractions tha t are necessary for a specific problem. However, this
s trategy has two problems. On one hand, the implementat ion of high-level
control abstractions with the general control operator hardly ever achieves
the same efficiency as native versions of these abstractions. On the other
hand, the low-level operator is often too powerful for a simple, faithful
implementat ion of high-level abstractions.

A typical example is the programming language Scheme [14,18] and its
control operator call-with-current-continuation, abbreviated call/cc. Sim-
ilar examples are ISWIM and J [11], GEDANKEN with its first-class la-
bels [15], and GL and state [9]. Wi th call/cc, a program can access an ab-
straction of the current control state, the continuation, at any point during
the evaluation. Like all other values in Scheme, continuations have first-
class status; they can thus play the role of procedure arguments and results

*The work of both authors was partially supported by the National Science Foundation
and DARPA.

68 SITARAM AND FELLEISEN

or can be assigned to arbitrary variables. The combination of call/cc and
first-class continuations provides the basis for implementing many different
control abstractions as simple abbreviations [18] and for creating complex
systems with various levels of program control [2,6,8].

Unfortunately, as Haynes and Friedman [7] observe in their treatise on
constraining control, call/cc and its associated continuations are too gen-
era] in many cases and inappropriate use can easily destroy the integrity
of an embedded control abstraction. Their solution consists of a method
for restricting the power of call/cc and continuations in appropriate ways.
The crucial idea is to redefine call/cc so that continuations are always em-
bedded in constraining procedural objects. With such redefinitions, call/cc
and constrained continuations can simulate Lisp's c a t c h and t h r o w , pro-
tect the dynamic scope of a routine, and confine the use of continuations to
dynamic domains. Though feasible, these solutions are often complex and
difficult to understand. For example, the realization of c a t c h and t h r o w
requires a complicated communication system for the continuation objects
and moreover relies on a garbage collector for eliminating inaccessible con-
tinuations. Similarly, a facility for postfixing the dynamic scope of a routine
relies on a central data structure for keeping track of the system's entire
control tree.

Instead of accepting these complicated mechanisms for constraining con-
trol, we believe they reflect a fundamental problem of the underlying lan-
guage. Although Scheme can create a first-class abstraction of the control
state, it does not provide a first-class means for determining the extent of
this control state. It always takes the entire control state from the current
point in the evaluation to the unique end of the evaluation, which is the
prompt in an interactive system. Unlike any other object in Scheme, this
delimiter for control actions is a second-class citizen. We suggest making
this control delimiter a first-class facility: the first-class prompt [4].

Our suggestion generalizes Stoy and Strachey's [17] run subroutine and
Lisp's [13] e r r s e t facility. 1 The operator run and to a lesser extent e r r s e t
allow a program to create tasks that share lexical information but are iso-
lated with respect to non-local transfer of control. When added to a lan-
guage with a control structure based on first-class continuations, the control
delimiter induces two changes. First, any control actions that eliminate on-
going evaluations can only erase control information up to the dynamically
closest control delimiter. Second, a control operator that provides access
to the control state can only encapsulate the piece of control information
between the current point of evaluation and the closest delimiter.

1Mitchell Wand and Andrew Black pointed out the relationships between prompts
and errset and prompts and run, respectively.

CONTROL DELIMITERS AND THEIR HIERARCHIES 69

Although the control delimiter solves several problems with existing con-
trol operators, it also creates the potential of undesirable interference be-
tween its uses in overlapping dynamic extents. In order to avoid such
anomalies, we suggest a simple strategy for defining a hierarchy of delim-
iters. Since the control hierarchy is defined in terms of the raw control
operators, it is easy to continue building hierarchies inside hierarchies and
thus get arbitrarily grainy levels of control operators. The ability to create
and hide the lower levels of these operators ensures that no program frag-
ment can unintentionally or maliciously violate the security of the system
or new layers of applications writ ten on top of the system. The particular
inter-level relationship we choose posits that every level in the hierarchy
have complete power over its own control operations and the ones in levels
above itself. We believe that this reflects the reality of multi-layered sys-
tems, except that such systems are usually implemented combining facilities
from different languages and with less flexibility. By providing simple fa-
cilities for a control hierarchy, we get a powerful yet secure language for
many layers of application and systems programming.

In the second and third section, we introduce our variant of Scheme
and our proposal for an alternative control structure, respectively. The
fourth section presents a method for implementing our control structure
through a modification of a Scheme implementation and, less efficiently,
within Scheme. The fifth section illustrates the use of control delimiters in
a Common Lisp-like setting; it demonstrates how the idea of control delim-
iters provides the proper terminology for modeling and experimenting with
different versions of c a t c h and t h r o w and u n w i n d - p r o t e c t . Following
this, we illustrate the primitive use of our control structure in a higher-order
setting with powerful abstractions for coroutines, t ime-preempted compu-
tations, and stream processing routines. Finally, in Section 7, we show how
the naive use of control delimiters leads to problems and how these prob-
lems are at tenuated by generalizing the control delimiter to hierarchies of
control delimiters. The last section briefly summarizes our approach and
puts it in perspective.

2 A b r i e f i n t r o d u c t i o n t o S c h e m e

Scheme [14,18] is an expression-oriented language with call-by-value, lex-
ically-scoped, first-class procedures, and has imperative extensions for lex-
ical assignment and control manipulation. In this section, we describe the
core constructs of our dialect of Scheme, including its s tandard control
structure. We then give a brief account of how to enrich the language with
syntactic extensions.

The following EBNF specifies the syntax of well-formed expressions in

70 SITARAM AND FELLEISEN

core Scheme:

exp : : - - - - basic-constant
false
true
id
(quote exp)
(lambda (id . . .) exp . . .)
(sigma (i d . . .) exp . . .)
(if exp exp exp)
(exp exp . . .)
apply
caU/cc

The notation item . . . is used to denote multiple (possibly zero) occurrences
of the syntactic object item.

Basic constants are mutable and immutable data (numbers, symbols,
dotted-pair structures, etc.) and basic procedures on such data (÷, *,
cons, car, set-cdd, etc.). An identifier is a placeholder for a value that
is determined by the lexical context (i.e., the lexicatly closest l ambda -
abstraction and/or the dynamically closest side-effect). A quote-expres-
sion is an atomic value or a dotted-pair structure; 'exp abbreviates (quo te
exp). To permit selective evaluation inside a quoted expression, the back-
quote is used: 'exp is identical to 'exp except that subexpressions preceded
by a comma are evaluated. A lambda-expression evaluates to a closure,
a first-class procedural object. On application, a closure establishes bind-
ings between the identifiers in the parameter list and the corresponding
argument values; it then continues with the sequential evaluation of the
body expressions. A sigma-expression [3] evaluates to a sigma-capability,
a closure-like object that, on application, modifies the existing bindings of
its parameters. Most Scheme implementations instead provide the assign-
ment form set!, which takes an identifier and a subexpression, and modifies
the binding of the identifier to the value of the subexpression. Condition-
als are introduced by if: a special constant false is Scheme's false value;
all other values, including a special constant true, count as true. An ap-
plication is a non-empty sequence of expressions; in our dialect, these are
evaluated left to right. An alternative means for performing applications
uses the procedure apply, which is called with two arguments: the proce-
dure and the list of the procedure arguments. The procedure call/cc ap-
plies its argument to an abstraction of its control context called an abortive
continuation. When invoked with a value, such a continuation abandons
its current context and continues evaluation with the value at the context
captured in the continuation.

CONTROL DELIMITERS AND THEIR HIERARCHIES 71

A Scheme expression is evaluated in a global environment. The global
environment provides an extensible and modifiable set of semantic bindings.
The form (def ine id exp) is used to bind id to the value of exp.

Scheme allows the user to define syntactic extensions with the form
extend-syntax [10]. It takes a list of keywords--a primary keyword
followed by optional auxiliary keywords--and a sequence of specification
clauses. Each specification consists of an abbreviation pat tern and a corre-
sponding expansion pattern:

(extend-syntax (<keyword> . . .)
[<abbreviation> <expansion>] . . .).

A syntactic preprocessor reduces each input expression that matches the
first abbreviation pat tern to the appropriate core expression. In addition,
the preprocessor has the ability to process ellipsis, . . . , in patterns, as well
as to prevent variable capture when new variable bindings are established
in the expansion [10].

As an example for the use of ellipses, consider the definition of a let-
expression:

(extend-syntax (let)
[(let (Ix exp] . . .) b o d y . . .) ((l a m b d a (x . . .) body . . .) exp. . .)]) .

A let-expression specifies local bindings with initial values for use within
the let-body. Such an expression is transformed into the application of
a lambda-expression, where the l ambda-paramete rs s tand for the local
variables and are bound to the initial values through immediate application.
As an example for hygienic expansion, we define a conditional or:

(extend-syntax (or)
[(or x y) (let ([v x]) (if v v y))]).

The form or introduces a texical variable v for the value of its first subex-
pression. If this is non-false, it is returned without evaluating the second pa-
rameter, otherwise the value of the latter is the result of the or-expression.
In a naive expansion system, the new lexical variable v would bind free
occurrences of v in the second subexpression of or. The hygienic macro ex-
pansion method [10] automatically avoids such unintended variable bindings
without further instructions from the programmer. Sometimes an identifier
introduced by an expansion is meant to capture bindings in the syntactic
extension: such identifiers are listed as auxiliary keywords to exempt them
from hygienic expansion.

72 SITARAM AND FELLEISEN

(extend-syntax (rec)
[(rec name exp) (let ([name 'any]) ((sigma (name) name) exp))])

(extend-syntax (letrec)
[(letrec ([x exp] . . .) body . . .)
(let ([x 'any]...) ((sigma (x . . .) body . . .) exp . . .))])

(extend-syntax (set!)
[(set! ([x exp] . . .) b o d y . . .) ((sigma (x . . .) b o d y . . .) e xp . . .)]
[(set! name exp) ((sigma (name) 'any) exp)])

(extend-syntax (iterate)
[(iterate loop ([x exp] . . .) body . . .)
((rec loop (lambda (x . . .) body . . .)) exp . . .)])

(extend-syntax (beg!nO)
[(beg!nO first-exp exp . . .)
(let (~rst-val]irst-exp]) e x p . . , first-pal)])

(extend-syntax (and)
[(and) true] [(and x y . . .) (if x (and y . . .) false)])

(extend-syntax (or)
[(or) false] [(or x y . . .) (let (Iv x]) (if v v (or y . . .)))])

(extend-syntax (cond else)
[(cond) false]
[(cond [else else-exp . . .]) (begin else-exp. . .)]
[(cond [test exp...] clause...)
(let ([pal test]) (if pal (begin pal exp . . .) (cond clause . . .)))])

(extend-syntax (record-case else)
[(record-case rcd) 'any]
[(record-case rcd [else else-body . . .]) (begin rcd else-body. . .)]
[(record-case rcd [tag comp body . . .] clause . . .)
(let ([r red])

(if (eq? (car r) tag) (apply (lambda comp b o d y . . .) (cdr r))
(record-case r c lause. . .)))])

Figure 1: Some commonly used syntactic extensions

CONTROL DELIMITERS AND THEIR HIERARCHIES 73

Some common syntactic extensions are defined in Figure 1. The letrec-
expression introduces local definitions just as let does, but these definitions
are mutually recursive; rec is used to define a single recursive procedure.
The traditional Scheme assignment form, set!, is defined as the applica-
tion of a sigma-closure that modifies the binding of the sigma-parameter.
However, in keeping with the expression-oriented nature of Scheme, we
also supply an alternative expansion pattern for se t ! - -one that relates to
s igma much as let does to l ambda : a set!-expression modifies the bind-
ings of its lexical variables and proceeds with the evaluation of its body.
The form i t e ra t e effects a recurring evaluation, similar to a loop. The form
beg in0 evaluates a sequence of expressions, returning the value of its first
subexpression. The forms and and or perform the boolean operations of
conditional and and or. The form c o n d is a generalization of if to include
many sub-clauses. The form record-case dispatches on a given expression:
if it is a record with the tag specified in one of its clauses, the identifiers in
the clause are bound to the components of the record before executing the
body; otherwise, the default action specified in the else-clause is carried
out.

3 F u n c t i o n a l c o n t i n u a t i o n s a n d c o n t r o l d e l i m i t e r s

Our dialect differs from traditional Scheme in tile choice of control op-
erators. Instead of call/cc and abortive continuations, it has control and
functional (i.e., non-abortive) continuations [5,9]. 2 The operator control
takes a single argument. When invoked, control encodes its current evalua-
tion context as a lambda-closure, the functional continuation, and applies
its argument to this continuation in the empty control context.

For an illustration, let us work through some examples. Consider the
expression:

(addl (control (l ambda (k) 0))).

The evaluation context of the control-application is (addl ...); the cor-
responding procedural abstraction, viz., the functional continuation, is
(l ambda (x) (add1 x)). The argument of control, viz., (l ambda (k) 0), is
now applied to this abstraction in the empty context: 3

(addl (control (l ambda (k) 0)))
((l ambda (k) 0) (l ambda (x) (addl x)))

=~0.

2The use of control and functional continuations is not necessary for our development,
but is advantageous in many situations.

3The symbol ~ should be read as "evaluates to."

74 SITARAM AND FELLEISEN

In other words, a vacuous abstraction as a control-argument aborts the
program. We therefore introduce the following syntax:

(extend-syntax (abort)
[(abort exp) (control (l a m b d a (dummy) exp))]).

Recall that, by hygienic expansion, dummy does not bind any identifier in
exp.

On applying a functional continuation to a value, the latter is placed in
the context determined by the former. The computation of the functional
continuation sends its result back to the context of the invocation. Thus,
we have

(addl (control (l a m b d a (k) (k 0)))) =~ 1;

and, since the closure can also be applied repeatedly, we Mso have:

(add1 (control (l a m b d a (k) (k (k 0))))) =~ 2.

The operator control is powerful enough to simulate the discarded opera-
tor call/cc. Recall that call/cc is a procedure that calls its unary argument
with the current abortive continuation. The operator control performs a
similar action. Thus, in order to define caU/cc with control, we could try
the following:

(define call/cc
(l a m b d a (f)

(control (l a m b d a (k) (f . . . k . . .))))).

In contrast with call/cc, which proceeds in its evaluation context, control
calls its argument in the empty context. Thus in our definition of caU/cc,
we need to invoke the functional continuation in order to reestablish the
correct control context:

(control (l a m b d a (k) (k (f . . . k . . .)))) .

Furthermore, the continuation provided by call/cc is abortive. Invoking
an abortive continuation is a jump, i.e., the invoker's control context is
abandoned. To transform control's functional continuation to an abortive
one, we modify the former into a procedure that performs the invocation
of the continuation and immediately aborts:

(l a m b d a (v) (abor t (k v))).

CONTROL DELIMITERS AND THEIR HIERARCHIES 75

Together, the complete definition of call/cc in terms of control reads:

(define call/cc
(lambda (f)

(control (l a m b d a (k)
(k (f (l a m b d a (v) (abor t (k v))))))))).

Continuations that merely involve control transfer but no passage of in-
formation should properly be closures of no arguments (thunks). Currently,
invocations of such continuations take a dummy argument. Instead, we de-
fine controlO so that controlO-continuations are thunks:

(define controlO
(lambda (f)

(control (l a m b d a (k) (f (l a m b d a () (k 'any))))))).

In addition to control, our dialect of Scheme provides the procedure run
for delimiting the dynamic extent of control operations [4]. The procedure
run creates a task from a thunk, which is a procedure of no arguments, and
runs it as an independent program. The task does not inherit its creator's
control context, but it does share its lexic~ bindings. The result of this
task is always passed to the context in which the run-application occurs.

If run's argument contains no control manipulation, the application of
run is vacuous. If, however, run's argument uses control, the two actions
associated with control are delimited by run. First, the functional continu-
ation created by control represents the portion of the surrounding context
delimited by the dynamically closest run. Second, the control-expression
erases its current context as usual, but only up to the dynamically nearest
run.

In a sense, the procedure run acts as a user-available prompt: one can
always expect a result to be returned to the context of a run-application,
much as an interactive command always returns with a result at a com-
mand-line prompt. A convenient syntactic form is

(% e . . .) ,

which expands as follows:

(e x t e n d - s y n t a x (%)
[(~o e . . .) (run (l a m b d a 0 e . . .))]) .

We shall henceforth use "run" and "prompt" interchangeably, preferring
"prompt" when we are emphasizing a program-context, and "run" when
we are highlighting the use of the control operator as a procedure.

As an illustration of how run delimits transfer of control, consider

76 SITARAM AND FELLEISEN

(addl (% (add1 (control (l ambda (k) 0))))).

The %-expression is run as the independent program:

(addl (control (l ambda (k) 0))).

From a previous example, we know that this expression evaluates to 0. This
result is sent to the %-context, viz., (add1 -..), and therefore, the entire
expression evaluates to 1.

For a more complex example, consider the following expression, which
invokes a continuation inside a prompt:

(let ([g (% (* 2 (control (l ambda (k) k))))])
(* 3 (% (* 5 (abor t (g 7)))))).

The local variable g is bound to the functional continuation representing
(* 2...):

(l ambda (x) (* 2 x)).

The let-body contains (* 5 (abor t (g 7))) as an independent task that
shares the lexical variable g with its parent program. This evaluates as
follows:

(* 5 (abor t (g 7)))
(g7)

==# ((l ambda (x) (* 2 x)) 7)

14.

This result is returned to the context of the prompt-expression, (* (% ...)
3), yielding 42.

The prompt of Scheme's interactive loop is an implicit run surrounding
each Scheme program. The interactive loop uses base-run, a variant of
run, as a catch-all delimiter for every control manipulation in the Scheme
program. Moreover, the identifier base-run can be redefined as a differ-
ent procedure. This, we shall see, facilitates the development of powerful
methods for creating control hierarchies.

4 I m p l e m e n t i n g run a n d control

The implementation machinery for call/cc packages the entire control
stack into a continuation object for the user. A modification of this ma-
chinery into one that can package a contiguous portion, rather than the

CONTROL DELIMITERS AND THEIR HIERARCHIES 77

whole, of the control s tack leads to a native 4 implementat ion of control.
To include run, the implementat ion must also identify points on the stack
that restrict control's manipulations of the stack. Alternatively, the original
call//cc can simulate these actions, albeit inefficiently, providing an embed-
ding of the operators run and control in s tandard Scheme. We describe
bo th strategies in the following subsections; we recommend skipping the
second subsection on a first reading.

4 .1 A s tra tegy for a na t ive i m p l e m e n t a t i o n

A native implementat ion manipulates the control stack directly. At any
stage, the control stack is the machine equivalent of the evaluation context
of the program subexpression currently being evaluated. A Scheme program
starts executing in an empty control context. The control context is repre-
sented by a stack, the empty context by the empty stack; sub-evaluations
cause the stack to grow. The stack always contains enough information for
the completion of the rest of the evaluation.

Conceptually~ a run-apphcation marks the top of the current control
stack. A control-application provides the programmer with an abstract ion
of the top port ion of the s t ack- - f rom the top down to the closest run-
mark. This is the functional continuation. The application simultaneously
erases this port ion off the stack and applies the control-argument to the
functional continuation. Invoking a functional continuation on a value re-
installs the abst racted partial stack on top of the current control stack, and
then proceeds as if the value were re turned from a sub-evaluation.

Two special uses of control lead to important optimizations. First, if the
control-argument ignores its argument, the functional continuation need
not be created. Second, if the control-argument immediately applies the
functional continuation, the top port ion of the stack need not be erased.
As we shall see in the following sections, these cases occur quite frequently.

4 .2 E m b e d d i n g run a n d control in s t a n d a r d S c h e m e

The operator call/cc actually suffices to simulate the above s trategy in
a Scheme system without modifying the underlying implementation. 5 The

4By a "native" implementation of a facility we mean one where the facility is incor-
porated into the code generator for the system: it thus has a potential for efficiency not
available to facilities built on top of the system.

5Guillermo Rozas was the first to claim the existence of such a solution--our solution
assumes that Scheme has the procedure eval for evaluating textual arguments in the
global environment. The implementation of run is not faithful because it is not tail-
recursive: whereas (iterate loop () (run (lambda 0 (loop)))) is a tight loop in a system
with native run~control, it exhausts stack space in the embedding.

78 SITARAM AND FELLEISEN

continuations obtained by calling call/cc at appropriate points provide an
explicit representation of the underlying control stack. Since the creation
and manipulation of this stack representation use abortive continuations
extensively, this strategy for embedding the operators run and control is
less efficient than a native implementation.

The embedding captures the abortive continuations at each run- and
control-application and at each invocation point of a functional continu-
ation, and uses a stack to manage the transfer of control to the various
run- and invocation-point continuations. Each run-application stores its
abortive continuation in a new topmost frame on the stack, because a con-
trol-application in its dynamic extent must jump to the evaluation context
of this run. A control-application provides its argument with its abortive
continuation packaged into a procedure that simulates the functional con-
tinuation. In order to realize the functional behavior of control's continua-
tions, an invocation of such a continuation adds its invocation point to the
topmost frame of the stack. The run-application takes care of returning
program execution to each of its associated invocation points.

The stack data structure run-stack represents the underlying control
stack. Each frame in the run-stack corresponds to a prompt, and con-
tains the abortive continuation at the prompt as well as the sub-stack of
the invocation points captured within this prompt. Initially, the run-stack
is empty:

(def ine run-stack '0).

The implementation provides a thunk reset-loop that clears the run-stack
and spawns a new read-eval-print loop. This interactive loop iteratively
reads an input expression, surrounds it with the outermost prompt, base-
run, and evaluates it: 6

(def ine reset-loop
(l a m b d a ()

(set! ([run-stack '0])
(i t e r a t e read-eval-print 0

(print/ " ~ s ~ n " (eval '(base-run (l a m b d a 0
,(prompt-read "% ")))))

(read-eval-pr nt))))).

The identifier base-run is initially bound to run.
Each run-application captures its abortive continuation and pushes it

along with a new empty sub-stack for invocation points atop the run-stack.

Sin order to ensure that the implementation is not corrupted by calls to the error and
interrupt handlers, we can redefine the latter to call reset-loop.

CONTROL DELIMITERS AND THEIR HIERARCHIES 79

(define run
(lambda (th)

(let ([run-coat 'any])
(let ([v ((caU/cc (sigma (run-coat)

(set! ([run-stack (cons (cons run-coat '0) run-stack)I)
th))))])

(let ([top-flame (car run-stack)I)
(let ([top-run-coat (car top-flame)]

[top-sub-stack (cdr top-flame)I)
(cond [(not (null? top-sub-stack))

(let ([k (car top-sub-stack)I)
(set-cdr! top-flame (cdr top-sub-stack)) (k v))]

[(not (eq? run-coat top-run-coat))
(top-run-coat (lambda 0 v))]

[else (set! ([run-stack (cdr run-stack)]) v)]))))))).

Figure 2: Embedding run in Standard Scheme

If the run-argument returns normally, the run-stack is popped and the value
returned. Thus, the outline of the procedure run is:

(define run
(lambda (th)

(let ([run-coat 'any])
(let ([v ((call/cc (sigma (run-coat)

(set! ([run-stack (cons (cons run-coat '0) run-stack)])
th))))])

, o ,

(set! ([run-stack (cdr run-stack)]) v))))).

The prompt continuation stored in run-stack expects a thank and thaws
it: with this tactic, a specified action can be performed after a jump has
been made to the prompt.

Each control-application jumps to its nearest prompt-context; it does
this by clearing the topmost sub-stack of invocation points on run-stack
and invoking the associated prompt continuation. Further, control sim-
ulates its functional continuation with an abortive continuation and the
saved topmost sub-stack on the run-stack. Together, these two pieces of
information effectively describe the functional continuation grabbed by con-
trol. The argument of control is now applied to an object that simulates

80 SITARAM AND FELLEISEN

(define control
(lambda (f)

(call/cc (lambda (control-cont)
(let ([control-frame (car run-stack)f)

(let ([control-run-cont (car control-frame)]
[control-sub-stack (cdr control-frame)f)

(set-cdd control-frame '0)
(control-run-cont

(lambda 0
(f (lambda (v)

(call/cc (lambda (invoke-cont)
(let ([invoke-sub-stack (cdr (car run-stack))])

(set-cdr] invoke-frame
(append control-sub-stack

(cons invoke-cont invoke-sub-stack)))
(control-cont v))))))))))))))

Figure 3: Embedding control in Standard Scheme

the behavior of a functional continuation. Thus, the code for control looks
approximately like

(define control
(lambda (f)

(call/cc (lambda (control- coat)
(let ([control-frame (car run-stack)f)

(let ([control-run-coat (car control-frame)]
[control-sub-stack (cdr control-frame)f)

(set-cdr! control-frame '0)
(control-run-cont

(lambda 0 (f (lambda (v) . . . (control-coat v)))))))))).

Since the prompt continuation expects a thur~k, a control-application can
abort to its prompt before calling the control-argument on its functional
continuation. Thus, control-applications are pure jumps, e.g., the loop
(i terate loop () (abort (loop))) does not run out of stack space.

The functional continuation object has access to the abortive continua-
tion and the sub-stack of invocation points grabbed by control. Upon invo-
cation, the functional continuation must first push its own current abortive
continuation (invocation point) on to the topmost sub-stack on run-stack,

CONTROL DELIMITERS AND THEIR HIERARCHIES 81

so that computation can return to the current evaluation context. It then
reinstalls the recorded invocation points by pushing them all atop the top-
most sub-stack. Finally, the continuation object transfers control to the
recorded abortive continuation:

(lambda (v)
(caU/cc (lambda (invoke-cont)

(let ([invoke-top-frame (car run-stack)])
(let ([invoke-sub-stack (cdr invoke-top-frame)])

(set-cdr! invoke-top-frame
(append control-sub-stack (cons invoke-cont invoke-sub-stack)))

(control-coat v)))))).

An invocation of the abortive continuation associated with a control-
application eventually reaches the prompt-context that enclosed the origi-
nal call to control. Since this may differ from the prompt-context enclosing
the invocation of the functional continuation, we add code in the body
of the procedure run that checks if the run-argument has returned in the
proper prompt-context, and if not, jumps to the topmost prompt on the
run-stack:

(let ([top-frame (car run-stack)])
(let ([top-run-cont (car top-frame)] [top-sub-stack (cdr top-frame)I)

(cond [...]
[(not (eq? run-con top-run-cont)) (top-run-cont

(lambda () v))]
[else (set! ([run-stack (cdr run-stack)]) v)]))).

The prompt also needs to dispatch control back to each of the invocation
points in its frame so that control's continuations are functional. The
following code in run's body performs this dispatch in stack order for the
entire frame before the prompt finally returns a value:

(cond [(not (null? top-sub-stack))
(let ([k (car top-sub-stack)])

(set-cdr! top-frame (cdr top-sub-stack)) (k v))]
[(not (eq? run-coat top-run-cont)) (top-run-coat (lambda 0 v))]
[else (set! ([run-stack (cdr run-stack)]) v)]).

Figures 2 and 3 collect the above code fragments into the final definitions
for run and control.

82 SITARAM AND FELLEISEN

5 F i r s t - o r d e r c o n t r o l a b s t r a c t i o n s w i t h prompts

In contrast to Scheme-like languages, Common Lisp [16] (and older di-
alects of Lisp) provide language features for first-order control manipula-
tion. First-order control operations suffice for many traditionally important
uses of evaluation control such as aborting subcomputations, exiting pro-
cedures and loops, and handling basic exceptions. The crucial implemen-
tation characteristic of such first-order manipulations is that they cannot
reach beyond the dynamic extent of the control expression. Consequently,
first-order control operators avoid the need for copying a portion of the
run-time stack and for switching stacks. They only require the ability to
mark the control stack and to erase it down to a chosen mark. Therefore,
such operations are also called stack-based, for they avoid heap allocations
for the run-time stack or copies of it.

The more powerful higher-order operators can simulate first-order behav-
ior [7], but such simulations usually require heap-based implementations.
With the operators prompt and abor t , simulations of first-order operators
are faithful, simple and truly stack-based.

5.1 Catch and throw

Traditional Lisp systems provide first-order control manipulation with
the pair of operators ca t ch and th row. The form (ca tch tag exp) marks
the control stack with a user-defined tag; the form (t h row tag exp) erases
the control stack down to the closest matching tag.

In our dialect, the same stack-based behavior can be obtained with the
pair prompt and abor t . After all, a prompt marks the stack, and an
abort-s tatement deletes the stack down to this mark. What we need is a
mechanism for associating a tag with a particular prompt. We choose a
message-passing protocol. In such a set-up, a t h r o w sends a unique th row-
message containing its tag and the thrown value to the nearest catch: 7

(extend-syntax (throw)
[(throw tag value) (abor t (list 'throw tag value))]).

The catch-operator, on receiving a throw-message, checks the tag of the
message against its own, and then decides whether to rett~n the thrown
value or t h r o w it further to some other enclosing catch:

7In a real implementation, the tag throw would have to be replaced by a unique token.

CONTROL DELIMITERS AND THEIR HIERARCHIES 83

(e x t e n d - s y n t a x (catch)
[(catch tag exp)
(let ([catch-tag tag] [result (% exp)])

(record-case result
['throw (throw-tag throw-value)

(if (eq? throw-tag catch-tag) throw-value
(t h row throw-tag throw-value))]

[else result]))]).

Otherwise, if the returned value is not a throw-message, the evaluation of
ca tch ' s sub-expression terminates normally and returns a simple vahm.

A t h r o w to a non-existent tag will eventually arrive at the outermost
read-eval-print loop's prompt. When this happens, the loop should issue
an appropriate error message. Given that the loop uses base-run, we can
issue such an error message by redefining this routine as:

(define base-run
(l a m b d a (thunk)

(let ([result (run thunk)])
(r ecord-case result

['throw (throw-tag throw-value)
(print/ "Throw to unknown tag: ,,,a ~a"

throw-tag throw-value)]
[else result])))).

Since our building blocks, prompt and abor t , only perform truly stack-
based control manipulations, our version is a simple and faithful translit-
eration of the control manipulation provided by native ca t ch and th row.

With Scheme's call/cc, on the other hand, a simulation of ca t ch and
t h r o w is heap-based. For example, Haynes and Friedman [7] show how
to use call/cc and abortive continuations to define a variant of call/cc
called call/cc-stack-based. This is equivalent to ca tch , and invoking the
abortive continuation obtained with call/cc-stack-based is equivalent to
t h row. However, call/cc-stack-based manipulates the control stack exten-
sively. A c a t c h in their implementation captures the current control stack,
while a t h r o w replaces its entire current stack by the captured one. The
operator call/cc-stack-based produces abortive continuations using calI/cc
and packages them in continuation objects. These objects can identify
whether their continuation lies below the current context on the runtime
stack. Upon invocation, such an object sends messages to those continu-
ation objects that should no longer be reachable and thus disables their
future use. It is left to the garbage collector to reclaim these unreachable
continuation objects; however, if there are still references to these objects,

84 SITARAM AND FELLEISEN

the collector may not identify them as garbage and retain them beyond
their appropriate life-span.

5.2 Unwind-protect

As a further example of where the constraining action of the prompt is
useful, we consider the unwind-protect facility of Lisp systems [16]. An
unwind-protect form has two parts: a body and a postlude:

(u n w i n d - p r o t e c t body postlude).

The task of u n w i n d - p r o t e c t is to guarantee the execution of postlude,
whether the evaluation of body terminates normally or by a non-local trans-
fer of control through a th row. A postlude is used to specify clean-up op-
erations: a typical postlude involves closing files or releasing resources used
by the body.

As a first attempt, we could define the following:

(e x t e n d - s y n t a x (unwind-protect)
[(unwind-protect body postlude) (begin0 (~ body)postlude)]).

This version ensures postlude's execution but at a significant cost: the
prompt enclosing body intercepts all attempts to transfer control from inside
body to points outside of u n w i n d - p r o t e c t .

The problem with the above attempt is that u n w i n d - p r o t e c t ' s prompt
cannot distinguish between ordinary result values and thrown values. For
the former, postlude must be executed and the value returned to the calling
context. For the latter, however, the execution of postlude must be followed
by a t h r o w of the result value to the appropriate catch-context. The
improved solution reads:

(e x t e n d - s y n t a x (u n w i n d - p r o t e c t)
[(unwind-p ro tec t body postlude)
(let ([result (~o body)])

postlude
(record-case result

['throw (tag value) (th row tag value)]
[else result]))]).

It is easy to see that this implementation provides the standard unwind-
protect facility with the correct behavior.

Certain situations call for an improved model. In particular, the user
may want to deal differently with non-local exits occurring in postlude, s

SWe thank one of the referees for bringing the following alternative models to our
notice.

CONTROL DELIMITERS AND THEIR HIERARCHIES 85

As an example, consider the expression,

(catch 'outer
(i terate loop 0

(catch 'inner
(unwind-protect (throw 'outer true) (throw 'inner true)))

(loop)))

With the current model, the above example loops forever, because the
throw from postlude spawns a new iteration of the unwind-protect-
expression before the throw from the body can ever take effect.

One alternative is to prohibit any non-local exits from postlude beyond
the unwind-protect . To accomplish this, we simply constrain postlude
with a prompt:

(extend-syntax (unwind-protect)
[(unwind-protect body postlude)
(let ([result (% body)])

(% postlude)
(record-case result

['throw (tag value) (throw tag value)]
[else result]))]).

This guarantees that throws from body are not affected by throws from
postlude. With this interpretation for unwind-protect , the above example
terminates, returning true.

Sometimes, the neglect of exits from postlude in favor of exits from body
is inappropriate. Consider, for instance,

(catch 'very-outer
(catch 'outer

(i terate loop 0
(catch 'inner

(unwind-protect (throw 'outer true) (throw 'very-outer false))
(loop))))).

Here the expression returns true, since the throw from the body of the
unwind-pro tec t is chosen over the throw from the postlude. Arguably,
the throw from postlude should dominate, as it reaches beyond the throw
from body.

Our third model allows throws from both body and postlude, in such
a way that the one going to the furthest enclosing catch prevails. To
accommodate this behavior, we use unwind-messages in addition to throw-
messages. An unwind-message encodes all the throws in the form of an

86 SITARAM AND FELLEISEN

association-list containing the corresponding tags and values. Each catch,
on encountering such a message, deletes from the unwind-message's list any
t h r o w to its tag, and passes along the list to the next enclosing catch.
In this manner, the unwind-message is whittled down to a list of a single
tagged value, when a straightforward t h r o w is effected to the corresponding
catch.

The new definition of ca tch , which takes care of unwind-messages, is as
follows: 9

(e x t e n d - s y n t a x (catch)
[(catch tag exp)
(let ([catch-tag tag] [result (% exp)])

(record-case result
['throw (throw-tag throw-value)

(if (eq? catch-tag throw-tag) value
(t h row throw-tag throw-value))]

['unwind (tagvals)
(let ([new-tagvaIs (remq (assq catch-tag tagvals) tagvals)])

(if (null. 7 (cdr new-tagvaIs))
(t h row (caar new-tagvals) (cdar new-tagvals))
(unwinder new-tagvaIs)))]

[else result]))]).

The form t h r o w remains the same. The procedure unwinder packages an
association-list of tags and values into an unwind-message and sends it to
the enclosing prompt:

(define unwinder (l a m b d a (tagvals) (abor t (list 'unwind tagvats)))).

The form u n w i n d - p r o t e c t constrains both body and postlude with
prompts, which may thus receive either ordinary values, throw- or unwind-
messages. A straightforward decision based on these results either returns

value or propagates a throw- or unwind-message:

9For clarity, we have used a functional method for propagating unwind messages past
concentric catch-expressions. A more efficient implementation could have a stack of
catch-tags and have the unwind-message jump immediately to the appropriate catch-
expression.

CONTROL DELIMITERS AND THEIR HIERARCHIES 87

(extend-syntax (unwind-protect)
[(unwind-protect body postlude)
(let ([result-body (% body)])

(let ([result-postlude (% postlude)])
(record-case result-body

['throw (tag1 vat1)
(record-case result-postlude

['throw (tag2 val2)
(unwinder (list (cons taft vail)

(cons tag2 val2)))]
['unwind (tagvals2)

(unwinder (cons (cons tag1 vall) tagvals2))]
[else (throw tag1 yell)])]

['unwind (tagvalsl)
(record-case result-postlude

['throw (tag2 val2)
(unwinder (cons (cons tag2 val2) tagvalsl))]

['unwind (tagvals2)
(unwiuder (append tagvalsl tagvals2))]

[else (unwinder tagvalsl)])]
[else (record-case result-postlude

['throw (tag2 val2) (throw tag2 val2)]
['unwind (tagvals2) (unwiuder tagvals2)]
[else result-body])])))]).

If both body and postlude return normally, the unwind-protect-expression
terminates with the value of body. A throw in either body or postlude
arrives at the respective prompt as either a throw- or an unwind-message.
If only one of either body or postlude produces such a message, it propagates
unchanged to the next enclosing prompt. If both of them produce throws,
the messages are merged into a single unwind-message to the next enclosing
prompt.

6 P r o m p t s in h i g h e r - o r d e r l a n g u a g e s

Beyond first-order control, the new control operators provide simple
and efficient macro-implementations of many high-level control paradigms.
Typical examples are coroutines and engines. Higher-order control ma-
nipulation moreover requires generalizations of unwind-protect such as
dynamic-wind and wind-unwind [7], both of which are straightforward
modifications of the above code for unwind-protect . In addition, prompts
and functional continuations give rise to new programming styles that unify
such diverse directions as imperative program schemas and stream program-

88 SITARAM AND FELLEISEN

ruing. We elaborate on these topics in the following subsections.

6.1 Coroutines

A coroutine [12] generalizes the concept of a procedural abstraction by
including a local control state. A call statement invokes a coroutine. This is
similar to procedure invocation in that the body of the coroutine starts exe-
cuting. However, at any point inside the coroutine, a resume statement can
transfer control to a different coroutine. The suspended coroutine stores its
remaining computation in its local control state. On resuming a suspended
coroutine, computation proceeds from the point saved.

Haynes, Friedman, and Wand [8] describe a succinct implementation of
coroutines using caU/cc. Each coroutine is an object with an internal con-
trol state; initially, this describes the entire coroutine computation. Upon
invocation, computation proceeds according to the local control state. A
resume instruction captures the current abortive continuation with calI/cc
and stores it in the local control state, before invoking the destination
coroutine. Continuing a suspended coroutine reinstates the continuation
stored in its local control state.

Using call/cc implies that the continuation captured by a resume state-
ment is the entire control stack, whereas only the portion of the stack
corresponding to the rest of the coroutine computation is needed. Using
control, we obtain a slightly simpler solution:

(e x t e n d - s y n t a x (co rou t ine resume)
[(coroutine x e . . .)
(letrec ([LCS (l a m b d a (x) e . . .)]

[resume (l a m b d a (c v) (control (s igma (LCS) (c v))))])
(l a m b d a (v) (LCS v)))]).

The lexical variable LCS contains the local control state. The coroutine
itself is a unary procedure that always calls its local control state. The
resume statement uses control to capture and abandon the rest of the
coroutine, stores the continuation in LCS, and continues with the resumed
coroutine. The procedure call is

(define call (l a m b d a (c v) (% (c v)))).

The prompt introducing the coroutine call ensures that the control-appli-
cation in resume correctly identifies the rest of the coroutine.

Haynes et al. [8] go on to describe an extension of the coroutine paradigm
entitled the Dahl-Hoare coroutine [1]. This coroutine has an additional
facility, the detach statement, which transfers control back to the point

CONTROL DELIMITERS AND THEIR HIERARCHIES 89

where a group of coroutines was entered with a call. Owing to the lack
of a control delimiter, the call/cc implementation requires each coroutine
to have an additional local variable holding the caller continuation. The
call statement grabs its continuation to provide the called coroutine with
the caller continuation. Each resume conveys this information about the
caller to the destination coroutine. Eventually, a detach invokes this caller
continuation.

In our version, since we have already identified the ca~er context with
a prompt, a detach merely abor t s to this prompt. Thus a Dahl-Hoare
coroutine is defined as:

(e x t e n d - s y n t a x (co rou t ine resume detach)
[(corout ine x e ...)
(le t rec ([LCS (l a m b d a (x) e ...)]

[resume (l a m b d a (c v) (control (s igma (LCS) (c v))))]
[detach (l a m b d a (v) (control (s igma (LCS) v)))])

(l a m b d a (v) (LCS v)))]).

Here we have incorporated an update to the local control state to take
pla~e during a detach, so that any future invocation of the coroutine starts
computation at the point left off by detach.

6.2 Engines

An engine performs a computation subject to timed preemption [6]. It
is run with three arguments: a number of time units or ticks, a success
procedure and a failure procedure. If the computation finishes within the
given time, the success procedure is applied to the result of the computa-
tion and the remaining ticks; otherwise, the failure procedure is applied to
a new engine that represents the preempted part of the computation. In
either case, the procedure application happens in the call-context of the en-
gine's invocation. Engines are useful abstractions for realizing time-sharing
systems, simulating non-deterministic parallelism and distributed systems,
and making time comparisons between different algorithms.

Haynes and Friedman [6] postulate a procedure for converting a thunk
into an engine. An engine can be run to completion by supplying it a failure
procedure that repeatedly runs the failed engine, and a success procedure
that returns the value of the engine computation. Their implementation is
native.

Dybvig and Hieb [2] present a simple implementation of engines with
abortive continuations. They assume the presence of a global clock or an
interruptable timer, either available primitively, or created using syntactic
extensions for l a m b d a and set! that consume ticks when evaluated. The

90 SITARAM AND FELLEISEN

clock's internal state holds (1) the number of remaining ticks, and (2) an
interrupt handler which is invoked when the ticks run out. The user can
modify both of the clock's ticks and its handler. In addition, the user can
stop the clock: this returns the number of remaining ticks.

In the Dybvig-Hieb model, an engine computat ion captures its entry-
continuation with a call/cc. If the engine completes within the time allot-
ted, control passes to the entry-point of the engine, after which the success
action is applied to the result of the engine computat ion and the ticks left.
Should the engine fail, the interrupt handler captures the continuation at
the point of failure and makes it into a new engine. Once again, control
passes to the entry-point, and the failure action is applied to the new en-
gine.

The entry-point continuation is held in a variable common to every en-
gine. The currently active engine uses this variable to guarantee that either
its success or failure actions takes place in its calling context. The contin-
uation captured by a failing engine effectively represents the rest of the
engine computation, since it always contains an abortive invocation of the
current entry-point continuation. The problem with the Dybvig-Hieb en-
gine model is the same as the one with coroutines implemented with call/cc:
both of them use longer continuations than are needed to identify the rest
of the engine or the coroutine computation. To offset this, they require yet
another continuation call to truncate the computat ion at the appropriate
point.

Again, prompts and functional continuations offer a simpler model. 1°
The engine computat ion is an independent program embedded in a prompt.
A successful engine computat ion returns its result to the prompt. If the
engine fails, on the other hand, the interrupt handler uses a control-appli-
cation to capture the remaining engine computat ion as a functional con-
tinuation and returns this procedure to the prompt as the failed engine.
The value obtained at the engine's prompt is thus either the result of the
engine computat ion or a failed engine. The success or failure actions are
taken accordingly.

As an additional benefit, the use of prompt and control permits a clean
separation between the underlying computat ion of the engine and its in-
terruptability. We may thus represent an engine with a thunk denoting
its computat ion and a preemptable version: the engine proper. The pro-
cedure thunk--~engine produces such a representation from a thunk. The
procedure engine--~thunk retrieves the uninterruptable thunk from such a
representation. Calling this thunk has the same effect as the more expen-
sive operation of running the engine with an infinite number of ticks. The

1°We thank Bob Hieb for pointing out a serious flaw in our earlier engine model.

CONTROL DELIMITERS AND THEIR HIERARCHIES 91

procedure run-engine runs the engine proper.

The following outlines a first attempt at defining thunk-~engine:

(% (clock 'set ticks)
(begin0 (thi~nk)

(set! ticks (clock 'stop)))).

The procedure thunk~engine contains actions for setting the clock to the
requisite ticks, running the thunk, and returning its value, either a success
or an interrupted computation, after stopping the clock. When the clock
runs out of ticks, it invokes the interrupt handler. We set the handler as a
procedure that captures the rest of the engine computation, packages it as
an interrupt message, and sends it to the engine's prompt:

(clock 'set-handler
(l a m b d a 0 (controlO (la rnbda (rest-of-eomp)

(list 'engine-interrupt rest-of-comp))))).

A closer took reveals some problems. When the engine computation is
interrupted, the functional continuation denoting the rest of the engine
includes as its last action the stopping of the clock. The inclusion of the
stop-action will cause problems whether used as an engine or a thunk. An
engine formed from this continuation could stop the clock, and the value
of the remaining ticks supplied to its success procedure, obtained by a
second stopping of the clock, is always zero. Even worse, if the functional
continuation runs as a simple thunk inside another active engine, stopping
the clock implies that the rest of the engine can continue uninterrupted
beyond its allotted time.

Clearly, the rest of the engine as captured by the interrupt handler should
not extend to the stopping of the clock. We modify the offending expression
by enclosing the setting of the clock and the thunk invocation in a second
prompt:

(% (begin0 (% (clock 'set ticks) (thunk))
(set! ticks (clock 'stop)))).

This captures the right continuation if the interrupt occurs within the inner
prompt. Unfortunately, it does not solve the problem for interrupts that
occur just after the inner prompt-expression has returned.

As a remedy, we modify the two prompts such that any interrupt that
occurs between them is ignored. This differential behavior is achieved by
having the outer prompt ignore all interrupts and the inner one package its
interrupts as failed engines:

92 SITARAM AND FELLEISEN

(%-atomicO (%-fai led-engine (clock 'set ticks) (thunk))
(set! ticks (clock 'stop))).

Both %-atomicO and %-fa i led-engine are simple syntactic variants of
run. The form %-atomicO runs its subexpressions inside a prompt, and
tests the result of its first subexpression:

(e x t e n d - s y n t a x (%-atomicO)
[(%-atomicO e . . .)
(let ([result (% (beginO e . . .))])
(record-case result

['engine-interrupt (rest-of-eng) (rest-of-eng)]
[else resutt]))]).

If the result is an interrupt, it is ignored by invoking the interrupted con-
tinuation; otherwise, the result is returned.

The form %-fa i led-engine runs its subexpressions inside a prompt and
tests their result:

(e x t e n d - s y n t a x (%-fai led-engine)
[(%-fai led-engine e ...)
(let ([result (% e ...)])

(record-case result
['engine-interrupt (rest-of-eng) (list 'failed-engine rest-of-eng)]
[else result]))]).

If the result is an interrupt, it is packaged as a failed engine; otherwise the
result is returned unchanged.

The final version of thunk-*engine is in Figure 4. The engine produced by
thunk--~engine is a closure that upon application to a selection procedure
yields either the encapsulated thunk or the engine proper. The inverse
procedure engine-~thunk simply extracts the thunk:

(define engine-* thunk
(l a mb d a (eng)

(eng (l ambda (thunk eng-prop) thuuk)))).

Running the engine is also straightforward. Instead of the thunk, we re-
trieve the engine proper and apply it to its arguments:

(define run-engine
(l am bda (eng ticks succ fail)

((eng (l amb d a (thunk eng-prop) eng-prop)) ticks succ fail))).

CONTROL DELIMITERS AND THEIR HIERARCHIES 93

(define thunk--+ engine
(l ambda (thunk)

(let ([eng-prop
(l a mbda (ticks succ fail)

(let ([ans (%-a tomic0 (%-fai led-engine (clock 'set ticks)
(thunk))

(set! ([ticks (clock 'stop)]) 'any))])
(record-case ans

['failed-engine (rest-of-eng)
(fail (thunk-+engine rest-of-eng))]

[else (succ ans ticks)])))])
(l a mbda (return-either)

(return-either thunk eng-prop))))).

Figure 4: The procedure thunk--~ engine

Finally, we can implement a procedure engine-return that stops an engine
computation. Since the computation is embedded in a prompt, the proce-
dure is a simple abort-statement:

(define engine-return (l am bda (v) (abor t v))).

6.3 S t r e a m s

Beyond being helpful tools for the implementation of higher-level con-
trol abstractions, functional continuations and prompts also enhance the
expressiveness of the underlying language. Both are well-suited tools for
combining the imperative-program-schema and the stream-programming-
paradigm.

Consider a multiary tree, which is either a data-leaf or a list of multiary
trees. An inorder traversal of such a tree can be specified by a simple
recursive algorithm. If the tree is a leaf, enumerate it; otherwise, apply
the algorithm to all the elements in the list of subtrees from left to right.
Abstracting over the particular enumeration procedure to be applied at
each leaf, the tree walk can be written as a program schema:

94 SITARAM AND FELLEISEN

(def ine enumerate
(l a m b d a (leaf-proc!)

(l a m b d a (tree)
(i t e r a t e E ([tree tree])

(if (leaf? tree) (leaf-proc! tree) (for-each E tree)))))).

The procedure for-each applies the recursive procedure E to each element
of the list tree for the effect only. Its result is unspecified.

Based on this program schema, we can derive a variety of different tree
walks by instantiating the leaf-proc! procedure. For example, an inorder
print is simply:

(def ine inorder-print (enumerate print)).

Similarly, an updating procedure that alters the information of each leaf
according to some update/ procedure can be written as:

(define tree-update (enumerate update!)).

More interestingly, we can think of a tree walk, enumerate-stream, that
returns a leaf at a time and a zero-ary procedure--a thunk--for enumer-
ating the rest of the tree when appropriate. Such a pair is called a stream,
and can be created using a lazy-cons, s t r e a m - c o n s :

(extend-syntax (stream-cons)
[(s t r eam-cons a d) (cons a (l a m b d a 0 d))]).

Enumeration streams are useful in situations where the elements of a tree
are successively fed into a different computation, or where the information
in the rest of the tree may not be needed. This becomes particularly apt if
the tree is large or expensive to generate.

With prompts and functional continuations, the procedure enumerate-
stream is yet another instantiation of the program schema enumerate. The
enumeration step should immediately return a stream consisting of a leaf
and a thunk to carry on the rest of the enumeration. The rest of the enu-
meration is represented by the continuation of the enumeration algorithm,
i.e., the portion of the control stack between the top and the call-point
of enumerate-stream. This partial continuation can easily be captured by
placing the computat ion in a prompt and by using control O to get a hold
of the functional continuation of the leaf enumeration. For all future invo-
cations, the thunk generated by controlO must compute inside of a prompt
in order to delimit further calls to controlO. Put t ing all this together, we
have:

CONTROL DELIMITERS AND THEIR HIERARCHIES 95

(define enumerate-stream
(l a m b d a (tree)

(% ((enumerate
(l a m b d a (leaf)

(controlO (l a m b d a (rest)
(s t r eam-cons leaf (run rest))))))

tree)))).

7 A h i e r a r c h y o f controls a n d runs

Unfortunately, multiple uses of control and run have the potential of
interfering with each other, making it impossible to mix control and run
with high-level abstractions or high-level abstractions with each other. For
a simple example, consider the expression:

(ca tch 'k (list (% (add1 (th row 'k 6))))).

Instead of the constant 6, our macro-implementation of c a t c h and t h r o w
produces a list containing a throw-record, which is clearly not intended.
Similarly, a catch-expression in the body of an engine can void the engine's
clock interrupt. When the interrupt occurs in the dynamic extent of a
catch-expression, the wrong piece of context is identified as the rest of the
engine, and, even worse, the interrupted engine is aborted to the prompt
of the catch-expression.

The interference between multiple uses of control and run is obviously
due to the spoiling of the correspondence between a particular pairing of
control and run. The most natural solution calls for matching pairs of
control and run. Such matching pairs should interact with each other
and possibly ignore the intervention of other control operations. Given
such facilities, we could match up catch-prompts with throw-controls and
engine-prompts with engine-controls, avoiding the above problems. How-
ever, total independence between all pairs of control and run is not always
desirable. The engine-prompts, for example, should intercept all control-
operations as otherwise a timer would be running without an engine being
active. Similarly, a catch-expression can also be conceived of as an inde-
pendent task that either returns normally or terminates with a t h row, but
prevents other control actions.

We propose a hierarchy with different levels of control and run pairs such
that a prompt serves as control delimiter to all controls of and above its
level. The hierarchy is definable in terms of the original control and run.
For clarity, we refer to the originals as system-control and system-run and
to some pair in the hierarchy as leveled control and leveled run. Levels
are indicated by non-negative integers: the lowest level is 0, and a larger

96 SITARAM AND FELLEISEN

integer denotes a higher level. Pairs on the same level interact as usual;
pairs at different levels interact in some convenient and meaningful way.

To unravel the strands of control, we use a message-passing protocol for
communicating between leveled control and leveled run. Since the prompt
closest to a control-application is generally not of the same level and the
captured functional continuation does not represent the entire relevant con-
text, a leveled control switches to the nearest prompt with an appropriate
package of information and leaves to the prompt what to do next. The
message consists of the control level, the control-argument, and the contin-
uation. The procedure that generates an appropriate version of control for
a given level number is:

(define make-control
(lambda (lvl#)

(l a m b d a (f)
(system-control (l a m b d a (k) (list 'control/run lvl# f k)))))).

In order to intercept all possible control-operations, a leveled run invokes
its argument in system-run, guaranteeing the return of the computation to
the leveled run-operation. If this leveled run receives a control-package, it
compares its own level with that of the control-package and decides whether
the control-application be performed immediately, or whether the package
be forwarded to the next prompt. Given a level number, the procedure
make-run is used to produce the corresponding leveled run:

(define make-run
(l a m b d a (level)

rec run
(l a m b d a (th)

(let ([v (system-run th)])
(record-case v

['control/run (control-level f k)
(if (> = control-level level)

(run (l a m b d a 0 (f k)))
((make-control control-level)
(l a m b d a (g)

(run (l a m b da 0
(f (l a m b d a (x) (g (k x)))))))))]

[else v])))))).

If the control-package's level is at or above the current run-leveL the ap-
plication of the control-argument to the corresponding continuation takes
place. If, on the other hand, the package's number is of a lower level, more

CONTROL DELIMITERS AND THEIR HIERARCHIES 97

of the context has to be captured before the control-argument can be ap-
plied. In either case, the continuation is supplied to the control-argument
in a prompt of the current level to account for f i ~ h e r control actions.

We assign level numbers to the various control operators in the abstrac-
tions for engines and c a t c h and t h r o w , etc., as follows. First, base-run is
the bot tommost run in the hierarchy, and the procedure for resetting the
system corresponds to the bot tommost control. Second, since an engine
control used to interrupt a failing engine should be at a lower level than
any other run operators, the engine's control and run are at level 1. Third,
c a t c h and t h r o w are available at levels above the run used for running an
engine, and are given level 2. Finally, we re-use the names run and control
for the pair at level 3 in the hierarchy.

In order to make the control hierarchy safe, the procedures make-control
and make-run as well as all leveled versions of control and run except the
top-level ones must be hidden from the user. The availability of the user-
level control and run is sufficient for building further hierarchies on top
of the given one. Indeed, the solution is flexible enough to allow different
sub-hierarchies on different levels of a given hierarchy.

Of course, our proposed scenario is not the only feasible one. We could
equMly well argue that different levels should not interfere with each other
at all, or that the action taken according to the three different cases should
be parameters of the make-run procedure. It would then be possible to
use c a t c h for exiting engines, with the provision that ca t ch ' s control-
application turns off the engine's clock. The important point is not which
scenario we choose to implement but that every scenario is realizable on
top of the simple control- and run-operators.

8 C o n c l u s i o n

In the preceding sections, we have demonstrated that the concept of a
control delimiter has a variety of interesting applications. First, together
with a b o r t , it provides the appropriate terminology for explaining differ-
ent alternatives of Lisp control constructs. If it is available within Lisp, it
can be used to implement the best alternative for a particular situation.
Second, and more importantly, the availability of run in a higher-order
language with call/cc or control is the basis for embedding stack-based
control structures easily and faithfully. Finally, the operator run facilitates
the macro-implementations of improved versions of existing higher-order
control abstractions in Scheme-like programming languages. In short, we
believe that for systems and application languages, run provides an impor-
tant low-level control operator.

98 SITARAM AND FELLEISEN

In our analysis we ignored the connection of control delimiters to parallel
and distributed programming. Our own motivation for run stems partly
from theory [4] and partly from concern about unrestricted control ac-
tion, but Stoy and Strachey [17] introduced first-order run as an operating
system primitive for executing independent sub-processes. It is therefore
natural to ask whether run is the appropriate control delimiter for parallel
versions of higher-order programming languages with continuation-based
control structures. We suggest this as a topic for future research.

A c k n o w l e d g m e n t

We are grateful to Bruce Duba for a discussion on implementation strate-
gies for control operators, to Dan Friedman for critical comments on early
drafts, to Bob Hieb for suggesting several important improvements, and to
the referees for their detailed readings.

R e f e r e n c e s

1. O.J. Dahl and C.A.R. Hoare. Hierarchical program structure. In O.-J.
Dahl, E. Dijkstra, and C.A.R. Hoare, editors, Structured Programming,
Academic Press, 1972.

2. R.K. Dybvig and R. Hieb. Engines from continuations. Journal of
Computer Languages (Pergamon Press), 14(2), 1989.

3. M. Felleisen. A calculus for assignments in higher-order languages.
Proe. 14th A CM Symposium on Principles of Programming Languages,
314-325, 1987.

4. M. Felleisen. The theory and practice of first-class prompts. Proc. 15th
ACM Symposium on Principles of Programming Languages, 180-190,
1988.

5. M. Felleisen, M. Wand, D.P. Friedman, and B.F. Duba. Abstract
continuations: a mathematical semantics for handling full functional
jumps. Proc. Conference on Lisp and Functional Programming, 52-62,
1988.

6. C.T. Haynes and D.P. Friedman. Abstracting timed preemption with
engines. Journal of Computer Languages (Pergamon Press), 12(2):109-
121, 1987.

CONTROL DELIMITERS AND THEIR HIERARCHIES 99

7. C.T. Haynes and D.P. Friedman. Embedding continuations in pro-
cedural objects. ACM Transactions on Programming Languages and
Systems, 9(4):245-254, 1987.

8. C.T. Haynes, D.P. Friedman, and M. Wand. Obtaining coroutines
from continuations. Journal of Computer Languages (Pergamon Press),
11(3/4):109-121, 1986.

9. G.F. Johnson and D. Duggan. Stores and partial continuations as
first-class objects in a language and its environment. Proc. 15th ACM
Symposium on Principles of Programming Languages, 158-168, 1988.

10. E. Kohlbecker. Syntactic Extensions in the Programming Language
Lisp. PhD thesis, Indiana University, 1986.

11. P.J. Landin. The next 700 programming languages. Communications
of the ACM, 9(3):157-166, 1966.

12. C.D. Marlin. Coroutines--A Programming Methodology, a Language
Design and an Implementation. Volume 95 of Lecture Notes in Com-
puter Science, Springer-Verlag, Heidelberg, 1980.

13. J. McCarthy et al. Lisp 1.5 Programmer's Manual. The MIT Press,
Cambridge, 2 edition, 1965.

14. J. Rees and W. Clinger. The revised 3 report on the algorithmic lan-
guage scheme. SIGPLAN Notices, 21(12):37-79, 1986.

15. J.C. Reynolds. Gedanken--a simple typeless language based on the
principle of completeness and the reference concept. Communications
of the ACM, 13(5):308-319, 1970.

16. G.L. Steele Jr. Common Lisp--The Language. Digital Press, 1984.

17. J.E. Stoy and C. Strachey. OS6: an operating system for a small com-
puter. Comp. J., 15(2):117-124; 195-203, 1972.

18. G.J. Sussman and G.L. Steele Jr. Scheme: An interpreter for the ex-
tended lambda calculus.- Memo 349, MIT AI Lab, 1975.

