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Abstract. Since control operators for the unrestricted transfer of control are too pow- 
erful in many situations, we propose the control delimiter as a means for restricting 
control manipulations and study its use in Lisp- and Scheme-like languages. In a Com- 
mon Lisp-like setting, the concept of delimiting control provides a well-suited terminology 
for explaining different control constructs. For higher-order languages like Scheme, the 
control delimiter is the means for embedding Lisp control constructs faithfully and for 
realizing high-level control abstractions elegantly. A deeper analysis of the examples sug- 
gests a need for an entire control hierarchy of such delimiters. We show how to implement 
such a hierarchy on top of the simple version of a control delimiter. 

1 T h e  p o w e r  o f  c o n t r o l  o p e r a t o r s  

Since it is impossible to anticipate all possible needs for control abstrac- 
tions during the design of a programming language, the inclusion of a low- 
level, powerful control operator seems to provide the most appropriate so- 
lution. Wi th  such an operator, a programmer can build the high-level con- 
trol abstractions tha t  are necessary for a specific problem. However, this 
s trategy has two problems. On one hand, the implementat ion of high-level 
control abstractions with the general control operator hardly ever achieves 
the same efficiency as native versions of these abstractions. On the other 
hand, the low-level operator is often too powerful for a simple, faithful 
implementat ion of high-level abstractions. 

A typical example is the programming language Scheme [14,18] and its 
control operator call-with-current-continuation, abbreviated call/cc. Sim- 
ilar examples are ISWIM and J [11], GEDANKEN with its first-class la- 
bels [15], and GL and state [9]. Wi th  call/cc, a program can access an ab- 
straction of the current control state, the continuation, at any point during 
the evaluation. Like all other values in Scheme, continuations have first- 
class status; they can thus play the role of procedure arguments and results 

*The work of both authors was partially supported by the National Science Foundation 
and DARPA. 
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or can be assigned to arbitrary variables. The combination of call/cc and 
first-class continuations provides the basis for implementing many different 
control abstractions as simple abbreviations [18] and for creating complex 
systems with various levels of program control [2,6,8]. 

Unfortunately, as Haynes and Friedman [7] observe in their treatise on 
constraining control, call/cc and its associated continuations are too gen- 
era] in many cases and inappropriate use can easily destroy the integrity 
of an embedded control abstraction. Their solution consists of a method 
for restricting the power of call/cc and continuations in appropriate ways. 
The crucial idea is to redefine call/cc so that  continuations are always em- 
bedded in constraining procedural objects. With such redefinitions, call/cc 
and constrained continuations can simulate Lisp's c a t c h  and t h r o w ,  pro- 
tect the dynamic scope of a routine, and confine the use of continuations to 
dynamic domains. Though feasible, these solutions are often complex and 
difficult to understand. For example, the realization of c a t c h  and t h r o w  
requires a complicated communication system for the continuation objects 
and moreover relies on a garbage collector for eliminating inaccessible con- 
tinuations. Similarly, a facility for postfixing the dynamic scope of a routine 
relies on a central data structure for keeping track of the system's entire 
control tree. 

Instead of accepting these complicated mechanisms for constraining con- 
trol, we believe they reflect a fundamental problem of the underlying lan- 
guage. Although Scheme can create a first-class abstraction of the control 
state, it does not provide a first-class means for determining the extent of 
this control state. It always takes the entire control state from the current 
point in the evaluation to the unique end of the evaluation, which is the 
prompt  in an interactive system. Unlike any other object in Scheme, this 
delimiter for control actions is a second-class citizen. We suggest making 
this control delimiter a first-class facility: the first-class prompt  [4]. 

Our suggestion generalizes Stoy and Strachey's [17] run subroutine and 
Lisp's [13] e r r s e t  facility. 1 The operator run and to a lesser extent e r r s e t  
allow a program to create tasks that  share lexical information but are iso- 
lated with respect to non-local transfer of control. When added to a lan- 
guage with a control structure based on first-class continuations, the control 
delimiter induces two changes. First, any control actions that  eliminate on- 
going evaluations can only erase control information up to the dynamically 
closest control delimiter. Second, a control operator that  provides access 
to the control state can only encapsulate the piece of control information 
between the current point of evaluation and the closest delimiter. 

1Mitchell Wand and Andrew Black pointed out the relationships between prompts 
and errset and prompts and run, respectively. 
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Although the control delimiter solves several problems with existing con- 
trol operators, it also creates the potential of undesirable interference be- 
tween its uses in overlapping dynamic extents. In order to avoid such 
anomalies, we suggest a simple strategy for defining a hierarchy of delim- 
iters. Since the control hierarchy is defined in terms of the raw control 
operators, it is easy to continue building hierarchies inside hierarchies and 
thus get arbitrarily grainy levels of control operators. The ability to create 
and hide the lower levels of these operators ensures that  no program frag- 
ment can unintentionally or maliciously violate the security of the system 
or new layers of applications writ ten on top of the system. The particular 
inter-level relationship we choose posits that  every level in the hierarchy 
have complete power over its own control operations and the ones in levels 
above itself. We believe that  this reflects the reality of multi-layered sys- 
tems, except that  such systems are usually implemented combining facilities 
from different languages and with less flexibility. By providing simple fa- 
cilities for a control hierarchy, we get a powerful yet secure language for 
many layers of application and systems programming. 

In the second and third section, we introduce our variant of Scheme 
and our proposal for an alternative control structure, respectively. The 
fourth section presents a method  for implementing our control structure 
through a modification of a Scheme implementation and, less efficiently, 
within Scheme. The fifth section illustrates the use of control delimiters in 
a Common Lisp-like setting; it demonstrates how the idea of control delim- 
iters provides the proper terminology for modeling and experimenting with 
different versions of c a t c h  and t h r o w  and u n w i n d - p r o t e c t .  Following 
this, we illustrate the primitive use of our control structure in a higher-order 
setting with powerful abstractions for coroutines, t ime-preempted compu- 
tations, and stream processing routines. Finally, in Section 7, we show how 
the naive use of control delimiters leads to problems and how these prob- 
lems are at tenuated by generalizing the control delimiter to hierarchies of 
control delimiters. The last section briefly summarizes our approach and 
puts it in perspective. 

2 A b r i e f  i n t r o d u c t i o n  t o  S c h e m e  

Scheme [14,18] is an expression-oriented language with call-by-value, lex- 
ically-scoped, first-class procedures, and has imperative extensions for lex- 
ical assignment and control manipulation. In this section, we describe the 
core constructs of our dialect of Scheme, including its s tandard control 
structure. We then give a brief account of how to enrich the language with 
syntactic extensions. 

The following EBNF specifies the syntax of well-formed expressions in 
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core Scheme: 

exp : : - - - -  basic-constant 
false 
true 
id 
(quote  exp) 
(lambda ( id . . .  ) exp . . .  ) 
(sigma ( i d . . . )  exp . . . )  
(if exp exp exp) 
( exp exp . . .  ) 
apply 
caU/cc 

The notation item . . .  is used to denote multiple (possibly zero) occurrences 
of the syntactic object item. 

Basic constants are mutable and immutable data (numbers, symbols, 
dotted-pair structures, etc.) and basic procedures on such data (÷, *, 
cons, car, set-cdd, etc.). An identifier is a placeholder for a value that 
is determined by the lexical context (i.e., the lexicatly closest l ambda -  
abstraction and/or  the dynamically closest side-effect). A quote-expres- 
sion is an atomic value or a dotted-pair structure; 'exp abbreviates (quo te  
exp). To permit selective evaluation inside a quoted expression, the back- 
quote is used: 'exp is identical to 'exp except that subexpressions preceded 
by a comma are evaluated. A lambda-expression evaluates to a closure, 
a first-class procedural object. On application, a closure establishes bind- 
ings between the identifiers in the parameter list and the corresponding 
argument values; it then continues with the sequential evaluation of the 
body expressions. A sigma-expression [3] evaluates to a sigma-capability, 
a closure-like object that, on application, modifies the existing bindings of 
its parameters. Most Scheme implementations instead provide the assign- 
ment form set!, which takes an identifier and a subexpression, and modifies 
the binding of the identifier to the value of the subexpression. Condition- 
als are introduced by if: a special constant false is Scheme's false value; 
all other values, including a special constant true, count as true. An ap- 
plication is a non-empty sequence of expressions; in our dialect, these are 
evaluated left to right. An alternative means for performing applications 
uses the procedure apply, which is called with two arguments: the proce- 
dure and the list of the procedure arguments. The procedure call/cc ap- 
plies its argument to an abstraction of its control context called an abortive 
continuation. When invoked with a value, such a continuation abandons 
its current context and continues evaluation with the value at the context 
captured in the continuation. 
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A Scheme expression is evaluated in a global environment. The global 
environment provides an extensible and modifiable set of semantic bindings. 
The form (def ine  id exp) is used to bind id to the value of exp. 

Scheme allows the user to define syntactic extensions with the form 
extend-syntax [10]. It takes a list of keywords--a primary keyword 
followed by optional auxiliary keywords--and a sequence of specification 
clauses. Each specification consists of an abbreviation pat tern and a corre- 
sponding expansion pattern: 

(extend-syntax (<keyword> . . .  ) 
[<abbreviation> <expansion>] . . .  ). 

A syntactic preprocessor reduces each input expression that  matches the 
first abbreviation pat tern  to the appropriate core expression. In addition, 
the preprocessor has the ability to process ellipsis, . . . ,  in patterns, as well 
as to prevent variable capture when new variable bindings are established 
in the expansion [10]. 

As an example for the use of ellipses, consider the definition of a let- 
expression: 

(extend-syntax (let) 
[(let (Ix exp] . . .  ) b o d y . . . )  ( ( l a m b d a  (x . . .  ) body . . . )  exp. . . ) ] ) .  

A let-expression specifies local bindings with initial values for use within 
the let-body. Such an expression is transformed into the application of 
a lambda-expression,  where the l ambda-paramete rs  s tand for the local 
variables and are bound to the initial values through immediate application. 
As an example for hygienic expansion, we define a conditional or: 

(extend-syntax (or) 
[(or x y) (let ([v x]) (if v v y))]). 

The form or  introduces a texical variable v for the value of its first subex- 
pression. If this is non-false, it is returned without evaluating the second pa- 
rameter, otherwise the value of the latter is the result of the or-expression. 
In a naive expansion system, the new lexical variable v would bind free 
occurrences of v in the second subexpression of or. The hygienic macro ex- 
pansion method [10] automatically avoids such unintended variable bindings 
without further instructions from the programmer. Sometimes an identifier 
introduced by an expansion is meant to capture bindings in the syntactic 
extension: such identifiers are listed as auxiliary keywords to exempt them 
from hygienic expansion. 



72 SITARAM AND FELLEISEN 

(extend-syntax (rec) 
[(rec name exp) (let ([name 'any]) ((sigma (name) name) exp))]) 

(extend-syntax (letrec) 
[(letrec ([x exp] . . .  ) body . . .  ) 
(let ([x 'any]...) ((sigma ( x . . . )  body . . . )  exp . . . ) ) ] )  

(extend-syntax (set!) 
[(set! ([x exp] . . .  ) b o d y . . . )  ((sigma (x . . .  ) b o d y . . . )  e xp . . . ) ]  
[(set! name exp) ((sigma (name) 'any) exp)]) 

(extend-syntax (iterate) 
[(iterate loop ([x exp] . . .  ) body . . .  ) 
((rec loop (lambda (x . . .  ) body . . . ) )  exp . . .)]) 

(extend-syntax (beg!nO) 
[(beg!nO first-exp exp . . .  ) 
(let (~rst-val  ]irst-exp]) e x p . . ,  first-pal)]) 

(extend-syntax (and) 
[(and) true] [(and x y . . .  ) (if x (and y . . .  ) false)]) 

(extend-syntax (or) 
[(or) false] [(or x y . . .  ) (let (Iv x]) (if v v (or y . . .  )))]) 

(extend-syntax (cond else) 
[(cond) false] 
[(cond [else else-exp . . .])  (begin else-exp. . .  )] 
[(cond [test exp...] clause...) 
(let ([pal test]) (if pal (begin pal exp . . .  ) (cond clause . . .  )))]) 

(extend-syntax (record-case else) 
[(record-case rcd) 'any] 
[(record-case rcd [else else-body . . .])  (begin rcd else-body. . .  )] 
[(record-case rcd [tag comp body . . . ]  clause . . .  ) 
(let ([r red]) 

(if (eq? (car r) tag) (apply (lambda comp b o d y . . . )  (cdr r)) 
(record-case r c lause. . . ) ) )])  

Figure 1: Some commonly used syntactic extensions 
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Some common syntactic extensions are defined in Figure 1. The letrec- 
expression introduces local definitions just as let  does, but these definitions 
are mutually recursive; rec is used to define a single recursive procedure. 
The traditional Scheme assignment form, set!, is defined as the applica- 
tion of a sigma-closure that modifies the binding of the sigma-parameter. 
However, in keeping with the expression-oriented nature of Scheme, we 
also supply an alternative expansion pattern for se t ! - -one  that relates to 
s igma  much as let  does to l ambda :  a set!-expression modifies the bind- 
ings of its lexical variables and proceeds with the evaluation of its body. 
The form i t e ra t e  effects a recurring evaluation, similar to a loop. The form 
beg in0  evaluates a sequence of expressions, returning the value of its first 
subexpression. The forms and  and or perform the boolean operations of 
conditional and and or. The form c o n d  is a generalization of if to include 
many sub-clauses. The form record-case  dispatches on a given expression: 
if it is a record with the tag specified in one of its clauses, the identifiers in 
the clause are bound to the components of the record before executing the 
body; otherwise, the default action specified in the else-clause is carried 
out. 

3 F u n c t i o n a l  c o n t i n u a t i o n s  a n d  c o n t r o l  d e l i m i t e r s  

Our dialect differs from traditional Scheme in tile choice of control op- 
erators. Instead of call/cc and abortive continuations, it has control and 
functional (i.e., non-abortive) continuations [5,9]. 2 The operator control 
takes a single argument. When invoked, control encodes its current evalua- 
tion context as a lambda-closure, the functional continuation, and applies 
its argument to this continuation in the empty control context. 

For an illustration, let us work through some examples. Consider the 
expression: 

(addl (control ( l ambda  (k) 0))). 

The evaluation context of the control-application is (addl ...); the cor- 
responding procedural abstraction, viz., the functional continuation, is 
( l ambda  (x) (add1 x)). The argument of control, viz., ( l ambda  (k) 0), is 
now applied to this abstraction in the empty context: 3 

(addl (control ( l ambda  (k) 0))) 
( ( l ambda  (k) 0) ( l ambda  (x) (addl x))) 

=~0. 

2The use of control and functional continuations is not necessary for our development, 
but is advantageous in many situations. 

3The symbol ~ should be read as "evaluates to." 
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In other words, a vacuous abstraction as a control-argument aborts the 
program. We therefore introduce the following syntax: 

(extend-syntax (abort) 
[(abort  exp) ( control ( l a m b d a  (dummy) exp) )]). 

Recall that, by hygienic expansion, dummy does not bind any identifier in 
exp. 

On applying a functional continuation to a value, the latter is placed in 
the context determined by the former. The computation of the functional 
continuation sends its result back to the context of the invocation. Thus, 
we have 

(addl (control ( l a m b d a  (k) (k 0)))) =~ 1; 

and, since the closure can also be applied repeatedly, we Mso have: 

(add1 (control ( l a m b d a  (k) (k (k 0))))) =~ 2. 

The operator control is powerful enough to simulate the discarded opera- 
tor call/cc. Recall that call/cc is a procedure that calls its unary argument 
with the current abortive continuation. The operator control performs a 
similar action. Thus, in order to define caU/cc with control, we could try 
the following: 

(define call/cc 
( l a m b d a  (f) 

(control ( l a m b d a  ( k ) ( f  . . .  k . . .))))).  

In contrast with call/cc, which proceeds in its evaluation context, control 
calls its argument in the empty context. Thus in our definition of caU/cc, 
we need to invoke the functional continuation in order to reestablish the 
correct control context: 

(control ( l a m b d a  (k) (k ( f . . .  k . . . ) ) ) ) .  

Furthermore, the continuation provided by call/cc is abortive. Invoking 
an abortive continuation is a jump, i.e., the invoker's control context is 
abandoned. To transform control's functional continuation to an abortive 
one, we modify the former into a procedure that performs the invocation 
of the continuation and immediately aborts: 

( l a m b d a  (v) ( abor t  (k v))). 
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Together, the complete definition of call/cc in terms of control reads: 

(define call/cc 
(lambda (f) 

(control ( l a m b d a  (k) 
(k (f ( l a m b d a  (v) ( abor t  (k v))))))))). 

Continuations that merely involve control transfer but no passage of in- 
formation should properly be closures of no arguments (thunks). Currently, 
invocations of such continuations take a dummy argument. Instead, we de- 
fine controlO so that  controlO-continuations are thunks: 

(define controlO 
(lambda (f) 

(control ( l a m b d a  (k) (f ( l a m b d a  () (k 'any))))))). 

In addition to control, our dialect of Scheme provides the procedure run 
for delimiting the dynamic extent of control operations [4]. The procedure 
run creates a task from a thunk, which is a procedure of no arguments, and 
runs it as an independent program. The task does not inherit its creator's 
control context, but it does share its lexic~ bindings. The result of this 
task is always passed to the context in which the run-application occurs. 

If run's argument contains no control manipulation, the application of 
run is vacuous. If, however, run's argument uses control, the two actions 
associated with control are delimited by run. First, the functional continu- 
ation created by control represents the portion of the surrounding context 
delimited by the dynamically closest run. Second, the control-expression 
erases its current context as usual, but only up to the dynamically nearest 
run. 

In a sense, the procedure run acts as a user-available prompt: one can 
always expect a result to be returned to the context of a run-application, 
much as an interactive command always returns with a result at a com- 
mand-line prompt. A convenient syntactic form is 

(% e . . . ) ,  

which expands as follows: 

( e x t e n d - s y n t a x  (%) 
[(~o e . . . )  (run ( l a m b d a  0 e . . . ) ) ] ) .  

We shall henceforth use "run" and "prompt" interchangeably, preferring 
"prompt" when we are emphasizing a program-context, and "run" when 
we are highlighting the use of the control operator as a procedure. 

As an illustration of how run delimits transfer of control, consider 
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(addl (% (add1 (control ( l ambda  (k) 0))))). 

The %-expression is run as the independent program: 

(addl (control ( l ambda  (k) 0))). 

From a previous example, we know that this expression evaluates to 0. This 
result is sent to the %-context, viz., (add1 -..), and therefore, the entire 
expression evaluates to 1. 

For a more complex example, consider the following expression, which 
invokes a continuation inside a prompt: 

(let ([g (% (* 2 (control ( l ambda  (k) k))))]) 
(* 3 (% (* 5 (abor t  (g 7)))))). 

The local variable g is bound to the functional continuation representing 
(* 2...): 

( l ambda  (x) (* 2 x)). 

The let-body contains (* 5 (abor t  (g 7))) as an independent task that 
shares the lexical variable g with its parent program. This evaluates as 
follows: 

(* 5 (abor t  (g 7))) 
(g7) 

==# ( ( l ambda  (x) (* 2 x)) 7) 

14. 

This result is returned to the context of the prompt-expression, (* (% ...) 
3), yielding 42. 

The prompt of Scheme's interactive loop is an implicit run surrounding 
each Scheme program. The interactive loop uses base-run, a variant of 
run, as a catch-all delimiter for every control manipulation in the Scheme 
program. Moreover, the identifier base-run can be redefined as a differ- 
ent procedure. This, we shall see, facilitates the development of powerful 
methods for creating control hierarchies. 

4 I m p l e m e n t i n g  run a n d  control 

The implementation machinery for call/cc packages the entire control 
stack into a continuation object for the user. A modification of this ma- 
chinery into one that can package a contiguous portion, rather than the 
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whole, of the control s tack leads to a native 4 implementat ion of control. 
To include run, the implementat ion must also identify points on the stack 
that  restrict control's manipulations of the stack. Alternatively, the original 
call//cc can simulate these actions, albeit inefficiently, providing an embed- 
ding of the operators  run and control in s tandard Scheme. We describe 
bo th  strategies in the following subsections; we recommend skipping the 
second subsection on a first reading. 

4 .1  A s tra tegy  for a na t ive  i m p l e m e n t a t i o n  

A native implementat ion manipulates  the control stack directly. At any 
stage, the control stack is the machine equivalent of the evaluation context 
of the program subexpression currently being evaluated. A Scheme program 
starts  executing in an empty  control context. The control context is repre- 
sented by a stack, the empty  context by the empty  stack; sub-evaluations 
cause the stack to grow. The stack always contains enough information for 
the completion of the rest of the evaluation. 

Conceptually~ a run-apphcation marks the top  of the current control 
stack. A control-application provides the programmer with an abstract ion 
of the  top  port ion of the s t ack- - f rom the top  down to the closest run- 
mark. This is the functional continuation. The application simultaneously 
erases this port ion off the stack and applies the control-argument to the 
functional continuation. Invoking a functional continuation on a value re- 
installs the abst racted partial  stack on top of the current control stack, and 
then proceeds as if the value were re turned from a sub-evaluation. 

Two special uses of control lead to important  optimizations. First, if the 
control-argument ignores its argument,  the functional continuation need 
not be  created. Second, if the control-argument immediately applies the 
functional continuation, the top  port ion of the stack need not be  erased. 
As we shall see in the following sections, these cases occur quite frequently. 

4 .2  E m b e d d i n g  run a n d  control in s t a n d a r d  S c h e m e  

The operator  call/cc actually suffices to simulate the above s trategy in 
a Scheme system without  modifying the underlying implementation. 5 The 

4By a "native" implementation of a facility we mean one where the facility is incor- 
porated into the code generator for the system: it thus has a potential for efficiency not 
available to facilities built on top of the system. 

5Guillermo Rozas was the first to claim the existence of such a solution--our solution 
assumes that Scheme has the procedure eval for evaluating textual arguments in the 
global environment. The implementation of run is not faithful because it is not tail- 
recursive: whereas (iterate loop () (run (lambda 0 (loop)))) is a tight loop in a system 
with native run~control, it exhausts stack space in the embedding. 
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continuations obtained by calling call/cc at appropriate points provide an 
explicit representation of the underlying control stack. Since the creation 
and manipulation of this stack representation use abortive continuations 
extensively, this strategy for embedding the operators run and control is 
less efficient than a native implementation. 

The embedding captures the abortive continuations at each run- and 
control-application and at each invocation point of a functional continu- 
ation, and uses a stack to manage the transfer of control to the various 
run- and invocation-point continuations. Each run-application stores its 
abortive continuation in a new topmost frame on the stack, because a con- 
trol-application in its dynamic extent must jump to the evaluation context 
of this run. A control-application provides its argument with its abortive 
continuation packaged into a procedure that  simulates the functional con- 
tinuation. In order to realize the functional behavior of control's continua- 
tions, an invocation of such a continuation adds its invocation point to the 
topmost frame of the stack. The run-application takes care of returning 
program execution to each of its associated invocation points. 

The stack data  structure run-stack represents the underlying control 
stack. Each frame in the run-stack corresponds to a prompt,  and con- 
tains the abortive continuation at the prompt  as well as the sub-stack of 
the invocation points captured within this prompt.  Initially, the run-stack 
is empty: 

(def ine  run-stack '0). 

The implementation provides a thunk reset-loop that  clears the run-stack 
and spawns a new read-eval-print loop. This interactive loop iteratively 
reads an input expression, surrounds it with the outermost prompt,  base- 
run, and evaluates it: 6 

(def ine  reset-loop 
( l a m b d a  () 

(set! ([run-stack '0]) 
( i t e r a t e  read-eval-print 0 

(print/ " ~ s ~ n "  ( eval '(base-run ( l a m b d a  0 
,(prompt-read "% "))))) 

(read-eval-pr nt))))). 

The identifier base-run is initially bound to run. 
Each run-application captures its abortive continuation and pushes it 

along with a new empty sub-stack for invocation points atop the run-stack. 

Sin order to ensure that the implementation is not corrupted by calls to the error and 
interrupt handlers, we can redefine the latter to call reset-loop. 
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(define run 
( lambda ( th ) 

(let ([run-coat 'any]) 
(let ([v ((caU/cc (sigma (run-coat) 

(set! ([run-stack (cons (cons run-coat '0) run-stack)I) 
th))))]) 

(let ([top-flame (car run-stack)I) 
(let ([top-run-coat (car top-flame)] 

[top-sub-stack (cdr top-flame)I) 
(cond [(not (null? top-sub-stack)) 

(let ([k (car top-sub-stack)I) 
(set-cdr! top-flame (cdr top-sub-stack)) (k v))] 

[(not (eq? run-coat top-run-coat)) 
(top-run-coat ( lambda 0 v))] 

[else (set! ([run-stack (cdr run-stack)]) v)]))))))). 

Figure 2: Embedding run in Standard Scheme 

If the run-argument returns normally, the run-stack is popped and the value 
returned. Thus, the outline of the procedure run is: 

(define run 
( lambda ( th ) 

(let ([run-coat 'any]) 
(let ([v ((call/cc (sigma (run-coat) 

(set! ([run-stack (cons (cons run-coat '0) run-stack)]) 
th))))]) 

, o ,  

(set! ([run-stack (cdr run-stack)]) v))))). 

The prompt continuation stored in run-stack expects a thank and thaws 
it: with this tactic, a specified action can be performed after a jump has 
been made to the prompt. 

Each control-application jumps to its nearest prompt-context; it does 
this by clearing the topmost sub-stack of invocation points on run-stack 
and invoking the associated prompt continuation. Further, control sim- 
ulates its functional continuation with an abortive continuation and the 
saved topmost sub-stack on the run-stack. Together, these two pieces of 
information effectively describe the functional continuation grabbed by con- 
trol. The argument of control is now applied to an object that simulates 
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(define control 
( lambda (f) 

(call/cc ( lambda (control-cont) 
(let ([control-frame (car run-stack)f) 

(let ( [ control-run-cont (car control-frame)] 
[control-sub-stack (cdr control-frame)f) 

(set-cdd control-frame '0) 
( control-run-cont 

( lambda 0 
(f (lambda (v) 

( call/cc ( lambda ( invoke-cont) 
(let ([invoke-sub-stack (cdr (car run-stack))]) 

(set-cdr] invoke-frame 
(append control-sub-stack 

(cons invoke-cont invoke-sub-stack))) 
(control-cont v)))))))))))))) 

Figure 3: Embedding control in Standard Scheme 

the behavior of a functional continuation. Thus, the code for control looks 
approximately like 

(define control 
( lambda (f) 

( call/cc (lambda (control- coat) 
(let ([control-frame (car run-stack)f) 

(let ([control-run-coat (car control-frame)] 
[control-sub-stack (cdr control-frame)f) 

(set-cdr! control-frame '0)  
( control-run-cont 

( lambda 0 (f ( lambda (v ) . . .  (control-coat v)))))))))). 

Since the prompt continuation expects a thur~k, a control-application can 
abort to its prompt before calling the control-argument on its functional 
continuation. Thus, control-applications are pure jumps, e.g., the loop 
(i terate loop () (abort  (loop))) does not run out of stack space. 

The functional continuation object has access to the abortive continua- 
tion and the sub-stack of invocation points grabbed by control. Upon invo- 
cation, the functional continuation must first push its own current abortive 
continuation (invocation point) on to the topmost sub-stack on run-stack, 
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so that computation can return to the current evaluation context. It then 
reinstalls the recorded invocation points by pushing them all atop the top- 
most sub-stack. Finally, the continuation object transfers control to the 
recorded abortive continuation: 

(lambda (v) 
( caU/cc ( lambda ( invoke-cont) 

(let ([invoke-top-frame (car run-stack)]) 
(let ([invoke-sub-stack (cdr invoke-top-frame)]) 

(set-cdr! invoke-top-frame 
(append control-sub-stack (cons invoke-cont invoke-sub-stack))) 

(control-coat v)))))). 

An invocation of the abortive continuation associated with a control- 
application eventually reaches the prompt-context that enclosed the origi- 
nal call to control. Since this may differ from the prompt-context enclosing 
the invocation of the functional continuation, we add code in the body 
of the procedure run that checks if the run-argument has returned in the 
proper prompt-context, and if not, jumps to the topmost prompt on the 
run-stack: 

(let ([top-frame (car run-stack)]) 
(let ([top-run-cont (car top-frame)] [top-sub-stack (cdr top-frame)I) 

(cond [... ] 
[(not (eq? run-con top-run-cont) ) ( top-run-cont 

(lambda () v))] 
[else (set! ([run-stack (cdr run-stack)]) v)]))). 

The prompt also needs to dispatch control back to each of the invocation 
points in its frame so that control's continuations are functional. The 
following code in run's body performs this dispatch in stack order for the 
entire frame before the prompt finally returns a value: 

(cond [(not (null? top-sub-stack)) 
(let ([k (car top-sub-stack)]) 

(set-cdr! top-frame (cdr top-sub-stack)) (k v))] 
[(not (eq? run-coat top-run-cont)) (top-run-coat ( lambda 0 v))] 
[else (set! ([run-stack (cdr run-stack)]) v)]). 

Figures 2 and 3 collect the above code fragments into the final definitions 
for run and control. 



82 SITARAM AND FELLEISEN 

5 F i r s t - o r d e r  c o n t r o l  a b s t r a c t i o n s  w i t h  prompts  

In contrast to Scheme-like languages, Common Lisp [16] (and older di- 
alects of Lisp) provide language features for first-order control manipula- 
tion. First-order control operations suffice for many traditionally important 
uses of evaluation control such as aborting subcomputations, exiting pro- 
cedures and loops, and handling basic exceptions. The crucial implemen- 
tation characteristic of such first-order manipulations is that they cannot 
reach beyond the dynamic extent of the control expression. Consequently, 
first-order control operators avoid the need for copying a portion of the 
run-time stack and for switching stacks. They only require the ability to 
mark the control stack and to erase it down to a chosen mark. Therefore, 
such operations are also called stack-based, for they avoid heap allocations 
for the run-time stack or copies of it. 

The more powerful higher-order operators can simulate first-order behav- 
ior [7], but such simulations usually require heap-based implementations. 
With the operators prompt and abor t ,  simulations of first-order operators 
are faithful, simple and truly stack-based. 

5.1 Catch and throw 

Traditional Lisp systems provide first-order control manipulation with 
the pair of operators ca t ch  and th row.  The form (ca tch  tag exp) marks 
the control stack with a user-defined tag; the form ( t h row tag exp) erases 
the control stack down to the closest matching tag. 

In our dialect, the same stack-based behavior can be obtained with the 
pair prompt and abor t .  After all, a prompt marks the stack, and an 
abort-s tatement  deletes the stack down to this mark. What we need is a 
mechanism for associating a tag with a particular prompt. We choose a 
message-passing protocol. In such a set-up, a t h r o w  sends a unique th row-  
message containing its tag and the thrown value to the nearest catch:  7 

(extend-syntax (throw) 
[ ( throw tag value) ( abor t  (list 'throw tag value))]). 

The catch-operator,  on receiving a throw-message, checks the tag of the 
message against its own, and then decides whether to rett~n the thrown 
value or t h r o w  it further to some other enclosing catch: 

7In a real implementation, the tag throw would have to be replaced by a unique token. 
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( e x t e n d - s y n t a x  (catch)  
[(catch tag exp) 
(let ([catch-tag tag] [result (% exp)]) 

( record-case  result 
['throw (throw-tag throw-value) 

(if (eq? throw-tag catch-tag) throw-value 
( t h row throw-tag throw-value))] 

[else result]))]). 

Otherwise, if the returned value is not a throw-message, the evaluation of 
ca tch ' s  sub-expression terminates normally and returns a simple vahm. 

A t h r o w  to a non-existent tag will eventually arrive at the outermost 
read-eval-print loop's prompt. When this happens, the loop should issue 
an appropriate error message. Given that the loop uses base-run, we can 
issue such an error message by redefining this routine as: 

(define base-run 
( l a m b d a  ( thunk ) 

(let ([result (run thunk)]) 
( r ecord-case  result 

['throw (throw-tag throw-value) 
(print/ "Throw to unknown tag: ,,,a ~a" 

throw-tag throw-value)] 
[else result])))). 

Since our building blocks, prompt and abor t ,  only perform truly stack- 
based control manipulations, our version is a simple and faithful translit- 
eration of the control manipulation provided by native ca t ch  and th row.  

With Scheme's call/cc, on the other hand, a simulation of ca t ch  and 
t h r o w  is heap-based. For example, Haynes and Friedman [7] show how 
to use call/cc and abortive continuations to define a variant of call/cc 
called call/cc-stack-based. This is equivalent to ca tch ,  and invoking the 
abortive continuation obtained with call/cc-stack-based is equivalent to 
t h row.  However, call/cc-stack-based manipulates the control stack exten- 
sively. A c a t c h  in their implementation captures the current control stack, 
while a t h r o w  replaces its entire current stack by the captured one. The 
operator call/cc-stack-based produces abortive continuations using calI/cc 
and packages them in continuation objects. These objects can identify 
whether their continuation lies below the current context on the runtime 
stack. Upon invocation, such an object sends messages to those continu- 
ation objects that should no longer be reachable and thus disables their 
future use. It is left to the garbage collector to reclaim these unreachable 
continuation objects; however, if there are still references to these objects, 
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the collector may not identify them as garbage and retain them beyond 
their appropriate life-span. 

5.2 Unwind-protect 

As a further example of where the constraining action of the prompt is 
useful, we consider the unwind-protect facility of Lisp systems [16]. An 
unwind-protect form has two parts: a body and a postlude: 

( u n w i n d - p r o t e c t  body postlude). 

The task of u n w i n d - p r o t e c t  is to guarantee the execution of postlude, 
whether the evaluation of body terminates normally or by a non-local trans- 
fer of control through a th row.  A postlude is used to specify clean-up op- 
erations: a typical postlude involves closing files or releasing resources used 
by the body. 

As a first attempt, we could define the following: 

( e x t e n d - s y n t a x  (unwind-protect) 
[(unwind-protect body postlude) (begin0  ( ~  body)postlude)]). 

This version ensures postlude's execution but at a significant cost: the 
prompt enclosing body intercepts all attempts to transfer control from inside 
body to points outside of u n w i n d - p r o t e c t .  

The problem with the above attempt is that u n w i n d - p r o t e c t ' s  prompt 
cannot distinguish between ordinary result values and thrown values. For 
the former, postlude must be executed and the value returned to the calling 
context. For the latter, however, the execution of postlude must be followed 
by a t h r o w  of the result value to the appropriate catch-context. The 
improved solution reads: 

( e x t e n d - s y n t a x  ( u n w i n d - p r o t e c t )  
[ (unwind-p ro tec t  body postlude) 
(let ([result (~o body)]) 

postlude 
( record-case  result 

['throw (tag value) ( th row tag value)] 
[else result]))]). 

It is easy to see that this implementation provides the standard unwind- 
protect facility with the correct behavior. 

Certain situations call for an improved model. In particular, the user 
may want to deal differently with non-local exits occurring in postlude, s 

SWe thank one of the referees for bringing the following alternative models to our 
notice. 



CONTROL DELIMITERS AND THEIR HIERARCHIES 85 

As an example, consider the expression, 

(catch 'outer 
( i terate loop 0 

(catch 'inner 
(unwind-protect (throw 'outer true) (throw 'inner true))) 

(loop))) 

With the current model, the above example loops forever, because the 
throw from postlude spawns a new iteration of the unwind-protect-  
expression before the throw from the body can ever take effect. 

One alternative is to prohibit any non-local exits from postlude beyond 
the unwind-protect .  To accomplish this, we simply constrain postlude 
with a prompt: 

(extend-syntax (unwind-protect)  
[(unwind-protect  body postlude) 
(let ([result (% body)]) 

(% postlude) 
(record-case result 

['throw (tag value) ( throw tag value)] 
[else result]))]). 

This guarantees that throws from body are not affected by throws from 
postlude. With this interpretation for unwind-protect ,  the above example 
terminates, returning true. 

Sometimes, the neglect of exits from postlude in favor of exits from body 
is inappropriate. Consider, for instance, 

(catch 'very-outer 
(catch 'outer 

( i terate loop 0 
(catch 'inner 

(unwind-protect  ( throw 'outer true) (throw 'very-outer false)) 
(loop))))). 

Here the expression returns true, since the throw from the body of the 
unwind-pro tec t  is chosen over the throw from the postlude. Arguably, 
the throw from postlude should dominate, as it reaches beyond the throw 
from body. 

Our third model allows throws from both body and postlude, in such 
a way that the one going to the furthest enclosing catch prevails. To 
accommodate this behavior, we use unwind-messages in addition to throw- 
messages. An unwind-message encodes all the throws in the form of an 
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association-list containing the corresponding tags and values. Each catch,  
on encountering such a message, deletes from the unwind-message's list any 
t h r o w  to its tag, and passes along the list to the next enclosing catch.  
In this manner, the unwind-message is whittled down to a list of a single 
tagged value, when a straightforward t h r o w  is effected to the corresponding 
catch.  

The new definition of ca tch ,  which takes care of unwind-messages, is as 
follows: 9 

( e x t e n d - s y n t a x  (catch) 
[(catch tag exp) 
(let ([catch-tag tag] [result (% exp)]) 

( record-case  result 
['throw (throw-tag throw-value) 

(if (eq? catch-tag throw-tag) value 
( t h row throw-tag throw-value))] 

['unwind ( tagvals) 
(let ([new-tagvaIs (remq (assq catch-tag tagvals) tagvals)]) 

(if (null. 7 (cdr new-tagvaIs)) 
( t h row (caar new-tagvals) (cdar new-tagvals)) 
( unwinder new-tagvaIs ) ) )] 

[else result]))]). 

The form t h r o w  remains the same. The procedure unwinder packages an 
association-list of tags and values into an unwind-message and sends it to 
the enclosing prompt: 

(define unwinder ( l a m b d a  (tagvals) ( abor t  (list 'unwind tagvats)))). 

The form u n w i n d - p r o t e c t  constrains both body and postlude with 
prompts, which may thus receive either ordinary values, throw- or unwind- 
messages. A straightforward decision based on these results either returns 

value or propagates a throw- or unwind-message: 

9For clarity, we have used a functional method for propagating unwind messages past 
concentric catch-expressions. A more efficient implementation could have a stack of 
catch-tags and have the unwind-message jump immediately to the appropriate catch- 
expression. 
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(extend-syntax (unwind-protect)  
[(unwind-protect  body postlude) 
(let ([result-body (% body)]) 

(let ([result-postlude (% postlude)]) 
(record-case result-body 

['throw (tag1 vat1) 
(record-case result-postlude 

['throw ( tag2 val2 ) 
( unwinder (list (cons taft vail) 

(cons tag2 val2)))] 
['unwind ( tagvals2 ) 

(unwinder (cons (cons tag1 vall ) tagvals2) )] 
[else (throw tag1 yell)])] 

['unwind ( tagvalsl ) 
(record-case result-postlude 

['throw (tag2 val2) 
( unwinder (cons (cons tag2 val2 ) tagvalsl ) )] 

['unwind ( tagvals2 ) 
( unwiuder (append tagvalsl tagvals2 ) )] 

[else (unwinder tagvalsl )])] 
[else (record-case result-postlude 

['throw (tag2 val2) (throw tag2 val2)] 
['unwind ( tagvals2 ) ( unwiuder tagvals2 ) ] 
[else result-body])])))]). 

If both body and postlude return normally, the unwind-protect-expression 
terminates with the value of body. A throw in either body or postlude 
arrives at the respective prompt as either a throw- or an unwind-message. 
If only one of either body or postlude produces such a message, it propagates 
unchanged to the next enclosing prompt. If both of them produce throws, 
the messages are merged into a single unwind-message to the next enclosing 
prompt. 

6 P r o m p t s  in h i g h e r - o r d e r  l a n g u a g e s  

Beyond first-order control, the new control operators provide simple 
and efficient macro-implementations of many high-level control paradigms. 
Typical examples are coroutines and engines. Higher-order control ma- 
nipulation moreover requires generalizations of unwind-protect  such as 
dynamic-wind and wind-unwind [7], both of which are straightforward 
modifications of the above code for unwind-protect .  In addition, prompts 
and functional continuations give rise to new programming styles that unify 
such diverse directions as imperative program schemas and stream program- 



88 SITARAM AND FELLEISEN 

ruing. We elaborate on these topics in the following subsections. 

6.1 Coroutines 

A coroutine [12] generalizes the concept of a procedural abstraction by 
including a local control state. A call statement invokes a coroutine. This is 
similar to procedure invocation in that the body of the coroutine starts exe- 
cuting. However, at any point inside the coroutine, a resume statement can 
transfer control to a different coroutine. The suspended coroutine stores its 
remaining computation in its local control state. On resuming a suspended 
coroutine, computation proceeds from the point saved. 

Haynes, Friedman, and Wand [8] describe a succinct implementation of 
coroutines using caU/cc. Each coroutine is an object with an internal con- 
trol state; initially, this describes the entire coroutine computation. Upon 
invocation, computation proceeds according to the local control state. A 
resume instruction captures the current abortive continuation with calI/cc 
and stores it in the local control state, before invoking the destination 
coroutine. Continuing a suspended coroutine reinstates the continuation 
stored in its local control state. 

Using call/cc implies that the continuation captured by a resume state- 
ment is the entire control stack, whereas only the portion of the stack 
corresponding to the rest of the coroutine computation is needed. Using 
control, we obtain a slightly simpler solution: 

( e x t e n d - s y n t a x  ( co rou t ine  resume) 
[(coroutine x e . . .  ) 
(letrec ([LCS ( l a m b d a  (x) e . . .  )] 

[resume ( l a m b d a  (c v) (control (s igma (LCS) (c v))))]) 
( l a m b d a  (v) (LCS v)))]). 

The lexical variable LCS contains the local control state. The coroutine 
itself is a unary procedure that always calls its local control state. The 
resume statement uses control to capture and abandon the rest of the 
coroutine, stores the continuation in LCS, and continues with the resumed 
coroutine. The procedure call is 

(define call ( l a m b d a  (c v) (% (c v)))). 

The prompt introducing the coroutine call ensures that the control-appli- 
cation in resume correctly identifies the rest of the coroutine. 

Haynes et al. [8] go on to describe an extension of the coroutine paradigm 
entitled the Dahl-Hoare coroutine [1]. This coroutine has an additional 
facility, the detach statement, which transfers control back to the point 
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where a group of coroutines was entered with a call. Owing to the lack 
of a control delimiter, the call/cc implementation requires each coroutine 
to have an additional local variable holding the caller continuation. The 
call statement grabs its continuation to provide the called coroutine with 
the caller continuation. Each resume conveys this information about the 
caller to the destination coroutine. Eventually, a detach invokes this caller 
continuation. 

In our version, since we have already identified the ca~er context with 
a prompt, a detach merely abor t s  to this prompt. Thus a Dahl-Hoare 
coroutine is defined as: 

( e x t e n d - s y n t a x  ( co rou t ine  resume detach) 
[ (corout ine  x e ...) 
( le t rec  ([LCS ( l a m b d a  (x) e ...)] 

[resume ( l a m b d a  (c v) (control (s igma (LCS) (c v))))] 
[detach ( l a m b d a  (v) (control ( s igma (LCS) v)))]) 

( l a m b d a  (v ) (LCS v)))]). 

Here we have incorporated an update to the local control state to take 
pla~e during a detach, so that any future invocation of the coroutine starts 
computation at the point left off by detach. 

6.2 Engines 

An engine performs a computation subject to timed preemption [6]. It 
is run with three arguments: a number of time units or ticks, a success 
procedure and a failure procedure. If the computation finishes within the 
given time, the success procedure is applied to the result of the computa- 
tion and the remaining ticks; otherwise, the failure procedure is applied to 
a new engine that represents the preempted part of the computation. In 
either case, the procedure application happens in the call-context of the en- 
gine's invocation. Engines are useful abstractions for realizing time-sharing 
systems, simulating non-deterministic parallelism and distributed systems, 
and making time comparisons between different algorithms. 

Haynes and Friedman [6] postulate a procedure for converting a thunk 
into an engine. An engine can be run to completion by supplying it a failure 
procedure that repeatedly runs the failed engine, and a success procedure 
that returns the value of the engine computation. Their implementation is 
native. 

Dybvig and Hieb [2] present a simple implementation of engines with 
abortive continuations. They assume the presence of a global clock or an 
interruptable timer, either available primitively, or created using syntactic 
extensions for l a m b d a  and set! that consume ticks when evaluated. The 
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clock's internal state holds (1) the number of remaining ticks, and (2) an 
interrupt handler which is invoked when the ticks run out. The user can 
modify both  of the clock's ticks and its handler. In addition, the user can 
stop the clock: this returns the number of remaining ticks. 

In the Dybvig-Hieb model, an engine computat ion captures its entry- 
continuation with a call/cc. If the engine completes within the time allot- 
ted, control passes to the entry-point of the engine, after which the success 
action is applied to the result of the engine computat ion and the ticks left. 
Should the engine fail, the interrupt handler captures the continuation at 
the point of failure and makes it into a new engine. Once again, control 
passes to the entry-point, and the failure action is applied to the new en- 
gine. 

The entry-point continuation is held in a variable common to every en- 
gine. The currently active engine uses this variable to guarantee that  either 
its success or failure actions takes place in its calling context. The contin- 
uation captured by a failing engine effectively represents the rest of the 
engine computation, since it always contains an abortive invocation of the 
current entry-point continuation. The problem with the Dybvig-Hieb en- 
gine model is the same as the one with coroutines implemented with call/cc: 
both of them use longer continuations than are needed to identify the rest 
of the engine or the coroutine computation. To offset this, they require yet 
another continuation call to truncate the computat ion at the appropriate 
point. 

Again, prompts and functional continuations offer a simpler model. 1° 
The engine computat ion is an independent program embedded in a prompt.  
A successful engine computat ion returns its result to the prompt.  If the 
engine fails, on the other hand, the interrupt handler uses a control-appli- 
cation to capture the remaining engine computat ion as a functional con- 
tinuation and returns this procedure to the prompt  as the failed engine. 
The value obtained at the engine's prompt  is thus either the result of the 
engine computat ion or a failed engine. The success or failure actions are 
taken accordingly. 

As an additional benefit, the use of prompt  and control permits a clean 
separation between the underlying computat ion of the engine and its in- 
terruptability. We may thus represent an engine with a thunk denoting 
its computat ion and a preemptable version: the engine proper. The pro- 
cedure thunk--~engine produces such a representation from a thunk. The 
procedure engine--~thunk retrieves the uninterruptable thunk from such a 
representation. Calling this thunk has the same effect as the more expen- 
sive operation of running the engine with an infinite number of ticks. The 

1°We thank Bob Hieb for pointing out a serious flaw in our earlier engine model. 
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procedure run-engine runs the engine proper. 

The following outlines a first attempt at defining thunk-~engine: 

(% (clock 'set ticks) 
(begin0 ( thi~nk ) 

(set! ticks (clock 'stop)))). 

The procedure thunk~engine contains actions for setting the clock to the 
requisite ticks, running the thunk, and returning its value, either a success 
or an interrupted computation, after stopping the clock. When the clock 
runs out of ticks, it invokes the interrupt handler. We set the handler as a 
procedure that captures the rest of the engine computation, packages it as 
an interrupt message, and sends it to the engine's prompt: 

(clock 'set-handler 
( l a m b d a  0 (controlO ( la rnbda  (rest-of-eomp) 

(list 'engine-interrupt rest-of-comp))))). 

A closer took reveals some problems. When the engine computation is 
interrupted, the functional continuation denoting the rest of the engine 
includes as its last action the stopping of the clock. The inclusion of the 
stop-action will cause problems whether used as an engine or a thunk. An 
engine formed from this continuation could stop the clock, and the value 
of the remaining ticks supplied to its success procedure, obtained by a 
second stopping of the clock, is always zero. Even worse, if the functional 
continuation runs as a simple thunk inside another active engine, stopping 
the clock implies that the rest of the engine can continue uninterrupted 
beyond its allotted time. 

Clearly, the rest of the engine as captured by the interrupt handler should 
not extend to the stopping of the clock. We modify the offending expression 
by enclosing the setting of the clock and the thunk invocation in a second 
prompt: 

(% (begin0 (% (clock 'set ticks) (thunk)) 
(set! ticks (clock 'stop)))). 

This captures the right continuation if the interrupt occurs within the inner 
prompt. Unfortunately, it does not solve the problem for interrupts that 
occur just after the inner prompt-expression has returned. 

As a remedy, we modify the two prompts such that any interrupt that 
occurs between them is ignored. This differential behavior is achieved by 
having the outer prompt ignore all interrupts and the inner one package its 
interrupts as failed engines: 
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(%-atomicO (%-fai led-engine (clock 'set ticks) (thunk)) 
(set! ticks (clock 'stop))). 

Both %-atomicO and %-fa i led-engine  are simple syntactic variants of 
run. The form %-atomicO runs its subexpressions inside a prompt, and 
tests the result of its first subexpression: 

( e x t e n d - s y n t a x  (%-atomicO) 
[(%-atomicO e . . .  ) 
(let ([result (% (beginO e . . . ) ) ] )  
( record-case result 

['engine-interrupt ( rest-of-eng) ( rest-of-eng)] 
[else resutt]) )]). 

If the result is an interrupt, it is ignored by invoking the interrupted con- 
tinuation; otherwise, the result is returned. 

The form %-fa i led-engine  runs its subexpressions inside a prompt and 
tests their result: 

( e x t e n d - s y n t a x  (%-fai led-engine)  
[(%-fai led-engine e ...) 
(let ([result (% e ...)]) 

( record-case result 
['engine-interrupt (rest-of-eng) (list 'failed-engine rest-of-eng)] 
[else result]))]). 

If the result is an interrupt, it is packaged as a failed engine; otherwise the 
result is returned unchanged. 

The final version of thunk-*engine is in Figure 4. The engine produced by 
thunk--~engine is a closure that upon application to a selection procedure 
yields either the encapsulated thunk or the engine proper. The inverse 
procedure engine-~thunk simply extracts the thunk: 

(define engine-* thunk 
( l a mb d a  ( eng) 

( eng ( l ambda  ( thunk eng-prop) thuuk ) ) ) ). 

Running the engine is also straightforward. Instead of the thunk, we re- 
trieve the engine proper and apply it to its arguments: 

(define run-engine 
( l am bda  (eng ticks succ fail) 

( ( eng ( l amb d a  ( thunk eng-prop ) eng-prop ) ) ticks succ fail))). 
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(define thunk--+ engine 
( l ambda  ( thunk ) 

(let ([eng-prop 
( l a mbda  (ticks succ fail) 

(let ([ans (%-a tomic0  (%-fai led-engine (clock 'set ticks) 
( thunk ) ) 

(set! ([ticks (clock 'stop)]) 'any))]) 
( record-case  ans 

['failed-engine ( rest-of-eng ) 
(fail ( thunk-+engine rest-of-eng) )] 

[else (succ ans ticks)])))]) 
( l a mbda  (return-either) 

(return-either thunk eng-prop ) ) ) ) ). 

Figure 4: The procedure thunk--~ engine 

Finally, we can implement a procedure engine-return that stops an engine 
computation. Since the computation is embedded in a prompt, the proce- 
dure is a simple abort-statement:  

(define engine-return ( l am bda  (v) (abor t  v))). 

6.3 S t r e a m s  

Beyond being helpful tools for the implementation of higher-level con- 
trol abstractions, functional continuations and prompts also enhance the 
expressiveness of the underlying language. Both are well-suited tools for 
combining the imperative-program-schema and the stream-programming- 
paradigm. 

Consider a multiary tree, which is either a data-leaf or a list of multiary 
trees. An inorder traversal of such a tree can be specified by a simple 
recursive algorithm. If the tree is a leaf, enumerate it; otherwise, apply 
the algorithm to all the elements in the list of subtrees from left to right. 
Abstracting over the particular enumeration procedure to be applied at 
each leaf, the tree walk can be written as a program schema: 
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(def ine  enumerate 
( l a m b d a  ( leaf-proc!) 

( l a m b d a  (tree) 
( i t e r a t e  E ([tree tree]) 

(if (leaf? tree) (leaf-proc! tree) (for-each E tree)))))). 

The procedure for-each applies the recursive procedure E to each element 
of the list tree for the effect only. Its result is unspecified. 

Based on this program schema, we can derive a variety of different tree 
walks by instantiating the leaf-proc! procedure. For example, an inorder 
print is simply: 

(def ine  inorder-print (enumerate print)). 

Similarly, an updating procedure that  alters the information of each leaf 
according to some update/ procedure can be written as: 

(define tree-update (enumerate update!)). 

More interestingly, we can think of a tree walk, enumerate-stream, that  
returns a leaf at a time and a zero-ary procedure--a  thunk--for  enumer- 
ating the rest of the tree when appropriate. Such a pair is called a stream, 
and can be created using a lazy-cons, s t r e a m - c o n s :  

(extend-syntax (stream-cons) 
[ ( s t r eam-cons  a d) (cons a ( l a m b d a  0 d))]). 

Enumeration streams are useful in situations where the elements of a tree 
are successively fed into a different computation, or where the information 
in the rest of the tree may not be needed. This becomes particularly apt if 
the tree is large or expensive to generate. 

With prompts and functional continuations, the procedure enumerate- 
stream is yet another instantiation of the program schema enumerate. The 
enumeration step should immediately return a stream consisting of a leaf 
and a thunk to carry on the rest of the enumeration. The rest of the enu- 
meration is represented by the continuation of the enumeration algorithm, 
i.e., the portion of the control stack between the top and the call-point 
of enumerate-stream. This partial continuation can easily be captured by 
placing the computat ion in a prompt  and by using control O to get a hold 
of the functional continuation of the leaf enumeration. For all future invo- 
cations, the thunk generated by controlO must compute inside of a prompt  
in order to delimit further calls to controlO. Put t ing all this together, we 
have: 
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(define enumerate-stream 
( l a m b d a  (tree) 

(% ((enumerate 
( l a m b d a  (leaf) 

(controlO ( l a m b d a  (rest) 
( s t r eam-cons  leaf (run rest)))))) 

tree)))). 

7 A h i e r a r c h y  o f  controls a n d  runs  

Unfortunately, multiple uses of control and run have the potential of 
interfering with each other, making it impossible to mix control and run 
with high-level abstractions or high-level abstractions with each other. For 
a simple example, consider the expression: 

(ca tch  'k (list (% (add1 ( th row 'k 6))))). 

Instead of the constant 6, our macro-implementation of c a t c h  and t h r o w  
produces a list containing a throw-record, which is clearly not intended. 
Similarly, a catch-expression in the body of an engine can void the engine's 
clock interrupt. When the interrupt occurs in the dynamic extent of a 
catch-expression, the wrong piece of context is identified as the rest of the 
engine, and, even worse, the interrupted engine is aborted to the prompt 
of the catch-expression. 

The interference between multiple uses of control and run is obviously 
due to the spoiling of the correspondence between a particular pairing of 
control and run. The most natural solution calls for matching pairs of 
control and run. Such matching pairs should interact with each other 
and possibly ignore the intervention of other control operations. Given 
such facilities, we could match up catch-prompts with throw-controls and 
engine-prompts with engine-controls, avoiding the above problems. How- 
ever, total independence between all pairs of control and run is not always 
desirable. The engine-prompts, for example, should intercept all control- 
operations as otherwise a timer would be running without an engine being 
active. Similarly, a catch-expression can also be conceived of as an inde- 
pendent task that either returns normally or terminates with a t h row,  but 
prevents other control actions. 

We propose a hierarchy with different levels of control and run pairs such 
that a prompt serves as control delimiter to all controls of and above its 
level. The hierarchy is definable in terms of the original control and run. 
For clarity, we refer to the originals as system-control and system-run and 
to some pair in the hierarchy as leveled control and leveled run. Levels 
are indicated by non-negative integers: the lowest level is 0, and a larger 
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integer denotes a higher level. Pairs on the same level interact as usual; 
pairs at different levels interact in some convenient and meaningful way. 

To unravel the strands of control, we use a message-passing protocol for 
communicating between leveled control and leveled run. Since the prompt 
closest to a control-application is generally not of the same level and the 
captured functional continuation does not represent the entire relevant con- 
text, a leveled control switches to the nearest prompt with an appropriate 
package of information and leaves to the prompt what to do next. The 
message consists of the control level, the control-argument, and the contin- 
uation. The procedure that generates an appropriate version of control for 
a given level number is: 

(define make-control 
(lambda ( lvl#) 

( l a m b d a  (f) 
(system-control ( l a m b d a  (k) (list 'control/run lvl# f k)))))). 

In order to intercept all possible control-operations, a leveled run invokes 
its argument in system-run, guaranteeing the return of the computation to 
the leveled run-operation. If this leveled run receives a control-package, it 
compares its own level with that of the control-package and decides whether 
the control-application be performed immediately, or whether the package 
be forwarded to the next prompt. Given a level number, the procedure 
make-run is used to produce the corresponding leveled run: 

(define make-run 
( l a m b d a  (level) 

rec  run 
( l a m b d a  (th) 

(let ([v (system-run th)]) 
( record-case  v 

['control/run (control-level f k) 
(if ( > =  control-level level) 

(run ( l a m b d a  0 (f k))) 
((make-control control-level) 
( l a m b d a  (g) 

(run ( l a m b da  0 
(f ( l a m b d a  (x) (g (k x)))))))))] 

[else v])))))). 

If the control-package's level is at or above the current run-leveL the ap- 
plication of the control-argument to the corresponding continuation takes 
place. If, on the other hand, the package's number is of a lower level, more 
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of the context has to be captured before the control-argument can be ap- 
plied. In either case, the continuation is supplied to the control-argument 
in a prompt  of the current level to account for f i ~ h e r  control actions. 

We assign level numbers to the various control operators in the abstrac- 
tions for engines and c a t c h  and t h r o w ,  etc., as follows. First, base-run is 
the bot tommost  run in the hierarchy, and the procedure for resetting the 
system corresponds to the bot tommost  control. Second, since an engine 
control used to interrupt a failing engine should be at a lower level than 
any other run operators, the engine's control and run are at level 1. Third, 
c a t c h  and t h r o w  are available at levels above the run used for running an 
engine, and are given level 2. Finally, we re-use the names run and control 
for the pair at level 3 in the hierarchy. 

In order to make the control hierarchy safe, the procedures make-control 
and make-run as well as all leveled versions of control and run except the 
top-level ones must be hidden from the user. The availability of the user- 
level control and run is sufficient for building further hierarchies on top 
of the given one. Indeed, the solution is flexible enough to allow different 
sub-hierarchies on different levels of a given hierarchy. 

Of course, our proposed scenario is not the only feasible one. We could 
equMly well argue that  different levels should not interfere with each other 
at all, or that  the action taken according to the three different cases should 
be parameters of the make-run procedure. It would then be possible to 
use c a t c h  for exiting engines, with the provision that  ca t ch ' s  control- 
application turns off the engine's clock. The important  point is not which 
scenario we choose to implement but that  every scenario is realizable on 
top of the simple control- and run-operators. 

8 C o n c l u s i o n  

In the preceding sections, we have demonstrated that  the concept of a 
control delimiter has a variety of interesting applications. First, together 
with a b o r t ,  it provides the appropriate terminology for explaining differ- 
ent alternatives of Lisp control constructs. If it is available within Lisp, it 
can be used to implement the best alternative for a particular situation. 
Second, and more importantly, the availability of run in a higher-order 
language with call/cc or control is the basis for embedding stack-based 
control structures easily and faithfully. Finally, the operator run facilitates 
the macro-implementations of improved versions of existing higher-order 
control abstractions in Scheme-like programming languages. In short, we 
believe that  for systems and application languages, run provides an impor- 
tant low-level control operator. 
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In our analysis we ignored the connection of control delimiters to parallel 
and distributed programming. Our own motivation for run stems partly 
from theory [4] and partly from concern about unrestricted control ac- 
tion, but Stoy and Strachey [17] introduced first-order run as an operating 
system primitive for executing independent sub-processes. It is therefore 
natural to ask whether run is the appropriate control delimiter for parallel 
versions of higher-order programming languages with continuation-based 
control structures. We suggest this as a topic for future research. 
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