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1. Introduction 

A goal in turbulent boundary layer research is to be able to calculate boundary 
layer development along any given surface under arbitrary free stream conditions. For 
two-dimensional plane flows, numerous calculation methods have been proposed by 
investigators in the past, and these have met with varying degrees of success [1]. All 
these methods, whether based on the integral or differential equations, are derived on 
the assumption that the static pressure variation across the boundary layer has very 
little effect on the flow and hence can be neglected. Measurements of two-dimensional 
turbulent boundary layers along plane surfaces lend support to this assumption [2]. 
However, when the methods are used to calculate rapidly growing boundary layers or 
flows along curved surfaces, they are found to be inadequate [1]. The reason is that 
existing two-dimensional methods neglect the effects of the curvature of the mean flow 
streamlines. This neglect is justifiable in laminar flows if k~5 is small [3], where 6 is the 
boundary layer thickness and k is the local longitudinal surface curvature. However, 
investigations on turbulent flows in curved channels [4-6] and along curved surfaces 
[6-14] showed that curvature of the mean flow not only gives rise to an appreciable 
change in the measured mean velocity and wall shear stress, but more importantly, it 
also gives rise to a substantial change in the turbulent flow structure [9-14]. The most 
striking effect of curvature was observed by So and Mellor [9, 10] who found that large 
convex curvature in the mean flow streamlines leads to vanishing shear stress in a 
region where the mean velocity gradient is still substantial. Therefore, it is evident that 
streamline curvature may not be a second order effect in turbulent flows. The effects of 
streamline curvature on turbulent flows are discussed thoroughly in a recent review 
article by Bradshaw [15] and the interested reader should refer to [15] for a more 
detailed discussion of these effects. 

The importance of accounting for the streamline curvature effects in the 
prediction of two-dimensional turbulent flows was first pointed out by Prandtl [16]. 
His idea was later modified by Thompson [17] and extended by Bradshaw [18]. 
Thompson [17] argued that the primary effect of streamline curvature was on the 
entrainment process and he proceeded to modify Head's [ 19] entrainment function by 
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including curvature. With this modification, Thompson [17] found that good 
agreement was obtained between calculated values of displacement thickness, shape 
factor and skin friction coefficient and those measured by Schubauer and Klebanoff 
[20] on an aerofoil with k,5 ~ 0.007 downstream of the pressure minimum. 

On the other hand, Bradshaw [18] argued that the influence of streamline 
curvature is on the length scale. Using the analogy between buoyancy and centrifugal 
force to apply meteorological data to curved turbulent flows, Bradshaw [I 8] showed 
that the dissipation length scale was affected appreciably even though k6 ~ 0.003. 
Bradshaw's [18] modification can be cast in a form similar to that proposed by Prandtl 
[16], whereby the mixing length is corrected for curvature effects through a 
multiplication factor Fwhich is a function of a dimensionless curvature parameter. For 
small curvature, Bradshaw [18] proposed the use of the Monin-Oboukhov [21] 
formula for F which is 

F = 1 - f i R i  c (1) 
where fl is a free constant and Ric  is the gradient Richardson number for curved shear 
flows, or 

2 k U  
Ric  = OU/c3y " (2) 

In (2), U is the mean velocity in the stream direction, k is the local surface curvature and 
y is the coordinate measured normal to the flow direction. Besides the data of 
Schubauer and Klebanoff [20], Bradshaw [15] also applied this correction to predict 
the measurements of Patel [7], Meroney and Bradshaw [12] and So and Mellor [9, 11] 
where k 6  is 0.03, +0.01 and +0.16 respectively. The calculation method used is the 
same as that proposed by Bradshaw et al. [22], whereby a differential equation for the 
turbulent shear stress is solved simultaneously with the equations of mean motion. The 
boundary-layer equations are obtained by invoking the thin shear layer approximation 
which implies that the pressure variation in the normal direction is negligible. Using 
different values of fl (7 for convex and 4 for concave surfaces), Bradshaw [I 5] obtained 
good correlation with the data of Patel [7], Meroney and Bradshaw [12] and 
Schubauer and Klebanoff [20]. However, substantial deviations were observed in the 
prediction of So and Mellor's [9, 11] measurements. In spite of this, the same 
correction formula was employed by Johnston and Eide [23] in their attempt to 
propose a simple method to calculate curved shear flows. Their calculation method is 
based on the flat plate boundary-layer equations and the turbulent shear stress is 
defined by Prandtl's mixing length argument. As a result, the only correction for 
curvature effects is in the mixing length. With/3 = 6, results obtained by Johnston and 
Eide [23] are similar to those obtained by Bradshaw [15]. 

Irwin and Arnot Smith [24] adopted a different approach to account for 
curvature effects. Instead of using (1) to correct for the Reynolds shear stress, they used 
the turbulence model of Launder et al. [25] to derive transport equations for the four 
Reynolds stresses for two-dimensional curved flows and an equation for the 
dissipation. Irwin and Arnot Smith [24] argued that since curvature of the mean flow 
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streamlines affects the turbulence structure more than the mean flow, it is justified to 
solve the transport equations simultaneously with the fiat plate boundary-layer 
equations. This assumption limits the applicability of their method. With the exception 
of some curved wall-jet flows, their calculations showed good agreement with 
measurements up to k 6  = + 0.01 for boundary-layer flows. Again, the suitability of the 
method for flows with large curvature is in doubt. 

An attempt to predict flows with large streamline curvature was made by Rastogi 
and Whitelaw [26]. They assumed the radius of curvature to be of the same order of 
magnitude as the boundary-layer thickness and obtained a set of equations for the 
mean flow that include the curvature terms and the variation of static pressure in the 
normal direction. To further account for curvature effects, they again applied (1) to the 
mixing length. They found that fi = 4.5 gives the best agreement between calculated 
and measured curved wall-jet data up to k 6  = 0.15. However, when the method was 
used to predict curved boundary-layer flows, the result was not encouraging at all. 
Therefore, the question still remains as to how can the effects of large curvature be 
suitably accounted for in a relatively simple calculation method. 

The present investigation addresses this question directly. To accomplish this 
objective, an approach based on a combination of the methods used by Irwin and 
Arnot Smith [24] and Rastogi and Whitelaw [26] is proposed. Turbulence modeling is 
used to derive an expression for the Reynolds shear stress for curved shear flows and 
this is used to close the two-dimensional curved boundary-layer equations obtained by 
So and Mellor [10] and Rastogi and Whitetaw [26]. In this approach, the thin shear 
layer approximation is not made and the empirical correction formula (1) proposed by 
Bradshaw [18] is not employed. However, it will be shown that, for small curvature, 
Bradshaw's correction formula can be recovered from the present approach. 
Therefore, the proposed method is equally applicable to flows with small as well as 
large streamline curvature effects. 

2. The Boundary-Layer Equations 

Consider a constant density, incompressible turbulent flow past a curved surface 
with local wall curvature k = R-  1 (x) where x is measured along the surface and R is the 
radius of curvature. The flow is assumed to be two-dimensional and steady in the mean. 
If an orthogonal coordinate system o x y  attached to the surface is chosen (Figure 1 (a)), 
then the boundary-layer equations obtained by assuming [k6l ".~ 0(1) can be written as 

3U ~V o~-+~+kv=o 

o u  
U = -  + V + k U V  - 

o x  o y  

1 ?P 
k U  2 _ 

p~y 

(3) 

p Ox + + 2 k  (4) 

(5) 
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Figure 1 
Coordinate system and a typical velocity profile. 
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where U, V are the mean velocity along x, y respectively, P is the mean static pressure, p 
is the fluid density, Up(x, y) is the potential velocity for curved flows (Figure 1 (b)) and 

__ v( V ) 
- u v  + - k U  • (6) 

P kay  

In (6), - uv is the Reynolds shear stress and v is the kinematic viscosity of the fluid. The 
boundary conditions are taken to be the usual no slip condition at the wall and that the 
vorticity in the boundary layer must merge smoothly with the free stream vorticity at 
the edge of the layer which is considered zero. This last condition gives 

Lim (~U + kU)  = O. (7) 
,,~ kay 

Alternatively, integrating (7) to give the potential velocity Up(x, y) outside the 
boundary layer, the outer boundary condition can be stated as: 

Lira U ~ Up(x, y) = Upw(x) e- ~' (8) 
y~6 

where Upw(X) is recognized from classical boundary-layer theory as being the inviscid 
surface velocity (Figure l(b)). 

The set of equations (3)-(6) and (8) was derived by So and Mellor [10] based on 
asymptotic analysis similar to that presented by Yajnik [-27], but more closely related 
to the analysis of Mellor [28]. This set of equations is used, instead of the 
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corresponding set derived by Rastogi and Whitelaw [26] through dimensional 
arguments, because it yields a relatively simple momentum integral balance. The von 
Karman momentum integral obtained from (3)-(5) with the appropriate boundary 

conditions is [9] 

2 dO 0 dUpw dk C I _ u~ - -  (9) 
2 U~w - dx + (H + 2) Upw dx q(x) dx 

where u~ = (%/p)1/2 is the fi'iction velocity, zw is the wall shear stress, C I is the skin 
friction, H = 6"/0 is the profile shape factor and the integral parameters cS*(x), O(x), 
q(x) are defined by 

U = r ' ~ y / l -  U + ~ U (1 ~ ) d y .  (lOc) q(x) j o l  ~ ) d Y ; o 2 Y ~ -  

A momentum integral similar to (9) can also be obtained from the set of equations 
used by Rastogi and Whitelaw [26] provided that an additional assumption is made 
concerningthe pressure field [29]. In any event, it can be shown that the difference 
between the two momentum integrals is negligibly small, especially when k = constant 
and the Reynolds number of the flow is large. A detailed discussion of this is given by So 

[29]; therefore, it will not be repeated here. 

3. The Shear Stress Equation 

It was first demonstrated by So and Mellor [10] that the technique of turbulence 
modeling can be used to derive an expression for the Reynolds shear stress for two- 
dimensional flows over curved surfaces. The technique involved the use of appropriate 

models for the pressure-strain correlation and dissipation terms in the transport 
equations for the Reynolds stresses and the assumption of local equilibrium in the 
turbulence field. These simplifications reduce the transport equations to a set of 
algebraic equations for the Reynolds stresses which can be solved in terms of the mean 
flow quantities and surface curvature. This approach was later generalized to rotating 
curved flows by So [303. In view of the fact that the details of the derivation have been 
previously given by So and Mellor [103 and So [30], only the result for the Reynolds 
shear stress is given. The interested reader should refer to the work of So and Mellor 
[10] and So [303 for more detailed discussion on the model. 

The result obtained by So and Mellor [10] for the Reynolds shear stress, - uv, can 

be written as 

__ c kU(#U/#y + kU)) 3/2 kU (aU kU~ 
(11) 

J 
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where 

72(/t/A) 
/~ _ (12)  

1 - 6 ( l l / A )  

YeF = (llA1/3)3/2(1 - 6lt/A) 3/2 ~y (13) 

and lt, A are length scales introduced through the turbulence models. From (11), it can 
be deduced that when k = 0 

ve (~U~ (14) 
- u v  = ay / " 

Therefore, VeF is the eddy viscosity of a corresponding two-dimensional plane flow. In 
order to avoid empirical stipulation for It and A, it is proposed to replace veF in (11) 
with the flat plate eddy viscosity fufic{ion put forward by Mellor and Gibson [31] 1) 
and shown in Figure 2. Therefore, it remains to determine the ratio I~/A and hence fi in 
order to make (11) completely defined. 

Figure 2 
Flat plate eddy viscosity 
function of Mellor and 
Gibson [31]. 
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So and Mellor [10] have shown that It/A can be easily determined from the wall- 
law region of two-dimensional plane flows. From the data of Laufer [33] and 
Klebanoff [-34], they determined ll/A to be 0.04 and from (12) fl is approximated by 4. 
This value of  fl will be used for later calculation. The details of this derivation are 
given in [10], hence, they will not be repeated here. 

1) The eddy viscosity function of Mellor and Gibson [31 ] involves combining the outer constant function 
of Clauser [32] with an inner wall function. Most other eddy viscosity functions which have appeared in the 
literature do not differ in principle or in practice, but they involve more empiricism than that proposed by 
Mellor and Gibson [31]. 



60 Ronald M. C. So and George L. Mellor ZAMP 

Another advantage in replacing ve~ with the flat plate eddy viscosity function of 
Mellor and Gibson [31] is that it allows the total shear stress, z/p, to be written as 

z ) 

where 

kg( U/ y -[- kU)73/2 _ kU/ g 

(15) 

(16) 

Since ve~ approaches v as y ~ o (Figure 2) and the correction factor in (16) approaches 

one, the correct behavior of r/p as given by (6) is recovered. For  large y, the viscous 
shear stress is negligible compared to the Reynolds shear stress and (15) reduces to (11) 

again. 
Finally, it should be pointed out that for convex curvature, ~3U/@ varies from 

positive at the wall to negative in the free stream because of (8). This gives rise to a 
singular behavior for Ve inside the boundary layer. However, as later calculation shows, 
the quantity inside the square bracket in (16) goes to zero much faster than ~3 U/3y or 
(~?U/@ - kU) .  When that situation arises, ve vanishes and further integration of the 

equations is carried out with ve = v so that the condition of small viscous shear in the 

free stream can be satisfied. For  concave surfaces, k is negative, and 6U/@ is always 
positive. Therefore, ve is well behaved across the boundary layer and approaches 2v~ in 
the free stream. Since v~  -~ O.O16Uv6* for large y (Figure 2), it can be seen that ve~ is 
approximately constant in the free stream. As a result, z/p does not vanish as y --, oo. 
On the other hand, the terms O('c/p)/Oy + 2k(z/p)  ~ 0 as y --~ oo which is evident from 
(4), (5) and (8). This situation is identical to that obtained in laminar flow except now 
zip takes on a larger value because Ve~ > v. In spite of this, later calculations show that 

the calculated velocity profiles are not very sensitive to the value of Ve~ at large y. 

4. Method of Solution 

The method used to solve the set of equations (3)-(5) and (15) with no slip 
condition at the wall and outer boundary condition (8) is similar to that used by Mellor 
[35]. It is discussed in detail in [35] and the final equation to be solved is derived in 
[10]. Therefore, only a brief description of the method is given here. 

The pressure term in (4) is eliminated by differentiating the integral of (5) and the 
velocity Vand total shear stress z/p are eliminated with the help of  (3), (15) and (16). To 
further reduce the resultant partial differential equation to an ordinary differential 
equation in f (x ,  q), where 17 = y/¢5" is a normalized y coordinate, a functionff(x,  ~/) is 

introduced, such that 

Of U v - U (17) 
f ' ( x ,  tl) = Oq = Up 
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The final step is accomplished by applying the finite difference technique to the x 
coordinate. Thus reduced, the equation becomes an ordinary differential equation in ~/ 
and can be written simply as 

(bsf")~ = b4 ÷ b3f~ + b2f~ + blfi (18) 

wheref~(xl, ~/) is the value of f a t  x i, primes denote differentiation with respect to q and 
the b's are functions of q, f/_ 1, q~, 6", Upw, k and their derivatives. The eddy viscosity 
function ~b = ve/Upw6* can be written in terms of f as 

,kf*f"(1 - f ' )  13/2 f" + 2k6"(1 - i f )  
q~=~b F 1 + f i { f  ~2~ (~ -~ f , ) } z3  × ~ , + k 6 , ( l _ f , )  (19) 

where 

~r  = VeF (20) 
Upw¢~* 

The boundary conditions at the wall are: 

if(x, o) -- 1 (21a) 

f(x, o) = 0 (21b) 

and at the edge of the boundary layer is 

Limff(x,  r/) = 0. (21c) 
r / ~  cZ~ 

Thus simplified, the boundary-layer program of Herring and Mellor [36] can be 
used to numerically integrate (18) with respect to r/subject to boundary conditions (21). 
The calculation can be initiated by either postulating an equilibrium profile as 
suggested by Mellor and Gibson [31] or using a measured profile as input. Prediction 
of the boundary layer development is obtained by carrying the calculation forward in 
step size of Ax once the pressure distribution on the surface is specified. 

5. Small Curvature Results 

It was pointed out by So [30] that (11) can be cast in a form similar to the Monin- 
Oboukhov formula for stratified flows. If a corresponding gradient Richardson 
number, Ric, is defined for curved shear flows such that 

Typical body force 
Ric = Typical inertia force (22) 

then it can be shown that [30] 

2kU l 2 k U ]  Ric- aU 1 + OU " (23) 
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With this substitution and defining 

~o 12 = 1 - (24) 

as the corresponding mixing length for plane flows, (11) can be written as 

_ _  , t / S U  "~2 
- uv = Io2(1 - lflRic) 3/2 Q V  - k U )  • (25) 

Following Prandtl [16], the mixing length lc for curved shear flows is given by 

l~ =/o2(1 - ½flRic) 3/2. (26) 

For very small k, (23) reduces to (2) and (26) reduces to the Monin-Oboukhov formula 
for the mixing length. As a result, the multiplication factor Fas  proposed by Bradshaw 
[18] is recovered. Also, for small Re and with fl = 6, (26) is exactly the same as the 
formula used by Rastogi and Whitelaw [26] for their prediction of  curved wall jets. 

The above argument is not limited to the turbulence model used by So and Mellor 
[10] and So [30]. It can be easily shown that if the assumption of local equilibrium in 
the turbulence field is made, the same small Re result for lc would be obtained with the 
use of a different turbulence model to close the Reynolds transport equations. As an 
example, consider the analysis of Irwin and Arnot Smith [24] who used the turbulence 
model proposed by Launder et al. [25] to close the Reynolds equations. In their 
original analysis, it is not assumed that turbulent production balances viscous 
dissipation in the thin shear layer. As a result, differential equations are obtained for 
the transport of Reynolds stresses. If the local equilibrium assumption is invoked, the 
differential equations can be reduced to simple algebraic equations for the Reynolds 
stresses, and the shear stress can again be solved in terms of the mean flow quantities 
and surface curvature. For  small Ric, So [37] obtained the following result for the 

mixing length, namely 

¢ =/o(1 - 2.44R/~). (27) 

This agrees with the small Ric version of (26) with fl = 6 and the correction formula 
used by Rastogi and Whitelaw [26]. Therefore, independent of the turbulence models 
used, the same result (with a disposable constant) is obtained in the case of small 
curvature for the mixing length for curved shear flows. 

From the above discussion, it can be seen that the small Ric version of (26) is the 
same as the different correction formulae used by other investigators [15, 18, 23, 24, 26] 
to predict the effects of small streamline curvature. In view of this, the same result will 
be obtained if the small Ri c version of (26) is used to calculate curved shear flows. It will 
also be shown later that the curvature terms in the mean flow equations have very little 
effect on the results as long as the shear stress is corrected for curvature effects as 
indicated by (11). Therefore, it remains to demonstrate the applicability of  (26) for 
flows with large curvature effects. 
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6. Large Curvature Results 

Measurements of boundary-layer flows on curved surfaces are scarce but an 

excellent summary of  the published data is given by Bradshaw [15]. For convenience, 

part of this summary is given in Table I. The work of Clauser and Clauser [40] and 

Table 1 
Experiments on turbulent boundary layers on curved surfaces 

Y e a r  Investigators Maximum k6 *) Pressure gradient*) 

1930 Wilcken [38] 0.2 z 
1936 Schmidbauer [39] + 0.04 f--, a 
1950  Schubauer and Klebanoff [20] + 0.02 a 
1962 Tani [8] ? z 
1969 Patel [7] +0.06 z 

+0.03 f 
1972 So and Mellor [9-11] +_0.16 z, a 
1975 
1975 Meroney and Bradshaw [12] +0.01 z 

*) + convex curvature,- concave curvature. 
*) a adverse, f favorable, z zero. 

Liepmann [41, 42] is not included in Table I because the investigations deal mainly 

with transition from laminar to turbulent flows. With the exception of Wilcken [38] 

and So and Me.llor [9-11 ], all the experiments tabulated in Table I were carried out on 

surfaces with very small longitudinal curvature. The only complete set of measure- 

ments with large curvature effects is that obtained by So and Mellor [9-11]. Their data 

is very well documented and hence, is suitable for verification of calculation methods. 

On the other hand, it is very difficult to extract meaningful data from the reported 

measurements of Wilcken [38] for comparison purposes. In view of this, the decision is 

made to compare the present calculations with the measurements of So and Mellor [9- 

11] only. Due to reasons discussed in Section 5, a comparison with small curvature 

measurements will not be given. 

For convex curvature, two cases are chosen; zero pressure gradient flow [9] and 

separating flow [10]. The wall static pressure distributions along the test wall for these 

two cases are given in Figure 3. The convex surface has longitudinal radii of curvature 

that vary from 25.4 cm at the entrance (x = 122 era) to 35.2 cm at the exit (x ~- 210 cm) 

of the curved test section. For the zero pressure gradient flow case, k6 varies from 0.09 

to 0.07 while for the separating flow case k6 varies from 0.08 to 0.18. Calculations are 

also made to show the drastic effect of curvature by assuming the same initial and 

boundary conditions but letting k --, 0. 

For concave curvature, comparisons are made with zero pressure gradient flow 

only [11]. The wall static pressure distribution along the concave test wall is given in 

Figure 4. Since the concave surface has longitudinal radii of curvature that vary from 
- 40.6 cm at the entrance (x = 152.4 cm) to - 61.2 cm at the exit (x = 310 cm) of  the 
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Figure 3 
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Wall static pressure distribution for zero pressure gradient and separating flows on a convex surface. P(x, O) 
is the wall static pressure, P(24, O) is the walt static pressure at x = 24 cm and Po~ is the total pressure in the 
tunnel. 

Figure 4 
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Wall static pressure distribution for zero pressure gradient flow on a concave surface. The meanings of the 
various P are the same as those given in Figure 3. 

curved test section, the average k6 varies from - 0 .1  ! a t  x = 1 7 8  cm to - 0 . 1 6  a t  x 

: 244 cm. The measurements of  So and Mellor [11] reveal that the boundary layer 
development at two spanwise locations is different because of the presence of a system 

of  longitudinal vortices, therefore, the two-dimensional calculations are compared 
with the "average"  measurements only. 

The initial conditions chosen for all calculations are the measurements obtained 
by So and Mellor [9-11] at x = 61 cm. Hence, all calculations begin on a flat surface 

and proceed on to a curve surface. 

Zero Pressure Gradient Flow on a Convex Wall 

The calculated results are given in Figures 5 to 7 and the agreement among the 
various integral parameters  0, 6* and H is shown to be very good (Figure 5). It can be 
seen that the effect of convex curvature is to reduce 0 and increase 6*. As a result, H is 
very much different f rom the corresponding flow along a flat plate. Although the 
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Figure 5 
Comparison of calculated and measured skin friction, shape factor, displacement and momentum 
thicknesses for zero pressure gradient flow on a convex surface. 

calculation shows that H - *  1.35 when the flow is in equilibrium again after passing 
through the favorable pressure gradient in the case o fk  -* 0, no equilibrium is reached 
in the case of finite curvature. The prediction of C s is excellent. On the other hand, i fk  
= 0 is assumed in the prediction scheme, the calculated skin friction is generally 25% 

higher than the measured values. This indicates that turbulent flows along convex 
surface cannot support as high an adverse pressure gradient as the same flow over a flat 
surface. 

Calculated velocity profiles at x = 133.5, 150, 170.2 and 180.3 cm are shown in 
Figure 6 together with the measured profiles. In general, agreement is good, and the 
present method predicts the velocity profile accurately even at x = 133.5 cm which is 
immediately downstream of the strong favorable pressure gradient. 

The present method also predicts the shear stress profile correctly (Figure 7), 
especially the point where the shear stress vanishes. Near the wall the agreement is off, 
but in this region there is strong evidence to indicate that the measurements are in error 
due to finite wire effects in regions of high shear (Bissonnette and Mellor [43]). Outside 
of this region (y _< 6* approximately), the agreement is very good. The shear stress 
profile of the k -* 0 calculation at x = 150 cm is also shown which clearly illustrates the 
effect of large convex curvature in 'turning off' shear stress. 

Calculations were also made to determine the significance of the curvature terms 
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Figure 6 
C o m p a r i s o n  o f  ca lculated  and measured  m e a n  
ve loc i ty  profiles for zero  pressure gradient  f low on 
a c o n v e x  surface.  
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in the mean equations of motion. In these calculations, the flat plate equaUons were 
used in conjunction with the eddy viscosity given in (16). The results are essentially the 
same as those shown in Figures 5 to 7 and show that the effect of curvature on the mean 
flow is small compared to its effect on the turbulent structure. This last point has also 
been convincingly demonstrated by So [29] who used the integral approach to predict 
curved boundary-layer flows and found substantial differences between calculated and 
measured C s. 
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Figure 7 
C o m p a r i s o n  o f  ca lcu lated  and  measured  shear stress profi les for zero  pressure gradient  f low on a c o n v e x  
surface.  
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Separating Flow on a Convex Wall 

In calculating the separating flow, the measured potential velocity distribution at 
the wall up to x =  159cm is used, but from x =  159cm to x =  i90cm, the 
extrapolated distribution is used (Figure 8). It is believed that this will give a better 
prediction of the separation point. As in the case of zero pressure gradient flow, 
additional calculations with k--* 0 are made to demonstrate the drastic effect of 
curvature. 

The calculated and measured 0 and 6" are given in Figure 9. Under the influence of 

Figure 8 
Distribution of potential velocity at the wall 
for separating f low o n  a convex surface. 

24 

22 

\ 
1 8 -  \ 

\ 
\ 

\ 
\ 

\ 
1 6 -  \ 

I I \', 
/25 150 /75 

X ClII1 
200 

Figure 9 
Comparison of calculated and measured 
displacement and momentum thicknesses for 
separating f low o n  a convex surface. 
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adverse pressure gradient, the difference in the development of 0 is unnoticeable. 
However,  the difference in &* is discernible, especially near separation. 

Although the location of  the point of  separation is not known exactly, it is believed 
that the flow separates somewhere between x = 167.5cm and x = 178cm. I f  

separation is defined as the point where C I ~ 0, then the separation point as calculated 
by the present method is at x = 170 cm (Figure 10). With zero wall curvature, the flow 

does not separate until x = 203 cm. This supports the previous conclusion that under 

the same distribution of potential velocity at the wall, the flow separates earlier when 
the surface has a finite curvature. 

As seen in Figure 10, the calculated Cf agrees well with the measured C I up to x 

. 004  I I ,~-, I 

C~ \\,,\k ,-,.-0 . 0 0 ~  \ \ \  

o i" 1.7- I 

HI.5 / /t// 
CONVEX CUs _ / /  

BEGINS AT x .= /22 cm . / J / / /  k~O 

50 t00 150 
x g f n  

Figure 10 
Comparison of calculated and measured skin 
friction and shape factor for separating flow on 
a convex surface. 
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Figure 11 
Comparison of calculated and measured mean 
velocity profiles for separating flow on a convex 
surface. 

= 150 cm but after this the calculated value is lower. The reason is that in the actual 
flow, the inviscid-viscous interaction causes the velocity distribution to level off, and 
therefore, has a delaying effect on separation. This is borne out by the fact that if the 
measured velocity distribution up to x = 190 cm is used, the calculation will give good 
agreement with C y u p  to x = 167.5 cm. However, separation is predicted to be at x 
= 198 cm, and no separation is predicted for the k -* 0 calculation. 

The agreement between calculated and'measured velocity profiles at x = 138.5, 
150, 159 and 167.5 cm is also very good (Figure 11). However, the agreement between 
calculated and measured shear stress profiles (Figure 12) is poorer than the zero 



Vol, 29, 1978 Turbulent Boundary Layers 69 

=/,58.5 

0 

Figure 12 

I I J 
/59 cm 

y 

Compar ison of calculated and measured shear stress profiles for separating flow on a convex surface. 

pressure gradient case; but the point where z ~ 0 is accurately predicted. Even though 
the flow is under the influence of a strong adverse pressure gradient, the shear stress still 
vanishes at about half the boundary layer thickness. Again, this demonstrates the 
strong effects of large curvature on the flow structure. 

Zero Pressure Gradient Flow on a Concave Wall 

The comparison of  calculated and measured results for flow on a concave wall is 
given in Figures 13 and 14. From Figure 13, it can be seen that the calculated and 
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Comparison of calculated and measured shear stress profiles for zero pressure gradient flow on a concave 
surface. 

'average' measured 6", and H compare favourably at x = 178 cm but deviate by about 

45 % at x = 244 cm. In spite of this, the shape of the profile compares favourably. The 
calculated wall shear stresses at the two x locations agree well with the 'average' 
extrapolated values of the measured shear stress profiles (Figure 14), but disagree with 
the wall shear stresses determined from the mean velocity profiles [ 11 ]. Since the latter 
was determined by assuming the existence of a log-law region near the wall, its 
reliability is in doubt. On the other hand, the present calculated C s values at x 
= 178 cm and 244 cm are 0.0032 and 0.0040, respectively and agree with the results of 
Bradshaw [15]. Therefore, it can be concluded that the present method gives a fair 
prediction of the integral parameters of the 'average' flow over a concave wall with 
large curvature. 

To summarize, it can be said that the present approach correctly predicts the 
effects of  large convex curvature, especially the behavior of  the Reynolds shear stress. 

Also, the calculated results are in better agreement with measurements compared to the 
other approaches reported in the literature [15, 18, 23, 26]. 

7. Th e  C o m b i n e d  Ef f ec t s  o f  C u r v a t u r e  and R o t a t i o n  

Surface curvature gives rise to an external body force in the mean flow equations 
and this depends on the U-component of  velocity. If a flow in a rotating environment is 
considered such that the axis of rotation is normal to the plane of flow, then the mean 
flow is subject to the influence of a Coriolis force. Since the Coriolis force is also 
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dependent on the U-component of velocity, it is reasonable to expect the effects of 
rotation on turbulent flow to be similar to those due to surface curvature. This 

observation is borne out by the analytical result obtained by So [30] who derived the 
following expression for the Reynolds shear stress for a rotating curved flow: 

-- 3,2/~U 712  - u v  =/2[-1 - �89 + Ri, + 2ScSr) ] ~ ~yy  . . . .  (28) 

In (28), Ri, is the gradient Richardson number for rotating flows and is defined as: 

Rir = S~(1 + St) (29a) 

where 

s~-  
- 2 ~  

~U k U  (29b) 

~y h 

2 k h -  1 U 
Sc - ~U k U  (29c) 

0y h 

and f~ is the constant speed of rotation, h = 1 + k y  is the metric coefficient, l~fh = 1 is 
assumed and f~ = 0, then S, = 0 and (28) reduces to (11). On the other hand, ifk = 0, it 
can be seen that (28) also reduces to a form similar to (11). This shows that Coriolis 
force has the same effect on turbulent shear stress as surface curvature. 

In the analysis of  Johnston and Eide [23], the combined effects of  rotation and 

surface curvature are assumed to be additive. From (28), it can be seen that this is true 
only for small values of the respective Richardson numbers. If  the effects of surface 
curvature and rotation are small, then Sc << 1, Sr << 1 and Ric ~- Sc, Rir ~- St. With this 
simplification, the mixing length l for rotating curved flows is given by 

l = lo[,1 - 3fl(Ri~ + Ri,)]  (30) 

which is the same as the expression proposed by Johnston and Eide [23]. The validity 
of (30) for small Ric or Rir has been demonstrated by Johnston and Eide [,23], therefore, 
there is no need to repeat the calculation. Besides, good rotating flow data are scarce 
and very little new information can be added to those already presented by Johnston 
and Eide [-23]. 

On the other hand, for moderate to large values of Ri c and Rir, (28) clearly shows 
that the effects of rotation and surface curvature are not additive. However, So [-30] has 
shown that for such flows (28) can be reduced to a form similar to (11) by defining a 
combined gradient Richardson number, Ri, such that 

Ri  = (Sc + S~)(1 + S~ + S~) (31) 

In other words, (16) will remain the same provided that kU(OU/Oy + kU) / (~U/~y  
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- k U)  2 is replaced by R i / 2 .  As a result, the present method is also applicable to 
rotating curved flows with large rotation and surface curvature effects. Unfortunately, 
lack of test data prevents the presentation of a convincing comparison. 

From the above discussion, it can be seen that the present approach is not just 
limited to curved flows. It can also be applied to rotating plane flows and two- 

dimensional rotating curved flows with both small and large external body force 
effects. Again, for small external body force effects, the approach reduces to the more 
familiar method put forward by other investigators [15, 18, 23]. Therefore, the main 
finding of the present study is that it is possible to extend those methods to account for 
large rotation and surface curvature effects. 

8. Conclusions 

With the assumption of local equilibrium in a turbulent field and the introduction 
of suitable turbulence models in the curved flow transport equations for the Reynolds 
stresses, an expression is obtained for the shear stress in terms of the mean flow 
quantities, surface curvature and a flat plate eddy viscosity function. This relation is 
used to close the mean flow equations for curved shear flows. The present approach 
demonstrates that the primary influence of streamline curvature is in the turbulent 
structure, while the additional curvature terms in the mean flow equations are shown to 
be unimportant. The calculated results also show that the present method accurately 
predicts the boundary-layer growth, the skin friction, the mean velocity profiles, the 
shear stress distribution and the point where the shear stress vanishes for turbulent 
boundary-layer flows over surfaces with large longitudinal curvature under arbitrary 
free stream conditions. For flows with small curvature effects, the shear stress equation 
is reduced to the familiar Monin-Oboukhov formula and the present method is shown 
to reduce to other more familiar methods used by various investigators. Therefore, the 
present approach is more general in that it applies to flows with small as well as large 
curvature effects. 

The shear stress relation is shown to be independent of the turbulence models used 
because the same relation (with a disposable constant) can be obtained from Irwin and 
Arnot Smith's [243 analysis. 

The present method can also be applied to predict the effects of Coriolis force on 
the development of turbulent boundary layers. Corrections for the Reynolds shear 
stress is again given by the relation derived by So [303. For small Coriolis force effects, 
the equation reduces to the familiar Monin-Oboukhov formula used by other 
investigators [15, 18, 23]. As a result, the present approach is suitable for flows with 
combined curvature and Coriolis force effects. 
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Abstract 

It has been shown that turbulent flows are greatly affected by streamline curvature. In spite of this and 
the fact that curved shear flows are frequently encountered in engineering applications, the predictions of 
such flows are relatively less developed than the predictions of two-dimensional plane flows. Recently, 
various attempts were made by different investigators; however, their methods are only successful when the 
product of the boundary layer thickness to the local surface curvature [k6t is ~0.05. The present paper 
investigates the more general case where 0.1 _< Ik6[ < 0.5. Results show that the calculated boundary-layer 
characteristics for arbitrary free stream conditions are in good agreement with measurements. 

Zusammenfassung 

Es ist gezeigt worden, dass turbulente Str6mungen durch eine stromlinienf6rmige Kriimmung stark 
beeinflusst werden. Trotzdem und trotz der Tatsache, dass gekriimmte Randstr6mungen hfiufig bei 
technischen Anwendungen gefunden werden, sind die Vorhersagen solcher Str6mungen verh/iltnism~issig 
weniger entwickelt als die Vorhersagen zweidimensionaler ebener Str6mungen. In letzter Zeit sind yon 
verschiedenen Forschern Versuche in dieser Richtung unternommen worden;jedoch waren ihre Methoden 
nur dann erfolgreich, wenn das Verh/iltnis der Grenzschichtdicke zur bestimmten 6rtlichen Oberfl/ichen- 
krfimmung [k6[ ~ 0,05 ist. Die vorgelegte Arbeit untersucht den allgemeineren Fall, bei dem 0, I _< [k6[ <_ 0,5 
ist. Die Resultate zeigen, dass sich die berechneten Grenzschichteigenschaften fiir beliebig freie Str6- 
mungsbedingungen in befriedigender Uebereinstimmung mit den Messungen befinden. 
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