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Summary. — It is shown that in a natural way there are precisely sixteen classes of almost
Hermitian manifolds.

1. — Introduction.

In order to generalize K#hler geometry various authors have studied certain
types of almost Hermitian manifolds, e.g., Hermitian manifolds, almost K#hler mani-
folds. These types of manifolds bear sufficient resemblance to Kéhler manifolds so
that it is possible to generalize a portion of Kahler geometry to each type. In [20]
KoTo established inclusion relations between various classes. In [9], [10] these inclu-
sion relations were shown to be strict by the method of constructing explicit examples.

The main point of the present paper is to fit all of these classes into a general
system, which in a reasonable sense is complete. This will be accomplished by means
of a detailed study of a representation of the unitary group U(n) on a certain space W.
Geometrically, W can be interpreted as the space of tensors which satisfy the same
identities as the covariant derivative of the Kihler form of an almost Hermitian
manifold.

Our scheme provides a general framework in which to study almost Hermitian
maniolfds. On the one hand the classes of nearly Kihler manifolds, almost Kéhler
manifolds, etc., fit nicely into our pattern. In addition, locally conformal Kihler
and almost Kahler manifolds occur. There are sixteen classes in all. Furthermore
our scheme is important in the study of invariants of almost Hermitian manifolds.

The sixteen classes come about in the following way. The representation of U(n)
on W has four irreducible components, W= W, W,D W,® W,. It is possible to
form sixteen different invariant subspaces from these four. Hach invariant subspace
corresponds to a different class of almost Hermitian manifolds. For example, W,
corresponds to the class of nearly Kahler manifolds, W, to the class of almost Kahler
manifolds, and WP W, to the class of Hermitian manifolds.

(*) Entrata in Redazione il 24 luglio 1978.
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In section 2 we define precisely the space W, and using Weyl’s theorem on invar-
iants we prove the irreducibility of the components in the decomposition of W. We
show in section 3 how each invariant subspace of W corresponds to a class of almost
Hermitian manifolds.

We construet in section 4 a certain tensor field u which measures the failure of
an almost Hermitian manifold to be locally conformally equivalent to a Kiahler
manifold; the tensor field is analogous to the Weyl conformal tensor field of Rieman-
nian geometry. Using g we determine which of the classes are preserved under
conformal changes of metric. The results of section 4 are used in section 5 to find ‘
all possible inclusion relations between the sixteen types, and to demonstrate that
all of the inclusions are strict.

A particularly interesting class that arises in our seheme is the clags correspond-
ing to W,. This is the class W, of almost Hermitian manifolds M satisfying the
identity

11)  VHF)NY, Z) = ;_17) (X, Y5 0F(Z) — (X, Zy5F(Y)

2(n
— <X, JYY0F(JZ) + (X, JZ) dF(J Y)},

where 2n is the real dimension of M. Three facts about the class W, are noteworthy:
(1) Any manifold in W, automatically has an integrable almost eomplex structure.
(2) Any manifold locally conformally equivalent to a Kéahler manifold is in W,.
(3) Let the Lee form 0 of an almost Hermitian manifold M be defined by
f=6F-J. Suppose HMeW,; then M is locally or globally conformally Kihlerian
according to whether 6 is closed or exact.

In section 6 we give many examples of almost Hermitian manifolds in each of
the sixteen classes. A large number of the examples are compact homogeneous spaces.

In gection 7 we discuss the invariants of U(n) from a more general point of view,
and we determine all invariants of the representation of U(n) on the space of tensors
involving two derivatives of the components of the metric tensor and almost complex
structure. These are the six invariants 7, 7%, |VF|?, |dF|2, [[6F]?, and ||S|2. Fur-
thermore, we determine the linear relations between these invariants, and in this
way we compute the space of invariants of order 2 for each of the 16 clagses. Our
work generalizes that of GILKEY [8] who did the computation for Hermitian man-
ifolds. See also [4].

Finally in section 8 we show that there are naturally four classes of almost
symplectic manifolds.

We wish to thank I. CATTANEO-GASPARINI, M. FERNANDEZ, P. LIBERMANN, P.
GiLxry, A. M. NAVEIRA, S. SaramoN, I. VAISMAN, and L. VANHECKE for useful
comments.

2. ~ The space of covariant derivatives of the Kihler form.

The covariant derivative VF of the Kihler form of an almost Hermitian mani-
fold is a covariant tensor of degree 3 which has various symmetry properties. We
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shall define a finite dimensional vector space W that will consist of those tensors that
possess the same symmetries. Then we study the decomposition of W inte irreducible
components under a certain natural representation of the unitary group.

Let V be a real vector space of dimension 2» with an almost complex structure J
and a real positive definite inner product {,>. We assume that J and {, ) are
compatible in the sense that {(Jz, Jy>= {x, y) for x,yc V. Let V* denote the dual
space of V, and consider the space V*& V*#& V*, This space is naturally isomor-
phic to the space of all trilinear eovariant tensors on V. Let W be the subspace of
VT R V*® V* defined by

W= {aeV*QV*RQ V*|a(x, y, 2) = — a(®, 2, y) = — a(, Jy, J2) for all #,y,2€V}.

There is a natural inner product on W given by

2n

{oy B> = E a(esy €5y €)B(6:y €5y €1)

4,9, k=1

where {¢,, ..., 6, } is an arbitrary orthonormal basis of V. Also, for xe W let &e V*
be defined by

2n

&(2) = z‘x(en €y 2)

i=1

for ze V. We define four subspaces of W as follows:

W, = {ae Wia(x, »,2) =0 for all z,ze V},
Wy = {ae Wla(z, y, 2) + a(e, ®, y) + a(y, 2, 2) = 0 for all @, y,z2¢€ Vi,
W, = {axe Wa(x, y, 2) — a(Juw, Jy, 2) = &(2) = 0 for all w,y,2eV},

We = foe Wiato, 3, 2) = — 5 (o o) — <o, 33

— (a, Jyya(Jz) + {w, J2)&(Jy)) for all w,y,z¢€ V} .

The usual representation of U(n) on V induces a representation of U(n) on W. The
next theorem describes the decomposition of this induced representation into irre-
ducible components.

THEOREM 2.1. — We have W= W, W, W,H W,. This direct sum ig ortho-
gonal, and it is preserved under the induced representation of U(n) on W. The
induced representation of U(n) on W, is irreducible. For n=1, W= {0}; for n=2,
Wy= W;= {0}, so that W= W, W,. For n=2, W, and W, are nontrivial, and
for >3 all of the W, are nontrivial.
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ProoOF. — It is not difficult to check that W, and W, are orthogonal and that
W@ Wy= {xe W|«w, y, 2)+ a(J2, Jy,2) =0 for all o, y,zeV}.
Thus W;, W,, W,, are mutually orthogonal; furthermore
W, B W, D Wy={ecW|a=0}.
Moreover, it can be verified that
W@ W,= {x€ W |z, y, 2) — a(J, Jy, 2) =0 for all #,y,zeV}.

Hence all of the W/'s are mutually orthogonal, and W= W, W, W, W,. It
is also easy to prove that this decomposition is preserved under the action of U(n).

We now show that the induced representation on each nontrivial W, is irredu-
cible. First consider the case n>3. To each component of the ihduced representa-
tion of U(n) on W we assign a U(n) invariant symmetrie bilinear form which vanisheg
precisely on that component. Thus the number of components of the representa-
tion of U(n) on W is less than or equal to the dimension of the space of quadratic
invariants of the representation of U(n) on W.

We now show that when n>3 this dimension is equal to 4. We define | |2, 4,

B, 0 by

B(o) = (e, €5y 8;;)06(:76@, Jeiy )
i,i, k=1
2n  2n 2
0@ = 3{ Jales, esy e =
i=14=1

It is clear that | |2, 4, B, ¢ are quadratic invariants of the induced representa-
tion of U(n) on W. That they are linearly independent can be proved directly, or
it follows from theorem 5.2. We remark that | ||2, A, and C are invariants of O(2n).

To prove that | |%, 4, B, O span the space of quadratic invariants, we must
use Weyl’s theorem on invariants of the unitary group. Weyl’s theorem is stated
for the orthogonal group in a convenient way in [2, p. 76] (see also [187]). We shall
need instead Weyl’s theorem for the unitary group, but in the form of [2, p. 76].
This can be effected by using Hermitian symmetric bilinear forms instead of real
symmetric bilinear forms and after wards taking the real and imaginary parts. Accord-
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ing to this theorem every quadratic invariant of W is a linear combination of elemen-
tary invariants P; of the form

2n

Poa)= 3 o(a@xR@F Q... QF) e, 0,16 6. ),

By seensbteg=1

where F is given by F(x,y)= (Jz,y) and ¢ is a permutation of degree 2I-} 6.
Here ! is the number of F’s occuring in the tensor product, and without loss of
generality we may assume that 0<l<3. Also c(x Qe @F ®...QF) denotes the
obvious action of ¢ as a permutation of the arguments. ,

It is not difficult to prove that Ps(x) = 0, except when I=0 or 2. In the case
1= 0, it can be checked that every elementary invariant P, is a scalar multiple of
| |2, 4, or C. When l=2, every elementary invariant P, is a scalar multiple of
one of these three, or it is a multiple of B.

Thus the representation of U(n) on W has precisely four components, when #> 3.
When n=1 or 2, it is easy to verify that the situation degenerates into that de-
gceribed in the statement of the theorem. Hence the theorem follows.

REMARK. — If dim V = 2#, then dim W =2dim(W,®H W,)=2dim (W, W,)=
= 2n%(n—1). Also dim W,= in(n—1)(n— 2), dim W,= 2n(n—1)(n4 1), dim W,=
=n(n+1)(n—2) (for n>2), and dim W,= 2.

3. — The sixteen classes.

Let M be a C* almost Hermitian manifold with metriec {, >, Riemannian connec-
tion V, and almost complex structure J. Denote by X(M) the Lie algebra of (%
vector fields on M. Then we have (JX,JY)=<KX,Y> for X, YeX(M). Also,
8 will denote the Nijenhuis tensor of M, that is, 8(X, Y)=[X, Y]+ J[JX, Y]+
+J[X,JY]—[JX,JY] for X, Y eX(M). The Kéhler form F is given by F(X, ¥)=
= (J X, Y); and the Lee form is the 1-form 6 defined by 6(X) = ((—1)/(n—1)) dF(JX),
where ¢ denotes the coderivative. '

For any almost Hermitian manifold there is a representation of U(n) on each
tangent space M,. Put

W= {“EM;@) M:»@ M:n [a(@, ¥, 2) = — &, 2, ¥) = — a(e, Jy, Jz)} .

Then the induced representation of U(n) on W,, has the four components W, W,
Wz, Wig, as described in the previous section. It is possible to form from these
four a total of sixteen invariant subspaces of W, (including {0} and W,).

DErFINITION. — Let U be one of the sixteen invariant subspaces of W. For an
almost Hermitian manifold M and me M, let U, denote the corresponding sub-
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space of W,,. Then U will denote the class of all almost Hermitian manifolds M
such that (VF),e U, for all me M.

Of course in order for this definition to be meaningful, one must show that for
any almost Hermitian manifold M, VF has all the required symmetries in order
that (VF), e W, for all me M. It is obvious that Vy(F)(Y, 2) is skew-symmetrie
in ¥ and Z. Also we have

Ve F)Y,JY)=XF(Y,JY)— F(V;Y,JY)— F(Y, V,JY)
= X|Y|2— VY, YY) — (JY,V,JY)
=3 X[Y[>— 3 X[|JY[>=0,
so that Vx(IWY, Z)=— Vy(IJY,JZ) for X, Y, Z c X(M).
The class corresponding to W, will be denoted by W,, and that corresponding
to W, ®W,; by W, D W,, ete. Also, & will correspond to {0} and W to W. Some,

but not all, of the classes have been studied. We explain how the classes just intro-
duced coincide with classes studied by various authors:

¥ = the eclass of Kéahler manifolds;

W, = NJ = the class of nearly Kéhler manifolds (also called almost Tachi-
bana spaces);

W, = AKX = the class of almost Ké&hler manifolds;

Wy,= XN 8 = the class of Hermitian semi-Kédhler manifolds (also ecalled
special Hermitian manifolds);

W,= a class which contains locally conformal Kéahler manifolds;
W, P W,= QF = the class of quasi-Ké&hler manifolds;
W, P W, = ¥ =the class of Hermitian manifolds;
W, D W,=a class which econtains locally conformal almost Kahler manifolds;
W, D W, D W,= 8K = the class of semi-Kidhler manifolds;
wl @ ‘u):s @ ‘u)4: g1 X
classes studied by HERVELLA and VIDAL [16], [17];
‘wz @ ws @ ‘w4: Qz

W = the class of almost Hermitian manifolds.

We now use the results of section 2 to describe the sixteen clagses.

THEOREM 3.1. — The defining relations for each of the sixteen classes (in the case
that dim M >6) are given in Table I. The case dim M = 4 is treated in Table II,
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Tapre I. — Almost Hermitian manifolds of dimension > 6.

Class Defining conditions
% VF =0
W, = N% Ve(F)(X, ¥)=0 (or 3VF = dF)
W, = AK dF =0
W, = S3 A 36 SF=8=0 (or Ve(F)NT, Z) — V,2(FWJ Y, Z) = 6F = 0)
v, VBN, 2) = 5 (X, T 852 — <X, 2) ()
— (X, JYY6F(JIZ) + <X, JZy SF(JX)}
W, D W, = AK Ve ENY, Z) + Vyx(EYWJ Y, Z) = 0
W, @ W, = Je 8=0 (or Vx(I)X, Z)— Vix(F)J X, Z) = 0)
W, @ W, Ve(F)(X, ¥) — Vya(F)IX, ¥) = 6F = 0
W, @ W, dF = FA8 (or X%Z{VX(F)(Y, z)— ;Eihl F(X, Y) 6F(JZ)} = o)
W, @ W, Ve(F)(X, Y) = 2(7: D {|X[26F(Y) — (X, Y)SF(X)
‘ —(IX, 2> F(JX)}
W, @ W, X%{Vx(F)(Y, Z) = Vyx(F)JY, Z)} = 0F =0
W, @ W, D Wy = 8% 0F =0
WOWEW, | VelE)T, )+ Vax(F) (T, 7) = (X, T3 85(2)
(X, Zy SF(Y) — <X, J Ty 6P ) + (X, T2 6FJTT)}
WO W@ W, =8, | VelUE X) = V)X, T)=0 (o (S(X, ¥), X> =0)
W, D WD W, =G, x%z{VX(F)(Y’ Z) = Vix(F)J X, Z)} = 0
(orX§Z<S(X, Y),JZ) = 0)
W No condition

PROOF. — The results of section 2 give immediately the defining relations for the
following classes: J0, W,, W,, W;, W,, W, B Wy, WD W,, W, D W, P W,, and W.
We now check the remaining classes.

For the class W, D W, P W, we observe that the orthogonal projection 8;: W— W,
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is given by

Sylex){(@, y, 2) = % @{(x(w, ¥, 8) — a(Jz, Jy, z)}
LyU, &

for », y,2z€V, where & denotes the cyclic sum. Hence W, W, W,= Wi=
= {o| 84(x) = 0}. Thus we obtain the defining relation for W,® W, P W,. Similar
arguments apply to W, P W, AW, and W, D W, @ W,. The defining relations for
all the other clagses with fwo summands can be determined by taking the intersec-
tions among the classes with three summands.

Also, for the clags W, @ W, one proves directly that the defining relation can
be written more simply as dF = F A 0. Finally the alternate conditions for the
classes W, D W, P W, and W, D W, P W, follow from the following identities:

BX, Y), JZ) = (V)Y — V x()JY — V() X+ V3 (J)J X, Z)>
and
2¢Vx(NY — V3 (NJY, Z)=(8(X, Y), JZ) — (8(X, Z), JX)+ (8(Z, X), J Y
for X, Y, ZeX((M).

TasLe II. - Almost Hermilian manifolds of dimension = 4.

Class Defining conditions
* | VF =0
A =W, dF =0
X =W, §=0
w No condition |

REMARK. — A potentially interesting class of almost Hermitian manifolds are
those satisfying dFr=0 for some %k with 1<k<n. For k=1 this class is W,, and
for kF=n—1 it is W, P W,DW,. From the results of gection 2 we suspect that
for arbitrary k, the eclass defined by dIF*= 0 must coincide with one of the classes
given in table I. We now determine this class precisely.

THEOREM 3.2. — Let AJ® denote the class of almost Hermitian manifolds for
which dF*= 0. Then

W, for I<k<n—2,
AJ{)UC): m]_@wg@w;; fOI‘ k: %—17
W for k=mn.

P
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ProoF. — That AX™= W is obvious. Next let 1<k<n—1, and let {#,, JH,,
vy B,y JE,} De an orthonormal basis on an open subset of M, where M e AK®,
We compute dF* and find

(3.1) 0—dFXE,,JEB,, .., B, ,JB,, X

ix? i ? )

k
=k! Y dF(E,, JE,, X) .

i
i=1
Written out, (3.1) is a system of linear equations:
dF(E17 JE17 X)“I"dF(Ez’ JEza X)+ '-'+dF(Ek7 J-Ekg X) =0,

(3.2) AF(By, JEy, X)+ ot BBy, TBy_y, X)+ AF(By,y, J By, X) =

I

In the case when 1<k<n— 2, (3.2) has only the trivial solution. Similarly one shows
that dF(X,Y,Z)=0, and so AX®= W, for 1<k<n—2. When k=n—1, (3.2)
reduces to 0F(X)==0. Hence the theorem follows.

Also, theorem 3.2 follows from a divisibility theorem for symplecticm anifolds.
See [6], [6], [23]. :

4. — Classes preserved under conformal changes of metric.

In this section we determine which of the sixteen classes are preserved under a
conformal change of metric; we assume that the almost complex structure remains
unchanged. The 2- and 4-dimensional cases are quite simple, and so we assume that
all manifolds have dimension at least 6.

DEFINITION. — Let WU be one of the sixteen classes given in table I. Then AU°
will denote the class of all manifolds locally conformally related to manifolds in U.
In other words, (M, J, {(,>°) e UL if and only if for each m € M there exists an open
neighborhood V of m such that (V, J, {, >%) is conformally related to (V, J, {,>)eU.

It will be convenient to introduce a tensor field y which is a eonformal invariant
for almost Hermitian manifolds. There is an analogy between g and the Weyl
conformal tensor. Just as the Weyl conformal tensor measures the failure of a
Riemannian manifold to be conformally flat, the tensor field y measures the failure
of an almost Hermitian manifold to be conformally K#hlerian.

DEFINITION. — Let (M, J, {,>) be an almost Hermitian manifold. Then y is the
tensor fleld of type (2, 1) given by

1) U, ), 2) = VaII(T, 2) + g (K, 1) 08(2) — <X, 2 8F(Y)

(
— (X, JY>SF(JZ) + (X, JZ>SFJY)} ,
for X, Y, Zec¥(M).
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Levyma 4.1, — Let (M, J, {,>) and (H, J, {,>° be locally conformally related
almogt Hermitian manifolds. Then the corresponding tensor fields u and u® satisfy

po= .

PrOOF. — There is a well-known formula expressing the Riemannian connection
of {(,>* in ferms of the Riemannian connection of {,>:

(4.2) VoY =V ¥+ X(0) Y+ Y(0) X — (X, ¥) grado

for X, YeX(M) (where {(grado, X) = Xo). From (4.2) (see [9], [10]) it follows that
VoFe ig related to VF by the formula
(4.3)  VRIFNY, Z) = {Vx(F)Y, Z)— (X, Y)JZ(0)+ <X, Z)J X (o)
— X, JY)Z(0)+ <X, JZ) Y (o)},
and that §°F° is related to oI by
(4.4) S FU(X) = dF(X)+ 2(n— 1)J X (o),
for X, Y, ZeX(M). From (4.3) and (4.4) we obtain immediately u= u°.
Next we prove

THEOREM 4.2. — For any class U given in table I we have W'C W, HU. Thus
=0 if and only if W,CU. Hence the conformally invariant classes are: W,,
wl@ ‘1}‘)47 :u)Z@ ‘11)4? cu)3® ‘11)47 wl@ wZ@ ‘u)47 ‘UJ]_@ ‘1-1)3@ ‘u}47 ‘1)‘)2@ ;1)‘)3@ ;ID47 {u')'

ProOF. — The defining relation for each of the classes mentioned in the statement
of the theorem can be rewritten in terms of p. From table I we have

Mew, if and only if pu=20,

MeWEW, if and only if w(X,X)=0 for all XeX(M),

Me W, D W, if and only if € <{u(X,Y),Z>=0 for all X, Y, ZeX(M),
Mew,@eW, if and only if 2;}23(’ Y)— u(JX,JY)=0 for all X, YeX(M),

MeW W, B W, if and only if w(X, ¥)-+u(JX,JY)=0 for all X, YeX(M),
MeW,DW,DW, if and only if w(X, X)— u(JX,JX)=0 for all X eX(M),
MeW, D W, P W, if and only if S<{u(X, Y)—u(JX,JY),Z)=0

xvz for all X, Y, Ze®(M).

From these descriptions it is clear that if U is any one of the eight classes contain-
ing W,, then (M, J, {,>)eW if and only if (M, d, {, ) U, where {,> and {,>°
are conformally related.
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We note the following formulas:

4.3) X, Y)—pX,JY), Z) = V() Y~ V() Y), Z>
= $<8(X, Y), J 2> — i<8(Y, Z), T X) -+ §<{8(Z, X), T X ,
(4.6) S, Y), Z)=dF (X, Y, Z)— (FAO)(X, Y, Z) .

XYz

Actually the form dF — F A0 depends only on the symplectic structure ¥ (see§ 8).
This is the conformal torsion introduced by LIBERMANN [23, p. 71]. Libermann
also introduced a torsion corresponding to u. Formula (4.6) shows that u determines
dF— FA0O. The converse, however, is not true. For example if M € W, but M ¢ X,
then dF = FAO =0 on M but p0. See also [24].

Next suppose UN W,= XK. We have shown that UCU B W,. The following
theorem characterizes those manifolds in U @ W, which are contained in U°.

THEOREM 4.3. — Let U be one of the sixteen classes and suppose that U N W,= XK.
Let (M,dJ, (,>)eUW@W,. Then

(@) (M, J, {,>)eUr (that is, (M, J, {, ) is locally conformally equivalent to
an almost Hermitian manifold in W) if and only if the Lee form 0 of (M, J, {,>)
is closed.

(iiy (M, dJ, {,>) is globally conformally equivalent to a manifold in W if and
only if the Lee form 0 of (3, J, {,)) is exact.

Proor. — Suppose (M, J, {,>) is globally conformally equivalent to a manifold
(M, dJ, ,>) in W. Since UbN W,= K we have W W, H W,PH W,. Thus the Lee
form of (M, J, {,>°) vanishes. By (4.4) the Lee form of (M, J, {,>) is exact. ‘

Conversely, let the Lee form ¢ of (3, J, {,)) be exact, § = df. Define a func-
tion ¢ by o=1f, and put {,>*=e2(,>. From (4.2) we have §°F°=0, and so
(M, J, <, (WD W, D W) N (W D W,) = W

This proves (ii). The proof of (i) is the same except that everything is done locally
and the Poincaré lemma is used.

Theorem 4.3 shows, for example, that on any Kdhler manifold it is possible to
make a conformal change of metric and get a manifold in W, (which of course is a
complex manifold). In this way one can construct many non-Ké&hler metrics on
manifolds in W,. _

A more interesting example (due to VAISMAN [27]) of a non-Kéahler manifold
in W, is 8*x 82+, k>1. In [27] it is shown that 81 x §2#+1 ig locally conformally
Kihlerian. Of course §!x 8%+ cannot be globally conformally Kahlerian because it
does not have the eohomology of a Kihler manifold.

More precisely, Vaisman has shown that Stx 82+ ig locally conformally equi-
valent to C*1— {0}. This shows among other things that all of the Chern numbers
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of §1x 82+t are zero (because the Chern classes depend only on the almost complex
structure).

Ag for the other Calabi-Eckmann manifolds §2++1x §2+1, their class is given in
the following theorem:.

THEOREM 4.4. — Let M = 8§21 x 82+ and let M be given a complex strueture
in the standard way. Then assuming k<! we have:

MeX if and only if k=1I=1.
Mew, M¢l if and only it Fk=1,1>1.
Mew,®W,, Me¢W,UW, if and only if both %k, 1>1.

ProoF. — To prove the last statement one computes the tensor field u for M.
For &, 1>1 we have 5= 0 so that M ¢ W, and 6520 so that M ¢ W;. On the other
hand, the almost complex structure of M is integrable and so M e W,P W,.

More computations for the manifolds 82%1x 8%+ are carried out in the proof
of theorem 7.1.

5. — The inclusion relations.

First we determine which of the sixteen classes are preserved under Cartesian
products. If b is one of the sixteen classes let

U= the class of Cartesian products of elements in U .

The following theorem is easy to verify:

THEOREM 5.1. ~ We have W cqAl provided U is any one of the foliowing
classes: X0, W;, W,, Ws, W; @ W,, W, @ W;, W, B W,, W; D W,, W, © WD Ws,
W, D Wy D Wy, W, D Wy D W,, W.

We are now ready to determine completely the inclusion relations between the
various classes.

THEOREM 5.2. — All possible inclusion relations are given in table III. All of the
inelugions are strict.

PROOF. — That all of the inclusions exist is obvious. We exhibit manifolds to
show that each of the inclusions is striet.

First we note that the sphere 8¢ is in W, but not in K. Also, if T(M) denotes
the tangent bundle of a nonflat Riemannian manifold, then 7(M) is in W, but notin K.
Next let M, be an ordinary minimal surface in R3. Then M, x R* has an almost
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Tasre III.
W, ® W,
W, WO W, W, @ W, ® W,
" W, w, d W, W, W, P W, »
0, W, @ W, 0,6 Wo W, —
W, W: ® W, W W, W,
W, ® W,

Hermitian structure for which M, X R*is in W, but not in J. For all of this see [9],
[10], [11]. These three:examples, plus Vaisman’s example of §*x §2%+1, k>1, show
that the following four inclusions are striet: Jc W,, XcW,, Jc W, K cW,.

Next we establish the strictness of the inclusions W,U W,c W, W,;. There
are two cases to consider.

Case I (i, j, 4 distinet). — Let M, W,— W,;, M,;€ W,— W,. Then by theorem 5.1
(W, P W;)2c W, D W, and so M; x M,;cW,PW,;. On the other hand it is clear
that M, x M; is neither in W, nor W,.

Case IT (i #j=4). - Let M,eW,— J. Then we can make a nontrivial change
of conformal metric to obtain an almost Hermitian manifold M% such that
M2 e W, ®W,. By equation (4.4), M7¢ W,. Also, since M, ¢ X, it follows that M{¢ W,.
Hence M7} ¢ W, U W,.

Thus all of the inclugions W,V W,c W, D W, (¢ +4§) are strict. In exactly the
some way one proves that the inclusions W,V W,U W,c W, D W; P W, (4, §, k distinet)
and W,V W,V W,U W,c W are strict. From this the theorem follows immediately.

In the course of proving theorem 5.2 we have established the following.

COROLLARY 5.3. — The ineclusions JHcW,, W,V W,cW,HW,;, W,U W;U W,
CW;dW; P W, and W, U W, U WU W,c W are all strict.

6. — Examples of almost Hermitian manifolds illustrating the sixteen types.

There are many non-Kéhler almost Hermitian manifolds arising naturally in
differential geometry. In section 5 we used a general technique to demonstrate the
strictness of all the inclusion relations. We now exhibit some especially interesting
almost Hermitian manifolds and show where they fit in.
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The class of nearly Kihler mawifolds V= NJ. The most well known example
in this class is the sphere 8. §° is a 3-symmetric space [12]. Moreover, every
3-symmetric space M has an almost complex structure and a metric such that
Mew, [12].

The class of almost Kdhler manifolds W,= AKX . The tangent bundle T(M) of a
Riemannian manifold always has a naturally defined complex structure and metric
such that T(M)e W,. Moreover, T(M)¢ X provided BHM is not flat. Recently
THURSTON [26] has given an example of a compact 4-dimensional manifold in W,
which has no Kéahler metric on account of its cohomology.

The class of quasi-Kdhler manifolds W, D W,= QX.. If M is a compact 3-sym-
metric space then M is homogeneous [12]. If the isotropy representation is reduci-
ble, then M has many metrics which make it a 3-symmetric space. A biinvariant
metric is in W;; any other metric is in (W, P W,)— (W, U W,).

The product of odd dimensional spheres 8%+ X 821 is 4n W, B W,. See theorem 4.4.
Any complex parallelizable manifold is in W,. This can be checked directly.

Almost Hermitian manifolds defined by means of vector cross produets. In[11] it
is shown that any orientable 6-dimensional submanifold of R® has an almost complex
structure. The almost complex structure is constructed by means of one of the two
3-fold vector cross products on R®. When one uses the induced metric a large number
of interesting 6-dimensional almost Hermitian manifolds oceur. Let M be an almost
Hermitian manifold constructed in this way. In [11] the following facts are proved:

(1) MeW,®W,DW, always.

(2) If McR’, then MeX if and only if M is locally flat.

(3) It Mc R, then M ¢ W, if and only if M is locally isometric to R® or to S¢.
(4) It McR? then M e, if and only if MeX.

(8) If M c R, then M e W, @ W, if and only if M is locally isometric to RS, 8¢,
or S2x R,

(6) If M e W, (that is if M is Hermitian), then M is a minimal submanifold of
R8. Furthermore if M,c R® i3 an ordinary minimal surface then M, x Rte W,.

7. — Invariants involving two derivatives.

Let ¢ be a function which assigns to each almost Hermitian manifold M a real
valued function on M. We call ¢ a unitery invariant of order k, provided that for
each me M and all normal coordinate systems (w, ..., %,) at m it is possible to
express ¢ as a polynomial involving a total of k derivatives of the components
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of the metric tensor and almost complex structure with respect to (a4, ..., #,). It
is required that the polynomial be independent of the choice of normal coordinate
system. Unitary invariants of odd order are all zero. In this section we determine
all unitary invariants of order 2 (also called linear invariants) for each of the sixteen
classes.

For a given class U of almost Hermitian manifolds of dimension 2, let I,.(UW)
be the space of unitary invariants of order 2. GiLkrY [8] has computed I,(U) when
U = X, the class of Kihler manifolds, or when W= W, W,, the class of Her-
mitian manifols. First we compute I,(W). For M eW and me M let

n 2n
[VE|2= 3 V. (F)6, ), [aF|P= 3 dF(e,; e, e,

a,b,c=1 a,b,c=1
2n 2n

(7.1) |0F|2= 3, 6F(e,)*, [|8]*= bE |8(eq, €] 5
a=1 a,b=1

2n
T= ZR(%’%’ 6a76b)’ =
a,b=1

R(e,, Je,, ¢, Je,),

1

SE

Q@ -

>

where {e, ..., ¢,,} is an arbitrary orthonormal basis of M,. Here 7 is the scalar
curvature of M, and 7* iy the * gcalar curvature (see [14]). If oy, ..., 0y are
unitary invariants of order 2, we denote by [oi, ..., o] all linear combinations of
gy, ..., 0z With constant coefficients.

THEOREM 7.1. — I,(W)=[[VF|? [dF|? [8F[2, [S]? =, 7¥] for n>3; L(W)=
=[|VE|*, |8]? 7, 7*] and L(W)={[z].

Proor. — For simplicity we shall treat only the case n>3. In the first part of
the proof we shall show that the six invariants given by (7.1) span I.(W). After-
wards it will be demonstrated that no linear relations between the six invariants exist.

Firgt we divide the invariants of order 2 into 3 types. (One checks that these
are the only possibilities; this is easy.) The three types are:

Type I. — Invariants involving two first derivatives of the components of the
almost complex structure. '

Type II. — Invariants involving one second derivative of the components of the
almost complex structure.

Type III. — Invariants involving one second derivative of the components of
the metric tensor.

Using the power series expansions of [13] one sees that the invariants of each
type can be expressed in terms of J, its first and second covariant derivatives, and
the curvature tensor. The results of section 2 can be interpreted as the computa-

4 — Annali di Matematica
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tion of all the invariants of type I. A convenient basis consists of |[VF|2, |dF|?2,
|8F]?, and |8]*

Next we determine the invariants of type ITI. One first observes that beecause
only derivatives of the metric are involved, any invariant of type III is expressible
in terms of curvature. Using Weyl’s theorem on unitary invariants it follows that
the space of invariants of type ITI is spanned by the elementary invariants of the
following kinds:

2n

sz z O‘(R)(ear €ar €ps eb) ’ Z R®F €41 Oy Oy Opy G4y 6) ?
s C=
Pi= 3 o(BRFRF) (e, e, €5 €y €05 €,y €ay €4) 5
=1

where ¢ is a permutation of the appropriate degree. See [2, p. 76] and [18]. In fact
all invariants of the form P/ vanish, and those of the form P_ and P! are reducible
to scalar multiples of v and *.

Next we show that all invariants of type IT can be expressed in terms of those
of type I and III. Following the method of computation for the invariants of type III,
we find the following invariants (we write a for ¢,, a* for Je,, etc.):

2n

Y Vi) (a, b, }_j V2, () (a, b%)
a,b=1 a,b=1

2n In

2 Va(E)e*, ), (4) 3 V3(F)(a, b%),
a,b=1 ¢,b=1

2n

2 Ve E)(b, b%), 2 V2. (F)(b, b%) .
a,b=1 a,b=1

On the other hand, we have the Ricci identity

(7-2) V%X(F)(Yy Z)" V‘%(W(F)(Y, Z) = F(wayv ZH‘F(Ys RWXZ)
= 'RWXYJZ — Byxrva

and the identity
(1.3) | Ve (FNY, JY) = — V() Y, V() T,

for W, X, Y, ZcX(M). The identity (7.3) is proved by taking the covariant deriv-
ative of the equation V (F)(Y,JY)=0.

Using (7.2) it follows that the invariants (1), (4), (6) vanish. Furthermore we
have (5)=— |VF|? on account of (7.3).
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Next let 66 be the coderivative of the Lee form, that is

(7.4) 60:~§Va0a.

From (7.4) and the identity -

(1.5 aF|s=3|VE]:~6 3 V,F,V,F,,
we find that A

@)= — (n—1) 86+ [ aF|*— ;| VF|?,

(7.6)
(8)=— (n—1) 86+ |6F|>.

On the other hand using (7.2) we have
(7.7) (2)+ (8) = v— 7*.
From (7.6) and (7.7) we eliminate d0 obtaining
@ =— H|VF|* Fs | ap}— § [OF|+ 3 (r— ),
3) = 1| VE:— Fe|aF|e+ § [T+ b (r— 7).

Furthermore, we note that
(7.8) (n—1) 86 =— }[VP|*+ 55 [dF [+ § [0F|*— } (v — 7%) .

Thus we have shown that the six invariants defined by (7.1) span I,(W). We
now show that they are linearly independent in any dimension 2% > 6.

Suppose that for all almost Hermitian manifolds of a given dimension 276
there is a linear relation

(7.9) Ar+ Br*-+ O|VF|*+ E|dF|*+ G| 6F|*+ H|8|*= 0

where A, B, C, E, G, H are constants. By evaluating (7.9) on different almost Her-
mitian mamfolds we show that A=..=H=0.
First we evaluate (7.9) on CP~. For CP" we have |lVF“2— |dF|2= |oF|>=
= ||8||2z=0 and 7= 7*>£0. It follows that

(7.10) A=_—B

Next we evaluate (7.9) on M22e W,— K; for example we can take M2n= 88 X C»-3,
Then one computes that | VF|2=§|dF|2= {%| 8|25~ 0 and |éF|*=0. Also v— z*=
= |VF|? (see [14]). Thus from (7.9) and (7.10) we get

(7.11) A+ 0+ 9EL16H=0.
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Continuing, we evaluate (7.9) on M2?*e W,— X; for example we can take M2r—=
= T(Ur) where U is a nonflat Riemannian manifold of dimension n. One checks
that | S]2=4|VF||*< 0 and |6F|*= |dF|*=0. Furthermore v— ¢*=—}|VF|2
(see [15]). Thus using (7.9) and (7.10) we find

(7.12) — 1AL O-L4H=0.

Similarly we evaluate (7.9) on M2"e W,-- }; for example we can take M?" to be a
complex parallelizable manifold which is not Ké#hlerian. For such a manifold we
have [|6F|2=||§]*=0, and |dF|2= 3| VF|2s 0. Moreover, from (7.8) and the fact
that 46 =0, we obtain 7= 7*. Thus from (7.9) and (7.10) it follows that

(7.13) C+38=0.

Next we evaluate (7.9) on S2#+i(r,) X S21(r,). Here an (integrable) almost complex
structure J on S2+1(r,) x §24+1(r,) is given as follows: Let N, and N, denote the unit
outward normals to S%+i(r,) and 82r,) regarded as hypersurfaces of C*! and
Cr1, respectively. Let J, and J, denote the almost complex structures of C** and
C™1, respectively. Then J,N, and J, N, are globally defined vector fields on S*+(r,)
and 82+1r,), respectively. Locally, any vector field Z on S2+(r,) X §2*1(r,) can be
decomposed as

Z =7 ,+Z,+ ad N+ bJ,N,

where Z, is tangent to S¥ti(r)), Z, is tangent to 82i(r,) and (Z,, J,N;) = {Z,,
J,N,> = 0. Then we define an almost complex strueture J on S2(r;) X §21+(r,) by

JZ=J,Z,+ JyZy— bJ N1+ aJ,N, .

For this almost complex structure we have

, _ 8k 8l , Ak 4l

VPP =g+ and [OF|r="5 o
Furthermore,

282k - 1) | 2021 + 1) « 2k 21
T = e —+ - and T _r§+r§'
Therefore, from (7.9) we have
(7.14) 0= %5 {4k%4A + &) 4 2k(4 -+ B + 80 + 24E)}
2

+ 7172 {4124 4 G6) + 2U(4 + B + 8C - 24E)} .
1
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Since (7.14) holds for all ;, r,> 0 and all nonnegative integers k, I with k+1=n—1,
we find that

(7.15) A=—@,
(7.16) AV B+8C+24E=0.

(Here (7.16) is already a consequence of (7.10) and (7.13)).

For the final equation we evaluate (7.9) on M?»e W,— X for which §0s40. For
example if ¢, > denotes the standard metric on CP" we can take M2»= (CP?, ¢2°(,>)
where o is any non constant function. For such a M?" we have |§]?=0 and |VF|>*=
= L||dF|*= (2/(n— 1)) ||6F| 254 0. Also, because of (7.8) v— 7%*— | 0F|?£ 0. In view
of (7.10), (7.13), and (7.15) we see that (7.9) reduces to

A(z—v*—|oF|%) =0.
Since 7— v*— |0F||?# 0 we must have

(7.17) A=0.

Thus we have 6 equations in 6 unknowns: (7.10), (7.11), (7.12), (7.13), (7.15), and
(7.17). The unique solution is A= B=(C=F=G=H=0. This completes the
proof. :

REMARKS. — In the course of proving theorem 7.1 use was made of the invar-
riant 66. It is expressed in terms of the other invariants by equation (7.8). Another

2n
natural invariant that occurs is (AF, F)= Y AF(a, a*). This invariant also can be
ag=1
expressed in terms of the other invariants:

(AF, Fy = §|dF|>+ 2| 6F|* .

) 2n
Still another important invariant is the trace of the first Chern form, > yy(e;, Je,).
i=1

It is easy to see that this must be an invariant of type I1I, and so it must be a linear
combination of v and 7*. The exact combination can be determined by evaluating
> yiles, Je;) first on CP» and then on §¢xC»-2 TUsing the formula for y, given
in [14] for the class W, it follows that

2n 1
3 len Je) = - (= 7+ 57%).

Finally we determine the unitary invariants of order 2 for each of the 16 classes.

THEOREM 7.2. — Let n>3. For each of the 16 classes U, the space I,(W) is given
in table IV. Furthermore the linear relations that describe I,(°W) as a subspace of
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TasLE 1IV. — Almost Hermitian, manifolds of dimension > 6.

I,() Linear relations among the invariants
55 [7] 7 = 1%,
IVF|* = a2 = JsF| = s]* = 0
W, = X% (e, 7% v vk = [VF|? = 3B = £ S,
joF| = o
W, = 4% (7. 7%) v v = — JVE = 35,
JaF| = JoT ) =0
W, = 8% 0 % [x. V7] v, |VF[:=}larp,
672 = 812 =0
v, [ =%, V7] [VER = flar = 2 o,
I8 =0
W, @ W, = 0% [, =%, [V v — vt = — |VF|} + §|aF,
[VE = — L1aF |+ gs] o7 =0
WO W= | [re [VEJS O] [VE[2 = 1dF}2, |8 =0
W, @ W, [ =%, V7] v — o = — VF| + |,
V7|2 = §lap|s = IS] [oFlE = o
@ W, [x, =, [V % 0] [VE[ = YI4E I + 1S,
6
a2 = 2 [oF|?
w,© W, [r, =%, [V 5] B[+ 24[VF ]2 = 8|47,
16]VF|s = - [2F ] + |82
0@ W, [r. =%, IV 7] r— o = — §[VF[* + §|dE],

|VF[? = §dF|* + £|S[* ||6F|*=0

W, @ W, D W, = 8K

[z, =% [VE|% [18]7]

T —o* = — | VE|* + g dF|?
[oF [ =0

W, @ W, W,

[z, 7, |[VF|}% [IBF?,
I8 ]

32— 4[R2 + 12 (n— 1) [ SF |2
— 12)VF|?

W, @ W, @ W, =G,

[z, =% |VF[?,
[oF |2, | 817]

—3|8[* + 8[aF]> = 24| VE?

W, ® W, ® ‘11}4=Q2

[z, =%, V|,
6|2, [8]7]

12| VE |2 = 4]dF| + 3|82

w

[z. 7%, [VE|? [dF|*,
6|2, {18]%]

No condition
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1,(W) are given. The corresponding computations for the case n=2 are done in
table V. '

Tapie V. — Almost Hermitian manifolds of dimension = 4.

aU L) Linear relations a,m'ong the invariantg

% [z] T=1% |VF[*=[8|*=0
W, = 4K [z, 7] T—* = — VI[P = — 8]
W, = i [z, =%, [VF|*] 8]z =0

w [z, *, |[VF|2 |S]?] No condition

The method of proof of theorem 7.2 is the same as that of theorem 7.1. We omit
the details. :

We remark that for n» =2 we have the following identities, valid for all almost
Hermitian manifolds of real dimension 4: |0F||*= g[|dF|? and |VF|*=}|dF|*+
+ 18]

8. — The four types of almost symplectic manifolds.

In this section we study a generalization of symplectic manifolds using the same
philosophy that we used for almost Hermitian manifolds. Instead of studying the
representation of U(n) on the space W, however, we decompose the representation
of Sp(n, R) on A3(V*). In this manner we show that there are in a natural way
four classes of almost symplectic manifolds. Another consequence of these considera-
tions will be (the known fact) that the Lee form can be defined for any symplectic
manifold, and is independent of any compatible almost Hermitian structure. See [1],
[5], [6], [23].

Let V= R?* be the representation space for the ordinary representation of
Sp(n, R). Then there is a natural induced representation of Sp(n, R) on A3(V*).
Denote by F the nondegenerate 2-form on V preserved by Sp(n, R). Following [1]
we define an isomorphism p: V—V* by u{)(y)=— F(x, y) for z,ye V.

Next we shall define a map A3(V*¥)— V* taking « into 4. This operation was
introduced in [5], [6], [23]. Let {, ..., %,.} be a basis of ¥, and {w,, ..., w,,} the
corresponding dual basis of V*. Then

1 2n

o) = 50—y 2 *@ 0o ).

Here it can be checked that this definition does not depend on the choice of the
basis {z,, ..., #,,}. The mapping «— & is linear. For an alternative definition of &
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gee [5], {6], [23]. Put
8= {«eV |&=0},

LEMMA 8.1. — We have A3(V*) = 8, D 8,. This decomposition is preserved under
the action of Sp{n, R). Furthermore Sp(n, R) acts irreducibly on §; and §,.

ProoF. — It iz easily checked that A3(V*)=8,®8,. Furthermore it is clear
from the definitions that Sp(n, R) preserves §; and S§,. That Sp(n, R) acts
irreducibly on §; and 8,, follows from Lepage’s decomposition.

We now define the Lee form of a symplectic manifold.

DEFINITION. — Let (M, F) be an almost symplectic manifold, that is, a differen-
tiable manifold together with a 2-form ¥ that has maximal rank everywhere. The
Lee form 6 of (M, F) is the 1-form 6 given by

1 2n
0(X) = m@; afX, X,, y=tw,),

for X e X(M). Here {X,, ..., X,,} is a local basis of vector fields, and w,, ..., W
ig the dual basis of 1-forms. This definition does not depend on the choice of basis.

REMARK. — It is possible to define a coderivative § for a symplectic manifold [5],
[6]. Seealso [1],[23]. This coderivative does not depend on any compatible Rieman-
nian structure. It is not hard to check that

0= (n—1)5F.

Following the program of section 3 we can associate with each of the 4 sub-
spaces {0}, 8;, 8,, A2(V*) a class of almost symplectic manifolds. In analogy with
theorem 3.1 we have

THEOREM 8.2. — The defining relation for each of the four classes of almost
symplectic bundles is given in Table VI. The inclusion relations between the
classes are

8,
(8.1) §=8,N8, ¢ Qslu S, C 8,08, .

N, &

2



ALFRED GRAY - Luis M. HERVELLA: Almost Hermitian manifolds 57

TapLe VI. — Almest symplectic manifolds of dimension > 4.

Class Defining conditions
S dF =0
8, 6=0
8, dF = FA\6
8§:@ 8 No condition

Finally let @: W — § be the forgetful function. (Thus @ applied to an almost
Hermitian manifold is the same manifold considered as an almost symplectic
manifold.) It i sthen clear that '

O(W,)=§,
O(W, D W, ® W)= 8, ,
O(W,) = 8, ,

P(W) = 8,DS,.
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