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Simulation Results with Stepwise Mutation Model 
and Their Interpretations* 
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Summary. Monte Carlo simulations are performed to compare the predictions 
based on the two presently used theoretical models for studying genetic variations 
in natural populations, the infinite allele model and the stepwise mutation model. 
Distribution of heterozygosity is noticed to be similar under these models until 
the product of population size and mutation rate is large. It is seen that electro- 
morphs with high population frequency usually contain older alleles (at the 
codon level) than an electromorph of low population frequency. The interpre- 
tations of these results in explaining the allelic variations at electrophoretic level 
is also discussed. 
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Introduction 

Ohta and Kimura (1973) proposed the stepwise mutation model to explain the genetic 
variability in natural populations detectable by electrophoresis. Since then the mathe- 
matical properties of this model have been under extensive investigation (e.g., Nei and 
Chakraborty, 1973; Ohta and Kimura, 1974; Wehrhahn, 1975; Brown et al., 1975; 
Avery, 1975; Kimura and Ohta, 1975; Li, 1976; Moran, 1975; etc.). However, this 
new model turns out to be mathematically much less tractable than the infinite allele 
model, originally proposed by Wright (1948) and later developed extensively by Kimura 
and Crow (1964). Monte Carlo simulations of Ohta and Kimura (1974) have shown 
that the pattern of allelic distribution can be considerably different under the above two 
models. However, they were more concerned with the ratio of observed and effective 
number of alleles in a population maintained by mutation-drift balance. 

In the present paper some more simulation results are presented which deal with 
other aspects of  comparison between the two models. Specifically, the questions to 
which empirical solutions are sought here are: 
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1) What is the distribution of heterozygosity when variation is measured at the electro- 
phoretic level? 
2) What is the sampling behavior of the actual number of electromorphs in a sample? 
3) Does the oldest allele belong always to the most frequent electromorphic class? 

Similar problems are also studied by Ewens and Gillespie (1975) with the infinite 
allele model. Therefore, here the emphasis will be on the qualitative as well as quanti- 
tative differences between the answers to see the effect of electrophoretically silent 
mutations. In another paper we have elaborated the problem of occurrences of 
electrophoretically silent alleles by studying the average number of alleles (at the 
codon level) present per electromorph in a random sample of electromorphs of various 
frequency classes (Nei and Chakraborty, 1976). Ewens and Gillespie briefly discuss 
the effect of allelic undetectability. Nevertheless, the problem requires further 
elucidation since electrophoresis appears to be the only practical means presently 
available of studying genetic variability on a reasonably large scale. 

The Simulation Method 

The infinite allele model seems to be appropriate if allelic variants are identified at 
the nucleotide or amino acid (codon) level, wheras the stepwise mutation model 
refers to the allelic variation detectable by electrophoresis, at least as a rough 
approximation. The present simulation considers the genetic variation at the two 
levels simultaneously. More explicitly, I assume that at the codon level every mutation 
yields a novel allele so that allelic states are actually from an infinite allele-state-space. 
When intracistronic recombination is ignored, mutations can be assumed to be in- 
dependently accumulating in different sites. Mutational inputs are taken as Poisson 
in the present set of simulations. Thus, if u denotes the mutation rate at the codon 
level per locus per generation, the probability that x mutations occur in a given cistron 
(locus) during a single generation is given by e-UuX/x!. To save computer time, high 
mutations rates are used (.002, .008, and .08) in the present simulation. However, 
the effective population sizes used were the same (N = 50) in all cases. At the electro- 
phoretic level each allele was represented as one of the infinite series of mobility 
(electromorph in the terminology of King and Ohta, 1975) states ( .... - 2 ,  - 1 ,  0, 
1, 2, ...) and it was assumed that each mutation results in a state (mobility) change 
of - 1 ,  0, and 1 with probabilities/3, a, and/3(~ + 2/3 = 1), respectively. The value of  
2/3 has been estimated to be about 1/4, so that I used/3 = 1/8. Namely, each new 
mutation was assumed to change the electrophoretic mobility one step in the positive 
direction with probability 0.125, one step in the negative direction with probability 
0.125, and with the remaining probability (0.75) it did not affect the mobility at all. 
All mutations were assumed to be selectively neutral in every set of simulations. 
After the introduction of  mutations, 100 gametes (50 individuals) were sampled to 
produce the next generation. In the inital generation all gametes were identical and 
occupied the electromorph state 0. The process of mutational changes and sampling 
was continued until the equilibrium between mutation and genetic drift was attained. 
The process was carried out approximately for ION/(4Nu + 1) generations, since the 
eventual rate of approach to the equilibrium heterozygosity is 2u + 1/2N (Nei and Li, 
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Table 1. Mean and variance of heterozygosity and actual number of alleles from three Monte 
Carlo experiments and their expectations under two model~ For details of formulae used to 
compute the expectations see text 

Heterozygosity Actual no. of alleles 

u Mean Variance Mean Variance 

.002 Infinite Observed .2724 .0509 2.953 1.872 
Expected .2857 .0500 2.866 1.704 

Stepwise Observed .0869 .0245 1.403 0.326 
Expected .0871 .0238 1.444 a 

.008 Infinite Observed .6195 .0299 6.645 4.454 
Expected .6154 .0286 7.184 5.012 

Stepwise Observed .2614 .0441 2.198 0.638 
Expected. 2546 .0417 2. 271 a 

.08 Infinite Observed .9266 .0003 29.900 14.715 
Expected .9412 .0003 32.132 17.838 

Stepwise Observed .6419 .0106 4.755 1.365 
Expected .6667 .0110 4.808 a 

a Expectations are not yet obtained theoretically 

1976). To get a larger number of replications each run was allowed to proceed for 
100 more generations beyond the above mentioned point. Thus, 200 replications of 
the entire set in fact yielded 400 replications of equilibrium gene (and electromorph) 

frequency distribution. The equilibrium status was tested by comparing the observed 
means and variances of the actual number of alleles and heterozygosities per locus 
with these expected under equilibrium (Ewens, 1972; Kimura and Ohta, 1975 ; Moran, 
1975). The results are shown in Table 1 for the three simulations, each of which in- 

volved 400 replications. It is obvious from the table that there is no systematic bias 
in any of the three simulations. From the above description of the simulation, it is ob- 
vious that the present set of experiments is a combination of Ewens and Gillespie's 
(1974) and Ohta and Kimura's (1974) experiments. In the present case each mutation 
was given a new identification number and thus tracks were kept for each mutational 
event at each generation (even if it is lost due to drift from the population). 

Distribution of Heterozygosity 

It is well known that at steady state the expected heterozygosity under the infinite 
allele model is given byM/(1 + M) whereM = 4 N u  (Malecot, 1948; Kimura and Crow, 
1964) whereas under the stepwise mutation model it is obtained as 1 - 1/X/1 + 4Mt3 
(Ohta and Kimura, 1973). Furthermore, it has been shown recently (Stewart, 1976; 
Li and Nei, 1975) that the variance of single locus heterozygosities is given by 

2M 
V ( b )  = (1 + M ) 2 ( 2 + M ) ( 3 + M )  

at steady state under the infinite allele model. A corresponding variance formula for 
the stepwise mutation model is obtained by Moran (1975). However, in the general case 
the theoretical distribution of b is difficult to obtain. In view of this, distributional 
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Fig. 1. Distribution of single locus heterozygosities under the stepwise mutation model (Fig. la-- 
lc) and the infinite allele model (Fig. ld If) for different values of the parameters as obtained 
from the Monte Carlo simulations 

properties of heterozygosity (b) can now be obtained only empirically. Figure 1 demon- 

strates the nature of such distributions as seen in the present simulation. The upper 
histograms (Fig. la--c) represents the distribution of b under the stepwise mutation 
model for three different sets of values of the parameters (L = 2M, where M = 4Nu, 
N = 50,/3 = 0.25, u = 0.002, 0.008, and 0.08) whereas the lower diagrams (Fig. l d - f )  

show the analogous distributions under the infinite allele model for comparable para- 
metric values. As mentioned before, each diagram is based on 400 replications of the 
experiment. Figure ld  is from Nei et al. (1976) since comparable sets of parameters 
were not used in the present set of simulations. From these results it appears that for 
small values of M the distribution of b is largely L-shaped with a small peak around 
b = 0.5. The bimodality becomes more obvious as M increases. However, for very large 
M-values the distribution has shifted to one which is largely unimodal. There may 
additionally be a small peak at lower heterozygosity values which is more conspicuous 
under the infinite allele model. It is apparent that the two models do not differ 
significantly until  M becomes large enough. In practice, however, the value of M seems 
to be generally about one or less since the average heterozygosity has been reported 
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as 0.3 or less for all bisexual organisms so far studied (Nei, 1975; Selander, 1971). 
Therefore, the empirical distribution of Nei et al., obtained from several organisms, 
seems to be in conformity with the expectations under the stepwise mutation model 
as well. The bimodality of the distribution of b has also been observed by Ewens and 
Gillespie (1974) for an infinite allele model, who ascribed it to a mixture of distri- 
butions for different values of the actual number of alleles. Using a triallelic model, 
Stewart (1976) also predicted the existence of such bimodality from a theoretical 
study. Comparison of Figures lc  and I f  shows that under the stepwise mutation model 
the major peak shifts towards the left yielding a less prominent smaller peak at lower 
values of b. This resuks in a smaller average heterozygosity and a smaller variance as 
well. Therefore, Ewens and Gillespie's criticism of using b in the estimation of M 
becomes less severe if the stepwise mutation model is used instead of the infinite allele 
model. 

Actual Number of Electromorphs in a Sample 

The preceding section suggests that there is not much difference in the predicted 
polymorphic pattern between the infinite allele and the step mutation models as 
long as M is not very large. The biggest difference between the two, however, is in 
the actual number of alleles (or electromorphs) contained in the sample. Ewens 
(1972) discussed the sampling behavior of the actual number of alleles for the infinite 
allele model on the basis of which tests were based on the neutral mutation hypothesis. 
The mathematical manipulations were greatly facilitated by the Markovian nature of 
muhinomial transition probabilities (Karlin and McGregor, 1967, 1972). Unfortunately, 
such a sampling theory does not apply to the stepwise mutation model because of the 
inherent feature that a random fraction of mutations is recurrent in this model, where- 
as in the infinite allele model every mutation is regarded to resuk in a new allele not 
pre-existing in the population. To overcome this difficulty Kimura and Ohta (1975) 
used the diffusion equation approach and obtained that the expected number of 
electromorphs in a random sample of  s gametes (s/2 individuals) from an equilibrium 
population is given approximately by 

L + L a  [ _ s ~ l  i + L  ] 
n a= La 1 i=0 i + L + L  a ' (2) 

where L = 2M, L a = 2Mb, and 

1 + L - - N / l + 2 L  
b =  

L (~/~ + 2L -- 1)/2 

In the present set of simulations we generated the mean and variance of the actual 
number of electromorphs in a finite sample for which sampling (with replacement) was 
performed from distributions of electromorphs (after approximately ION/(4Nu + 1) 
generations, as mentioned before). The details of the procedure used to obtain the 
observed number of electromorphs in a sample is given in the Appendix. From the 
distribution of  each replication the average number of electromorphs were computed 
for several sample sizes and subsequently their mean and variances computed over 
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Table 2. Sample mean and variance of the number of electromorphs in samples of various sizes 
from 400 replications of each experiment, s denotes the number of gametes sample& 

Mean Variance 

S L=0.1 L=0.4 L=4.0 L=0.1 L=0.4 L=4.0 

10 1.238 1.718 3.261 .141 .298 .410 
20 1 . 2 9 3  1 . 8 7 3  3.823 .191 .389 .676 
30 1.322 1 . 9 5 1  4.083 .221 .437 .818 
40 1.340 2 . 0 0 1  4.238 .241 .470 .912 
50 1.352 2.036 4.342 .255 .494 .981 

100 1.380 2.124 4.581 .292 .562 1.169 
200 1.396 2.176 4.706 .316 .613 1.301 
500 1.402 2.197 4.753 .326 .639 1.365 

400 replications. The results are given in Table 2. It appears from this table (also 
from Table 1) that although (2) is an approximate formula for the mean number 
of electromorphs, it is quite accurate even if L is as large as 4.0. In practice, L seems 
to be low as mentioned before. Therefore, the approximate mean as obtained by 
Kimura and Ohta (1975) seems to be reasonable insofar as practical utility is concerned. 

The variance of this number seems to be high enough to be somewhat disturbing, how- 
ever, in view of the fact that each electromorph must again be split into a number of 
alleles at the codon level. Such splitting has its own distribution with a mean and 

relatively large variance as well (for further discussion see Nei and Chakraborty, 1976; 
Chakraborty and Nei, 1976). A comparison of Table 2 with Tables 1 - 2  of Ewens 

(1972) shows that for larger L and s values the ratio of n a / n  c (where n c = E ( K ) ) ,  the 
expected number of alleles under the infinite allele model, (according to Ewens' termino- 

logy) decreases substantially. This is so because in such events the number of undetec- 
table alleles is significantly greater for large sample size and higher mutation rate (or 
larger population size). It should be noted, hoewever, that the standard deviation of 
the number of alleles is also very large (Chakraborty and Nei, 1976). Thus, for a given 
value of L and s the number of alleles in an electromorph is expected to vary con- 
siderably among samples. In view of this, it is worthwhile to investigate the theoretical 
distribution of the number of electromorphs since it would elucidate the sampling 
behavior of electrophoretically silent alleles in a sample of given size. 

Is the Oldest Allele in the most Frequent Electromorph? 

Ewens and Gillespie (1974) tabulated the empirical probability that the oldest allele is 
also the most frequent one for various values of M. For the stepwise mutation model 
similar questions cannot be asked about electromorphs since several alleles may in fact 
constitute a single electromorph. Instead of devising a measure of the average age of 

an electromorph, a more relevant question can be framed as." How often does the 
oldest allele belong to the most frequent electromorphic class? As simple as this might 
seem, caution must be exercised in answering this question. As mentioned before, all 
of our simulations initially started with complete monomorphism. An equilibrium 
heterozygosity is obtained after approximately 1 O N / ( 4 N u  + 1) generations. Insofar 

as the effect of the initial allele is concerned, however, we know that the loss of alleles 
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Table 3. Proportion (p) of cases (out of polymorphic ones) in which the oldest allele belonged 
to the most frequent electromorph (at electrophoretic level) and proportion (p) of events (out 
of polymorphic ones) in which the oldest allele was most frequent (at codon level) with their 
standard errors 

Codon level Electrophoretic level 

Number of Number of 
monomorphic monomorphic Number of 

u replicates p replicates p replicates 

.002 33 .7365 -+ .0341 127 .7945 +- .0473 200 

.008 0 .5550 -+ .0351 40 .7875 +_ .0323 200 

.08 0 .1983 +_ .0163 0 .7633 -+ .0174 600 

proceeds at a rate of 2u per generation (Crow and Kimura, 1956). Therefore, not all 

replications were useful for a reliable answer to the present question. In the current set 
of simulations we used the data on generation 500 for u = 0 .002,300 for u = 0.008, 
and 50, 100, and 150 for u = 0.08. Table 3 exhibits the results based on these re- 
plications of u = 0.002 (L = 0.1), 127 resulted in monomorphism at the electro- 
phoretic level, whereas only 40 replicates were monomorphic for u = 0.008 (L = 
0.4). The empirical probabilities that the oldest allele belongs to the most frequent 
electromorph were of the same order for all L-values (heterogeneity X 2 value is 0.68 
with 2 d.f., P > 0.70). Furthermore, its appreciable value (nearly 80%) suggests that 
electromorphs with high population frequency will usually contain older alleles than 
an electromorph of low population frequency. This would appear to explain Nei and 
Chakraborty's (1976) findings that more frequently occurring electromorphs contain 
more alleles than the electromorphs with lower population frequency even if the 
sample size is the same. It may be argued that the small number of replications used 
in the present set of experiments is not sufficient to detect differences in the empiri- 
cal probabilities for the three L-values. To investigate this I computed the empirical 
probabilities that the oldest allele (at the codon level) was actually the most frequent 
one as well. These results are also shown in Table 3. It is obvious that the probability 
sharply decreases as M (= 4 N u )  increases. The values obtained are also in conformity 
with the values obtained by Ewens and Gillespie (1974). 

Discussion 

Bulmer's (1971) observation that the most common allele at a locus within a species 
almost always occurs in the middle of the sequence has already been shown to be in 
agreement with expectations under the neutral mutation theory of Kimura (1968) 
when production of alleles is assumed to follow a stepwise model (Maynard-Smith, 

1972; Kimura and Ohta, 1973). Furthermore, the present model is more suitable than 
the infinite allele model for explaining the observed evenness of the allelic frequency 
distribution (Ohta and Kimura, 1974). The statistic used for this considers the ratio 
of n e / n a ,  when n e is the effective number of alleles (= (1 - b) -1 ). I shall not repeat 
the discussion here since it has been exempfified by Ohta and Kimura's simulations. 
The only difference between their findings and the present one is in the standard 
deviation of n a. From Table 2 we note that the standard deviation of n a can be larger 

than one for large sample sizes when L is as large as 4.0. Even for N u  ~-- 0.1 (where 
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n a is seldom 3 or more, as seen in Ohta-Kimura ' s  simulation) for large sample sizes 
n a can be larger than 3 on an average. However, as far as the n e / n  a ratio is concerned, 
the observed values are in the range of 0.45 ~ 0.65 (on average) even when n a < 3 

in the whole population. In this range it is in excellent agreement with Yamazaki and 
Maruyama's (1973) enzyme polymorphism analysis although Ohta and Kimura's pre- 
dication in this respect was slightly higher. They, however, ascribed the difference to 
possible non-equlibrium status of populations and/or the presence of a number of 
slightly deleterious mutations. It may just be noted that bottlenecks in populations 
also affect the n e / n  a ratio in a similar manner, although in the current set of simula- 
tions no such variation of population size is taken into consideration to illustrate 

such effects. For n a 2~ 3, Yamazaki and Maruyama's (1973) Figure 2 indicates that 
n e / n  a is in the range of 0.2 ~ 0.45 which, however, is not in apparent agreement of 
the step mutation model. This is because in such events a large proportion of alleles 
are expected to be undetectable by electrophoresis as exemplified by Nei and 

Chakraborty (1976). 
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Append ix 

O b s e r v e d  M e a n  N u m b e r  o f  A c tua l  E l e c t r o m o r p b s  in a S a m p l e  o f  G i v e n  S i z e  

In a particular replication the steady state distribution of electromorphs in the 
population is obtained by simulation as described in the text. To determine the number 
of distinct electromorphs observed in a sample drawn from this the following procedure 
is adopted. 

Let there be k electromorphs with relative frequencies Pl  . . . .  , Pk in that replica- 
tion. The expected number of different electromorphs chosen in a random sample of 
n of them from this particular population is given by 

E k = ~, - r) II Pi (A1) 
r=O k i= 1 

i~=l xi!  

where, S r is the set of all k-tuples such that exactly r of the x i ' s  are all zeros, and 
k 
~, x i = n ( x  i > l O  f o r  i = l ,  . . . , k ) .  

i=O 

From (A1), we readily have 

k-1 
E = k - -  ~, rP r (A2) 

r= 1 

k x~. k 
when Pr = ~ (n!  [I Pi / II x i ! ). 

S r i=t i=1 
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Using combinatorial arguments, the Pr's can be expressed as follows for a given value 
of k and n. 

Pk-1 ~--" Ol 

Pk-2 ~-- 02 _ ( ~ - 1 )  O1 

2 Qr-2 + ' . .  (--1)r-1 -" 

where Qr = Z (Pil + ' "  + Pir)n in which the summation extends over all ( r n) combi- 

nations of Pi's. 
It may be noted that a similar approach may be followed to obtain the actual num- 

ber of alleles (at the codon level) in an electromorph where Pi's are to be interpreted as 
the relative allelic frequencies (Nei and Chakraborty, 1976). 
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