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Abstract. The solar radiation effects upon the orbital behaviour of an arbitrarily shaped spacecraft 
(or a solar sail in particular) in a general fixed orientation with respect to the local coordinate frame 
are investigated. Through introduction of a quasi-angle in the osculating plane, the motion of the 
orbital plane becomes uncoupled from the in-plane perturbations. Exact solutions in the form of 
conic sections and logarithmic spirals can readily be formulated for certain specific initial conditions. 
An effective out-of-plane spiral transfer trajectory is obtained by reversing the force component 
normal to the orbital plane at specified positions in the orbit. By choosing the appropriate control 
angles for the sail orientation, any point in space can be reached eventually. In the case of general 
initial conditions, the long-term orbital behaviour is assessed asymptotically by means of the two- 
variable expansion procedure. An implicit expression for the eccentricity is derived and explicit results 
are established by an iteration scheme. The other orbital elements can be expressed in terms of the 
eccentricity and their asymptotic series for near-circular initial orbits are also obtained. 

While equations for the higher-order contributions as well as the periodic parts of their solutions 
can be formulated readily, their secular terms are determined only for a circular initial orbit. 
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Eulerian control angles for surface component Ak 
spiral angle, arctan (c~) 
ratio of solar radiation and gravity forces for heliocentric orbits, 
2S' (A/m) a2e/IJ,  s = 1.52 • 10 -3 (A/m) 
material parameter (eyT~ -- ebTb4)/(eyT~ + ebTb 4) 
Sun's gravitational parameter, 1.326 x 1020 m 3 s -2 
quasi-angle in osculating plane, 7) = q~ + ~2 cos (i), v(0) = 0, employed as 
independent variable 
slow independent variable, e,v 
(k = 0, 1, 2 , . . . )  abbreviation for vk = kTr/(1 + B2) x/z 
reference axes, fixed to osculating plane in heliocentric orbits, ~:o along the local 
vertical, r/o along the local horizontal and ~o along the orbit-normal, Figure 1 
intermediate frame of reference after rotation of solar sail by % Figure 1 
reference frame fixed to solar sail after rotations by a and fl, Figure 1 
material parameter characterizing specular reflectivity of surface component, 

pip2 
portion of incident photons which are reflected 
portion of reflected photons which are reflected specularly 
specular reflectivity for back and front side of surface element, respectively 
specular reflectivity for surface component Ak 
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material parameters, 0-1 =(1 -- p -- -r)/2 and 0-2 = [pl(1 - p2) + t~(1 -- p~ - -r)]/3 
0-1 and a2 for surface component Ak 
material parameter denoting transmissivity of  surface element 
argument of latitude, i.e. position angle of  satellite as measured from the line 
of  nodes 
angle characterizing shift of orbital plane, v --q~ 
argument of the perihelion with respect to the line of  nodes 
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Single subscripts refer to the order of the perturbation terms; 00 indicates initial conditions: dots 
and primes refer to differentiation with respect to time and v, respectively. 

1. Introduction 

The steady flux of solar radiation in outer space offers an extremely attractive mode 
of propulsion (so-called solar sailing) for interplanetary space probes. The abundance 
of radiation energy ensures a reliable and unremitting source of motive power. In 

fact, for some deep-space missions, propulsion by solar radiation energy may well 
constitute the only foreseeable practical means of transfer. Since the magnitude of 
the thrust generated by the solar radiation pressure is proportional to the effective 
area/mass ratio of the spacecraft, it is imperative to employ the lightest materials 

available meeting the structural requirements for the sail and supporting booms. 
The combination of useful payload and solar sail would in most practical cases, lead 
to an area/mass ratio in the range of 50 to 200 m 2 (kg)-1 corresponding to charac- 
teristic accelerations between about 0.5 and 2 mm s -2. A propellant force of this 

order of magnitude may be small in comparison with that from chemical thrusters, 
but the latter has a very limited lifetime. It is important, however, to utilize the 
available solar radiation power as efficiently as possible in order to limit the duration 
of the mission to a practical length of time. Instrumental in assessing the potential 
of the solar radiation force as a function of solar sail parameter and initial conditions 
would be a thorough understanding of the orbital behaviour under a fixed arbitrary 

sail setting with respect to the local coordinate frame. 
Limiting the investigation to a planar trajectory, Tsu (1959) presented a solution 

in terms of a logarithmic spiral, while neglecting the radial component of the velocity. 
London (1960) remedied this shortcoming and determined, graphically, the best sail 
setting and corresponding spiral angle for minimum-time spiral transfer. The spiral 
trajectory solution, however, suffers from an unnatural constraint in the sense that 
only very specific initial conditions lead to this type of trajectories. Pozzi et al. (1961) 
suggested an iteration scheme to accommodate more general initial conditions. This 
procedure was initiated by postulating an approximate expression for the tangential 
velocity. A fairly extensive survey of solar sail trajectories and a feasibility study of 
various missions were presented by Kiefer (1965). 
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Wesseling (1967) studied solar-powered low-thrust trajectories in the vicinity of 
the ecliptic plane, using a perturbation approach with the spiral trajectory as a first 
approximation. More recently, Modi et al. (1973) suggested an on-off strategy where 
during the on-phase the sail is kept normal to the radiation, leading to a significant 
elongation of the orbit as the perihelion moves towards and the aphelion away 
from the Sun. 

Analytical long-term valid solutions for solar radiation induced orbital perturba- 
tions in a geocentric ecliptic orbit were given by Van der Ha and Modi (1977). In 
the present analysis, a constant component of the force normal to the instantaneous 
orbital plane is also taken into account. In this situation, an exact solution can still 
be formulated in terms of a logarithmic spiral by separating the in-plane from the 
out-of-plane motion. 

When the out-of-plane component of the thrust is kept constant throughout, the 
orbital plane itself will exhibit a wobbling motion, returning to its original orientation 
in slightly less than one revolution. An effective out-of-plane transfer trajectory is 
presented involving the reversal of the out-of-plane force-component at specified 
positions in the orbit. By choosing the appropriate control angles for the sail orienta- 
tion, any point in the solar system can be reached eventually by this three-dimensional 
spiral trajectory. 

Taking a homogeneous solar sail with arbitrary reflecting characteristics, asymptotic 
representations in terms of es (ratio of solar radiation and gravity forces) are deter- 
mined for the optimal sail setting and corresponding spiral angle, maximizing the 
radial distance as a function of time. 

Whereas a specific initial velocity vector is required for embarking upon the spiral 
trajectory, other trajectories emanating from different initial conditions may also be 
of interest. Therefore, a three-dimensional short-term solution is presented for 
arbitrary initial conditions. Subsequently, a long-term analysis by means of the two- 
variable expansion procedure is presented, yielding an implicit equation for the 
long-term behaviour of the eccentricity. By iteration, the solution may be determined 
up to the desired accuracy. For not too large values of initial eccentricity, asympotic 
expansions up to order e 5 should be useful. The other orbital elements can be 
expressed in terms of the eccentricity and can be calculated up to the required accuracy. 
Higher-order terms may become of importance when the area over mass ratio of the 
sail is large. Equations for the higher-order terms can be derived and solved for their 
periodic parts. The higher-order secular terms, however, are hard to determine 
analytically, but the order of magnitude of their contributions can be estimated. 

2. Formulation of the Problem 

An inertial X, Y, Z reference frame with origin at the center of the sun is introduced 
in Figure l(a) where the X axis points to the initial position of the spacecraft and 
the X, Y plane constitutes the initial osculating plane, usually the ecliptic. The Z 
axis is aligned with the initial angular momentum vector. In addition, a local ~:o, ~7o, ~o 
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Fig. 1. (a) Configuration of the sun and solar sail in a heliocentric trajectory; (b) Successive 
rotations a, /3 and ~, for defining arbitrary orientation of solar sail. 

reference frame moving along with the spacecraft is introduced: the ~o, To and ~o 
axes point along the local vertical, local horizontal and orbit-normal directions, 
respectively. Any desired orientation of the solar sail in the ~o, ~7o, ~o can be described 
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by three successive Eulerian rotations (Figure l(b)). Taking, initially, the outward 

normal to the sail to be directed along the ~o axis, a first rotation ~ about the ~o axis 

produces the ~:~, ~x, r frame and brings the solar sail to the required line of inter- 

section with the orbital plane. A subsequent rotation 3 about the ~1 axis yields the 

~:, ~7, ~ frame and moves the normal to the sail out of the orbital plane to its prescribed 

orientation. A final rotation 7 about the normal (~ axis) could be performed for 

attaining the proper attitude of the sail in its ~, ~ plane without affecting the solar 

radiation force. The components of u n taken along the local ~:o, To, ~o axes depend 

on c~ and /3 only: 

u" = (cos c~ cos 3, sin c~ cos 3, - sin fl). (1) 

For many satellites, solar panels form a substantial portion of the total surface area. 

This would particularly be so for a spacecraft designed to be propelled by solar 

radiation pressure. Hence, in these situations, only the area of solar panels or sails 

needs to be considered. In general, the spacecraft is modelled by a number of surface 

components, characterized by their own material parameters and orientation. In 

nondimensional form (unit of length equals ae = 1 A.U. and unit of time is 1/(2rr) 

year), the solar radiation force upon an arbitrary space structure of homogeneous, 

illuminated surface components Ak, k = l, 2, . . . ,  n in an heliocentric orbit is 

written as 
n 

tl . U  S !l , F =  e.~ ~ luk I{CrlkU s + [cr2k + pk(Uk'uS)]u~}Ak/r 2 (2) 
k----I 

2 where the physical force is nondimensionalized through multiplication by a e/(ktsm). 

The small parameter Ss denotes the ratio of solar radiation and attraction forces, 

es = 2 S ' ( A / m ) ( a 2 / ~ ) =  1.57 • 10 - 3  (A/m).  

It should be mentioned that the solar radiation pressure S' is defined as the quotient 

of the solar constant (i.e. energy incident per unit time and unit normal area at a e = 1 

A.U. from the sun, 1.35 kW m -2) and the velocity of light. Note that the solar 

constant and hence the radiation force in Equation (2) varies inversely as square of 

the distance from the sun. This is because the total radiant energy emitted by 
the sun in a given time equals that passing through any concentric spherical surface 

around the sun in that time (taking the rate of energy output constant). The material 

parameters al, a2 and p are defined as follows. 

a, = (1 - p -  r) 2. 

c~2 = [p l (1  - p 2 ) +  ,~(1 - p , -  ~-)/3] s i g n  ( u " . u S ) ,  

P = P I P 2 ,  

where px denotes the total portion of incident photons which are reflected and p2 the 

fraction which is reflected specularly. The parameter K depends on the emissivities 

and temperatures of the front and back sides of the surface" 

,,: = - + e , , T ; ) .  
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The unit-vectors u s and uT, point in the direction of the radiation and along the 

normal to the surface component Ak, respectively. 

Writing F = e s R / r  2 with auxiliary vector R = (R, S, T) the components of R 

can be evaluated for an arbitrarily shaped spacecraft using Equation (2): 

e ~__ 

11 

Z 
k = l  

COS o~ k COS ~k{O'lk -It- [O'2k --[- Dk COS o~ k COS 5k ]  COS o~ k COS flk}Ak; 

S __._ 

n 

E 
k = l  

s i n  ak COS ak COS2 5k[Cr2k -Jr" tOk COS O~ k COS 5k]Ak; 

r _ _  

n 

k = l  
c o s  ak cos/~k sin ~k[(Y2k -[- IOk COS C~ k COS 5k]Ak. 

n �9 The normal Uk to a surface element Ak, k = 1, 2, . . . ,  n is taken m such a manner 
that its projection along the radiation is always positive. 

In general, when T r 0, the plane of the orbit will shift. The motion of the ~:o, ~7o, ~o 
frame relative to the inertial X, Y, Z frame may be described in terms of the rotation 

vector W with components W1, W~, W 3 along the instantaneous seo, ~7o, ~o axes: 

W _~. 

W1 

W 2  

~ ' 3  

m 

(-2 sin q5 sin (i) + (i) cos 4~ 

D. cos q~ sin (i) - ( i )  sin (b 

= r + 0. cos (i) 

(3) 

Since the velocity vector f lies in the instantaneous orbital (~:0, 70) plane (condition 

of osculation), the vector W x r cannot have a component along the ~0 axis, implying 

that W2 = 0. The motion of the seo, 70, ~0 reference frame can be visualized as the 
sum of the rotations I4/3 = b along the normal and W1 along the radial directions, 

the latter component solely describing the shift in the orientation of the orbital plane. 
The equations of motion follow from Newton's second law, accounting for rotation, 

with scalar components along the sr rlo, ~0 axes given as: 

+ 1/r 2 - -  rv 2 = esR/r  2, 

re + 2rb  = e ,S /r  2, (4) 

r w l  v = e T/r 

The characteristic feature of this formulation is the fact that the in-plane perturbations 

appear uncoupled from the out-of-plane force component. It is advantageous to 

employ the quasi-angle v, Equation (3), as the independent variable�9 It is emphasized 

that v is measured from a fixed line in the osculating plane and its dependence on 
time is given by 

v = q~ + f) cos (i) = 11/2/r 2, 

which can be derived from angular momentum considerations (h = 1 1 / 2 )  in con- 
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junction with the last relation of Equations (3). As in the case of the classical Keplerian 

solution, the in-plane equations can be transformed in terms of the inverse radius 

u = 1/r and the semi-latus rectum l. As to the orientation of the orbital plane, f~'(v) 

contains a singularity for i = 0 so that a formulation in terms of the unit-vector 

K directed along the inertial Z axis with components M -  sin (/)sin ( v -  r 

L = sin (i) cos (v - r and K = cos (i) along the local ~:o, 7o, ~o axes is favoured. As 

the local ~:o, 7o, ~o frame moves along with the spacecraft in its orbit, the vector 

K(v) traces a path upon the sphere (K.K) = 1 in the ~:o, 7o, ~o frame. The orbital 
inclination i and the angle r = v - r  characterizing the shift in the orbital plane 

(Figure 1 (a)) can be determined quite readily from the vector K. The complete system 

of equations is written as: 

u " ( , , )  + u ( , , )  = (1 - e s R ) / l ( , , )  - 

r ( , , )  = 

M"(v)  + M(v) = esrK(v)/[u(v)l(v)]; 

= - (5) 

The first two equations fully describe the in-plane perturbations and the latter two 

equations define the orientation of the osculating plane. The component L(v) can 

be shown to be equal to M'(v). The initial conditions for the system of Equations (5) 

are written as l ( 0 ) =  loo; u ( 0 ) = ( 1  + eooCOSg~oo)/loo; u ' (O)=(eoos in~/ loo;  
K(0) = 1 and M ( 0 ) =  M ' ( O ) -  O. 

In a few particular situations, exact solutions for the system of Equations (5) can 

be established" in the case where the component S vanishes (e.g., when the normal 

to the solar sail lies in the ~:o, ~o plane or when all of the radiation is absorbed), 

solutions for the orbital motion can be obtained using the classical Keplerian pro- 

cedure. After modification of the sun's gravitational parameter to account for the 

apparent reduction in attraction because of the solar radiation force, the trajectory 

for the case S -- 0 can be written as u(v) = [1 + ep cos (v - gOl,)]/l p with modified 

orbital elements lp = 1oo/(1 - esR), ep = [e2o + 2esPooR + 62R211/2/(1 - e s R ) a n d  

g~p = arctan [qoo/(Poo + esR)], where all angles are measured in the osculating plane. 
Another, more interesting, exact solution arises when the initial velocity vector satisfies 

a prescribed condition leading to a trajectory in the shape of a logarithmic 

spiral. 

3. Three Dimensional Spiral Trajectories 

The spiral trajectory of the form r ( 0  --- roo exp (csv) emerges from Equations (5) 

when one looks for solutions having the properties that the product u(Ol(O remains 

constant, say C, and u ' ( 0  = -CsU(V) at all times. The constants cs and C can be 
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evaluated from Equations (5) after substitution of these two relations" 

Cs = {(1 - esR) - [(1 - e~R) 2 - 8e]S211/z}/(2es S) 

= 2esS{1 +e~R + e2(R 2 4- 2S 2) -Jr- ,s3sR(R 2 + 6S2)} + 0(esS); 

C = 2esS/Cs = (1 
+ 

esR){1 - 2e 2 2 2 2S2)]} - s S  [1 + e~R + e s ( R  2 -+- + 

(6) 

Taking r(0) = roo, the complete in-plane and out-of-plane solutions of Equat ions  (5) 

can be expressed in terms of  Cs and C" 

l(v) 

= roo exp (csv); 

= Cr(v); 

M(v)  = B{l - c o s  [(1 + B2)1/2v]}l(1 + B2); 

L(v) = B sin [(1 + B2)112v]/(1 + B2)1/2; 

K(v) = {1 + B 2 cos [(1 + B2)'/2v]}/(1 + B2). (7) 

Here the constant  B stands for esT/C. It is seen that the radial distance takes the 

form of a logari thmic spiral (outward if S > 0 and inward for S < 0), while the 

orbital  plane exhibits a periodic wobbling mot ion  with max imum inclination at 

v - -  7r/(1 Jr- B 2 )  1/2. This is of  practical interest for a solar sail since it predicts that  

no secular changes in the orbital orientat ion are induced by a constant  force com- 

ponent  normal  to the plane of  the orbit. 

It must  be emphasized that  the spiral trajectory arises only when the spacecraft  

possesses the right velocity vector at injection. Its radial and circumferential  com- 

ponents  are given by ~" = cs(C/r) 1/2, ri, = (C/r) l/z, and the spiral angle O~s equals 

arctan (cs). Addi t ional  insight into the nature of the trajectory is provided by studying 

the osculating ellipses of  the spiral. The eccentricity and perigee posit ion at any point 

v l are given by 

el = [Cs z exp (-2CsV~) + (1 - C)2] 1 2, 

COl = vl - rr + arctan [c, exp ( - c s v l ) / ( 1  - C)], (8) 

so that  the equat ion for the osculating ellipse at v = v l can be written as 

r(vl)  = C exp (csvl)/[1 + el cos (Vl - 2ol)]. It is of  interest to note that  the eccen- 

tricity which is of  the order  es to start with, decreases slowly attaining the limiting 

value esR + 0(e 2) as V l->- oo. This is of considerable importance since it predicts 

that  a space-probe can be released f rom a spiral solar sail trajectory into a near- 

circular heliocentric orbit  at any time. As to the posit ion of  the perigee of  the osculating 

ellipses, it follows that  g,1 follows vl steadily, lagging behind by an angle of  between 

rr/2 and rr radians in case S > 0 and between rr and 3rr/2 radians if S < 0. As the 

spacecraft  moves along its trajectory, the angle between the radius vector and oscu- 
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lating perigee will increase (for S > 0) or decrease (S < 0) slowly until, finally, 
oJ~ > v~ - r r  for v~ > ~ .  

An explicit expression in terms of  the solar sail parameters can be obtained for 
the time history in the spiral trajectory, 

t (v)  = 

P 

f [r2(?)/l'/2(r)] dr  = ro3/o2[exp (3CsV/2) - l]/c,, 
0 

with 

ct = 3 sign (S)/2{1 - e s R ) -  [(1 - e~R) 2 - 8e2S2]' /2}  x/2. (9) 

The radial distance as a function of time follows by combining Equations (7) and (9). 

r(t) = roo(1 + ctt/r~ /o2) 2/a ( l o )  

This result is valid for both outward (S > 0) and inward (S < 0) spirals. 
To obtain the most  favourable sail setting for reaching the maximum radial distance 

at any time t, the coefficient ct is maximized as a function of  the rotation angles o~ 
and ft. It follows that the maximum occurs when /~ vanishes, producing a planar 
trajectory. The value of  c~ is determined from 
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Fig. 3. Potential for near-circular interplanetary transfer by solar sail for a few values of e.,. 

Since the exact solution of  this implicit equation for c~ cannot easily be found, it is 

useful to determine subsequent levels of  approximation for c~ written as an asymptotic 
2 series in the small parameter es: ~ = o% + esO~l + es~z + . . . .  The equations for 

at, i = 0, 1, 2, . . . ,  can be derived by substituting the series into Equation (11), 

developing the relation in terms of  a Taylor expansion around c~ - c~o and requiring 
n that all coefficients of  Es, n - 0, 1, 2 , . . . ,  vanish. After a considerable amount of  

algebra, the following asymptotic representation for c~ is found (taking a sail with 
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= 0)" 

= arcsin (3 -1/2) - e s 3 1 / Z ( c r l  Jr- 2p)/36 - esZ2 ~/2 x 

x (e~ + 20)(50 + 43cr/6)/288 - e~31/z(cr~ + 2p)/2 x 

x {1261e] + 125202 + 1588pe~ + 72et + 1440}/(36) 3 + 0(es4). (12) 

Subsequently, an explicit relation for the spiral angle ~ corresponding to the optimal 

orientation is found by substituting the optimal angle into c,, Equations (6). Expansion 

for small ~ yields" 

o~ = 4p~,3~/2/9{1 + 6~/2es(~ + 2p/3)/3 + 
2 + es [(~t + 2p)2/48 + 2 (~  + 20/3)2/3 + 802/81]} + 0(es4). (13) 

In Figure 2(a), the optimal orientation of the solar sail as well as the corresponding 

spiral angle have been plotted for various values of the reflectivity p. For low values 

of as, the optimal orientation can be taken as 35.26 o. It is evident that the spiral angle 

approaches zero for 9 > 0 since the case 9 = 0 corresponds to a closed trajectory. 

Figure 2(b) illustrates an example of.a planar spiral trajectory, showing the spiral 

angle and the orientation of the sail. The value of e.s taken here (0.15) would correspond 
to A/m of about 100 m 2 (kg) -1 

It is interesting to calculate the optimal radial distance over a long duration of 

time, showing the effectiveness of the spiral trajectory in near-circular orbital transfer, 

for a few values of the solar parameter ~,. The results are summarized in Figure 3 

for both inward and outward spirals. Incase~s = 0.015, i.e. A/m = 10m2[(kg) -1, 

the orbit of Mars could be reached within 9 years and Venus in 4 years. For higher 
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(a) Orientation of the osculating plane as affected by a constant force normal to it; 
(b) Switching strategy leading to a systematic increase in orbital inclination. 
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values of  es the opportuni t ies  increase rapidly: even a long journey  to the distant 

planet Uranus  may be feasible if a solar sail with A/rn of the order  of  400 m 2 (kg)-  1 

could be constructed.  

The analysis remains valid when the componen t  T of  the force is non-zero:  the 

posi t ion and velocity vectors of  the spiral trajectory lie in the osculating plane in 

that  case. The orientat ion of  the orbital plane described by the angles i and $ follows 

f rom Equat ions  (7): 

i(v) = arccos {1 - 2B 2 sin2[(1 + BZ)l/2v/21/(1 + B2)}; 

~(v) = v -  arctan {tan [(1 + B2)1/zv/2]/(1 + B2)1/2}. 

Expansion of ~(v) for small es leads to ~(v) = v/2 + O(e2), 0 < v < 2rr, 

(14) 

so that  the 

line of  nodes precesses at approximately  half  the orbital  rate. The inclination reaches 

its max imum at v = rr/(1 + B2) ~/2 and returns to zero at 27r/(1 + B2) 1/2, while ~(v) 

shows a discontinuity of  ~r radians at v = 2~r/(1 + B2) ~/2. Figure 4(a) shows the 

or ientat ion of  the osculating plane at a few points in the orbit. 

4. Out-of-Plane Spiral Transfer 

In order  to obtain a net increase in inclination after one revolution, the orientat ion 

of  the sail would have to be changed during the orbit. Obvious switching points 

would be the instants when i(v) is stationary, i.e., at Vl = rr/(1 + B2) ~/2 and v2 = 2v~. 

Assuming the switching to take place instantaneously from - /3  to +/3 (without 

affecting the control  angle a) and repeating the procedure during each subsequent  

revolution, the out-of-plane component  T becomes 

T ~ . .  

Frl, < 0; 

> 0; 

/22j ~ 1/ <.~ k '2 j  + 1 , 

l . ' 2 j + l  "~ b' "~ 1 / 2 j + 2  , (15) 

for j = 0, 1, 2, . . . ,  and the switching points vk = k~/(1 + B2) 1/2 k = 0, 1 2, , , �9 . , 

Since the operat ion takes place instantaneously,  the force components  S and R remain 

unchanged throughout .  Writ ing Mk = M(vk) and Kk -- K(vk), etc., k = 0, l, 2, , 

the solution i(v) is found by repeated application of  the results in Equations (7)" 

arccos {K2j + [BI(M2j - IB K2j)(1 - cos [(1 + B2)1/2v])/(1 + B2)}, 
i(v) = arccos {K2j + 2]Br(Mej -]B[K2j)/(1 + B 2) - ]B][(3B 2 - 1)Mzj + 

�9 + I B ] ( 3 -  ez)K2j](l + cos [(1 + B2)'/2v])l(1 + B2)2}, (16) 

where the former 

v2j+l ~ 1,' ,~ v 2 j  + 2 .  

established" 

relation holds for 1,'2j < v < v2j+l and the 

The following recurrence relations for K2j and 

latter for 

M2j can be 

M 2 j  --  

K 2 j  = 

- { 4  B (1 - B2)K2j_2 + [4B 2 - (1 - B2)2]M2j_2}/(1 + B2) 2, 

- { [ 4 B  2 - (1 - B2)2]K2j._2 - 4 BI(1 - B2)M2j_2}/(1 + B2) 2, (17) 

with j = 1, 2, 3, . . .  and Mo = 0, Ko = 1. A long-term linear approximat ion  for 

i(v), i(v) = 2eslTl(1 + B2)l/zv/Tr, provides a good estimate as long as es is sufficiently 
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small. The line of nodes, i.e., the intersection of the instantaneous orbital plane and 
the X, Y plane is located at v = v~ - =/2 = =/2 + 0(es) when the first switching 
takes place. It returns to this position at all switching points while slightly deviating 
from this line in between. Through Equation (9), the switching instants are also 
known in terms of time. 

The foregoing analysis is valid for any fixed sail orientation designated by the 
control angles c~ and /3. Since the rate of increase in inclination is proportional to 
the magnitude of the force component [TI, the most effective (fixed angle) strategy is 
the one which maximizes tT[, i.e., ~ = 0 and [/~1 = arcsin (3-2/2) _ 35.26 o. In this 

case S - 0 and the trajectory is a degenerate spiral maintaining a constant distance 
from the sun (so-called 'cranking orbit'). The behaviour of the inclination for this 

case is illustrated in Figure 5(c) for a few values of es. While it would take about 14 
years to make a full 180 ~ swing through space at 1 A.U. from the sun, the duration 
would be less than 5 years at 0.5 A.U. (taking es - 0.15). 

An obvious application of three-dimensional spiral trajectories in conjunction 
with switching would be in a transfer mission where both inclination and radial 
distance are to be changed. From this consideration, it would be interesting to 
determine the most efficient orientation of the sail for a near-circular out-of-plane 
transfer with the final radial distance prescribed and the inclination to be maximized 
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or, vice versa, the final inclination is predetermined while the distance is to be 

maximized (minimized). Since only constant control angles are considered, the 

problem may be stated mathematically as maximizing the force component IS] as a 

function of c~ and/3 under the constraint that IT] is constant and vice versa. Using 

Lagrange multipliers, the best control program in both cases is found to satisfy the 
relation cos2 c~ cos2fi = 2/3. The range of inclinations and distances which can 

be reached within a given time by these strategies is shown in Figure 5(a). Here the 
solar parameter esis taken to be0.15 (A/m = 100 m 2 (kg)- 1) and the results are valid 

for any starting radius roo and for outward (c~ > 0) as well as inward (c~ < 0) 
trajectories. The plot is derived from the analytical values for frO, r(v) and t(v) involving 
determination of the response for various values of c~ and fi = + a r c c o s  [61/2/(3 COS o0]. 

The arrows in Figure 5(a) indicate the direction in the ),, i plane taken by a particular 

control strategy o~,/3. In the case where the radial distance is prescribed at some final 

time, the required ratio ]SI/[S[max for a given value of es may be established in con- 

junction with Figure 4, showing the response for the strategy with IS I = I SImax 
(i.e., !c~ I = 35.26 ~ and /3 = 0). The ratio of the value for es corresponding to the 

desired response and the actual es determines the required IS[/ISImax with sufficient 
accuracy. The sail setting ~,/3 yielding the maximum inclination is given by the 

point of intersection of this particular value of IsI/IsI m a x  and the curve cos 2 ~ cos 2/3 = 

2/3 (i.e., the solid curve in Figure 5(b)). Conversely, if the final inclination Js prescribed, 

the corresponding optimal control programme can be determined as follows. For a 

given % the required value for IT ~IT ma• may be taken equal to the ratio of the desired 
final inclination and the one obtained under the control programme corresponding to 

IT[max, i.e., o~ = 0, /3 = + 35.26~ (The behaviour of the inclination under the latter 

control strategy is shown in Figure 5(c) for a few values of es). The optimal sail setting 
follows readily from Figure 5(b) as the intersection of this value of IT[ and the solid 
cu rve .  

5. Arbitrary Initial Conditions 

In this section, approximate analytical solutions for solar sail trajectories with an 

arbitrary but fixed sail setting and general initial conditions are developed. 

5.1. SHORT-TERM APPROXIMATE SOLUTION 

By expanding the variables u, l, and K in terms of a straightforward perturbation 

series in the small parameter e~, an initially valid approximate solution is obtained 

with the zeroth-order solution representing the unperturbed Kepler ellipse with 

parameters loo, Poo and qoo. The first-order equations are solved, yielding the expres- 
sions for in-plane perturbations as: 

ll ( v) = 2looSA ~ o(V); 

Ul(V)-- R(cos v -  1)//oo + S{cos v[qooB12 

+ sin v[PooB, 2 - -  qoo(A,2 -}- Alo) + 4Bll1 - 4Alo}/(21oo), 

+ Poo(Ax2 - A lo )  + 4All] + 

(18) 
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where the integrals A,k, B,k for n = 1, 2, 3 , . . .  and k - (0), 1, 2 , . . .  are defined and 

evaluated in Appendix I. 

It may be noted that for an initially circular orbit, the changes in a, l and r after 

one revolution are all equal to 4rraooS. The short-term behaviour of the orbital plane 
expressed in terms of i and ~ is given by 

~(~) = v -  arctan 
T[AIl(V) sin v - B l l (v )  cos v] 

T[Al l  (v)cos v + Bll(v) sin v] 
+ 0(~s~), 

i(v) = ITI[AZl(v) + 921(t,)11/2 -~- 0(62). (19) 

This result indicates that after one revolution the position of the ascending node is 

at g)oo + rr + 0(esZ), i.e., near the aphelion, if T > 0 and at gOoo + 0(el) (near 
perihelion) for T < 0. This result can be understood physically: although the angular 

rate of the orbital plane, W3 = esTu/l 1/2, is smaller near aphelion than that near 

perihelion, the angular change per radian traversed by the satellite is larger near 

aphelion since 1/b is proportional to r 2. Hence it is also evident that for an initially 

circular orbit, the orbital plane returns to its original position after one revolution 

(in the first-order approximation). 

5.2.  LONG-TERM BEHAVIOUR OF THE ELEMENTS 

A long-term approximate solution for the orbital elements of the solar sail trajectory 

with fixed sail setting and arbitrary initial conditions can be derived by means of the 

two-variable expansion procedure (Nayfeh, 1973). Thereto, a new independent slow 
variable 3 = e v is introduced and the variables u, l and K are expanded in asymptotic 

series 

N--1 

" ( ~ ) -  Z 
n = 0  

~."u.(~, ~,) + 0(~s);  

N--1 

n = 0  
~st.(~, ~) + 0(~s); 

N--1 
K(v) = ~ egK,,(v, F) + 0(oN). (20) 

n = 0  

Substituting these series into Equations (5) using d/dv  = a/av + esa/av and 
= 2 (~2 /~ '~2 ,  and collecting terms of like powers in d~/d~ ~ a~/a~: + 2 ~ s 0 ~ / ( 0 ~ ) +  ~s 

as, leads to equations for the subsequent levels of approximation. The zeroth-order 
equations admit solutions, written as follows: 

Uo(~,~) = [1 + po(v)cos v + qo(v)sin v]/lo(v), Po(0) -- Poo; 
qo(0) = qoo; 

to(~, ~) = lo(~), to(0) = Zoo; 

Mo(v, v) = Ao(v) cos v + Bo(v) sin v, Ao(0)  = Bo(0) = 0; 

Ko(~, ~) = Ko(~), Ko(0) = 1. (21) 
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Physically, one can interpret the expression for Uo as a trajectory tangent to osculating 

ellipses with slowly varying mean elements. These averaged orbital elements differ 

f rom the usual osculating parameters  in the sense that  short-term periodic variations 

are disregarded. 

The functions Po, qo, lo, Ao, Bo and Ko of the slow variable v are determined from 

constraints imposed upon the first-order contributions. The equations for the first- 

order terms become: 

CqUo \ 
a u. 0 .o z./lo - R + )/Zo. 
~l~2 1- Ul = --2 ?,V8~ ~'V / 

u , ( 0 )  = 0 ;  a ;  ( 0 )  = ~ ( 0 ) ;  

911 dlo 
-- t- 2S/uo,  1,(0) = 0; 

c~v d~ 

~2M1 02Mo ~M1 OMo 
~- M~ = - 2  +- TKo/(uolo) ,  M I ( O ) =  O; ( 0 ) - -  -(0); 

~K1 dKo OMo 
- - T ~ / ( u o l o ) ,  KI(0)  = 0. (22) 

~v d~ 0v 

In order that  the zeroth-order terms remain a valid approximat ion over a long 

duration, it is required that the first-order terms do not contain unbounded contri- 

butions (in the variable v). Therefore, the right-hand-sides of Equations (22) are 

developed in Fourier  series with slowly varying coefficients. To eliminate (mixed) 

secular terms in the solutions for ul and M1, the coefficients of sin v and cos v need 

to vanish, while for suppressing unbounded contributions in ll and K1, the non- 

harmonic  terms must  be set equal to zero. This leads to the system of equations" 

p~(v) = Spo[1 - (1 - eo)l/2]/e~,  po(0) = Poo; 

q~(v) = Sqo[1 - (1 - eZ)l/Z]/e 2, qo(0) = qoo; 

l;(v) = 2Slo l ( l  - e2) ~/2, /o(0) = loo; 

A ; f f )  = T K o q o [ 1 / ( l  - e ~ )  ~/2 - 1]/eg, Ao(0) = 0; 

2 B ; f f )  = -TgoPo[1/(1 - e o )  1 ~  1]/e 2, Bo(0) = 0; 

, ~ 1/2 K o ( 0 )  = 1 ( 2 3 )  Ko(v)  = T[poBo qoAo][1/(1 - eo) 1]/e 2 
- -  ~ - -  0 3  * 

It follows from Equations (23) that go(v) = g)oo is a constant so that the orientation 

of the major axis remains fixed in the long run. To analyse the behaviour of the eccen- 

tricity, the auxiliary element w(v) = 1 - [1 - eZ(v)] 1/a is introduced and the follow- 

ing equation for Wo is found from Equations (23) 

w;(v)  = Swo/ ( l  - Wo), No(0) = Woo. (24) 

If  Woo = 0, i.e. initial orbit is circular, it follows that  the orbit will remain circular 

in the long run" Wo(5)= eo(v)=  0. It may be noted that Uo(V, v ) l o ( v ) =  1 and 
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lo(v) = loo exp (2S~) when 
cussed in Section 2. 

eoo = 0 in accordance with the exact spiral solution dis- 

For Woo r 0, integration of Equation (24) leads to the following implicit equation 

for Wo(~), 

Wo(v) = Woo exp [Sv + Wo(v)-  Woo]. (25) 

Quite accurate representations for Wo(~) can be established through a process of 

successive substitution. Initiating the procedure by replacing wo(v) with W(o ~ = Woo 

in the right-hand-side of Equation (25), subsequent more accurate approximations 

for Wo(v) follow from: 

'(")(v) exp [ S {  _qt_ H , (n- l )  14 0 = WOO - -  WOO] ,  (26) 

for n = l, 2, 3, . . . .  This iteration scheme converges very rapidly as long as eoo is 

not too close to unity. For small Coo, an asymptotic series in terms of powers of Woo 

can be established from the scheme in Equation (26). It can be shown that error term 

in W(o')(5) as an approximation for Wo(b) is of the order W On+lO for Woo > 0. For  most 

purposes, the asymptotic expansion of w(o 3)(~) for Woo > 0 would provide sufficiently 

accurate results" 

2 [exp (2Sv) - exp (S{)] + Vr = Woo exp (Sv) + Woo 
+ W3o[3 exp (3S~) - 4 exp (2Sv) + exp (Sv)]/2 + 0(Wo4o). (27) 

It should be emphasized that a series in terms of powers of Woo is more useful than 

the one in powers of Coo for small Coo, since Woo = e~o/2 + 0(eo4o) for Coo > 0. 
From the results for W(o')(v), Equation (26), the corresponding eccentricity e(o")(5) 
can readily be evaluated from the relation, 

e(o')(v) = {1 - [ l  --W~o')(v)]2} '/2, (28) 

to any desired accuracy by taking n suff• large. For  small eoo, asymptotic 

series in terms of powers of Woo can be derived. The expansion of e(o a)(v) would serve 
most needs" 

e(o 3)(v) = Coo exp (Sv/2){1 + Woo [exp (S{) - 1]/4 + 

2 [3  - -  1 0  exp (Sv) + 7 exp (2Sv)]/32 + O(w~o)}. § Woo (29) 

The long-term solutions for po(v) and qo(v) are readily expressed in terms of eo(v), 

= pooe(o')( )/eoo, = ( ' ) ( ~ ) / e o o ,  q(o~)(~,) qooe o (30) 

and asymptotic series are established using Equation (29). 

The attention is focused on the behaviour of the semi-latus rectum. Through 

Equations (23), lo(~) can be expressed in terms of Wo(~): 

t.) 

lo(~) = loo exp 2S 1 - Wo(~r) 
0 

(31) 



EVALUATION OF SOLAR SAIL TRAJECTORIES 131 

For the first few approximations of Wo(v), the integral can be evaluated explicitly" 

2 l(1)(5) = loo(1 - eoo) exp (2Sv)/[1 - Woo exp (Sv)]2; 

{ (1 - Woo) exp (2Sv) } 
I~o2)(5) = loo 1 - Woo exp (Sv) + W2o [exp (S~) - exp (2Sv)] x 

{~ .31- W 0 0 [ ( W 2 0 _  2 W 0 0  -~- 5 ) 1 / 2  -31_ WO O __ 1]exp (Sv)(I-w~176176176176 
X . . . . .  

Woo[(W~o - 2Woo + 5) '1/2-  Woo + 1]exp (Sv) (32) 

However, the following asymptotic representation is more useful for small eoo: 

l~o 2)(v) = loo exp (2Sv){1 + 2Woo [exp (Sv) - 1] 
3 2 [4 exp (2Sv) - 6 exp (Sv) + 2] + 0(Woo)}. (33) 4- Woo 

A long-term approximation for the radial distance r = 1/u is given by 

r(o")(v, v) = /~o")(v)/[1 + e~o ") (v) cos (v - goo)l, (34) 

where the desired representations for l~ ") and e~o "~ need to be substituted. Also, a 
long-term approximation for the semi-major axis ao(~) is known, 

a~o")(v) = /~o")(v)/[1 - W(on)(~)] 2 . (35) 

Next, the time history of the satellite in its trajectory is studied. Since t'(v) = r 2 / l  a/z, 

it is obvious that 
p 

t(v) = i/3/2(7r) dr/[1 + e(T) cos (r - r~ )oo ) ]  2.  (36) 
q,g  

0 

Through substitution of I~o "~ and e(o ") into the integrand, a long-term valid explicit 
approximation for t(v) may be derived. It is more convenient, however, to determine 
asymptotic series for t(v). In this regard, it must be emphasized that, due to the 
integration of terms depending upon ~, a consistent asymptotic series of t(v) should 

be of the form" 

= + to(, , ,  ;,) + 7,) + (37) 

Substitution of l(o 1) and e(o 1) into Equation (36) and integration leads to the following 

approximation for t_l(~)" 

2 [3 exp (4Sv) - 4exp (3Sv) + 1]/4 + t ( 1 1 ) ( ~ )  "-" a3/2{[exp( 3 S v ) o  - 11/3 + eoo 
3 + O(eoo)}/S. (38) 

It is interesting to note that this result is consistent with the exact spiral solution of 

Equat ion (9)when  eoo = 0. 
Turning to the long-term behaviour of the orbital plane, it can be seen (from 

Equations (23)) that the vector Ko(;) = (Mo, Lo, Ko) traces a path upon a spherical 

surface: A 2 + B~ + K g = 1. Writing Ao = Co sin gOoo and Bo = - C o  cos COoo, an 
equation for Co can be derived and solved, 

Co(~) = sin {T[arcsin eo(v) - arcsin eoo]/S}. (39) 
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Through this expression, all of Mo(v), Lo(5) and Ko(~,) can now be written in terms of 

eo and are thus determined up to the required accuracy by substituting the appropriate 

approximation e(o"~(v) or its expansions for small eoo. The orientation of the orbital 

plane in terms of the angles 4~o and io is given by" 

= ~ 1 7 6  + T > 0 ;  

t OJoo, T < 0; 
io(~) - [Tl[arcsin eo(v) - arcsin eoo]/S. (40) 

5.3. HIGHER-ORDER CONTRIBUTIONS 

It may be noted that the maximum deviation of the zeroth-order solution from the 

actual solution is of the order es only for v up to about 1/e~. Thus for large values of 

A/m, higher-order terms may be needed to establish sufficiently accurate long-term 

approximations. 

After incorporating the zeroth-order solutions, the remainder of Equations (22) 

can be integrated formally, yielding the first-order results: 

u,(,,, ~) m - [ R  + Aa(v)](1 - c o s  v)/lo(v)+ A2(v)cos v + Bz(v)sin v + 
oo 

+ Silo(v) ~ {[2a{ o/j - pod~l -b q o C { l ] s i n  ( jr)  - 
j = 2  

- [2c{ o/J + p o b { l  - qoa{ 1] COS (.jv)}/(.j 2 --  1); 

(3(3 

2s  
j = l  

{a~ o sin (.jr) + c{ o [1 - cos (jv)]}/j + A3(v)}; 

M ~ ( v ,  v) = TKo(v)(1 - cos v)/(1 - e2o)  ~/2 + A 4 ( ~ ) c o s  ~ + B4(~) sin v - 

oO 

- TKo(v) ~ {a{o cos ( j r )  + C{osin( jv)} / ( j  2 - 1); 
j = 2  

Kl(v ,v )  
o o  

= T /2  ~ {[c~ +1 - c I o X]Ao(v)  s in  ( j r )  - [a~ +1 - a ]  o l l A o ( v )  x 
j = l  

�9 " a  ~  1 x [1 - cos (jr)] - [a~ +1 q-- aJ 0 1 ] Bo(v) sin ( j r )  - [ ( ~ ;  1 -3 t- c J  0 ] X 

x Bo(v)[1 - cos (jv)]}/j + As(v). (41) 

The Fourier coefficients J J ank, b,,k, etc., depend on the slow functions Po(5) and qo(v) 
and are evaluated in Appendix II. The functions Aj(5), Bj(5), j = 2, 3, 4, 5, are to 

be determined, as usual, from constraints imposed upon the behaviour of the 
second-order terms. Equations for these terms can be established by Fourier analysis, 

leading to lengthy equations for the functions A j, Bj when eliminating the secular 

contributions to u2, 12, etc. For instance, the least complicated one is given by, 

, , _ o B 2 b  o ] + A3(v) = -A3lo/ lo  S(R + A3)[a~ - a~ + Slo[Aza21 + 1 

O0 

+ S 2 ~ {C~o[2a~ o/J - pod{~ + qoc~a ] 
j = 2  

x [ 2 C ~ o / j  + p o b ~ l  - q o a ~ l ] } ,  

- a ~ o  x 



EVALUATION OF SOLAR SAIL TRAJECTORIES 133 

with all Fourier coefficients depending on 5. While analytical solutions have not 

been found for general eccentricity, in the special case of eoo - 0  it follows that 

eo(5) -- 0 and the equations for Aj and Bj can be integrated yielding the following 

complete first-order solutions" 

ll(v) = 2looRSf f  exp (2Sff); 

e , (v ,  5) = {(R 2 + 4S2)[1 + exp (S~) - 2 exp (Sv/2) cos  1,,]}1/2; 

2.2 

2 I- aoo= 1 
,~ eoo=0.6 ( Woo=0.2 ) 

numerical 

o S �9 

1.81- a = 35.26 ~ first order /~'i~cl ) 
/3=0 

Es= 0"015 ~(2)  
0 

b) 

/ 

1.6 

1.4 

1.2 

1 

, ' /  / 

7 

/ / s h o r t  term 
. x / /  solution 

f /  y .  

/ f ;  
expansions for small 

(a) error  O(e 6 ) 

(b) ,, O(e4o ) 

eoo. 

(c) ,, O(e 2 ) 

0.6 , I 
o -8 

revolutions 

Fig. 6. Comparison of the analytical results for the long-term behaviour of the semi-latus rectum. 
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~ /2S[exp (S~/2) 
~ot (v, 5) = arctan [ R[exp (S~/2) 

- cos v] - R sin v i 

- cos v] + 2S sin v 

r ( v ,  [,) = loo exp (2Sv){1 + esR[1 - exp (Sv/2) cos v] 

- 2 e s S  exp (Sv/2) sin v} + 0(eZs). (42) 

It is seen that the radial distance oscillates around the spiral solution r - 

with slowly increasing amplitude of  oscillation. 

As to the orientation of  the orbital plane, it follows that 

/ o o  exp (2Sv) 

r ~) = v - arctan 
[S(1 - cos v) + [2S cos v - R sin v][exp (Sv/2) - 1]} + 0(e2). 

S sin v - [ 2 S  sin v + R cos v][exp (Sv/2) - 1] 

i(,,, = e s ] T / S { ( 4 S  2 + R2)[exp ( $ 5 / 2 ) -  l] 2 + 4S2(cos v -  1) x 

x [exp (Sv/2) - 3/2]  - 2 R S  sin v [exp (Sv/2) - 1]} + 0(e2). (43) 

These results illustrate that the amplitude of  the perturbations grows slowly. 

5.4. DISCUSSION OF RESULTS 

In order to assess the relative accuracies of  the approximate results, comparisons are 

made with a numerical solution of the exact Equations (5) using a double-precision 

Runge-Kut ta  integration routine. The high value of  initial eccentricity (eoo = 0.6) 

is chosen to illustrate a rather extreme situation, while es is taken to be 0.015. Figure 6 

shows the various approximations for the semi-latus rectum: obviously, the short- 

term solution has a limited range of  validity, while the near-circular expansions of  

a 

3'[ ~ 
a =35 ~ /3=0 

2.5 

2 

1.5 

0.5 

60 ~ 0 

- 15 ~ - 30 ~ 

~S=0.015 

%0=.0.4 
/ .....--CI..- 

- .... )eoo=O 

I I I  I I 

I ! 

a = 3 5 0  ' /3 : 0 

......... 60  c~ 0 

J 

a~.o=!,  t ~  0.015 
0 

%0 = u . b  ~ ~ -  

{a) 
i 1 1 

i i I I �9 _ .  _ i i 

o S 6 9 1: o 
r e v o : u t i o n s  

3 6 9 t2 

Fig. 7. Long-term behaviour of semi-major axis and eccentricity as predicted by 
the zeroth-order solution. 
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l~01) and l(o 2) may give fairly accurate long-term approximations provided a 
sufficient number of terms are retained for high values of eoo (curve a). The 
solution l(o 2) is more accurate, naturally, and would be the most appropriate candidate 
for predicting long-term, high-eccentricity trends. The effect of the first-order con- 
tributions, ll (v, v) from Equations (41) is added to I(o 2) illustrating the small-amplitude 
oscillations around the mean trend designated by l(o 2) itself. The slow function Aa(v) 
was taken to be zero throughout. The discrepancy between the numerical solution 
and this (best) analytical approximation is largely due to the effect of A3(v). Other 
contributions to the error may be attributed to the fact that /(0 2) represents an 
approximation for lo(v) and the higher-order terms are neglected. 

Figure 7(a) shows the long-term trend of the semi-major axis for a few sail settings. 
The approximation a~oZ)(v) compares quite well with the exact numerical solution" 
at least to two significant digits over the first 12 revolutions. The long-term behaviour 
of eccentricity is depicted in Figure 7(b), where the approximation e~oZ)(v) was used. 
Relatively large first-order contributions separate the zeroth-order approximations 
from the exact solutions in this case. Nevertheless, the qualitative trend of the long- 
term behaviour of the eccentricity is predicted correctly. 

6. Concluding Remarks 

The results of the present paper can be summarized in the form of the following 
general conclusions: 

(i) An exact three-dimensional solution in the form of a logarithmic spiral is 
presented for certain specific initial conditions by separating the out-of-plane and 
in-plane motions. 

(ii) An effective near-circular, out-of-plane spiral transfer trajectory has been 
explored in detail permitting any combination of final radial distance and orbital 
inclination. 

(iii) Short-as well as long-term approximate solutions have been established for 
arbitrary initial conditions. For small initial eccentricity, asymptotic series for the 
orbital elements should prove useful for long-term trajectory evaluation. 

The integrals A,k 

Appendix I: Evaluation of the Integrals .4nk and B.~ 

and B,k are defined as 

A,k(v) = f COS (kr) dr/(1 + p cos r + q sin r) ' ,  

0 

P 

B,k(V) = f sin (kr) dr/(l  + p cos r + q sin r) ' ,  

0 

for k = (0), l, 2, 

(I.1) 

. .  ; n = 1, 2, 3, . . . .  The parameters p and q represent the initial 
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cond i t ions  poo and  qoo or the slow func t ions  po(v) and  qo(~). Whi le  the in tegra l  Aao 

can  be eva lua t ed  by e l emen ta ry  means ,  the integrals  A,o for h igher  values of  n can 

be ob t a ined  f r o m  A lo by repea ted  d i f ferent ia t ion  wi th in  the in tegrand ,  

{~1- -e2) l /2 tan(v /2 ) ;  e2)1 
A~ o(V) = 2 a rc tan  

+ p + q tan  (v/2)3/(1 
/2 

Azo(V) = {Alo(V) - ~F(v)/[1 + ~(v)]  - q/(1 + p)}/(1 - e2), etc. 0 .2 )  

where  ~ (v )  and  ~F(v) deno te  p cos v + q sin v and  p sin v - q cos v respect ively.  

The  in tegrals  with n ~< k can usual ly  be d e t e r m i n e d  qui te  readi ly :  

1 + ~ ( v )  

l + p  

1 + 

l + p  

A ~ ( v )  { =  p[v - A,o(V)] + q In 

B ~ ( v )  = I q [ v -  A , o ( V ) ] - p  In 

/e2; 

/e2; 

A,e(v)  = - 2 [ q  + uf'(v)]/e2 - (p2 _ q2)[(2 - eZ)Axo(V)2vl/e 4 

- 4pq In 1 + c~(v)I/e4" 
l + p  [ 

B~=(v) = 2 [ p -  c~(v)]/e 2 + 2pq[(2 - e Z ) A l o ( V ) -  2v]/e'*- 

-- 2(p 2 -- qZ)ln 1 + 

l + p  
/e 4. (I.3) 

These  results  are no t  sui ted for e > 0, and  are to be rep laced  by" 

A~l(v) = - p v / 2  + [1 + 3p2/4 + qZ/4]sin v - p s i n ( 2 v ) / 4 +  

+ pq(1 - cos v)/2 - q[1 - cos (2v)]/4 + (p2 _ q2)sin (3v)/12 + 

+ pq[1 - cos (3v)]/6 + 0(e3); 

B1,(v) = - q v / 2  + pq sin v/2 + [1 + p2/4 + 3q2/4](1 - cos v) + 

+ qs in(Zv) /4  - p[1 - cos (2v)]/4 - p q s i n  (3v)/6 + 

+ (p2 _ q2)[! _ cos (3)]/12 + 0(e3); 

Alz(V) = sin (2v)/2 - p / 2  sin v + q(1 - cos v)/2 - p s i n ( 3 v ) / 6  - 

- q [ 1  - cos (3v)]/6 + 0(e2); (I.4) 

B~ 2(v) = [1 - cos (2v)1/2 - q/2 sin v + p(1 

- p[1 - cos(3v)]/6 + 0(e2). 

- cosy) /2  + q sin (3v)/6 - 

A p p e n d i x  II:  Eva luat ion  o f  the Fourier  coef f ic ients  a.k, j �9 �9 � 9  d~k 

The F o u r i e r  coefficients of  the funct ions  

cos (kv)/[1 + p cos v + q sin v]" = a~ + 
oO 

{a~k cos j r  + c~k sin j r ) ,  
j----1 

sin (k v)~[1 + p cos v + q sin v]" = 5 o j 2  + 
oO 

{b~k cos j r  + dJ.~ sin jr},  
j = l  

(II.1 



EVALUATION OF SOLAR SAIL TRAJECTORIES 137 

for k = (0), 1, 2 , . . .  and n = 1, 2, 3 , . . .  can be expressed in terms of the integrals 
A.k(2~r) and B,k(2rr) as follows: 

Y 
a n \  - -  

277 

_ f  cos (kr) cos ( j r )  d r  
(1 + p cos r + q sin r)" 77" 

0 

= [A..s+k(2rr ) + A.,s_k(2rr)]/(2rr); 

27r 

b~k -- _1 f sin (kr) cos ( j r )  dr  
~r (1 + p cos r + q sin r)" 

0 

= [B,,,s + k(2~r) - B,.s-k(2rr)]/(2rr) ; 

c~k - 

277 

1 f cos (kr )  sin ( j r )  d r  
rr (1 + p cos r + q sin r)" 

0 

= [B.,s_k(2~r ) + B,,,s+k(2rr)]/(2rr): 

dnJk 
1 

27r 

f sin (kr) sin (jr) dr 
(1 + p cos r + q sin r)" 77" 

0 

= [A.,s _k(27r ) - A,,,s+k(2rr)]/(27r ). 

(n .2 )  

It may be noted that An, j - -k  --" A,, ,k-s  and B,,, s - - k  --" - - B n . k - j .  

The following explicit expressions for the Fourier  coefficients can be derived" 

t/a] o ) ( c o s  (jco)~ 
k, CJao -- 2 [(1 \ sin (joJ) J 

_ e2)1/2 - 1]Se-S/(1 - e2)1/2; 

[/ #2 o 
\40 

(/cos (joo)~ [(1 - e2) 1/2 
= 2 \ sin (joo) J 

- 1]s[1 + j(1 - e 2 ) l / 2 ] e - J / ( 1  - e2)3/2; 

[(1 -- e2) 1/2 -- 1] s (cos  ( jw)~ [2+e  2 + 3 j ( 1 - e 2 )  1/2 + j 2 ( 1 - e 2 ) ]  �9 
eS(1 - e=)S/2 ,,, sin ( joJ ) /  

( a ' ~ l  
c { ~ )  = 

2 [ ( 1 - e 2 )  1 / 2 -  1]s{ cos oo //cos (jco)'~ ( sin (rio) '~}. 
e )+i  (1 ~ e 2 ) i / 2 \  s in (jco) J +s in  co --cos (jco)J ' 

(b l 
d{1)  = - 

2[(1 - e 2 )  1/2 

e j + 1  

-1]s{ sin w (cos(jco)~ 
(1 ---e~~/2 \ sin ( r io ) /  

( - sin (joJ)~ 1 
+ cos  co cos (i~o) / f  

(a i) = 
k C ~ l  

2[(1 - - e2 )  1 / 2 -  1]J t 
-- ej +-i{ i --~-77/3 [[e 2 -+- j(1 

1 ( COS ( . /00)  N~ 
_ e 2) /2] cos  co \ sin (joo)] 4- 

+j(1 - e 2) sin oo ( _  sin (joJ)'~ }. 
cos ( j ~ ) /  ' 

- 

2 [ ( 1 - e 2 ) l / 2 - 1 ] s  t 
-- ~. ~-i- d - -  ~ .F/3  [[e2 § j(1 

(cos (j~o)) + 
_ e 2) /2] sin ~o \ sin (joJ) 

- sin ( jw)~ 
+ ./(1 -- e 2) cos m '. Cos (.ira),] 
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(a l) = _ 
\ c ~  

[(1 - e 2 )  1 / 2  - 1] s 

e s+1(1 -- e2)S/2 
[3e 2 + j(1 + 2e2)(1 - e2) a/2 + j2(1 - e2)] • 

o j ( cos  (joJ)'~ +j (1  - e2)[1 + j (1  - e  2) 
x cos \ sin ( j o J ) ]  

( s in ( ]m) )}  1/2] sin co �9 ; 
- cos(joJ)  

b~)  _ _ 
d~ 1 - 

[ ( 1 - ~ ~ - - e ~ ~ )  5 [3e 2 j(1 eJ+ ~~~- J{ + + 2eZ)(1 - e2) 1/z + j2(1 - e2)] x 

x sin co ( c ~  (ja,) '~ e2 \ sin ( j~o)J  + j(1 - )[1 + j(1 - e2) ~/2] cos oJ x 

( -  sin (jco)) } (II.3) 
x COS (jco) " 

0 b ~ are  equa l  to a 1 respect ively .  F o r  va lues  o f k l a r g e r  t h a n  The  coefficients  an 1, 1 a , o ,  b ,  o 

1, the  d o m i n a n t  coefficients  can  be expressed  in t e r m s  o f  the  resul ts  o f  E q u a t i o n s  

(n.3): 
a ~  k k . j k . --- a , s ,  . . ,  d,k - d,"i, j = 0, 1, 2 , . .  (II .4) 
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