J. Molec. Evolution 3, 63—77 (1974)
© by Springer-Verlag 1974

The Use of Ribonuclease U,
in RNA Sequence Determination
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Abstract. The catalog of oligomers produced by ribonuclease T, digestion of
Escherichi coli 16S ribosomal RNA has been determined by a new method that
involves the use of ribonuclease U, from Ustilago sphaerogena. The sequences for the
larger T, oligomers (8 or more bases) determined in this way differ in more than 50 %
of the cases from those reported previously (determined by other methods).
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Introduction

This laboratory is engaged in a comparative characterization of the
primary structures of various ribosomal RNAs—with an immediate goal
of establishing a comprehensive and definitive phylogeny for the Procaryotes,
and an ultimate goal of understanding the evolution of a translation
apparatus.

At present the work involves generating catalogs of oligonucleotides
(produced by ribonuclease T, digestion) for ribosomal RNAs from a variety
of organisms—utilizing the two dimensional electrophoretic fingerprinting
method developed by Sanger ef al. (1965). The method used by us to deter-
mine sequence for these oligomers differs somewhat from those previously
employed, in that sequences are deduced almost exclusively from the partial
digestion products resulting from cleavage of a given oligomer (or fragment
thereof) by pancreatic ribonuclease and by ribonuclease U,, from Ustilago
sphaerogena (Arima et al., 1968; Uchida et al., 1970).

In the course of developing and employing this particular technology,
we discovered several discrepancies between T; oligomers sequenced by
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our methods and those sequenced by methods not utilizing ribonuclease U,
(Pechman and Woese, 1972). Hence, we have redetermined the sequences of
the oligomers produced by ribonuclease T, digestion of Escherichia coli
16S ribosomal RNA by our methods, and report the resulting catalog herein.

Materials and Methods

Several strains of Escherichia coli have been used in this study, of both B and K
origin. Differences between their 16S rRNA oligomer catalogs, however, are essentially
negligible (involving at most a few oligomers whose occurrence is fractional).

32P labeled RNA was produced by standard methods, involving growth in low
phosphate medium, isolation of RNA by phenol extraction, separation of 16S rRNA
by polyacrylamide gel electrophoresis, and its purification by passage over CF-11
cellulose columns (Sogin ef al., 1971; 1973; Kirby, 1956; Doolittle and Pace, 1971;
Franklin, 1966).

Detailed Description of Oligonucleotide Fingerprint Analyses

1. The Primary Pattern

The initial two dimensional electrophoretogram of 3P 16S rRNA is produced in
one of two ways—either by the published method of Sanger and coworkers (utilizing
a pH 3.5 first dimension on cellulose acetate, followed by transfer to DEAE cellulose
paper which is then run in 6.5 % formic acid) or by a slight modification of this method
(in which the second dimension is run in a ‘“high salt”’ buffer) (Sanger e al., 1965;
‘Woese and Sogin, manuscript in preparation). The latter provides far better resolution
in all isopliths with the exception of certain areas of the G isoplith. This obviates the
need to dephosphorylate oligomers prior to electrophoresis, with the attendant dis-
advantages of such a procedure. Oligomer spots on the primary fingerprint were
located by radioautography, cut out, and their #P content determined by scintillation
spectrometry (Sogin et al., 1971). Individual spots were then removed from scintillation
vials, washed in three changes of toluene, and dried in preparation for secondary
analysis.

For those who are not thoroughly familiar with the ordering of oligomers on a two-
dimensional electrophoretogram of a T, digest of RNA, a brief explanation should
be given (please refer to the accompanying or a comparable figure). The oligomer
pattern comprises a series of wedge-shaped ‘‘isopliths’’ (Sanger et al., 1965). Within
any isoplith, all oligomers contain the same number of U residues; the fastest moving,
G, isoplith contains oligomers devoid of U; the next most rapid isoplith comprises
oligomers containing a single U, etc. Within any given isoplith oligomers are arranged
in ‘‘isomeric”’, nearly vertical lines; within such a line all oligomers have the same
number of bases. The number of bases in an oligomer can be determined reliably by
this method for any oligomer containing seven bases of less. For larger oligomers, their
sizes can generally be determined within one base by position in the isoplith. On a
given isomeric line the oligomers separate by relative A (vs. C) content; the oligomer(s)
of lowest (highest) A content travels furthest (least) in the second dimension.

Order of bases within the oligomer also affects its position on a given isomeric line.
For example, given two oligomers of identical composition, that with an A in the 5’
position will travel more slowly in the second dimension than those with a pyrimidine
in the 5’ position. U residues in the 5 position cause oligomers (of a given composi-
tion) to travel slightly more rapidly in both dimensions [see for example, 14a, UCCG,
vs. 14b, C(UCYG].

The spot designation convention we employ is based upon isoplith pattern; (Sogin
et al., 1971); see Table 1 or Fig. 1 for examples. The initial number refers to the
number of U residues in the oligomer, the second to the total number of bases. The
lower case letter which follows distinguishes among oligomers having the same first
two numbers; the number of A residues tends to increase in alphabetical order.
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2. Secondary Analysis

In general each oligomer spot (whose sequence was not determined by position
on the primary pattern) was divided into several portions, one being digested with
pancreatic ribonuclease, the other with ribonuclease U,.

Pancreatic ribonuclease (RNAse A, Worthington Biochemicals) was used at a
concentration of 1 mg/ml (in water). Sufficient enzyme solution was applied to each
spot so that the paper appeared thoroughly moistened (glistening). Incubation time
was not critical, and varied from several hours at 37 °C to overnight at room tempera-
ture on occasion. For oligomers containing larger relative amounts of U, it was neces-
sary to use the enzyme at 5 mg/mlin order to obtain complete digestion in a reasonable
length of time. To prevent drying during digestion spots were sealed between layers
of Parafilm.

Ribonuclease U, for secondary analysis of oligomers containing one or more A
residues was applied in a 0.1 M sodium acetate buffer, pH 5.5, containing 0.0015 M
EDTA, at a concentration of 5 or 10 units/ml (Uchida et ai., 1970). The paper spot
was ‘‘saturated”’ with enzyme solution, as just described. The treated spots, sealed
in Parafilm, were incubated at 37 °C for 4—6 hrs.

For digestion of oligomers not containing A residues, the ribonuclease U, digestion
procedures was changed to the extent that the enzyme concentration was increased
3-4 fold and the pH of the acetate buffer reduced to 4.5. [This will be referred to as
the “overcutting’’, as opposed to the ‘“normal” mode (above) for ribonuclease U,
digestion. ]

Each spot receiving a secondary digestion procedure was then inserted, by
maceration, into a sheet of DEAE cellulose paper—about twenty spots plus suitable
marker spots per 18 inch width of paper. When individual spots were large, they were
folded before being macerated into the DEAE sheet.

Pancreatic ribonuclease secondary digestions were electrophoresed in one of two
solvent systems—6.5 % formic acid, or 5% acetic acid containing 0.5 % pyridine (PA).
The following ‘“marker’”’ spots were generally used to identify the pancreatic nuclease
digestion products: U, AU, AAU, AAAU, C, AC, AAC, AAAC, G, AG, AAG, and
AAAG.

Ribonuclease U, secondary digestions were generally run in 6.5 % formic acid.
However, for oligomers high in U content the above ‘“high salt’’ buffer was also used,
in that 6.5% formic acid does not always provide definitive resolution of spots
containing various numbers of C residues when the sum of U and G residues is three
or greater. Marker oligomers appropriate for this system were CA, CCA, UA, UUA,
(CU)A, CG, CCG, UG, CUG, UCG, UUG, etc. [CA, UA, etc. are, of course, generated
by ribonuclease U, cleavage of simple oligomers such as CAG and UAG].

When used under the (normal) conditions described, U, enzyme in addition to
producing fragments of the form (C,UJ)A and (C,U)G, also produces composite
fragments. For example, an oligomer such as CCUAACACAUG in addition to yielding
the expected fragments (C,U)A, CA, and UG (resulting from cleavage on the 3’ side
of A residues), yields high levels of (C,U)AA, and detectable levels of CAUG, CACAUG,
etc. Under these conditions the frequency of cleavage at bases other than A is negli-
gible—which is definitely not the case when the enzyme is used under the above ‘““over-
cutting’’ conditions.

3. Tertiary Analysis

Oligomer spots generated by secondary analysis whose sequences are not unequiv-
ocally determined by position relative to given marker spots, require one or more
tertiary procedures: either rerunning in a different solvent, or further ribonuclease
digestion, etc. Electrophoretic separations in 6.5 % formic acid are primarily a function
of the U 4 G content of an oligomer (and secondarily a function of its size and A wvs.
C content). Hence, certain oligomers of distinctly different size, but of ““equivalent”
U + G content can be confused in this solvent. However, these cases are always
resolvable upon reelectrophoresis in the above “PA’’ buffer system—which separates
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primarily as a function of oligomer size. Thus, for example, CA and CCA, or (C,U)G
and UUA not clearly resolved in 6.5 % formic acid, manifest electrophoretic mobilities
that differ almost two-fold in the PA solvent. CCA and CAA are also clearly resolvable
in the latter solvent.

Compositional isomers, such as UCA and CUA, that require further characteriza-
tion in order to determine sequence are digested (as described above) with U, enzyme
under “overcutting’’ conditions. For oligomers of the form (C,U,)4,, tertiary electro-
phoresis is performed in the PA solvent. In this system removal of a C residue from
such an oligomer—e.g., (C,U,)A — (CU,)A—increases electrophoretic mobility two-
fold, whereas removal of a U residue increases mobility about 2.8 fold. In other words,
although electrophoretic mobilities in this system are a strong function of oligomer
size, one can also detect compositional changes within defined limits.

For oligomers of the form (C,U,)G (“overcut” with ribonuclease U,) tertiary
electrophoresis is done either in 6.5 % formic acid (y =1), or in the above “high salt”
buffer (y =2). The former resolves oligomers of the form C,G, and UG, CUG, UCG,
and larger members in the (C,U)G series, (by composition), but does not resolve well
those oligomers containing two U residues and variable amounts of C. These latter are
resolved in the ‘‘high salt” buffer, however; removal of a C residue [i.e., (C,U,)G —
(C,_1U,)G] increases electrophoretic mobility 10-20% in general.

On a few occasions we have also used spleen diesterase digestion to generate frag-
ments (Sanger et al., 1965).

Results and Discussion

As can be seen above (‘“Materials and Methods” and references cited
therein) the utility of ribonuclease U, lies in the fact that its mode of cleavage
can be altered rather dramatically by altering pH, etc. Under the above
“normal”’ conditions it cleaves T, oligomers not only at A residues but also
leaves partially intact AA ... stretches, if these are present—an example
being the production of UCA and UCAA from the oligomer UAUCAAUG.
And, the enzyme also produces appreciable levels of larger, partial digestion
products under these conditions. Under what we call ““overcutting” condi-
tions (above), pyrimidine stretches are also cleaved, permitting sequencing
of the initial fragments of T} oligomers produced by ribonuclease U, cleavage
under “normal” conditions.

Fig. 1 is a two dimensional electrophoretogram of a ribonuclease T;
digest of E.coli B 236 16S rRNA, done by the method of Sanger and
coworkers as modified slightly by Woese and Sogin to improve resolution
in the second (DEAE) dimension (Sanger et al., 1965; Woese and Sogin,
manuscript in preparation). Spot numbering is according to the convention
of Sogin et al. (1971) explained above.

The analysis of the various spots in the electrophoretogram, both as
regards number of oligomers and their compositions (determined by the
2% and 3¢ procedures described above) are given in the accompanying table.
Where points of difference exist between sequences determined by us and
those reported by other workers, an explanation for our conclusion is given.

What is immediately apparent from Table 1 is that very few differences
in sequences determined by different laboratories are found when oligomer



Cellulose Acetate

H'3:5 w)
p m
>
k-] m
=a
e B
|
el
w
1]
|
Q .Oéa
4 h
O5efg
5d
05z
03
‘ Sabc

Fig. 1. Two dimensional electrophoretogram of a ribonuclease T, digest of E. cols
165 ribosomal RNA. E. coli 16S rRNA labelled with 22P and isolated as described has
been digested with ribonuclease T, and the resulting products separated electro-
phoretically, according to the basic method of Sanger and coworkers (1965). In this
case the second (i.e., DEAE paper) dimension has been run in the modified ““high
salt”” solvent of Woese and Sogin (see above). The oligomer spot naming convention
has been explained above (the 5" and 3’ terminal oligomers are designated as such)
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length is trivial—i.e., =<7 bases. For octamers and larger, however, over
half of the sequences disagree. Almost without exception the discrepancies
do not involve the fragments generated by pancreatic ribonuclease digestion
[a rare exception being AUUAG, our sequence, vs. AUAUG, the sequence
of Fellner ef al. (1972a)]. Rather, they involve the order in which the pan-
creatic ribonuclease fragments are placed within the oligomer. In our case
this ordering in done through the use of overlapping pancreatic and U,
ribonuclease fragments, while Fellner ef al. use venom diesterase products
and other methods (Fellner et al., 1972a).

Several sources of systematic error are possible in any of these sequencing
methods. For one, the amount of radioactivity remaining by the time
tertiary cleavage products are obtained generally precludes any further,
“ultimate” analysis; i.e., tertiary cleavage products generally have to be
identified by position only on a one dimensional electrophoretogram, in the
presence of known, marker, oligomers. The large variety of tertiary frag-
ments produced can in some cases lead to misidentification. (To a lesser
extent such ambiguities exist for secondary cleavage products, but these we
always resolve by an appropriate tertiary procedure.)

A second source of error results from oligomers coincident (or overlapping)
on the primary pattern. Determining which secondary fragments are
associated with which oligomer is not always certain in these instances.

A third source of error is possible endonuclease activity in exonuclease
preparations, which could lead to misinterpretation of digestion products
(unless these are identified unequivocally by some further procedure).

Needless to say, corrections in many of the T, oligomer primary structures
will alter the projected secondary structures for some of the “loops’ reported
in the 16S ribosomal RNA. It is pointless to go into this at this time. [The
interested reader might, for example, note the changes that occur in frag-
ment “P” of Fellner e al. (1972b). P appears to be a long coaxial largely
base paired helix. Our corrections to the sequences of T, oligomers numbers 1,
4, 21, and 37 change the projected base pairing sufficiently to make postula-
tion of a single coaxial helix, as opposed to two noncoaxial helical segments,
unlikely. ]

What the present study has made clear is that ribonuclease U, is a
powerful oligomer sequencing tool, one that can reveal systematic errors
inherent in certain other sequencing approaches.
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