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Let M be a compact differentiable manifold and ¢,: M — M a differentiable
one-parameter flow. A closed ¢qinvariant set X < M containing no fixed
points is called hyperbolic if the tangent bundle restricted to X can be written
as the Whitney sum of three Dy -invariant subbundles, TyM = E+ES+ E*
where E is the one-dimensional bundle tangent to the flow, and there are con-
stants ¢, A > 0 so that

(@) | De )]l < ce™|iv]| for ve E% ¢ = 0,
(b) | De_ ()| < ce”*|ju|| for ue E* t > 0.
X is a basic hyperbolic set if, in addition,

(c) the periodic orbits contained in X are dense in X,
(d) @,|X is transitive,
(e) there is an open set U > X so that X = [,z p{U).

These basic hyperbolic sets are the building blocks of the Axiom A flows of
Smale [9]. For a transitive Anosov flow the whole manifold is one basic set.

Let #(X) denote the set of Borel probability measures on X and .#(®, X)
those which are p,-invariant for all 7. For each u e #(®, X) there is a measure-
theoretic entropy 4,(p,) defined. There is also a topological entropy A(p,), and
a theorem of Goodwyn [10] states that A(p,) > h,(p,). We will prove the
following result.

THEOREM. Let @,: X — X be a basic hyperbolic set. Then there is a unique
e M@, X) with hy(p,) = hlg,).

This measure p will be the measure u, which gives the distribution of the
periodic orbits of ¢,|X ([5] and [6]). Our result is a strengthening of a uniqueness
theorem for uq proved in [6] and is the natural analogue of a theorem proved
earlier for basic sets of diffeomorphisms. Our proof can be viewed as an adapta-
tion of a proof given by Adler and Weiss [1] for a theorem of Parry [7].

We recall one definition of topological entropy [2] for a continuous map
J: Y—> Y on a compact metric space. For ¢ > 0 and n > 1 we say a subset
E < Yis (n, e)-separated (by f) if for distinct x, ye Ethereisajwith0 < j < n
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and d(f7(x), f¥(»)) > e. For K = Y compact let s,(c, K) < oo be the maximum
cardinality of any (n, ¢)-separated set contained in K. Define

5¢(e, K) = lim sup % In s5,(¢, K),

[ ad ]

h(f, K) = lim §(e, K),
e—0
and i(f) = h(f, Y). The map fis called h-expansive if, for some ¢ > 0,

h(f, {p: d(f/(), f/(x)) < e forall j > 0}) = 0

forall xe Y.

Now a basic hyperbolic set either is a constant time suspension of a homeo-
morphism or is C-dense [5, Theorem 3.2]. Our theorem was proved earlier for
the suspension case [6, Theorem 2.1]. We do not define C-density here (see [5])
but instead list some properties of a C-dense ¢,: X — X.

(a) X is a finite-dimensional compact metric space.

(b) & = A(p,) > 0 (see [5, Theorem 4.12}).

(c) Each ¢, is an A-expansive homeomorphism of X ({3] and [5, Section 1]).

(d) Let By(x, €, ) = {y € X: d(py(x), p,(»)) < e for all se[0, {]}. There is a
po € H(D) satisfying [6, Theorem 1.3]: For each small ¢ > 0 there are
positive constants C, and E, so that C.e™ < po(Bg(x, €, 1)) < Ee™™
for all xeX and all z > 0.

(e) The flow g, is ergodic with respect to pg [5, Theorem 5.4].

(Note: Actually (b) and (c) follow from (d)).

For f a map on X, .#Z(f, X) consists of the measures u € .#(X) invariant
under f; if a group G acts on X, then #(G, X) denotes the u e #(X) invariant
under every element of G. For u e #(X) we let %,(X) denote the family of
finite y-measurable partitions of X. Finally, for A e #,(X) we write 2/(A) for
the algebra of sets generated by A, i.e., the collection of unions of members of A.

We now define probabalistic entropy. For A e #,(X) write

HA) = = % w(4) In p(4).
A€A

Set AVB={ANB: AcA,BeB},f “A={f""4:AdcA}and A} = Avf A
Ve v TIAIE pe M(f) and A e B(X), the limit h(f, A) = lim,_, , (1/n)
H,(A}) exists and h,(f, A) < (1/n)H(A}) for all n (see [8]). Finally one defines
hu(f ) = SupAeﬂu(X)hu(f; A).

LEMMA 1. Suppose f: X — X is an h-expansive map on a compact finite-
dimensional metric space. For sufficiently small e the following is true: (1/n) H,(A)
> h,(f) whenever e H(f),n > 0,jeZ and A #,(X) satisfy diam f*(4) < ¢
forall A< A and ke[, j+n).

Proof. Since H(A) = h,(f", A)and h,(f") = nh,(f), it is enough to show
h(f", A) = h,(f™). This statement is similar to Theorem 3.5 of [3]; in fact, for
e small enough to be an expansive constant for f, the proof of that theorem is
easily modified to give what we want. We leave this to the reader to check.
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If a group G acts on X, then for £ < X and U < G define diamy E =
SUPy, yog d(Ux, Uy). For A a finite partition of X let diamy A = max, _, diam, 4.

LEMMA 2. Let G be a topological group acting continuously on a compact
metric space X, ve M(G), and U a compact subset of G containing the identity.
If B = X is v-measurable with gB = B for all g ¢ G and A, € B (X) satisfy diam,
A, — 0, then there are sets C, € H(A,) with (C,AB) -0 as n — .

Proof. For 6 > 0, pick compact sets K; < Band K, = X\ B with B\ K,)
< & and »((X\B)\K;) < 8. Since UK, and UK, are disjoint compact sets
(as gB = B for all g), there is an « > 0 with d(UK,, UK,) > «.

Ifdiamy A < o, theneither AN K, = g orANK, = o.Forifxe 4N K,
and y e 4 N K,, then

d(UKl, UKz) < d(Ux, Uy) < diamU A < «.

For large n we have diamy A, < «; set C, = (J{4€A,: ANK; % 2}. Then
C,> K, and C, " K, = &. Hence

CAB) < 8+¥(C,AK))
< S+u(XN\(K; U Ky)) < 38.

THEOREM. Let ¢,: X — X be a basic hyperbolic set and p e M (®, X),
Then h,(@,) = h(p,) if and only if p = po.

Proof. As mentioned before, we may assume ¢,: X — X is C-dense. Now
hug(®1) = h(py) was just Theorem 5.11 of [5].

Suppose i € A(®) satisfies ,(p;) = A(p,) and that n is singular with respect
. to pg. There is a set B < X which is (u+ pg)-measurable so that u(B) = 1,

pe(B) = 0 and ¢, B = B for all te R. This is well known (see the proof of

Theorem 2.1 in [6] for instance).

Let E, < X be maximal with respect to the condition

By(x, €,2n) N By(y,€,2n) = o for x,yeE,, x + y.

Then X = | .5, Bo(*; 2¢, 2n); for were there 2 point in X not in this union, it
could be added to E, and without destroying the condition above. Now choose
disjoint Borel sets F, for x € E, such that Be(x, €, 2n) = F, © By(x, 2¢, 2n)
and X ={J,cgF Let A, = {@(F,): x€E,}. Then Ce 2™ < po(F,) =
kol®(F,)). Let G = Ract by tx = ¢.x;let U = [—3$, 8]. Then, for small enough
¢, diamy A, — 0 as n — oo (see 1.6 of [5)).

We now apply Lemma 2 to v = u+puq and the B above to get C, e Z(A))
with v(C,AB) — 0. In particular, ue(C,) — 0. Let B, be the number of elements
of A, lying in C,; since po(C,) = B,C.e” ", we get B,e” 2" 0. By Lemma 1
we have (j = —n) (12n)H,(A,) = h,(f) = h where

Hu(An) = - Z :““(F x) In ,u,(F x)

on(Fx) < Cp

- Z I"'(Fx) In f’“(Fx)'

Pn(Fx)nCpn = 2

The first sum has 8, members; the second has at most ¢**"/C, (this is an upper
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bound on card A, as each member of A, has measure at least C.e”2*). By
Jensen’s inequality (if a;,---,a, >0 and s =) a; < I, then —) g;In q; <
s(In n—1In s); see [8, p. 11-12}]);

Ine®™ < H(A,) < w(C,) (In B,—In u(C,))

FHONG,) (- ¢ =In uX\C,)

€

< W(C) In B, +p(X\C,) In —é &2 4 2fc,

€

where k* is the maximum value of —x In x for x [0, 1]. Hence

0 < 2k*+(C,) In B, e~ + (X \C,) 1ncl .

As n— oo, we have u(C,) - 1, (X \ C,) >0, and In B,e~**" - — co; this is a

contradiction. Hence there can be no u € #(®) singular with respect to ug and
hl:) = higy).

Now consider any up € #(®) with A, (¢,) = h. Either p is absolutely con-

tinuous with respect to pg Of p = au;+Bu, With « >0, 820, a+8 =1,

p; € M(®), po singular and w, absolutely continuous with respect to ug. Then

h(p1) = ahy(@1)+Bhy (1)

By Goodwyn’s theorem (see [10] or [2]) one has A, (¢;) < A(p,). The only way
to have h,(p,) = h(p,) is to have h, (p;) = h(p,); but we saw already this is
impossible. Hence p is absolutely continuous with respect to pg. As pg is
ergodic, it follows by the Radon-Nikodym theorem that p = pg.
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