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Let M be a compact differentiable manifold and %: M ~ M a differentiable 
one-parameter flow. A closed ~0t-invariant set X c M containing no fixed 
points is called hyperbolic if the tangent bundle restricted to X can be written 
as the Whitney sum of three D~-invariant  subbundles, T x M  = E + E ~ + E  ", 
where E is the one-dimensional bundle tangent to the flow, and there are con- 
stants c, A > 0 so that 

(a) ]lD~o,(v)ll _< ce-'~t[lvll for v e E ' ,  t > O, 

(b) [[D~-t(u)[l <- ce-Xtllul[ for u E E  u, t >_ O. 

X is a basic hyperbolic set if, in addition, 

(c) the periodic orbits contained in X are dense in X, 
(d) %IX is transitive, 
(e) there is an open set U = X so that X = Nt~R cpt(U). 

These basic hyperbolic sets are the building blocks of  the Axiom A flows of 
Smale [9]. For a transitive Anosov flow the whole manifold is one basic set. 

Let .//¢'(X) denote the set of  Borel probability measures on X and ~g(~,  X) 
those which are ~o~-invariant for all t. For each tz ~ J/¢(~, X) there is a measure- 
theoretic entropy hu(~01) defined. There is also a topological entropy h(~ol) , and 
a theorem of Goodwyn [10] states that h(~ol) > hu(~Ox). We will prove the 
following result. 

T H E O R E M .  Let ~t: X ~ X be a basic hyperbolic set. Then there is a unique 
tz E ~./[(0, X)  with hu(~ol) = h(~ox). 

This measure/~ will be the measure /z ,  which gives the distribution of the 
periodic orbits of  %]X ([5] and [6]). Our result is a strengthening of a uniqueness 
theorem f o r / ~  proved in [6] and is the natural analogue of a theorem proved 
earlier for basic sets of  diffeomorphisms. Our proof  can be viewed as an adapta- 
tion of a proof  given by Adler and Weiss [1] for a theorem of  Parry [7]. 

We recall one definition of topological entropy [2] for a continuous map 
f :  Y ~  Y on a compact metric space. For  e > 0 and n > 1 we say a subset 
E c y is (n, @separated (by f )  if for distinct x, y ~ E there is a j  with 0 < j < n 
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and d(fi(x),  f i (y))  > ~. For K c y compact let s.(E, K) < ~ be the maximum 
cardinality of any (n, E)-separated set contained in K. Define 

Ss(', K) = lim sup 1 In s,(,, K), 
n-.* oo n 

h(f, K) = lim gs(E, K), 
~ 0  

and h ( f )  = h ( f ,  Y). The m a p f i s  called h-expansive if, for some ~ > 0, 

h(f, {y: d(f i (y) , f i (x) )  < E for a l l j  _> 0}) = 0 

for all x ~ Y. 
Now a basic hyperbolic set either is a constant time suspension of a homeo- 

morphism or is C-dense [5, Theorem 3.2]. Our theorem was proved earlier for 
the suspension case [6, Theorem 2.1]. We do not define C-density here (see [5]) 
but instead list some properties of a C-dense ~0,: X ~ X. 

(a) X is a finite-dimensional compact metric space. 
(b) h = h(~ox) > 0 (see [5, Theorem 4.12]). 
(c) Each ~0 t is an h-expansive homeomorphism of X ([3] and [5, Section 1]). 
(d) Let B,~(x, ~, t) = {y~  X: d(%(x), %(y)) < ~ for all se [0 ,  t]}. There is a 

/Z~, ~ Jd'(~) satisfying [6, Theorem 1.3]: For each small E > 0 there are 
positive constants C, and E, so that C,e -ht < /zo(B~(x, E, t)) < E,e -hi 
for all x E X a n d  all t > 0. 

(e) The flow % is ergodic with respect to/z~, [5, Theorem 5.4]. 

(Note: Actually (b) and (c) follow from (d)). 
For f a map on X, ~ / ( f  X) consists of the measures/z E dc'(X) invariant 

under f ;  if a group G acts on X, then ~ ' (G,  X) denotes the/z e d / (X)  invariant 
under every element of G. Fo r / z  E d / (X)  we let M,(X) denote the family of 
finite/z-measurable partitions of X. Finally, for A ~ ~'u(X) we write ~ ' (A) for 
the algebra of sets generated by A, i.e., the collection of unions of members of A. 

We now define probabalistic entropy. For  A ~ ~u(X) write 

H~(A) = - ~/Z(A) In/Z(A). 
AEA 

Set A v B  = { A n B :  A ~ A ,  B ~ B } , f - k A  = { f - k A : A e A }  and A~ = A v f - l A  
v . . .  v f - "+~A.  If /z  ~ d ( ( f )  and A~ Mu(X), the limit hu(f, A) = lim._,oo (I/n) 
H,(A7) exists and h,(f ,  A) _< (1/n)H,(AT) for all n (see [8]). Finally one defines 
hu(f) = supAE~,(x)hu(f, A). 

LEMMA 1. Suppose f :  X ~ X is an h-expansive map on a compact finite- 
dimensional metric space. For sufficiently small ~ the following is true: (l/n) H~(A) 
>_ h~(f) whenever/z e ~ ( f ) ,  n > 0, j ~ Z and A e ~u(X) satisfy diam fk(A) < , 
for all A e A and k ~ [j, j+n).  

Proof. Since Hu(A ) > hu(f", A) and hu(f  ~) = nhu(f), it is enough to show 
h , ( f ' ,  A) = h~(f"). This statement is similar to Theorem 3.5 of [3]; in fact, for 

small enough to be an expansive constant for f ,  the proof  of that theorem is 
easily modified to give what we want. We leave this to the reader to check. 
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I f  a group G acts on X, then for E = X and U c G define diam v E = 
sup~.y~g d(Ux, Uy). For  A a finite partit ion o f  X let diamv .4, = maxa~ x diamv A. 

L E M M A  2. Let  G be a topological group acting continuously on a compact 
metric space X, v • ~/g(G), and U a compact subset o f  G containing the identity. 
I f  B ~ X is v-measurable with gB = B for  all g • G and A .  • ~ ( X )  satisfy diam v 
A.  -+ O, then there are sets C. • zZ(A.) with v(C.AB) ~ 0 as n ~ o0. 

Proof. For  3 > 0, pick compact  sets K 1 c B and K 2 c X ~ B  with v ( B ~ K  0 
< 3 and v ( ( X ~ B ) ~ K 2 )  < 5. Since UK x and UK 2 are disjoint compact  sets 
(as gB = B for  all g), there  is an ~ > 0 with d(UK~, UK2) > ~. 

I f  diam v A < ~, then either A n K~ = ~ or A c~ K 2 = ~. For  if x e A c~/(1 
and y e A n K2, then 

d ( U K  1, UK2) <_ d(Ux,  Uy) <_ diamv A < ~. 

For  large n we have diam v A. < ~; set C. = ~ { A  • A . :  A n K i 4= z} .  Then 
C. = Kx and (7. n K 2 ----- 0 .  Hence 

v(c.aB) <_ 3 + v(C.AKO 

<- 3 + v ( X ~ ( K 1  W /(2)) - 33. 

T H E O R E M .  Let  q~t: X ~ X be a basic hyperbolic set and t~ • ~ (¢b ,  X) ,  
Then hu(q~t) = h(q~l) Jr'and only i f  t~ = I~,D. 

Proof. As mentioned before, we may assume opt: X - +  X is C-dense. N o w  
hu~(~ox) = h(cpl) was just Theorem 5.11 of  [5]. 

Suppose t~ • Jg((I)) satisfies hu(cp~) = h(~01) and that ~ is singular with respect 
to /~,. There is a set B c X which is (tz+/z~)-measurable so that t~(B) = 1, 
t~®(B) = 0 and ~otB = B for  all t • R. This is well known (see the p roof  o f  
Theorem 2.1 in [6] for instance). 

Let E n c X be maximal with respect to the condit ion 

B.~(x, E, 2n) c~ B,~(y, E, 2n) = ~ for x ,  y • E., x ~= y. 

Then X = Ux~E.B®(x, 2E, 2n); for were there a poin t  in X not  in this union, it 
could be added to E,  and without destroying the condition above. N o w  choose 
disjoint Borel sets Fx for x • E. such that Be(x,  E, 2n) c F~ c B . ( x ,  2e, 2n) 
and X = ~x,~ .Fx.  Let A. = {~,(Fx): x • E . } .  Then C,e -2h" < tL®(Fx) = 

/~.(~.(F~)). Let G = R act by tx = ~0,x; let U = [ -  5, 3]. Then, for small enough 
E, diam v A. -+ 0 as n ~ oo (see 1.6 o f  [5]). 

We now apply Lemma 2 to v = t~ + / z .  and the B above to get C. E d ( A . )  
with v(C.AB) ~ O. In particular, t~,(C,) ~ 0. Let/3, be the number  o f  elements 
of  A. lying in (7.; since/z~,(C.) >_ fl.C,e -2h", we get/3,e -2h" -+0. By Lemma 1 
we have ( j  = - n )  (I /2n)Hu(A,) > hu ( f )  = h where 

Hu(A.) = - ~ t~(Fx) In t~(F~) 
~n(F~) = C,, 

- ~ /~(Fx) In/~(F~). 
~on(Fx) n Cn ~ o 

The first sum has/3, members;  the second has at m o s t  e2hn/c, (this is an upper 
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bound  on card An as each member  o f  An has measure at least C,e-2~"). By 
Jensen's inequality (if ax,. • . ,  an > 0 and s = ~ a i < 1, then - y '  as In a s < 
son  n - I n  s); see [8, p. 11-12]); 

In e TM <__ H,(A.) _< /~(C.) On f t . -  In #(C.)) 

+ I z ( X ~ C . )  (In 1 e2h. - In I ~ ( X ~ C . ) )  
c, 

< /z(C.) In ft. + I ~ ( X ~ C . )  In 1 e2hnd_ 2k*, 
c, 

where k* is the maximum value o f  - x  In x for x s [0, I]. Hence 

0 < 2k* + /z (C . ) In  ft. e - 2 h " + l z ( X ~ C . ) I n  1 .  
c, 

As n --~ ~ ,  we have/z(C.)  ---> 1 , / z (X~Cn)  --> O, and In fine -2h" --* - ~ ;  this is a 
contradiction. Hence there can be no /z  ~ ~'(qb) singular with respect to /~ .  and 

hu(~01) = h(~l). 
N o w  consider any /~ ~ ~'(dp) with h~,(~01)= h. Either/~ is absolutely con- 

t inuous with respect to /za, or  /z = cqzl+fl/z 2 with ~ > 0, /3 >_ 0, ~+f l  = 1, 
tzi ~ ~//((I)),/z o singular and tz~ absolutely continuous with respect to/z~. Then 

hu(qh ) = ~huo(qh) + flh~,(~o~). 

By Goodwyn ' s  theorem (see [10] or  [2]) one has h,,(cp~) < h(~ol). The only way 
to have h,(~01) = h(~01) is to have hg0(~ol) = h(~oa); but we saw already this is 
impossible. Hence t~ is absolutely continuous with respect to t~®. As /z~ is 
ergodic, it follows by the Radon-Nikodym theorem that /~  =/z~,. 
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