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Summary. The measures of compositional nonrandomness to be discussed as 

to their physical significance and to their power of detecting evolution- 

ary significant variations are 

Q _ fOOL ~ Ini - Pi Ll (Holmquist, 1974) 

S = in L! + Z n in p. - ~ in n ! the "compositional entropy", and 
i i l 

X 2 = ~ (n - p L) 2/p L, 
l 1 l 

(p. a priori probability for amino acid i, n its number of occurrences 
l i 

in a protein of length L). As a concrete example, the p. are here sup- 
1 

posed to represent equal frequencies of all non-stop codons. For each 

quantity, four levels are defined: The base level, with optimal (i.e. mini- 

mal nonrandomness) composition, admitting non-integer values of ni; the 

integer level with optimal integer composition; the noise level, rep- 

resented by a typical random cain; and the real protein level. On all 

these levels, S, which is the measure with the most direct physical sense, 

shows the smoothest behavior with the smallest relative fluctuations and 

thus the highest resolution. 

Key words: Compositional Nonrandomness - Entropy of Peptide Chains - Neu- 

trality or Selection - Evolutionary Trends - Selective-Stochastic Balance. 

1. INTRODUCTION 

What a random chain should look like is a matter of defi- 

nition. Two main proposals explicitly or implicitly haunt the 

literature: 

a) In a random peptide chain each amino acid eccurs with the 

same a priori probability of Pi = 0.05. We call such a chain 
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a 5% peptide, but will not be further concerned with it ex- 

cept for comparison purposes. 

b) In a random chain, each possible non-stop cedon triplet is 

represented with the same probability of 1/61, and consequently 

the a priori probability for amino acid i is Pi = mi/61, where 

mi is its codon multiplicity, i.e. the number of triplets 

that code for that amino acid. We call such a state the codon 

equilibrium. 

In either case, sequentially speaking, there is no inter- 

action between sites, i.e. each site is occupied according to 

these probabilities, independently of its neighbors. 

Codon equilibrium in a wider sense does of course not re- 

quire equal probabilities of the four nucleotides. A general- 

ization will be discussed which is characterized by four dif- 

ferent probabilities of the nucleotides (Vogel, in prep.). We 

will treat here the simple case Pi = mi/61- 

Several quantities have been proposed to measure the devi- 

ation of a real protein from randomness, as far as compositior 

is concerned. They compare the observed number of amino acids 

of type i, ni, with the number predicted by the random hypo- 

thesis, piL, for a chain with L residues. 

Holmquist proposed a simple pseudo-linear measure 

100  20 
= In i I (I) Q L i=i - Pi L 

(without the absolute sign, the sum would of course vanish 

due to Zn i = L and Epi = I; Holmquist & Laird, 1974). 

The X 2 of the departure between observed and expected 

amino acid numbers might be used: 

(n i - PiL) 2 
(2 )  X 2 = 

P i  L 

An entropy-like measure may be introduced, the zero-order 

compositional entropy 

(3 )  S = in L ! + E n.l in Pi -Z in n.l ! 

We will compare these measures first with respect to their 

physical meaning, then to their applicability to real data, 

especially to their freedom of noise and their discriminatory 

power. 
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2. PHYSICAL MEANING OF THE NONRANDOMNESS MEASURES 

A given chain with letters one by one drown from an inexhaust- 

ible bag which contains these letter with abundances Pi, can- 

not be supposed to display exactly the ideal composition pi L 

for two reasons: 

- the pi L will not be all integer, except for L = ~ 61 (~ in- 

teger); 

- there will be fluctuations around the equilibrium compo- 

sition that is as close to pi L as is possible with integer 

ni. 

The probability of generating a chain with the composition 

n i is given by the multinomial expression 

npi  n i  
(4) P (n., L) = L ! 

l ~n i ! 

If noninteger values of n i were allowed, the maximum of P 

would be given by the equilibrium composition n i = pi L. For 

real chains with integer ni, the highest possible P is slight- 

ly lower than (4) (see section 4). The typical chain gener- 

ated by the random source has a yet lower P (see section 5). 

For a real protein, the distance between its P and the maxi- 

mum one permitted for the given length L will have a bearing 

on the selective constraints that governed the evolution of 

that protein. Without any such constraints, and provided the 

assumptions underlying the randomness concept are valid, the 

protein should resemble the chains generated by the randem 

drawing process. If there is a significant departure from 

such a random composition, this must have a functional or 

evolutionary reason. 

The entropy S as defined above is, as usual, the natural 

logarithm of P and thus shares its physical sense. We will 

show that X 2 can under certain assumptions be taken as a 

first approximation to S. 

In contrast, a direct justification for Q in probabilistic 

or other terms seems not to exist. Its analytical form (the 

absolute value is a "kinked" function) already seems to pre- 

clude that. Q is thus a purely phenomenological quantity, 

possibly sometimes more convenient than the others. 

Our "compositional entropy" S should not be confused with 

Shannon's informational entropy H = - ZPi in Pi, nor with the 

"sequential entropy" Zn i in Pi, the log of the probability of 

a chain with given sequence being produced by random drawing 

out of the infinite bag. 
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3. SOME PROPERTIES OF S 

We first consider pi L as integers, which is literally valid 

only if L = ~ 61 (~ an integer), and derive an approximation 

for S: 

, ° S : in L! + Zn.1 in Pi Zin nl ! 

So= in L! + ZL --ID- in Pi - Zln (Lp.)!l 

So - S = ~S,l - Zv.l in Pi ' 

where 

v.l = n.1 - L Pi 

and 
n .  ! v .  ( v .  + 1) 

1 1 1 
s.l = in z v.1 in LPi + 

(LPi)! 2 LPi 

v .  ( v .  + 1) ( 2 v .  + 1) 
1 1 1 

12 L 2 pi 2 

whichever is the sign of ~i (obtained by developing the log). 

Thus 

(v + 1) ~ (v ~ 1) (2v  + 1) 
i i i i i 

(5) S - S = Z -Z 
O 

L Pi 2 L Pi 12 2 2 

Real proteins generally have n i that deviate from pi L by 

some units. Then the ×2 approximation is adequate: 

I ~i 
S 
i Y Pi E 

Only in very exceptional cases like histones, where one 

amino acid is several times more abundant than expected, the 

second sum in (5) with its v~ may take over for some i: 

I l 
s i ~ ~ L2~2 

For noninteger pi L, the factorials in the Z in (pi L) ! have to 

be smoothed out, e.g. by the ganuma function: 

(6) So = in L! + L ~ Pi in Pi - ~ in F (L Pi + I) 
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This is still the maximum of all possible S for a given L. 

As a function of L, the maximal entropy per amino acid, So/L, 

has been plotted in Fig.2. 

i 

4. THE "PERIODIC TABLE OF PROTEINS" 

Which is the chain with integer n i that best approaches the 

ideal values S O according to (6) and Qo = 0 respectively? 

Since chains with best S and with best Q will be slightly 

different, we first maximize S and call the value thus ob- 

tained S I. To do this, we start from a chain with L = ~ 61 

(~ an integer), for which S = S O is attainable by n i = ~m i 

(m i number of codons for amino acid i). We might call such a 

chain a full shell chain. Next we gradually add always that 

amino acid that yields the highest increase in S or in P. The 

P increase by adding an amino acid i is given by the factor 

(L+1)Pi/(ni+1) which, as long as n i = Lpi, i.e. as long as 

there are no duplications in the construction of the new 

shell, is the larger, the higher Pi- Thus one first adds sex- 

tet, then quartet, then triplet coded amino acids. Before 

adding the first doublet acid, however, addition of still 

another sextet acid becomes more advantageous. One thus ar- 

rives at the following pattern of shell construction: 

(7) 

Multiplicity: 

6 4 3 6 (2 4 6) 

Total no. of aa added: 

3 8 9 12 21 26 29 

3 6 4 6 (1 2 3 4 6) 

30 33 38 41 43 52 53 58 61. 

The order in the last 5 columns does not matter for S, nor 

does it in the other 3 columns put into parentheses. 

Each period of 61 amino acids can be split into 4 subper- 

iods, of 12, 17, 12, 20 elements. Within the second and the 

fourth subperiod, the filling order actually does not matter, 

in the first and the third it does. The atomic physicist 

would speak of degenerate S values in the second and the 

fourth subperiod. Exceptions of the rare earth type do not 

occur in this periodic system. 

The most apparent kinks in the function St(L) occur near 

the full shell state L = ~61. For instance, $I(~61 - I) = 

$I(~61), whereas So(~61 - I) = So(~61) - in(4.5/61.~). The 

difference So-S I is, aside from this "jumpiness", fairly pro- 

portional to L, such that generally (So-SI)/L~ 0.02. 
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Holmquist' s measure of compositional nonrandomness Q= ~ Z I ni-PiLl and 

its 4 levels: Base line: Q of an equilibrium chain; Qo=O; crosses: op- 

timal chain with integer n i (QI) ; heavy line: Typical randomly gener- 

ated chain (Q2 with its standard deviation, indicated by broken lines); 

points and open circles: Real proteins 

The compositions with lowest Q look somewhat different, at 

least for some lengths L, since the amino acids to be added 

in the course of their gradual construction are chosen by a 

different criterion. If one notes the Q-optimal compositions 

in the same notation as for the S-optimal ones above, together 

with their Q-L values within a period of 61, say between 

L = 62 and L = 122, they form a palindrome: 

6 3 6 
6 4 3 4 6 6 4 3 4 6 

2 I 2 

This palindrome property can be generally proven as follows: 

Take a chain with L= U.61±l, which has a composition ni= 

u.61.Pi±9 i. Then Q.L= 100 Z l~.61.Pi±Vi-~.61-Pi±lPil = 
100 Z Ivi-lPil, which only depends on the excesses or de- 

ficiencies ~ and vi' but not on their sign. 

For the quantity Q-L, the palindrome is moreover almost 

symmetrical around L= (~+I/4).61. 

6 3 in the above filling order, Except for the cases 2 and 1 

there is no indeterminacy like there was in large regions 

the S-optimal period. 
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Fig. 2 

Entropy S and its 4 levels: Base line: S = O; Solid line: Equilibrium 

chain (So) ; the S l values of the optimal chain with integer n i merge 

with the S O line within its width; Broken heavy line: Typical randomly 

generated chain (S 2 with its standard deviation, indicated by broken 

lines) ; Points and open circles: Real proteins. Note that the S axis has 

been inverted in order to facilitate comparison with Fig. i 

The Q values for the Q-optimal compositions, which we will 

call QI(L), are relatively much farther from their base line 

Qo = O than the SI(L) are from their base So(L). This becomes 

evident if one compares these distances with those obtained 

for the noise peptides (S2(L) and Q2(L) respectively) and 

with real proteins (see below and Figs.1 and 2). Most QI (but 

the few around L= ~.61 and L= (~+I/2).61) attain about 20% of 

Q2 or more, whereas only the highest SI-S o attain 10% of 

$2-S o for L= 50. At higher L (above 100) this relation be- 

comes more favorable for S: while QI stays around 15-20%, 

SI-S o decreases to I% or less. 

5. THE NOISE PEPTIDE 

The third level of S or Q is represented by the chains that 

a random source emits (see section 2). We generated such 

chains by a computer, ten for each length L, at L = 10, 20, 

.. 200, and determined the means of S and Q, called S2(L) 

~.. Q2(L), with their standard deviation, for each L. Figs.1 

and 2 show the results. 
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The S 2 points, reduced to the base line S o and to one 

amino acid, i.e. the points (S2-So)/L can be represented by 

a fit function which for small L runs like L -I/2, for high L 

like L -I. The best fit (linear regression of ($2-So)-I • L I/2 

versus LI/2) is 

(8) S 
o - $2 = 

11.89 

I + 4.22 L -1/2 

with a correlation coefficient r = 0.906. 

In contrast, the points Q2(L) are rather "jumpy". The best 

fit by a similar function as above is 

(9) Q2 : 
0.00278 /L + 0.000011L 

i..e practically Q2 = L-I/2, but with a correlation of 

r = 0.255 only. 

Relative to the total values of S 2, the standard deviation 

of this quantity is much smaller than the corresponding frac- 

tion for Q2" However, with respect to the distance from the 

base line, S 2 has the higher coefficient of variation (st. 

dev./mean), namely about 20% as compared to about 12% for Q2- 

If one asks for the s and Q of the most probable composition, 

the answer is S : S o, Q = O. But if one asks for the most 

probable values of S and Q, the answer is S 2 , Q2 with $2~So, 

Q2+O. This apparent paradox, so common in statistical physics, 

is resolved by a distinction of micro- and macrostates. Dif- 

ferent values of S or Q are realized by very different numbers 

of compositions. The maximal S, namely So, and the minimal Q, 

namely O, are by definition realized by only one composition, 

if any. The number of possible compositions rises steeply 

with the distance from equilibrium. 

The most probable value of S can be estimated from first 

principles rather than from simulation as S 2 = S O - 8.5 (see 

appendix), the width of the distribution around this value is 

AS 2 = 2.9. This predicted S O - S 2 = 8.5 looks slightly differ- 

ent from the empirical relation (8), but ceincides with it 

for L = 112, which is close to the mean length of the chains 

used in (8). The mean of the 200 values of S O - S 2 for 20 

different chain lengths used in Fig.2 is 8.59. A hundred more 

chains generated with L = 61 furnished (S o - S2)/L = 

0.128 ± 0.04] compared to a prediction of O.139 ± 0.048. 

Fifty more chains with L = 140 had an observed 0.065 ± 0.O21 

against a predicted 0.06] i 0.O21. 
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6. REAL PROTEINS 

As a fourth level, we plot the entropies S and the Q values 

for some proteins from the following classes: 

34 globins (~, 8, myoglobins and other monomeric chains), 

36 cytochromes (c), 

32 fibrinopeptides (A and B combined), 

18 insulins, 

6 lysozymes and lactalbumins, 

12 parvalbumins and related chains. 

Of rabbit TN-C and ALC 1,2, only the sections have been used 

that align with the parvalbumins. (Thatcher et al., 1974; 

Pech~re et al., 1973; Joassin, 1974; Capony et al., 1973; 

Gerday, 1974; Frankenne et al., 1973; Coffee et al., 1973, 

1974; Capony et al., 1974, 1975a, 1975b; Collins, 1974; Frank 

et al., 1974). 

All other sequences are from Dayhoff (1972, 1973). Chains 

were only used if their sequence is known without any ambi- 

guity. Even chains containing B and Z (for Asx and Glx) were 

discarded. 

It is obvious from Figs.1 and 2 that S discriminates bet- 

ter than Q. The clouds of low molecular weight proteins 

(fibrinopeptides and insulins) penetrate into the standard 

deviation margins of Q2 (some points almost touch the Q2 

curve itself), whereas they are all outside of the S 2 margins 

(but fibrinopeptide of Rhesus which touches this margin). The 

distances of the means for the 6 or 7 protein classes from 

the Q2 or S 2 curve, expressed in standard deviations of Q2 

or S 2, are always higher for S: 

Protein: Fibrin. Insul. Cytochr. Parvalb. Lactalb. Lysoz. Globin 

($2-S)/AS 2 3.6 2.5 7.4 10.3 7.6 4.2 9 

(Qz-Q)/AQ2 2.1 1.6 4.9 8.4 6.0 3.8 8 

But even with the less powerful measure, O, one sees at 

once significant differences between the protein classes and 

within each class, both in their mean distance from S 2 or Q2 

and in their spread around this mean. The best example for 

the first point (different class means) is cytochrome c com- 

pared to the typical parvalbumins (except rabbit ALC): Both 

have approximately the same length, and yet the parvalbumins 

are much more distant. This effect evidently survives any 

base shift, but it is much emphasized by not using S but S-S 2 

as a measure. For the second point (different class spreads) 

one can quote the extremely scattered fibrinopeptides as com- 

pared to the very compact lysozymes. However, this spread has 

279 



to be judged against the background of substitutional change 

within the molecule. A variable chain like fibrinopeptide 

might well scatter more than a relatively slowly substituting 

one like lysozyme, even if the latter covers a wider taxo- 

nomic range. But much "slower" proteins like cytochrome and 

insulin also scatter more than lysozyme. The question to be 

asked is not "How much scatter?", but "Given the observed 

number of substitutions, did these substitutions cause an en- 

tropy (or Q) change as expected if they were random, or more, 

or less?" In this perspective, the problem is treated in an- 

other paper of this series. 

As to the differences between means of subgroups within 

protein classes, we also think them to be evolutionary and 

functionally significant. The possible meaning of myoglobin 

being more distant than most other globins, and of ~ and B 

globins being alike, will be discussed elsewhere (H. Vogel, 

in prep.). Cytochromes of plants, fungi, and insects are less 

distant than those of vertrebrates as has been pointed out 

before (Vogel, 1972). Quite generally, the comparison with 

the behavior of other properties than S and Q helps dis- 

tinguish between significant and spurious differences and 

helps explain the functional reasons for the significant 

ones. 

7. CONCLUSIONS 

From the preceding discussion it appears that of the three 

measures for compositional nonrandomness that have been con- 

sidered - Q, x 2 and S - the compositional entropy S has the 

clearest sense with respect to the model chosen, since it 

describes the distance from equilibrium or from a noise pep- 

tide in direct probabilistic terms without any approximation 

or additional assumption. 

Phenomenologically, the behavior on the three levels (in- 

teger base level, noise level, real level) is much smoother and 

less subject to fluctuations in terms of S than in terms of 

Q. Most importantly, S offers a much better resolution than 

Q, i.e. variations between classes of proteins and between 

individual chains within one class can be much more clearly 

discriminated. 
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APPENDIX: 

COMPUTATION OF $2, THE MOST PROBABLE VALUE OF S 

FOR THE NOISE PEPTIDE 

We first simplify the situation by assuming all Pi to be 

equal, Pi = 0.05. Then, for deviations v~ from equilibrium 

that are not much greater than pi L, we need only to maintain 

the X2-1ike term in (5): 

~ . ( v .  + I) 
I 3_ i I0 I0 2 

z ( ~  2 -  + v ) z v ,  
S' = S O - S = ~ Z' p.L L i i L 1 

1 

since Z~ i = O. Abstracting for the moment from the discrete- 

ness of the vi, one sees that in the 20-dimensional space of 

the vi, the surface with a fixed value of S' is a sphere 

around the origin with a radius R = /S' L/IO. The condition 

Zv i = O reduces this sphere to its intersection with a plane 

passing through the center, i.e. to a 19-dimensional sphere. 

The volume enclosed by this sphere, corresponding to S' 

values higher than the fixed S~, is 

V = A R 19 = A (S~ L/IO) 9-5 

(A is a constant whose value does not interest here). 
! ! Increasing S I by dS leads to an increase of V by 

dV = ~--~V dS' = 9 5 A (0.1 L) 9-5 S '8-5 dS' 
~S' " I 

The number of integer-coordinate points inside this shell, 

equal to ~V, gives the number of compositions that realize a 

S' out of (S{, S~ + dS'). Each of these compositions has a 

probability e-S''relative to the equilibrium composition. 

The probability distribution of S' reads thus 

f(S') = A' L9-5 S'8.5 e -S' , 

A' comprising all constants, f(S') is a curve slightly skewed 

to the right. Its maximum is given by 

fl (S') = O, i.e. S' = S 
m o 

This mode has a height of 

! 
f(S m ) = 16164 A' L 9"5 

- $2 = 8.5. 

281 



We estimate the width of the distribution from the modal 

curvature 

f'' (S')=-f (S')/8.5 
m m 

The distance AS' = S' - S1m that reduces the height to half 

its modal value is in good approximation 

AS' = 2.9 

In the actual case of different Pi, the 20-dimensional 

s p h e r e  i s  d e f o r m e d  t o  a n  e l l i p s o i d  w h o s e  c e n t e r  i s  g e n e r a l l y  
n o t  e x a c t l y  a t  t h e  o r i g i n :  

9 
X. - 

I z + I ~p~l x. v + I 
S '  = 2 Z L P i  8 L ' ± 1 2 

2 I The half-axes are a i : Pi LS' + 4 Z p~l, the center is at 

~i = - I/2. The volume becomes V = AHa i. These complications 

make a complete treatment harder. It is however evident that 

the S I independent terms in the ai flatten the original 

S '8"5 • e -S' distribution to a L÷O limit of simply e -S' with 

S' m = O. The transition is tentatively described by the /L 

term in the denominator of (8). 

The prediction of Q2 and its standard deviation would 

probably be possible along similar lines, but is more cumber- 

some due to the analytical brittleness of the absolute sign. 
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