
Graphs and Combinatorics (1995) 11:221-231 

Graphs and 
Combinatorics 
© Springer-Verlag 1995 

Hamiltonicity in Balanced k-Partite Graphs 

Guantao  Chen 1., Ralph J. Faudree 2t, Ronald J. Gould 3¢, 
Michael S. Jacobson 4§ and Linda Lesniak 5~' 

Department of Mathematics, North Dakota State University, Fargo, ND 58105, USA 
2 Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152, USA 
3 Department of Math. & Comp. Sci., Emory University, Atlanta, GA 30322, USA 
4 Department of Mathematics, University of Louisville, Louisville, KY 40292, USA 
s Department of Math. & Comp. Sci,, Drew University, Madison, NJ 07940, USA 

Abstract. One of the earliest results about hamiltonian graphs was given by Dirac. He 

showed that if a graph G has order p and minimum degree at least p then G is hamiltonian. 

Moon and Moser showed that a balanced bipartite graph (the two partite sets have the 

same order) G has order p and minimum degree more than p then G is hamiltonian. In this 

paper, their idea is generalized to k-partite graphs and the following result is obtained: Let 
G be a balanced k-partite graph with order p = kn. If the minimum degree 

6(G)> i ~ k + l -  n i fk i sodd  

) 2 n k +-2 if k is even 

then G is hamiltonian. The result is best possible. 

1. Introduction 

One of the earliest results in the theory of hamiltonian graphs is due to Dirac [1]. 

Theorem 1 (Dirae). I f  G is a graph with p > 3 vertices having minimum degree 

P then G is hamiltonian. 
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In 1963, this result was generalized for the special case of bipartite graphs in 
which each partite set has the same number of vertices, that is, balanced bipartite 
graphs. Moon and Moser [2] proved: 

Theorem 2 (Moon and Moser). I f  G is a balanced bipartite graph with 2n vertices 

having minimum degree 6(G) > 2' then G is hamiltonian. 

Note that the requirement that G be balanced is necessary, and that the mini- 
mum degree was lowered to one fourth of the order of the graph. It is the purpose 
of this paper to generalize this result to balanced k-partite graphs. Although 
requiring that the graphs be balanced is not necessary for k _> 3, it is crucial to 
our present proof techniques. 

Theorem 3. Let G be a balanced k-partite graph of order kn. I f  the minimum degree 

then G is hamihonian. 

1) 
k + l  n if k is odd 

cS(G) > 

2 k + 2  n i fk iseven 

The proof of this theorem is placed in Section 3. Theorem 3 includes Dirac's 
Theorem when n = 1 (that is, kn = k) and gives an improvement of Dirac's result 
when n > 1. This comes at the expense of assuming that G is a balanced k-partite 
graph. The following two examples show that Theorem 3 is in some sense the 
best possible. 

Example 1. Suppose k is odd. Let k = 2t + 1, and G(n, 2t + 1) have partite sets 
X1, Xz, ..., X2t+~ with ISil = n for each i = 1, 2 . . . . .  2t + 1. The vertices of X~, 
. . . .  Xt are adjacent to each vertex in each of the other partite sets. For each 

i = t + 1, t + 2, . . . ,  2t + 1, distinguish a subset of ~ vertices from each Xi 

and call it ~. Join all the vertices in Y~ to each vertex in each of the other partite 
sets. There are only two different degrees; there are vertices of degree 2tn, and 

vertices of degree nt + ~ t. 

Thus G(n, 2t + 1) has minimum degree n + ~ t. Let 

X = X1 U X2 U ' "  X~ U Y~+I U'-" U Y2t+l. 

Note that the vertex set of G(n,2t + 1) - X is an independent set since IXI < 

(2t + 1)n it follows that G(n, 2t + 1) is not hamiltonian. This example shows that 
2 

we need minimum degree greater than ( l + 2 ~ + 2 ) t n  in Theorem 3 when 

k = 2 t +  1. 
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Example 2. Suppose that k is even. Let k = 2t and G(n, 20 have partite sets X 1, 
X2 . . . . .  X2t, with IX~I = n for each i = 1, 2 . . . . .  2t. The vertices of X1, . . . ,  Xt-~ are 
adjacent to each vertex in each of the other partite sets. For  each i = t, t + 1 . . . . .  

2t distinguish a subset of ~ vertices of Xi, and call it Y~. Join all the verti- 

ces in Y~ to each vertex in each of the other partite sets. As in Example 1, there are 

only two different degrees, (2t - 1)n and n(t - 1) + ~ t. Hence, G(n, 20 has 

minimum degree n(t - 1) + ~ t and is not hamiltonian since the vertex set 

of the graph G(n, 20 - X, where 

X = X 1U X2U'' 'U Xt_ 1U YtU'''U Y2t, 

is independent and IXI < tn. This example shows that we need minimum degree 

greater than t - ~ in Theorem 3 for k = 2t. 

Following Moon and Moser's proof of Theorem 2, we obtain the following 
result which generalizes Theorem 2 from bipartite graphs to k-partite graphs. 

Theorem 4. Let G be a balanced k-partite graph of order kn. I f  for all xy ¢ E(G), 
x ~ X ~ , y C X ~  

d(x) + [g(y)nX~l > (k - 1)n, 

then G is hamiltonian. 

The proof of the above theorem is similar to the proof of Theorem 2 given in 
1,2]. For  this reason we leave it to the reader. 

2. A Basic Lemma 

We assume that all cycles and paths are given with a fixed orientation. Let C 
be a cycle of G and W c V(C). We use W ÷ (W-)  to denote the set of successors 
(predecessors) of vertices of W in C. When W = {w}, we use w ÷ (w-) for {w} + 
({w}-). For  each pair of distinct vertices u and v ~ C, let C[u, v] denote the sub- 
path of C from u to v along the orientation of C and C-I-u, v] be the subpath 
of C from u to v along the reverse direction of C. We make a similar notation 
when C is replaced by a path P. Let A be a vertex subset of a graph G. We define 
N(A) = U,~.4N(a) and .4 = V(G) - A, where N(a) is the usual neighborhood of 
the vertex a. 

Let G be a graph of order p and z(G) = k, with color classes X1, X2, . . . ,  Xk, 
and let G be "maximally" non-hamiltonian (the addition of any edge between 
color classes would result in a hamiltonian cycle). Furthermore, assume for all 
xy ¢ E(G), x ~ X i that 

{~ i f y C X i  
d(x) + d(y) + jX~l > (,) 

+ 1 i f y e X i "  
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Lemma 1 (Basic Lemma). I f  G is as described above and x i ~ X i (i = 1,2,. . . ,  k) 
then either 

1. x~xj ~ E(G) for all x~ ~ Xj, j 4: i, or 
2. there is a (p - 1) cycle C and a vertex z ~ X i not on C, so that x i is a successor 

along C of a neighbor of z. 

Proof. Let x~ e X~ and assume condition 1 is not true. Let xj e Xj, j ¢ i, so that 
xixj q~ E(G). By the maximality of G there is a hamiltonian path P from xi to x i. 
Since G is non-hamiltonian, for every adjacency of xj on P, x~ is not adjacent 
to the successor of that neighbor of xj. If all successors of adjacencies of xj are 
from color classes other than X~, then it would follow that x~ would have at least 
d(xj) + [Xil non-adjacencies, which contradicts (*). Thus, for some neighbor y of 
xj, the successor Yi ~ X~. Subsequently, by following P from x~ to y, the edge to x j, 
down P to y~, there is a hamiltonian path, 

Q [xi, yi] = P [xi, y] yxjP-  [xj, yi], 

from x~ to yi with xi, y~ e X~. Again, for every adjacency z of Yi, x~ is not adjacent 
to the successor of z along path Q. By (*), some of these successors must be from 
X~. For each such successor zi 4: y~ along the path Q, xi is also not adjacent to its 
successor z;-; so, since z .+, ~ Xi, (*) would be contradicted since xi would have at 
least d(y~) + IX~l - 1 non-adjacencies. Thus xi is adjacent to some z~- and 

xi'"zyi'"z?x~ 
is a (p - 1) cycle with z~ ~ X~ not on the cycle, and x~ is the successor of a neigh- 
bor of z~, namely z .+ Thus condition 2 is satisfied when condition 1 does not hold 

. t  " 

and the Lemma follows. [] 

3. Proof  of  Theorem 3 

When k = 2, it is Moon and Moser's theorem. We assume that k > 3. 
Suppose the theorem is not true; choose an edge maximal counterexample G 

(the addition of any edge between partite sets of G would result in a hamiltonian 

cycle) such that 6(G) > ( ~ -  fl)n, where 

~l/(k + l) k i s o d d  
P = {2/(k + 2) k is even" 

Let X 1, X2 . . . . .  Xk denote the partite sets with IXi[ = n for i =  1, 2, . . . ,  k. 
It is readily seen that (1 - 2fl) >_ fl if k >_ 3. If (1 - 2fl)n < 1, the minimum 

kn hence, G is hamiltonian by Theorem 1, a contradiction. Thus ,  degree ~(G) _> ~-; 

(1 - 2fl)n > 1, and so the condition (*) is satisfied. Since G is edge maximal and 
the minimum degree conditions satisfy (.) from Lemma 1, either G is a complete 
k-partite graph in which case it is hamiltonian, or, without loss of generality, 
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assume tha t  there is a vertex x ~ X 1 such that  N(x) ~ X2 U X3 °'" U Xk° By L e m m a  
1, there is a cycle C of length p - 1 and a vertex z e XI  not  on C such that  x is a 
successor a long C of some vertex in N(z). Let S be the successor vertex set of  N(z) 
and R be the predecessor  set of  N(z) on C. Clearly, bo th  S and R are independent  
vertex sets since C is a longest cycle of  G. Fo r  each i = 1, 2, . . . ,  k, set 

Si = S N Xi and R i = R N X i. 

Without  loss of  generality, assume that  

S~ ¢ ;3 for each i = 1, 2 . . . . .  1, and, 

[S ,+11  : t S l + ~ l  : " " :  I & l  = 0 .  

Claim 1. 

f k + l  kisodd 
k ~ 2 

<__ l <_ 1 k is even 
l ~  

1 then l _> k Proof. Since in any  case we have fl < ~, ~. 

Wi thou t  loss of  generality, assume that  IS~l = min{ISi[: 1 < i < l}. 

d(y) < kn - n - (l~-l l-)[Sl for each y ~ S~. Since b(G) > ( ~ -  fl)n, we have 

Solving the above  inequali ty for l, we obta in  

k - 2/~ 
l <  

2(1 - 2fl)" 

Replacing fl in terms of k, we obtain  the upper  bound  on I. 

Claim 2. For each y e S, 

J 

IN(y) - SI < 
4 / 

~ n k is even 

The above implies that 

I @  n k is odd 

I=~--=n k is even 
[ k + 2  

Then 

[ ]  
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and for each i = 1, 2 . . . .  , I, 

Ik 
- 1  

n k is odd 

IS~l > 

L k - 2  
~ n k is even 

Proof. Since C is a longest cycle of G, the vertex subsets N(y), S, and N(y) - S 
are pairwise disjoint. Thus  kn >_ IN(y)I + ISI + IN(y) - $1. So the first inequality 
holds. The  last two inequalities follow directly from the first one. [ ]  

Claim 3. For each i = 1, 2 . . . . .  l, 

IN(z) N Xil < 2fin = 

Further, if S~ N R ¢ ~,  then 

f l  

IN(z)N X~l < fin = l k ~  - l n  
/ " 

k is odd 

k is even 

k is odd 

k is even 

Proof. Let y e S i with 1 < i < I. Since C is a longest cycle of G, S is an indepen- 
dent set and 

I V(C)I >_ ISI + IN(z)U N(y)I = d(z) + IN(y)I + I N ( z ) -  N(y)I 

> d(z) + d(y) + IN(z)NX~I, 

so the first result holds. 
To  prove the second inequality, let y e S~ N R; then y is a successor along C of 

some vertex in N(z), and a predecessor along C of some vertex in N(z) as well. 
Since C is a longest cycle of G, neither N(z) nor  N(y) contains two consecutive 
vertices along C, and N(y) N ((N(z)) ÷ U (N(z))-) = ~.  Thus, 

IV(C)[ _> 2IN(z) U N(y)I = 2(d(y) + IN(z) -- N(y)I) > 2(d(y) + IN(z)N X~[). 

S i n c e d ( y ) > ( ~ - f l ) n ,  thesecondresultholds.  [] 

We will break the remainder of the proof  into three cases according to whether 
k is odd, or k is even and k > 6, or k = 4. 

3.1 k is odd 

Clearly, k > 3. By Claim 1, we have 1 - 
secutive vertices along the cycle C, 

k + l  
. Since N(z) contains no two con- 
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1) 
IS - R] _ IV(C)I - 2d(z) < kn - 2 k + 1 n = -~-+~n. 

k + l  k - 1  2 
F o r e a c h l _ < i <  ~ , I S i [ > ~ - ~ n > _ ~ - ~ n b y C l a i m 2 ,  a n d s o S i N R ¢ Z L  

1 k + l  
By Claim 3, IN(z) n x~l < k-+-I n for each 1 _< i _< ~ . Since z e X1, we have 

that 

d(z) = IN(z) N Xil < ~:2 2 -  k - -+ l  n + n =  

a contradiction. 

1) 
k + l  n, 

[] 

3.2 k is even and k > 6 

k 
C l a i m  4. l = - .  

2 

Proof Again, since C is a longest cycle of G, ]S - RI ~ IV(C)[ - 2d(z) < kn - 

(~ k+2 )2 _ 4  __k-2 4 2 n = ~ n .  For each 1 _< i < l, [S¢l > ~ - ~ n  > ~ n  by Claim 

2 
2; hence SiNR -¢: ;2. By Claim 3, ]N(z)NXi] < ~-+~n.  Since z e X1, 

k + 2  n < d ( z ) < ( l - l )  ~ + ( k -  l)n. 

k k 
Solving the above inequality, we have l < 1 + ~. Since I is an integer, then l = ~ 

by Claim 1. [] 

k X Let A = U/k/~ Xi and B = Ui=¢kl2,+l i. 

C l a i m  5. For every x* ~ A, 

IN(x*)NBI> k + 2  n_>~-.  

Proof By Claim 2, the result is true for each x* e S. We only need to show that 
4 

[N(x*) n B[ < ~ n  for each x* e A - S. Suppose that, to the contrary, there is 

4 
a vertex x* ~ Xio such that ]N(x*)NBI >_ ~-+--2n. By Lemma 1, there is a cycle C* 

of length kn - 1 and a vertex z* e Xio not on C* such that x* is a successor along 
C* of some vertex of N(z*). Let S* be the set of successor vertices of N(z*) on C* 
and S* = S* N X~ for each i = 1, 2 . . . . .  k. Assume that 

s* =s*us u 
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with i 1 = io abd S.* ~- N for j = 1, 2, l*. By Claim 4, l* k ,~ . . . .  = ~ and, by Claims 

(k - 2)n k 
2, I S/*I > k + ~  for j = 1, 2 . . . . .  l*. Suppose that there is some ij > ~. Since 

k - 2  k - 2  
I Siol > ~ n and I S~l > ~ n ,  by the pigeonhole principle there is a vertex 

y e Sfo N S*. Then 

k - 2  
IN(y)NBI >_ IS?l  > ~ - ~ - ~ n .  

On the other hand, by Claim 2, 

4 
IN(y)OBI < ~ n ,  

a contradiction. Thus, {il,i2,...,ik/2} = {1 ,2 , . . . ,~} .  By Claim 2, lN(x*)NBl < 

4 
k + 2 n, a contradiction. [] 

kn 
Arguing symmetrically, for each vertex x ~ B, IN(x)N AI > ~-. Now consider 

the spanning bipartite subgraph of G with partite sets A and B having minimum 
kn 

degree more than ~-. By Moon and Moser's theorem it is hamiltonian, hence so 

is G, completing the proof of this case, [] 

3.3 k = 4  

5n 
In this case we may have I = 2, 3, or 4, and ~(G) > ~-. 

Claim 6. We have IS N RI > n + 1, which implies that there exist two distinct inte- 
gers 1 < i 1 ~ i 2 < l such that Si~ N R v~ f~ and Si~ N R ~ f~. 

Proof. Since C is a longest cycle of G, 

IS n RI > d(z)  - (I V(C)I - 2d(z))  = 3d(z)  - I V(C)I > n + 1. 

The remaining part of the claim follows directly from the pigeonhole principle. 
[ ]  

Claim 7. 1 _< 3. 

Proof. Assume to the contrary that l = 4. By Claim 6, without loss of generality, 
n 

assume that S 2 N R ¢ ~. Then, by Claim 3, I N(z) N X 2 [ < ~ and iN(x) N Xi[ < 2_~, 
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i = 3, 4. Therefore, 

- -  < I g ( z ) l  = IN(z)  N ge l  < + ~ + n = - - .  
3 i=2 3 

a contradiction. []  

2n 2n 
Claim 8. I f  l = 2, that is, S = $1 U $2, we have I Sxl > 3 -  and 1521 > ~-.  Further, 

2n 
IN(y) A ( X  3 UX4) I < ~- for  each y ~ S. 

Proof. The first two inequalities follow directly from the fact that 1511 + IS21 = 
5n 

151 > ~- ,  1511 -< n, and 1521 < n. The third follows directly from Claim 2. []  

Claim 9. I f  l = 3, either $2 N R = ~ or S 3 N R = ~ .  

Proof. Assume that, to the contrary, both $2 N R ¢ ~ and $3 n R ¢ ~.  By Claim 
n n 

3, IN(z)N X21 < ~ and IN(z)N S31 < 3" Thus 

5n ~ (~ 1 ) 5n 
~ -  < d(z) = IN(z)NXi[  < + ~ + 1 n - 

i=2 3 ' 

a contradiction. []  

Without loss of generality, we will now assume that if l = 3 then $2 N R = 
and $3 N R = ~. Note that $3 may be empty. 

2n 2n 2n 
Claim 10. I f  1 = 3, then R = R 1 U R  2, IR1] > ~-, IR21 > ~-, and IN(y )NB[  < 

for  each y ~ R. 

Proof. Clearly, there is a symmetrical froms of Claims 3 and 8 for R 1 and R 2. If 
2n 

R3 # S~ and R,~ # ~, then IN(z) N Xil < -~- for i = 3, 4 by Claim 3. Thus, 

5n ~ (~ 2 2)  5n 
~- < IN(z)l = tN( z )NXi l  < + ~ + j n - 

i=2 3 ' 

a contradiction. []  

Suppose that R 3 ~ ~ and R,~ = ;~. Note that S~- O R 3 = ~. Thus, we have 
that 

4 n - I = ] V ( C ) I > I N ( z ) I + [ S I + I S f ] + I R 3 1 >  + ~ + ~ +  n = 4 n ,  

a contradiction. [] 
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Note that, by Claims 8 and 10, respectively when l = 2 or l = 3, we have that 
2n 2n 

ISll > 3-or IRll > 3- .  

Claim 11. For each y ~ Xt U X2, IN(y) n (X3 U 24)1 > n. 

2n 
Proof. I f y  ~ $1, then N(y)NS2 = d.  Hence [N(y)NX2[ < IX2 - $21 < 3- .  Thus, 

5n 2n 
IN(y)N(XaUX4)[ > 3 3 = n. 

Similarly, the result holds for y ~ $2. Without loss of generality, we assume to 
the contrary that there is an x * ~  X1 - S  such that [N(x*)N(XaUX4) [ < n. By 
Lemma 1, there is a cycle C* of length 4n - 1 and a vertex z* ~ Xt not on C* 
such that x* is a successor along C* of some vertex in N(z*). Let S* be the set 
of successor vertices of N(z*) on C*. Let S* = S* n Xi. Clearly S* 4: ~ ,  and so 

n 
IS?l > 3 

I f S ~ = ~ , t h e n l S * U S * l > 3 - . N o t e t h a t l S t l > 3 -  or IRtl > and [S*I > 

2n 
3- .  By the pigeonhole principle, there is a vertex st e St N S* (or st e R t N S*). 

Thus, 

2n 2n 
~-> IN(spn(x3ux,,)[ > ISJ' U S*l > 3-, 

a contradiction. 

2n which implies Thus, S* 4: ~.  By Claim 2, IS*[ > n 3; hence [N(x*)NX2[ < 3-' 
that 

IN(x*) N (X3 U X4)I > 
5n 2n 

- -  n ,  
3 3 

a contradiction. []  

Claim 12. For each x* ~ X s U X4, IN(x*) N (X1 U X2) [ > n. 

Proof. To the contrary, without loss of generality, assume that there is a vertex 
x* e X  3 such that IN(x*)N(X1UX2) I ~_ n. By Lemma 1, there is a cycle C* of 
length 4n - 1 and a vertex z* ~ X 3 not on C such that x* is a successor along C* 
of some vertex of N(z*). Let S* be the set of successor vertices of N(z*) on C*. Let 
S* = S* N X i for i = 1, 2, 3, 4. Let R* be the set of predecessors of N(z*) on the 
cycle C*. Let R* = R* N Xi for each i = 1, 2, 3, 4. Clearly S* 4: ~.  In the same 

2n 2n 
manner as before, we have either I S*l > 3 -  and I R~'I > 3- .  
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2n 
If IS*] > ~ - ,  we claim that both S~ = O and S~ = ~,  and so IN(x*)N 

(X1 U X2)[ > n by Claim 11, a contradiction. Otherwise, without loss of general- 
n 2n 

ity, assume that S~ ~ ga. Then I S~' I > 3" If l = 2, then ]$1 ] > ~-  by Claim 8. Using 

the pigeonhole principle, there is a vertex sl e $1 N S~'. Again by Claim 2, we have 

2n 2n 
- -  > IN(s,)N(X3UX,)I > IS*l > ~-,  
3 

2n 
a contradiction. Thus 1 = 3 and by Claim 10, R = R1UR 2 and IRl[ > ~-. By the 

pigeonhole principle, there is a vertex s i e S] ~ N R1. Thus 

2n 2n 
- -  > IN(s1) N (X3 U XDI > ISg'l > 3 '  
3 

a contradiction. 
2n 2n 

Here IS*I < ~-, and so ]R~'I > ~-. In particular, we have S* = S~US*US* 

such that none of the sets are empty. By Claim 10, we assume that R* = R~ U R*. 
If i~ < 2, there is a vertex si, e R* N R~, (or sq ~ R~ n S~,) by the pigeonhole princi- 
ple. Thus 

2n 2n 
T > IN(six)n(x3 UX4)] -> [R~[ > 3 '  

a contradiction. Hence i~ = 4. In the same manner as Claim 11, we have 
IN(x*) N (Xx U X2)[ > n, a contradiction. []  

Let A = X~ U X2 and B = X3 U X,.  Now consider the spanning bipartite sub- 
graph of G with partite sets A = X~ U )(2 and B = X3 U)(4. This is a balanced 
bipartite graph of order 4n with minimum degree more than n, and thus by Moon 
and Moser's theorem it is hamiltonian, and hence so is G, competing the proof of 
Theorem 3. []  
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