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Sunto. - Viene risolto il problema di Cauchy DirichIet relativo all'operatore parabolico dege~ere 
~u/ St - -  ~/ ~xi( aij( ~, t) ~u/ ~xs ), in opportune ipotesi di integrabilith per gti autovalori di ai~( x, t). 
Vengono inottre ]or~iti controese~npi circa l'impossibilit~ di risultati di regolarith per le solu- 
zioni deboli q~ostrando i@ tal modo che operatori parabolici degeneri hanno ~n vomportamento 
radicalmente di//erentc c~a qucllo dei corrisponde~#i operatori cllittici degencri. 

Introduction. 

Degenerate  elliptic and parabolic par t ia l  differential equations have been ex- 
tens ive ly  studied in the  last  10-15 years .  

In  par t icular ,  for elliptic operators  of the form:  

(0.1) ~ /~a i j (~)  ~ fl , ~-1(2)(~)1~[2 < a i j ( ~ ) ~ i ~ < =  = ~(A}(X)I~[2 ~ 

it  was clear, since I0 years ago, t ha t  some local assumptions on (~(x) (as the ones 
given in [T~] or [T2] and more  or less implici tely assumed in [M-S] (see also [M-SIbyl)) 
were needed in order  to get  local I tSlder cont inui ty  of the solutions. More precisely 
these au thors  assume tha t :  

(0.2) sup 
C 

C C 

where C is any  cube in / ~  and  s, t ~ O, 1Is -~ l i t  ~ 21m. 
In  the recent  paper  [F-K-S] these assumptions have been significantly weakened.  

In  this work the weight ~o(x) giving the degeneracy of the equat ion can be assumed 
only to sat isfy an  A2 condition,  t h a t  is: 

) (0.3) sup (x) dx dx ~-- K < ~- co 

C C 
C cube a n y  in ~m. 

The theory  appears  considerably less advanced for parabolic degenera te  equa- 
t ious and in fact  results  such as the t t a r n a c k  inequal i ty  are  in general  false on the 
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usual parabolic cylinders, Qq= ((x, t): I x -  Xol < Q, I t -  to] < ~2}, with a cons tan t  in- 
dependent  of ~ (for more precise s ta tements  and examples see nex t  section). 

The parabolic degenerate  operators  we consider a r e  of the form:  

(o.~) ~t ~ ; ~-~,(x,t)l$l~_< a,~,~=< ~(x,t)I~[ ~, v~e R~. 

Let  us briefly recall  some previous results for these degenerate  parabolic equations.  
The first we wish to ment ion is the  work by  Kl~vZ~XOV and KOLODII [K-K], 

in which a Ha rnack  inequal i ty  is p roven  on the usual parabolic cylinders.  The 
constant  in this inequal i ty  depends on the sum of two averages like the ones appear- 
ing in (0.2) (the averages are this t ime on a parabolic cylinder) so tha t  if one wants  
to get the inequal i ty  on all the  parabolic cylinders (this has to be done e.g. in order 
to deduce f rom it the local t tSlder  cont inui ty  of solutions) one actual ly  needs the 
non-degeneracy of the  equation.  In  the  work of KRUZHKOV and KOLODII no a t t en t ion  
is dedicated to the s tudy  of the existence of solutions and moreover  the regular i ty  
is studied assuming the solutions have a square integrable t ime derivat ive.  

In  his papers  [!v-1], [Iv-2], [Iv-3] A .V .  IVAN0V studied degenerate  parabolic  
equations f rom the point  of view of existence theory  and also considered questions 
of regular i ty  such as local tt51der cont inui ty  of solutions. 

In  the first a Ha rnack  inequal i ty  is s ta ted for solutions of a degenerate  equat ion 
tha t  have a strong/52 der ivat ive with respect  to t ime. However  under  his assump- 
tion on the weight his s t a t emen t  is incorrect  as our examples (see the nex t  section) 
indicate.  I n  [Iv-2] an existence theorem for the Cauchy-Dirichlet  problem is shown 
bu t  the cont inui ty  in t of these solutions in the/52 no rm (i.e. the  cont inui ty  of the 
applicat ion t-->fu~(x, t)dx for t 6 [0, T]) is not,  in general,  proven.  

In  the th i rd  paper  (containing only the s ta tements  of the  theorems)  an hypo-  
thesis on the weight is assumed tha t  implies in fact  bo th  the  max imum and 
min imum eigenvalue can be supposed to be t ime independent .  Under  this hypothe-  
sis the s t rong Z 2 cont inui ty  of the soh t ions  of the first b o u n d a ry  problem is ob- 
ta ined;  a H a r n a c k  inequal i ty  and local HSlder cont inui ty  resul t  for solutions is 

a l s o  s ta ted bu t  again these regular i ty  results are incorrect ly  stated.  
In  the end we would like to quote  the papers  [Ig-1], [:N-2] in which more  general  

bounda ry  problems are studied for the complete parabolic  equation.  In  these papers  
the assumption is t ha t  the  weight is of a par t icu lar  form, namely ,  co(x, t) = w~(x)~o2(t), 
co~(t) increasing and in the s tudy  of the s trong L 2 cont inui ty  of the  solutions co~(t) 

must  be supposed to be bounded  away f rom zero. 
Try ing  now to summarize,  the s ta te  of a r t  for parabolic divergence form de- 

genera te  equat ions with non smooth coefficients (at least  for what  we know) is as 

follows : 

1) no s t rong L 2 cont inui ty  is known for solutions of the Cauchy-Dirichlet  
problem for real ly  t ime dependent  and t ime degenerate  equations;  
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2) no t I a rnack  (with cyl inder  independent  constant)  or local H61der cont inui ty  
resul t  is known for these equations for any kind of degeneracy.  

In  our s tudy  of parabolic degenerate  equations our a im was to ex tend  as far  
as possible the  results in [F-K-S] to the parabolic case. 

We are not  a iming to the largest  general i ty  so tha t  we will res t ra in  ourselves, 
for  the  t ime being, to the  equat ion:  

(*) 0xl + ~ = ] 

where we assume: ~-l~o(x, t)l~12~ aij(x, t ) $ i ~ g  ~o(x,  t)I~l~ , ~/~ c R ~, a.e. in a cylinder 
Q = ~ •  T[, ~ bounded open set _c R~. For  this equat ion we will s tudy  only 
the  Cauchy-Dir ichlet  problem. 

The assumption we make  on the weight ~o(x, t) is an As condit ion in the space 
variable uni formly  with respect  to t ime and the same in the t ime variable un i formly  
with respect  to space (for precise s ta tements  see sec. 2). 

This implies an As global condit ion but ,  of course, is s t ronger  than  such a condi- 
t ion.  Wha t  happens is t ha t  if one wants  to use the Steklov averages (S~u-= 

t §  

= 1/hfu(x, ~)dr), a v e r y  convenient  device to s tudy  weak solutions of parabolic  
t 

equations,  an As condit ion in t ime un i formly  with respect  to x turns  out to be 
necessary.  

On the  other  side under  these assumptions we sueceded to ex tend  the global 
theory  to the  parabolic degenerate  equat ion which includes the Z 2 cont inui ty  of 
solutions to the  Cauchy-Diriehlet  problem but  we couldn ' t  get any  kind of local 
regular i ty  results.  Bu t  in fact  we found (see sec. 1) t ha t  even local boundedness  
is false under  our hypothesis .  Moreover,  as we a]ready mentioned,  we found tha t  
also improving the assumptions on the  weight it  is impossible to get  the (( usual ~ 
H a r n a c k  inequal i ty .  

This paper  is divided in three  sections. 
In  sect. 1 some counterexamples  re la ted to the impossibil i ty of local L ~ est imates  

for our equat ion and the  impossibil i ty of the  H a rn aek  inequal i ty  are. collected. 
In  sect. 2 we in t roduce various funct ional  spaces and s tudy  the global propert ies  

of solutions of degenerate  p~rabolic equations.  
Sect. 3 is devoted  to the proofs of a Sobolev-like embedding theorem and  of a 

denseness resul t  useful to achieve the  Z ~ cont inui ty  of the solutions. 
In  a following paper  we will prove,  under  s t ronger  in tegrabi l i ty  hypothesis  far 

1/o~, the  cont inui ty  of the solutions of ( . )  using a va r ian t  of the usual H a r n a c k  
inequal i ty .  

The authors  would like to t han k  prof.  E. FA]3ES for the hospi ta l i ty  at  the  School 
of Mathematics  of Univ. of ~ inneso ta ,  for the cons tant  in teres t  and encouragement  
in this work and for m a n y  useful conversations and  suggestions. 

FinMly we want  to express our gra t i tude  to prof. C. KENIG for m a n y  useful talks. 
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1 .  - C o u n t e r e x a m p l e s .  

The counterexgmples in this section concern the solutions of the parabolic equa- 
t ion ( , )  in the introduct ion with f ~ 0. The assumption on the coefficients is the 
s~me as in ( , )  if not  otherwise stated. A feature of this equation is the luck of local 
Z ~ estimates while under the same hypothesis  in the elliptic case they  hold t rue 
(see [F-K-S]). This is shown by the following simple example: 

EXAI~I'LE i.i. - Let 

Q = B~(0) • (0, 1) (~), co(x, t) -~ co(x) = ]x[: ,  u(x ,  t) = exp  [-- ~ ( m  - -  ~ ) t ] l x [  - ~  

where ~ is a small positive number.  Then, for convenient ~, IVul~co ~ LI(Q) and u 
solves: div (co(x)Vu)----ut in Q (see see. 2 for precise definitions). Fur thermore  
Ix[ 2 is an  A~ weight in s  if m ~ 3. Obviously u(x, t) is unbounded in Q and,  for 
small values of ~ u(x, 0)~ Z~(~9) for guy fixed value of p. 

The bud behavior of equation ( , )  forced us to abandon the hope of proving any  
kind of local regular i ty  result. However we conjectured tha t  bounded (resp. con- 
tinuous) initial data  uo would give continuous (resp. H61der continuous) solutions. 

This too tu rned  out to be false as it  is shown by  the following examples: 

EXA~PLE 1.2 (Bounded ~o doesn't imply continuous u). - Let  

q = BI(O) x (0, 1) ,  co(x) = Ixl ~ , u(x,  t) = - -  

~,xi 
exp I-(1 - -  m) t ] .  

Then [Vu[2co ~ LI(Q) and u is a solution of div (co(x) Vu) = us, bounded for any  t, 
but  it  is no t  continuous in Q. 

EXA~'eLE 1.3 (Oontinuous Uo doesn't imply HSlder continuous u). - Let  

Q = B,(0) • (o, 1),  

exp [~t] 
u(x, t) - 

l o g  Ixl ' 

co(x) = --  ~]xl~-~(log lxl)2fsm-l(log .~)-1 as (~ > 0) ,  

0 

Then co(x) is an  As weight, IVu[2co ~LI(Q) and u solves div (co(x)Vu) = ut. 

(1) B~(zo) is the open ban: {z eRm: lZ--Xol < r}. 
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Moreover  u(x, 0) is cont inuous bu t  u i sn ' t  HSlder  cont inuous.  
Le t  us now give some fu r the r  counterexamples  concerning the  H a r n a c k  ine~ 

qual i ty.  The  f i r s t  refers  to the  impossibi l i ty  of a H a r n a c k  inequa l i ty  for degen- 

e ra te  o p e r a t o r s  wi thou t  local assumpt ions  on the  weight. Le t  us m s k e  precise wha t  
we m e a n  with (( H a r n a c k  inequal i ty  on the  parabol ic  cylinders ~> ( t t . I .P.C.) .  

We  consider solutions ~ of the  equut ion:  

- -  a , @ ,  t) ~ ]  + u~ : 0 in ~ cyl inder  Q = ~9 x (0, T ) .  

u(x,t) is s u p p o s e d  to be non negut ive in a cyl inder  Qq(xo, to)= BQ(xo)X(t o -  ~2, 
+ -- B~l~(x o) • (t o + to -{- ~) and  Q~- : B~12(xo) • (t o -  flQ2, to_ 7~2) to+ ~9- Le t  Q~ - ~ ,  

where:  0 < x < 1, 0 < ~, < fl < 1 a re  fixed number s .  
Then  we will say  t h a t  a H. I .P .C.  holds if i t  exists  a cons tan t  K independent 

f r o m  ~ (and, obviously,  f r o m  u) such thu t :  

(1.1) esssup  u(x, t) <~ K essinf  u(x, t). 

EXA~'ZE 1.4. - Le t  w(x, t) = 1 for x ~  (--  1, 0], Ix~l < 1~ i = 2, ..., m, t ~ (--  1, 1); 
co(x, t) = x~ for x ~  (0, 1), [x~ I < 1, i = 2, ..., m, t ~ (--  1, 1); a a g iven n u m b e r  in (0, 1). 

We consider in Q- - -BI (0 )  •  1) the  degenera te  parabol ic  equat ion:  

(1.2) ~-x 8~xj) + u t =  O . 

Given a n y  p >_- 1, a can  be chosen so smal l  t h a t  bo th  eo and  co -1 e Z~(Q). 

Given a n y  ~ grea te r  t h a n  zero consider:  

u ( x ,  t) = u (x l )  = ~ ( s )  " 

- -0  

This funct ion  is a solution of (1.2), non negat ive  in QQ(O, 0) and  such t h a t  

essinf u(x, t) = ~ esssup u(x, t) = (~) 1--1 a + ~ 

so t h a t  (1.1) canno t  be  t rue  for  all  the  values  of p. 
The  in teres t  o f  this example  is in the  fact  t h a t  i t  is an  essential ly elliptic one 

so t h a t  i t  somehow proves  t h a t  for  bo th  elliptic and  parabol ic  degenera te  opera tors  
in tegrabi l i ty  condit ions on ly  a re  not  enough for the  va l id i ty  of (1.1) and  Some kind  

of ((local ~) condi t ion is needed.  
The  nex t  coun te rexample  shows the  imposs ib l i ty  of an  H. I .P .C.  for a n y  k ind  

of degenera te  parabol ic  equat ions.  
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EXA~LE 1.5 (NO HarnaeIr - L e t  co(x, t) = - - l o g  It] in Q = ( - 1 ,  1 )~•  - ~, 1); 
co(x, t) and co-~eZ~(Q) for a n y  p e [1, ~ c~). However ,  unlike the  weight in Ex-  
ample 1A, e)(x, t) satisfies any  kind of local conditions like the A~ conditions (see 
sec. 2) or the  ~ur thy -S tampacch ia -Trud inge r  conditions (see [M-S]b~, , [Tr 1], [Tr 2]) 
t ha t  we quoted i n  the  In t roduc t ion .  

Consider Qe(O, o) and u = exp [t(log It] --  1)] cos x -- exp [-- ~ (1  --  log ~)]  cos ~. 
u is a solution of (1.2) for ~o(x, t ) = -  log It[ in Q, non negat ive in Qq. 

~ o w  (1.1) reads:  

exp [fl~2(1 - -  log fie2)] _ exp [-- p*(1 - -  log ~)]  cos ~ ~ K- 

[ 1 �9 exp [-- ~2(1 - -  log ~2)] cos ~ - -  exp [-- ~2(1 - -  log ~2)] cos ~ 

tha t  cannot  be t rue  for all the  values of ~. 
In  this example we s ta r ted  f rom ~ solution of the heat  equat ion changing the t 

variable,  so tha t  an Harnack  inequal i ty  is still t rue  bu t  on cylinders tha t  are no 
longer of the fo rm (~ (~, ~2)~). 

With  some more effort,  bu t  basicMly with the same idea in mind, one can construct  
an example of a t ime independent  weight such tha t  the  non negat ive solutions of 
the corresponding equation don ' t  satisfy H.I .P.C.  The outl ine of the  construct ion 
follows. 

EXA~XPLE 1.6 (NO Harnaek, time independent)�9 - Consider the equation:us---- 
-~ Au -k V.Vu,  where V is a vector  funct ion whose components  V~ are  assumed 
convenient ly integTable. For  such an equat ion it  is well known tha t  the  fundamenta l  
solution's behavior  is the  same as for the  equat ion us ~ A~. F r o m  this one  can 
show tha t  only on the usual parabolic cylinders an H a rn ack  inequal i ty  can be true.  

This assumed we consider the (time independent)  t r ans fo rma t ion  ~6x-~ x/[x[ ~ 
where ~ is a number  convenient ly  close to zero�9 

B y  this change of space variables our equat ion is t r ans fo rmed  in: 

(1.3) [J[ut-~ div (A Vu) ~- IJ] ~' .J-~.Vu.  

Here :  J is the jaeobian ma t r ix  of ~6 whose de t e rminan t  is IJl; A ----- [j[(j-~),(j-1) 
((J-l)* denotes the  t ranspose of J-~) and V ( x ) =  V(Tx). (1.3) can be wr i t ten  as: 

(1.4) us = div [-~[ . V u -  V(]J] -1) A.Vu -k ~ . J - ~ . V u .  

!qow g/]Jl is a definite posit ive ma t r ix  whose eigenvMues are  of the  order  of ]x[~% 
We look for a ~(x) of the form ~(Ixl)x such tha t  the coefficient of Vu is zero. 
This ~ can be found so tha t  the original V(x) is of the form:  const .  Ixl~2-2x which, 

for I~l close to zero, can be taken  a rb i t ra r i ly  integrable.  
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Wi th  this choice of V the solutions of (1A) sat isfy an H a rn ack  inequal i ty  only 
ou the cylinders corresponding th rough  the  T to the s tandard  ones. 

2. - The degenerate parabolic equation. 

We s ta r t  giving some definitions and introducing some funct ion spaces we will 

need in the  following. 
Le t  ~ b e  un open set in / ~ , ( a , b )  c R .  Le t  Q = f 2 •  We will say tha t  a 

real ,  measurab le ,  non negat ive funct ion defined in Q is an A~(1 < p ~ -{- ~ )  weight 
�9 in Q, un i formly  with respect  to t in (a, b), if: 

( fo (2.1) esssup sup (x, t) dx 1 co(x~ t) -1/(~-l)dx = M < + cxz. 
te(a,b) C 

G C 

Here  the supremum is t aken  on all the  m-dimensional cubes C contained in D. A~ 
weights in (a, b) uni fo rmly  with respect  to x in /2 are defined in an analogous way. 
(2.1) is the  usual definit ion of A~ weights for t ime' independent  weights. 

Two fundamenta l  propert ies  of A~ weights are  given by  the following theorems:  

TKEOm~ 2.1 (Reversed t tSlder  Inequul i ty ;  [C-F] Theor.  IV, L e m m a  2). - _Let co 
belong to A~ in t~ "~. Then the inequality: 

(2.2) 1 <=Ko(_~_~lfo~(x) dx ) 
C 

holds ]or all cubes C, with constants Ko, 0 > 0 dependent only on the A~ constant o] 
o~(x). 

:From this foltows t ha t  if (o(x)~ A~ then  eo E A~_~ for some positive e. 
1 m Let  us now consider ] ~ Zaoc(/~ ). We will denote:  

M[t(x)] = sup :[ f]l(y)l dy 
a 

its maximal  funct ion.  Then  the  following resul t  holds: 

TEEO~E~ 2.2 ([M]; [C.F.]). - Suppose w(x )e  Z~oo(R ~) is a non negative ]unction, 
1 ~ p ~ + c~. The ineffuality: 

(2.3) ( f f 
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holds for any f ~ Z ~ ( ~ ;  ~o) (~), i] and only if (9(x) is an A~ weight. K~ depends only 
on the A~ constant o] a)(x). 

R E ~ K  2.1. - Le t  o~(x, t) be an A~ weight in (a, b) un i fo rmly  with respect  to 
x e _ ~ .  Then  it  is easy  to prove  tha t  the  extended weight:  

eS(x, t) -~ o~(x, t ) ,  t ~ (a, b); ~(x, t) = co(X, --  t + 2a) ,  t ~ (2a -- b, a); 

a)(x, t) -~ (x, --  t + 2b) ~ t ~ (b, 2b -- a) ; etc.  

is still an  A~ weight i n / ~  uni formly  with respect  to x e / ~ .  The A~ constants  of o~ 
and ~5 ~re comparable.  

Zet  T be a positive number  and eo(x~ t ) a n  A~ weight in R ~, un i lo rmly  with 
respect  to t in (0, T) and an A~ weight in (0, T) un i formly  with respect  to x in R ~. 
In  all what  follows we will assume tha t  ~o has been ex tended  as in the  above remark .  
We will deno te :  

V~(Q) the space of the functions u ~ Z~(Q; co) whose distributional derivatives with 
respect to the space variables xl,  ..., x~ belong to Z2(Q; ~o). 

Endowed with the  scalar p roduc t :  (u, v)v~ = f ( u v  + %,%,}co dx dt V~ is a Hil- 
be r t  space. 

Vo~(Q) is the closure of ff)(Q) in V~(Q). I f  ~ is bounded  the inner  product :  
(~, v ) ~ ( ~ ) = f %  v~ ~o dx dt~ tu rns  V~(Q) into a Hi lbe r t  space whose no rm is equivalent  

Q 

to HvHr~(a). IJet us r e m a r k  tha t  if v(x~ t) ~ f r (Q)  then  for i~.e. t ~ (0~ T) it  belongs to 
//o~(Q; o(. ,  t)) a n d  

T 

0 

V~(Q) is the dual space of Vo~(Q). V:(Q) is a Hi lbe r t  space and  a subspace of 
~'(Q). Let  us observe tha t  F ~  ~Y(Q) is in V:(Q) iff f~, . . . , f~  exist,  f~eZ~(Q; 1/co) 

(2) If ~2 is an open set in R m, ~o is a non negative function, ~o e L~oc(~ ), we will denote 
L~(~;w) the space of (the classes of) real, Lebesgue measurable functions, such that: 

~[/(~)l~o~(x) ~ x <  + ~ .  ~ndowed with the norm: H]]]z~(~; o)= ( f]/l~~ dx) 11~, ]5~(Q; co) is a 

Banach space. 
(a) For all vahes t such that o~(.,t) is an A 2 weight in ~2, Ho~(Q; co(.,$)) is the comple- 

tion of ~(~)  with respect to the norm: 
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such tha t :  ~ = -- ~/~/~x~ is in ~D'(Q). In  fact  if ~ e V~(Q), by  the l~iesz representa- 
t ion theorem, an / ~  ~ ( Q )  exists such tha t  <F, ?> = (/, ~)~(r V~e~D(Q). Then: 

e 

Let t ing  /~=-(3]/~x~)eo one gets the conclusion. Also T h e  

distribution (on ~9) 

) ( 1 )  
{ ~ / ( " t )  w ( t )  e H  -~ Y2; (a) for a.e. t e ( O , T )  = "' 

T 

and it is easy to see tha t :  <E, ~> :~ .~<F( t ) ,  ~(t)>~ dr, VF ~ V'~(Q), V~ e ]~(Q) and:  
0 

T 

0 

dr. 

W(Q) is the sp~ce of the functions u 6 ~ ( Q )  s.t. u~ (in ~'(Q)) belongs to V'~(Q). 
Endowed with the scalar product ,  (~t, v)w : (u, v)~ ~ (u~, v~)~: W is aHilbert  space. 

R ~  2.2. - I f  u 6  W(Q) it  is possible to find an extension ~ of u s.t. 
~ W(~  x R) (this being considered with respect to the weight extended as in the 

Remark  2.1). 

1~oo~. - Le t  ~ e  e~(~9 x s  ~ = 1 in ~ x [ O ,  T], ~ = 0 in ~ x {R~(--  T/2, -~T)}, 
0 ~ ~0 < 1. Define: u~(x, t) : u(x, -- t) in (-- T, 0), ~t~(x, t) : u(x, 2 T  ~ t) in (T, 2T), etc. 
Le t  ~ = u~?. Then 4 6 W ( ~ x R ) ,  s u p p ~ c ~ x [ - - T / 2 ,  -~T] and 

I]~(x, t)lEw<~• K(T)[[~H~<+> �9 

Two essentia], but  Somewhat technical, lemmas are now stated. Their proof 
will be given in See. 3. 

LE~VIA 2.1. - The subspace o/ the C~(~) (5) functions with compact carrier in [2 
for any t ~ t ~  is dense in W(~) .  This implies: W(Q) r C~ T]; Z~(~)). 

L v , ~ A  2.2. - .Let u ~ ~r (Q) t3 C5([0, T]; ~5~(Q)). Then exist constants K > 0 and 
1 > 1 (K depending only on the As constant in the space variable, [2 and m; l depending 

(4) H-I(~;  1/co(., t)) is the dual space of HoX(~; co(., t)) for all the t's for which the latter 
exists. We will denote: -1<','>1 the duality between H-I(~; 1/e)(.,t)) and H~(.Q; e)(-, t)). 

!5) r  
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on the As constant in the space Variable and m) such that: 

II IIL, , �9 

]Finally: W,(Q) is the space o/ the u ~ V~(Q) such that u~eL~(Q; t/~o). 
W,(Q) is a t t i lber t  space with the inner product:  (u, v) w = (u, v )~  + (at, vt)L.(~; 1/~). 

Lemma2.1  still holds for W,(Q). Also: if u e W,  and toe [0, T] exists s.t. u(x, to) = 0 
then  u e Z2(Q; l/co), In  fact:  

T T T 

Q ~2 0 0 0 

:Before turning to the s tudy  of the equation let us introduce for u eZ~or 
Steklov averages: 

~+h 

if &u_=u~- ;  u(x,s) ds and S~u--u~_; u(x,s) ds(~). 
t--h 

These averages a r e n e e d e d  in the proof of some basic estimates and of Lemma 2.1. 
Many impor tan t  continui ty properties of these regularizing operators are stated 
and proved in Sec. 3. 

We now consider in Q = / 2 •  T) (/2 bounded open set in / ~ ,  T > 0) the 
divergence form parabolic equation: 

(2.4) Z u - - u t ~ (  a~(x't) 3u~-~-u=~xr ~t /" 

We assume tha t  the coefficients a~s(X, t) are measurable functions a.e. defined in Q 
and iulfill the !0110wing: 

% ( x ,  t) = a ~ ( x ,  t) , i ,  j = l ,  . . . ,  m 

(2.5) 3 A >  0 such �9 t h a t :  tl ~(x, t) ~]2 =< aij(x, t ) ~ i ~  A~(x, t)l~l 2 , 

a.e. in Q,  u e/r  

where co(x, t) is an As weight in R ~ uniformly with respect to t in (0, T) and an As 
weight in (0, T) uniformly with respect to x in /2. We also assume tha t  / e V'~,(Q). 

(r Now and in what follows we assume that co and u have been extended to the whole 
~2 • according to Remarks 2.1-2.2. 
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DE~I~I~IO~ 2.1. - We say that u ~ V (Q) is a solution of (2.4) in Q i]: 

(2.6) 
ai~ ~x~ ~ x i  u ~ J , 

Q 

Vr ~ W,(Q), ~(o) = of(T) = o . 

DEFI~ITIO~ 2.2. - Given uo(x) ~ Z~(Y2) we say that u E fZ (Q) is a solution to the 
Cauchy-Diriehlet problem (with Uo Cauchy data, and homogeneous Dirichlet data) /or 

the equation (2.4) i]: 

(2.7) f{  uax, u  t}dx 
Q 

We can now state  the  following: 

dt = --  <], ~> +|Uo(X)~(x, t) dx , 
.2  
-Q VqJ ~ W, ~(T) --  o. (9 

T~EORE:~ 2.3. -- Assume (2.5) holds. Let Uo(X) ~ -L~(~2) and f ~ V'(Q). Then  there 
exists a unique solution u to the problem (2.7). Moreover u ~ C~ T]; L2(Q)) and 

ltim ~ u(x, t) = Uo(X) in I~(t~). 
Zet  us r emark  tha t ,  once Theorem 2.3 has been proved,  it  is also possible to 

solve the Cauchy-Dirichlet  problem with non-homogeneous Dirichlet  data.  More 

precisely we have:  

Co~0Lr,AnY 2.1. - Assume (2.5) holds. Let Uo(X) ~ Z~(Q) and f e V'  Moreover a) " 

let g(x, t) e V~, gt(x, t) e V:  and g e C~ T]; L2(f2)). 

Then there exists a unique u c V,o s.t. : 

i) u is a solution of (2.4) (Definition 2.1); 

ii) u(. ,  t) -- g(., t) ~Ho~(~;o~( -, t)) a.e. in (0, T); 

iii) u is C~ T]; L2(Q)) and lim u(x, t) = Uo(X) in L2(~2). 
t-->0 

PROOF OF Tm~O~E~ 2.3. - Le t  us consider ~0(x, t) ~ C~(Q), ~(x, t) compact ly  sup- 

por ted  in f2 f o r  M1 t .  F o r  s u c h  9 w e  have:  

T 

(2.8) 2 . v ~ < ~ ( x , t ) , ~ ( x , t ) > c = f  ( d  f W 2 ( x , t ) d x ) d t = f ~ 2 ( x , T ) d x - - f ~ ( x , � 9  
0 ~ Q s 

The above class of funct ions 9 forms a dense subset of W, the  space where the 
solution u of the problem (2.7) is to belong. 

(~) We should write: <~t, u> in the place of fu% dx tit, the braces standing for the duality 
between V~ and V~(Q). r 
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So that we can get an equality as (2.8) for u. 
Let us define in W •  W the two forms: 

a nd: 

T 

0 

T 

%'(u, ~) = <u~, ~> + f  fa,(,~, t)%(x, t)%(x, t) d~ at.  
0 

We can now derive using (2.5) and (2.8): 

for all u e W .  

p -~ llu(x, t)l]~o(,~) + ~(x, o) dx < 2%(u, u) + ~(x, T) ax 
~Q Q 

2 + fun (x ,  T ) d x  ~ 2~l/(u, u )+fun(x ,  O)dx i Ilu(x, t)lI-~o(,~) - 
9 fJ 

The conclusion is obtained using standard techniques (see [T], p. 402 if) from a 
theorem of g. L. LIoNs [L]. 

Let us remark that the continuity result in Theorem 2.3 follows from the belong- 
ing of ~t (the solution of the Cauehy-Dirichlet problem (2.7)) to the Class W recalling 
Zemma 2.1. For more details and the proof of the Lemma 2.1 see See. 3. 

We now study the boundedness properties of the solutions of (2.4) 

T~EO~EM 2.4. - Zet u(x, t) be a solution o/ problem (2.7) and assume that: 

ess sup luo(x) l = R < + ~ .  

.Let us also assume that ] - ~ -  (/~)~, be s.t. ]~Io~ e L'(Q; m) with r > 21/(1--1),  l being 
the same as in Zemma 2.2. 

Then 

ess sup [~(x, t)l < ess sup I~o(x)l + e 
Q .Q .5 (Q; ~) 

C being a constant depending on 2 ,  T, the As constants o/ o~ and r. 

P ~ o o s . - L e t  ~ r 2 1 5  for t < O  and t > T - - h  (h>O) .  
Let us consider ~q~qS. S ~  ~ W.(Q) (see See. 3) and ~q~(x, 0 ) =  ~q~(x, T ) =  0. 
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Then,  by  the ~ubini ' s  theorem,  

(2.9) -- f  u(s~),  dx dt ----- -- f  (S~u)~t d$ dt = f  (s~u)~ dx dt 

so t ha t  we get  f r om (2.6) 

(2.1o) f{s~(a,,%)~.,+ (S~),~) dx at = f (s~/,)r a~ at. 
O O 

I t  is easy to check (see e.g. [L.S.U.], p. 142) tha t  (2.10) holds for an y  ~o ~ ~ tha t  
vanishes for t > ~, where ~ is an y  number  ~ T -- h. 

Hence  we have  

(2.11) f {&(a,~%)q~.~ + (&u),~o} dx at = f (&r ~ ,  dx at (,) 

O 

for any  ~o ~ V~(Q~). 
I~et us now take  ~0 = (S~u)c~'= m a x  (S~u(x, t) -- K, 0} for K ~ / ~ .  
Since 

Qv ~2 

we can wri te  (2.11) as follows: 

(2.12) ~(aCj%)(8~t)~, dz at + -~ . [&u(x, ax ,=o= (&/~)(~u)~ ~dx at. 

~ o w  let  h approach zero. This is possible for  the  first t e rm  since a~r Z~(Q; l/co) 
and Sh acts cont inuously on this space (see Sec. 3) and (Sau)C~) converges in Z~(Q; co) 
to u (x)~, . The same is t rue  for the r ight  side while the f([S~u(x, ~)](x))~ dx converges, 

~J 

for all v's, to f[u~K)(x, v)] ~ dx because u ~ C~ T]; Z~(D)). 
D 

F r o m  (2.12) using the  boundedness  assumpt ion  on ~o(~) i t  follows t h a t  

(2.13) f c~:) dx gt -f- 1 f (~. (~) 
OT: ~ O~ 

for  all K ~ _/~. 

(s) Q~ = ~9 x (0, 3). 
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:From. (2.13) using standard techniques we deduce tha t  the 

f f (~ x t)]so~(X, t) max [u(~)(x, t)] ~ dx + [u~, ( , 
[0,T] 

�9 .O 0 
if] 1 

dx dt <= C ?(x, t) 

AK 

dx dt 

where Az denotes the set: ((x, t) e Q : u(x, t) ~ K) .  
By Lemma 2.2 and the above it follows that 

T T 

( f  f ,) dr) 1-2/*' " 
0 . O  0 .O AK 

~ow, considering h > K, we get 

(h--K)~( f oodxdt)~/~ Us ~ ~,(Q;o)( fo  d x  dt) (r-~)/~ . 
Aa A~ 

Letting, for h > / ~ ,  9(h)----fo(x, t )dx  dr, 9(h) is a non negative, nondeereasing 
An 

function such that  the following inequality holds: 

~ ( h ) < i ~ _ - - ~  [ , (K)7 ,  # = l .  > 1  

for all h > K ~ / ~ .  
The theorem now follows by G. STA~ACCmA'S Lemma (see [STA], page 93). 
We would like to point out that  no really new technique has been used in this 

section; in fact all the proofs followed quite closely the ones given in the [L.S.U.] 
treatise or any other work on parabolic divergence form equations. However, it 
is the As assumption in the time variable . that  allowed US the use of such standard 
technical devices as the Steklov averages; dropping this assumption t 0 get also the 
most basic inequalities we should haye ~ssume d much stronge r hypotheses on the 
weight (e.g. substantial time independence as in [IV-3] or assumptions o n  the form 
of the function co(x, t) as in [:N1], etc.). ! . . . . . .  ::: . . . . . . .  

Given this we wi l lno t  give a detailed proof of t he  following theorem that can 
be carried out in very similar way to [STA], Cot. 5.2, p, 141. 

T~EORE~ 2.5. - S u p p o s e  u is a solution o] (2.4) with ] ~-- O such that u E C~ T]; 
Z~(~)) (this is true e.g. if u e V~(Q) or i] some smoothness assumption is made on ~ ) .  

Suppose that Uo(X): ltim o u(x, t) is in Zion(f2). Then: 

T 

esssnp lu(x,t)[<=esssnp [Uo(X) I + [u(~o)]~o~dxdt �9 co(x,t) dxdt , 
/~a(~o) x (o,T) ~ ( X o )  

B~(~o)X(O,T) 0 A~o,R 
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where:  B~(xo) is the  open bal l  cen te red  a t  xo~$2 with radius  R (0), Mo is the  
ess sup  [u0(x)l, u (M~ m a x  {u(x, t) --  Mo, 0}, A~0.R is the  subset  of B~(xo) • (0, T) 

BR(~o) 
where u(x, t) ~ Mo, 0 is a n u m b e r  l~rger t h a n  I and K depends on the  As cons tants  

of co and  ]~ (it is unbounded  f o r  ~ - +  0). 

~:~ElVJ[ARK 2.3. -- The  t h e o r e m  above  i s  the  bes t  possible (under our assumpt ions)  

~( local boundedness  )) resul t  for solutions of (2.4). These solutions, as we have  seen 

in Sec. 1, a re  not  in genera l  locally bounded.  

3. - Machinery.  Proofs  o f  L e m m a s  2.1, 2.2. 

We begin with some facts  abou t  the  Steklov averages  in t roduced  in Sec. 2. We 
assume  co and  u h~ve been  ex tended  to $ 2 •  as in the  R e m a r k  2.1 and  2.2. 

LE~V~A 3.1. - For any u ~ P~(Q) I[Shu][~(Q)~ Kl[uI[~(~). An analogous inequality 
holds ]or S;u. Here K depends only on the A~ constant o] co in the time variable. 

Pn00F. - Fo r  a.e. x in $2, co(x, t) is an  As weight  with respec t  to t. Hence  

+oo +oo 

co(x, t) t) dt =< 
- c o  - o o  

+co +co 

<= Kf[M,(IVul)]~co(~, t) <= KfiVul ~ coW, t)dr. 
- o o  - o o  

Here  Mr(I) is the  m a x i m a l  funct ion of ] with respec t  to the t var iable ,  V is the  space 
gradient  and  we have  used Theorem 2.2. I n t e g r a t i n g  in $2 and  using the  cont inui ty  

in I ~  of the  extension of u to $2 • R, the  conclusion follows. 

RE~A~K 3.1. - As we have  jus t  shown , an  As condit ion in t, un i fo rm with  respec t  
to x ~ $2, is sufficient to  get  the  cont inui ty  of Sh f r o m  L2(Q ; co) to Z~(Q; co). On the  
other  hand,  as we will check immedia te ly ,  the  same condition is also necessary  for 
the  cont inui ty  of all the  S~ and  S~ ( h >  0) f rom L~(Q; co)to L2(Q; co). Indeed ,  

assume t h a t  for a fixed h > 0 bo th  the  following inequali t ies hold: 

(3.1) 

t + h  

(x, s) ds co(x, t) dx dt ~ 2(x, t)co(x, t) dx dt , 
O t O 

t 

f (h f v(x, s) ds)~co(x, t) dx dt <= + 2 ( x ,  t)co(x, t) dx dt 
O $ - -h  O 

(9) Here we take R so small that B~(xo)c_ tP. 
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for a n y  non negat ive  funct ion v e Z~(Q; o)). Then  

t+h 
f ( ~  IV(X, S)aS)2~(X, t)dx at < K f  v2(x, t)~,(~, t) 
0 t--h 0 

dx dt . 

Now let  v(x, t) = u(x, S)gEa,bl(S) , for  a n y  [a, b] r (0, T) with b - -  a = h und a n y  

u e Z~(Q; co), u>= o. 

Then 
b b b 

a~ a a~ 
~7ow let  b 

u(x, t ) -  %/a---(-~ where a ( x ) =  fi(x)( f dt ~-~ 
~o(x, t) ~(x, t)I 

a 

and fl(x) is any  n o n  negat ive  cont inuous funct ion with  compac t  suppor t  in [2, to get  

b b 

~9 a a ~2 

d x .  

Therefore  
b b 

a a 

a.e. in /2 

for all the  [a, b]_r (0, T) wi th  b - -  a = h. 
So t h a t  if we assume the  va l id i ty  of (3.1) for any  h > 0 o~(x, t) mus t  sat isfy an  

As condit ion in (0, T) un i fo rmly  with respec t  to x in /2. 

I j v , ~  3.2. - ~or any u ~ W, I]S~u]lw~= KlluHw. The same is true ]or S;. K is 

as in I~emma 3.1. 
I t  is enough to consider (S~uh. For  a n y  ~0e Ii)(Q): 

t + h  

fir I<(s~)~ ,  OI  = l<& ~, ~,>1 = I X ~(x, s) a ~ ( x ,  t) ax atL = (~~ 

t 

- ~  ( x , t )~  ~(x,s) d s d x d t  I u(x, t)  1 

= [<u(x, t), ($7~)~) [ = 1<%, Sg~)[ =< [I%f[ ~;l[-~ ~oll L -< - KIL%II~;ll ~ol1 ~,o �9 
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If we define <8~F, 9> = <F, S~9), V 9 ~ ~(Q) for  ~ e V',,(Q) then,  for ~ e W, 
( s ~ ) ,  = &(~) .  

F u r t h e r m o r e  for F ~ V'o (3 L~o ~ the  new definition agrees  wi th  the  old one. 

L ~  3.3. - . L e t  ~t e W. Then Sau converges to ~ in W as h--~ O. 
1%llows f r o m  L e m m a  3.1, L e m m a  3.2 and  denseness of O(Q) in ]~(Q) and  V'~(Q) 
Le t  us r e m a r k  tha t ,  in v i r tue  of Theorem 2.2, i t  is possible to obta in  the  same 

conclusions as in the  above  l e m m a s  for u �9 Q~(t) where Q~(t) is some fami ly  of Co(/~ ) 
convolut ion kernels .  

We are  now able to give the  

P~OOF oF L E n A  2.1. - Because of the  r e m a r k  immed ia t e ly  above  we can  
assume ~t to be in C~~ for  a.e. x ~ [2. L e t  us also r e m a r k  t h a t  all  the  der iva t ives  

o 
with respec t  to t of u can be a s sumed  to belong to V~. 

l 
Hence  we can assume  t h a t  u t~  V~(3 V~. 
Fo r  fixed 9(x)e  ff)(Q) the  func t ion :  

F(~) = ll~,(', ~) - 9(')1I.-~(~,,~(,8)) + I1~(', ~) - 9(')H~:(~; ~( , , ) ) ,  

is an  ZI(R) funct ion (see the  r e m a r k s  following the  definit ion of V'~). 
Hence  b y  Lebesgue t heo rem:  

z + h  

(3.2) l im 1__ f~ ( s )  ds = ~(z) a.e. in R 
a-.o 2h 

z--h  

We point  out  t h a t  the  except ional  set  in (3.2) can  be t aken  independent  of 9 

for 9 belonging to a convenient ,  still dense, countable  subset  of ~([2). 
Fo r  a n y  g iven a > 0 and  z such t h a t  the  space H~(Q; 1/o~(x, z)) is well defined 

le t  9,@), belonging to a countable  dense subset  of ID([2), sa t is fy  

I[~(x, t) - 9~(x) 11~-~(~,,~(~,8))+ tl~(x, z) - 9"(x)ll~:(~,,o<~,~))< ~ (11). 

Wow, for all  the  z such t h a t  (3.2) holds, consider all  the  h >  0 such t h a t :  

g+hz 

1 I 
Z--hz 

, - -  X 21 1~(~,8)) + ][u~(x, s) 9,( )]1-~ ds < a .  

(11) ~(.Q) is dense in H0t(~; co(x, z)) n H-I(Q;  I/co(x, z)) with the usual intersection norm. 
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The f~mily Lm of intervals:  ( z -  h~, z -~ h~) is a covering of R with the possible 
exception of ~ null set. In  purticular it  is a covering of (-- T/2, ~T) (we recall tha t  u 
is s~pported in ~2 X (-- T/2, ~T)) up to a null subset t ha t  we cull Eo. 

~oreover  i let t ing E = (-- T/2~ ~T)\Eo, ~ is a Vitali covering of E (see, e.g. [STE], 
p. 24). 

Then there exists ~ null set E~ and ~ countable disjoint subfamily ~ of /~  (F -~ 
= {(~- ~., ~. + ~o))) such  t h a t :  

( @ ( z ~ -  ho., z~ + h~) = \ ( E o  u EO.  
~ = 1  2 ~ 

Define a funct ion V(x,t) in ~ let t ing V ( x , t ) :  qJ~.(x) for t e ( z ~ - - h ,  z . ~  h J  
and ~p(x, t ) ~  0 elsewhere. 

V is ~ me~surable function in (~ and for M1 t its carrier is ~ compact subset 
of ~9. Moreover, ~p e Vow, V e V'~ and 

8T/2  

(f t o ~ ll~(x, 111~o II~(', at 
-- T/2 

ST~2 
�89 

]]~P(x, t)l'vr = (f][Y(',t)t'H-,(a;llo,(~,o)dt) �9 
- -  T/2 

Let  us r emark  tha t  

aT[2 

--2/2 
n + hz,~ 

+oo f +co 
�9 )]]~-~(Q;~/o~(-,t)) dt < ~ ~ 2 h . .  = 2 ~ T ,  

W=I ~=i 
zn--hz n 

so tha t  V can be taken  ~close i> to ut in V' 
Le t  now 

t t 

z(~, t) = ~(~, - - f f ) +  f y(~, 8) as ~ f v(x, 8) as . 
- T I 2  - -TIg 

t 

z and Hu(x,t)-- z(x,t)l[;o = 8) 
- TI2 

~T 

=f f[( 
- T I 2  t~ 

t 

ds ~(x, s) ds = 

- T/~ 

t 

(u~(x, s) -- ~(x, s)) ds ,o(x, t) dx dt <= 
. Zt 

- -  T/2 

~T ~T 

--TI2 ~ --T/2 --TI 

dx dt 
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8"2/2 8T/2 8T/2 

-- TI2 -- T[2 -- T/2 

~r 

- -  T/2 

This implies t ha t  g(x, t) c~n be t aken  close to u in ~ and  in W. One more  
regularizat ion in the  t ime var iable  (%,  ~(t)) and the first p a r t  of the lemma follows. 

The second pa r t  is fair ly s tandard  (see eg. [T]). The idea is to wri te  a re la t ion 
like (2.7) for  a funct ion ~ e C~{f2 X~) compact ly  suppor ted  in Q for a n y  t. F r o m  
tha t  a t  once follows 

m a x  ]@(., t ) l l~ (~ )<  KI[FII~(Q) �9 
[0,T] 

The conclusion follows f rom the denseness resul t  of the first par t .  
The purpose of the last  pa r t  of this section is to prove the Sobolev like L e m m a  2.2. 
The proof  is divided into some steps. The first will be to obtain the  following 

var ian t  of the Sobolev weighted inequalit ies obta ined in [F.K.S.]. 

LE~vIA 3.4. - Given o)(x, t) ~ A~ in R m, ~tni/ormly with respect to the time variable, 
there exist constants K, t t, ~ = 6(tt) > 0 s.t. ]or any ball Ba, all u ~ C~(B~) and all 
numbers h satis]ying 1 ~ h <-- m/(m -- 1) -~ (~ 

1 
(3.3) ~ §  ~i f t ~ t ~ §  ~ ( ~ l k ;  ~) f l , ~ l o ~ ) ~  (~) , 

Ba  

Here  K is dependent  on m and the As constant  of eo in the space variable.  
Le t  us also point  out  t ha t  it  will be possible to choose h = 1 ~-/x obtaining 

(o)l+~(B~;t) f ] u ] 2 ( l ~ l t ) ( 9 1 §  ~ . 

~R B~ 

To prove  L e m m a  3.4 we will need the  following: 

Lv,~V~A 3.5. - Set 

l fj T](x) = sup ~ /(y)] dy 
0 < s  

B~(z) 

(is) co(B~; t) =leo(x, t)dx; Vu is the gradient in the space variable. 
Ba 
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where ] is measq~rable and sq~pported in a ball B~ o/radi~s  1~. I] o~(x, t) is as in Zem- 
ma 3.4 there exist positive constants K~ ~ and # s.t. ]or all the nq~mbers h~ 1 <-- h <_ 
<~ m/(m -- 1) ~ ($, and ]or all / ~ ~5~(B~; ~) we have 

(3.~) (co~+,~B~;t) f (T/)~l+'(x't) dx)l/~<= kR(o)(~; t ) f dx) 
~)~ooF. - Yrom Theorem 2.1 i t  follows tha t  e% 1/co ~ A~_~ for some e > 0 ; then~ 

for any  # in the range:  0 < # ~ 1/(1 -- s) -- 1 it  follows tha t  0) 1 + ~(., t), 1/co ~ +~(., t) e A~. 
F rom now on we will use the notat ion eS(.~ t) -~ [(o(., t)] l+z. The proof will follow 

the one of L e m m a  1.1 of [F.K.S.]. We m a y  suppose t ha t  ] is non negative. For  
any  positive number  % set E~ = (x ~ B~: Tf(x) > ~}. 

For each x e / ~  there is a ball, B~(~)(x) such tha t  

I(Y) dy > 2 

We can always take  r ( x ) <  2R since the function 

i / ,  
s -> s~_l (y) dy 

laAx) 
is decreasing for s > 2/~ and  x e B~. 

F rom the u  covering 1emma ([STE], p. 9 )  we can select a subsequence of 
disjoint balls B~ = B~(~)(x~) f rom the above fami ly  so t ha t  ~ C  U~B*, where B~ = 

From what  we have previously indicated all the balls Bj are contained in B.~. 
We want  now to es t imate  eS(E~; t). l~ecalling tha t  when ~o ~ A,  then  eo(B~) 

<= eo~(B~) (the (~ doubling condition ~) we have for any h ~ 1 and for any  p larger 
t han  2 -- s. 

(3.5) cS(E~; t) ~ K ~ eS(B~.; t) ~ K ~ cS(B~; t)~,-'~ B~. -(1-1~)~a dx 

B$ 

~7ow observe t ha t  it  is possible to choose q < 2 and  close enough to 2 and ~ > 0 
and small  enough so t ha t  c5(., t) belongs to Aq and ~o(-, t )~  A(q_:)/(l+,)+l; with this 
choice of q and  ~ the following inequalities follow from the ttSlder~s inequal i ty and 
the A~ condition: 

\ ( ( q -  :)/(1 +,~))~ 

l 
.B$ 

< K [ ~ ( B ~ ;  t)l  - .  
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and 

(3.7) 
\--(q--l) 

- J \ ~ (x ,  t)/ = 

subst i tut ing in (3.5) we get 

(~(.E~; t )~ ~'~ "~ ~ ]Bj] q+l~h[~-h(l+(q-1)/(~+l)) ( f ~ ( ~  ~ ) ] ~ / 1  ~1](q-1) 

.B~ 

dX)-- (q-- 1) +h((q-- 1)/(~ + 1)) 

B1 

We now choose h so t ha t  q -~ 1~h/m - -  h(1 -1- (q - -  1)/(~ ~- 1)) ~ 0 ; this is equi- 
valent  to h ~ m/(m -- 1) -4- ~ where ~ = 5(m, q, p, ~1) > O. 

With this  choice of h we get 

-Ba~ 

Once again using the two relations (3.6) and (3.7) 

dxih((q- 1)/(v + 1)) - (q- 1) 
/ 

BR 

(3.8) [~(E~; t ) ] , ~  =< T / r  t l ] ~ [ ~ ( B ;  
~R 

This final inequal i ty  states t ha t  the operator T is continuous from Zr(B~; w(., t)) 
into the weak JS~h(Ba; co1+~( -, t)) provided t h a t  1 ~ h ~ m / ( m -  1) -4- 8 and for any  
jo ~ 2 -- s. The ~arcinkiewicz interpolation theorem implies the boundedness of T 
f rom Z~(B~; ~(- ,  t)) into Z2~(Bs; eo~+~( ., t)). Moreover f rom the previous inequal i ty 
(3.8) we obtain the conclusion of IJemma 3.5. 

L e m m a  3.4 will now follow from L e m m a  3.5 and the following theorem [m-W]: 

T~:EORE~ 3.1. -- Given p ~ (1, d- co) and e) E A~ (1~) there exists a constant K > 0 
such that /or all measurable non negative ]~nctions ] 

] i f  ](y) dy ] <-- K][T/Ilr.~(a~;o, ) . 
an 

(13) i.e. there exist positive constants /i:, ~ > 0 so that given any cube G and any 
measurable subset E C_ C, ~o(E)/oJ(C) <~ K(IE[I[GI)~, 



160 ~z~po  Ct~AI~]~:NZA - I~ALVL SEI~API01~I: Degenerate parabolie~ etc. 

~ o w  returning to the proof of Lemma 3.4 

< lVu(y)l lu( )l 
= _ _  ix_Yl~_dy; s ince  (o~+'e A~ 

Ilull~,~(~;~,+~ ,~))__< g dy ~,~(~;o,+o(. ,))__< KIIT(IVul)II.(~;~+.(,,)). 

L v , ] ~ A  3 . 6 .  - Let u(x, t) e C~(B~ x [0, T]), satis/y /or a l l  t e [0, T], u(x, t) is eom- 
paetly supported in B~, and assume o9(x, t) ~ A~ in R m uni/ormly in t. Then there are 
constants K~ ~ > 0 such that i/  1 = (1 -F 2~)/(1 -F ~]) > 1 we have: 

b b 

( f  fu~z~ dx dt )~/2,<_ K I(max ~ "fu 2 dx)~ -F R(  f f , V u , ~  
- -  l \  [a,b] I "l a .B~ 1~ a ~B~ 

for all (a, b)c (0, T). 

P~OOF. - Let ~ be the same as in Theorem 2.1. Then, from the H61der inequality, 

( f U 2 $ O ) ( x , t )  d,00)1121~ (fug(l+~)[cD(x, t)] 1+~ dx)l[2~(l+~)(fu2d~) i1121)(1-11(1+~)) " 

BR /~a 2a 

Since [~o(x, t)] 1+' 6 A 2 

~o(BR ;t) ~ K [w~+'(B~ ; t ) ]  1/0+~) [R~] 1-1/(1+v) . 

From (3.9), (3.10) and Lemma 3.4 it follows that 

1 = K I dxY1/sz)( I/(z + ~)) Co(~;t) fu"~(x't)dx) (1/2')< (~)l+~(-B~;t)f us(l+~)wl+~(x't) ] 
~ BR 

. (T_~ f U ~ dX)'(l/2D(l/(l + ~?)) 
/3R 

1 dx\�89 +27)) 

.BR BR 

< K R l l l ( m a x l [ ,  \�89 +2~)) [ 1 f )112,. = u~ dx - -  ] V u p o ( x ,  t) dx 
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l~Iow, tuking the 2l power~ multiplying by eo(B~; t) und integrating in [a~ b] we get: 

b T 

a .BR 0 BR 

B~ B~ 
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