Degenerate Parabolic Equations and Harnack Inequality (*).

Fripro CHIARENZA (Catania) (**) - RAUL SERAPIONT (Trento) (**)

Sunto. — Viene risolto il problema di Cauchy Dirichlet relativo all’operatore parabolico degenere
du) 8t — 0/ ow,(a(», t) dufdx;), in opportune ipotesi di integrabilita per gli autovalori di a(,1).
Vengono inolire forniti controesempi circa Vimpossibilita di risultati di regolarita per le solu-
zioni deboli mostrando in tal modo che operatori parabolici degeneri hanno wn comportamento
radicalmente differente da quello dei corrispondenti operatori ellitéici degeneri.

Introduction.

Degenerate elliptic and parabolic partial differential equations have been ex-
tensively studied in the last 10-15 years. '
In particular, for elliptic operators of the form:

(0.1) —a%(aijwc) -a—fc—) ;@[S 0 @66 S lo@|ER,  VEeRn

it was clear, since 10 years ago, that some local assumptions on w(x) (as the ones
given in [T,] or [T,] and more or less implicitely agsumed in [M-S] (see also [M-S]bis))
were needed in order to get local Holder continuity of the solutions. More precisely
these authors assume that:

1 1/s 1 1 1/t
. Nl sd — | ——d <K
(0.2) s‘ép(lo’l Cf[m(m)] m) (ldloftw(w)]’ m) <K< foo

where O is any cube in B» and s,t> 0, 1/s - 1/t < 2/m.

In the recent paper [F-K-S] these assumptions have been significantly weakened.
In this work the weight w(x) giving the degeneracy of the equation can be assnmed
only to satisfy an A, condition, that is:

‘ 1 1 1
(0.3) Slcl'p(l_GTI Jw(w) dm) (T(ﬂ !de)gl'{< + o0
O cube any in B™

The theory appears considerably less advanced for parabolic degenerate equa-
tions and in fact results such as the Harnack inequality are in general false on the

(*) Entrata in Redazione il 14 marzo 1983.
(**) Both the authors were supported in part by a grant of the italian C.N.R.
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usual parabolic cylinders, Q,= {(,1): | — u,| < 0, |t — | < @%}, With a constant in-
dependent of p (for more precise statements and examples see next section).
The parabolic degenerate operators we consider are of the form:

9
(0.4) ﬁ—a—i—_(a“(w, #) 52-), Ao, O)ERS 0,6,86,= do(@, 1)E[F, Ve Rm.

Let us briefly recall some previous results for these degenerate parabolic equations.

The first we wish to mention is the work by Kruzmkov and Kovopi [K-K],
in which a Harnack inequality is proven on the usual parabolic cylinders. The
constant in this inequality depends on the sum of two averages like the ones appear-
ing in (0.2) (the averages are this time on a parabolic cylinder) so that if one wants
to get the inequality on all the parabolic cylinders (this has to be done e.g. in order
to deduce from it the local Holder continuity of solutions) one actually needs the
non-degeneracy of the equation. In the work of Kruzrkov and Koropil no attention
iy dedicated to the study of the existence of solutions and morecver the regularity
is studied assuming the solutions have a square integrable time derivative.

In his papers [Iv-1], [Iv-2], [Iv-3] A. V. Ivanov studied degenerate parabolic
equations from the point of view of existence theory and also considered questions
of regularity such as local Holder continuity of sclutions.

In the first & Harnack inequality is stated for solutions of a degenerate equation
that have a strong L2 derivative with regpect to time. However under his assump-
tion on the weight his statement is incorrect as our examples (see the next section)
indicate. In [Iv-2] an existence theorem for the Cauchy-Dirichlet problem is shown
but the continuity in ¢ of these solutions in the L* norm (i.e. the continuity of the
application t»fuz(w, t) dz for te[0, T]) is not, in general, proven.

02

In the third paper (containing only the statements of the theorems) an hypo-
thesis on the weight is assumed that implies in fact both the maximum and
minimum eigenvalue can be supposed to be time independent. Under this hypothe-
sis the strong L2 continuity of the solutions of the first boundary problem is ob-
tained; a Harnack inequality and lecal Holder continuity result for sclutions is
also stated but again these regularity results are incorrectly stated.

In the end we would like to quote the papers [N-1], [N-2] in which more general
boundary problems are studied for the complete parabolic equation. In these papers
the assumption is that the weight is of a particular form, namely, w(#,?) = w(@)ws(?),
w,(t) increasing and in the study of the strong L? continuity of the solutions w,(?)
must be supposed to be bounded away frem zero.

Trying now to summarize, the state of art for parabolic divergence form de-
generate equations with non smooth coefficients (at least for what we know) is as
follows:

1) no strong I® continuity is known for solutions of the Cauchy-Dirichlet
problem for really time dependent and time degenerate equations;
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2) no Harnack (with cylinder independent constant) or local Hélder continuity
result is known for these equations for any kind of degeneracy.

In our study of parabolic degenerate equations our aim was to extend as far
as possible the results in [F-K-S] to the parabolic cage.

We are not aiming to the largest generality so that we will restrain ourselves,
for the time being, to the equation:

(%) —a%(aﬁ(w, 1 -a%) L

where we assume: A-lo(w, D)|E2< a4z, 1) §,:6,< lo(w, 1) €%, VE € R™, a.e. in a cylinder
Q = 2x10, T[, Q2 bounded open set € R TFor this equation we will study only
the Cauchy-Dirichlet problem.

The assumption we make on the weight w(z,?) is an 4, condition in the space
variable uniformly with respeet to time and the same in the time variable uniformly
with respect to space (for precise statements see sec. 2).

This implies an 4, global condition but, of course, is stronger than such a condi-

tion. What happens is that if one wants to use the Steklov averages (8,u =
t+h

= 1/hf u(x, 7) dr), a very convenient device to study weak solutions of parabolic
t

equations, an A, condition in time uniformly with respect to 2 turns out to be
necessary.

On the other side under these assumptions we succeded to extend the global
theory to the parabolic degenerate equation which includes the L? continuity of
golutiong to the Cauchy-Dirichlet problem but we couldn’t get any kind of local
regularity results. But in fact we found (see sec. 1) that even local boundedness
is false under our hypothesis. Moreover, as we already mentioned, we found that
also improving the assumptions on the weight it is impossible to get the «usual »
Harnack inequality.

This paper is divided in three sections.

In sect. 1 some counterexamples related to the impossibility of local L* estimates
for our equation and the impossibility of the Harnack inequality are collected.

In sect. 2 we introduce variouns functional spaces and study the global properties
of solutions of degenerate parabolic equations.

Sect. 3 is devoted to the proofs of a Sobolev-like embedding theorem and of a
denseness result useful to achieve the L2 continuity of the solutions.

In a following paper we will prove, under stronger integrability hypothesis for
1/w, the continuity of the solutions of (%) using & variant of the usual Harnack
inequality.

The authors would like to thank prof. E. FABES for the hospitality at the School
of Mathematics of Uriv. of Minnegota, for the constant interest and encouragement
in this work and for many useful conversations and suggestions.

Finally we want to express our gratitude to prof. €. KEnig for many useful talks.
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1. — Counterexamples.

The counterexamples in this section coneern the solutions of the parabolic equa-~
tion (#) in the introduction with f = 0. The assumption on the coefficients is the
same as in (%) if not otherwise stated. A feature of this equation is the lack of local
L” estimates while under the same hypothesis in the elliptic case they hold true
(see [F-K-8]). This is shown by the following simple example:

ExAMPLE 1.1. — Let
Q@ = B,(0)x(0,1) (1), o) =w@ =2, u@i)=expl[—oalm— i)z

where « is a small positive number. Then, for convenient «, |Vu|?w e L{Q) and u
solves: div (c() Vu) = u; in @ (see sec. 2 for precise definitions). Furthermore
[]? is an 4, weight in B™ if m = 3. Obviously wu(w,?) is unbounded in ¢ and, for
small values of o, u(z, 0) € L#(2) for any fixed value of p.

The bad behavior of equation (%) forced us to abandon the hope of proving any
kind of local regularity result. However we conjectured that bounded (resp. con-
tinuous) initial data #, would give continuous (resp. Holder continuous) solutions.

This too turned out to be false as it is shown by the following examples:

Exawerr 1.2 (Bounded w, doesn’t imply continuous ). — Let

T

i

i

Q= By0)x(0,1), o) =lzP, ulz1)=""rexp[(l—m)].

Then |Vulo € L(Q) and « is a solution of div (w(x) V) = u,, bounded for any ¢,
but it is not continuous in Q.

ExampLE 1.3 (Continuous u, doesn’t imply Holder continuous ). — Letb

[er]
Q = By(0)x(0,1), o(x) = — Ajw|>(log ]w\)zfsm—l(log sy tds (A>0),
0
__exp [Af]
log |#|

(@, 1) =

Then w(«) is an A, weight, |[Vu?w e LY(Q) and u solves div (w(x) Va) = u,.

() B,{#,) is the open ball: {x e R": |w — x| < 7}.



Fir1ppo CHIARENZA - RAUL SERAPIONI: Degenerate parabolic, etc. 143

Moreover #{x,0) is continuons but « isn’t Holder continuous.

Let us now give some further counterexamples concerning the Harnack ine-
quality. The first refers to the impossibility of a Harnack inequality for degen-
erate operators without local assumptions on the weight. Let us make precise what
we mean with « Harnack inequality on the parabolic cylinders» (H.I.P.C.).

We consider solutions # of the equation:

_Za_%(aﬁ(w, 1) %—t—)) + 4= 0 in a cylinder @ = 0Qx(0,T).

u(x,t) is supposed to be non negative in a cylinder @, ?,) = B,(2) X (f,— 0%
fo+ 0%). Let @F = B,,(w,) X (, + a0* b+ 0%) and @, = B, (%,) X (t,— fo* t,— yo*)
where: 0 <a<<1, 0 <y <<f <1 are fixed numbers.

Then we will say that a H.I.P.C. holds if it exists a constant K independent
from p (and, obviously, from u) such that:

(1.1) esssup u(w, 1) £ K essinf u(z, 1) .
Q3 ar

Exampre 1.4. — Let w(x, t) = 1 for w6 (— 1, 0], o <1, =2,...,, m,te(—1,1);
o(w, t) = o for x;€(0,1), [r,|<1,i=2,...,m,te(—1,1); ¢ a given number in (0, 1).
We consider in @ = B,(0) x (0, 1) the degenerate parabolic equation:

2 ?
(1.2) -a—m_(w(w, ) 53) T ou=0.

Given any p = 1, ¢ can be chosen so small that both v and wte L?(Q).
Given any g greater than zero consider:

o d
w(x, 1) = u{@y) =f Z)—(%) .
—¢

This function is a solution of (1.2), non negative in ¢ (0, 0) and such that

essinf u(z, 1) =
H

NS

esssup w(z, t) = gl—a- 1 +
2 Q;p 7)—2 1___0, Q

so that (1.1) cannot be true for all the values of p.

The interest of this example is in the fact that it is an essentially elliptic one
50 that it somehow proves that for both elliptic and parabolic degenerate operators
integrability conditions only. are not enough for the validity of (1.1) and some kind
of «local » condition is needed.

The next counterexample shows the impossiblity of an H.LP.C. for any kind
of degenerate parabolic equations.

10 - Annali di Matemalica
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ExaMpLE 1.5 (No Harnack). — Let o(x, t) = —log [t| in @ = (— 1,1)»x(— , §);
oz, t) and o~te L?(Q) for any p e[l, 4 o). However, unlike the weight in Ex-
ample 1.4, w(z,?) satisfies any kind of local conditions like the 4, conditions (see
see. 2) or the Murthy-Stampacchia-Trudinger conditions (see [M-S],,,, [Tr 1], [Tr 2])
that we quoted in the Introduction.

Consider ,(0,0) and u = exp [t(log [t] — 1)] cos # — exp [— 2(1 — log p%)] cos o.
u is a solution of (1.2) for w(»,?) = —log|¢| in @, non negative in Q,.

Now (1.1) reads:

exp [fo*(1 —log fo?)]— exp [— 0%(1 —log ¢®)] cos ¢ = K -

'[eXP [— 0*(1 —log ¢*)] cos g — exp [— ¢*(1 — log p?)] cos @]

that cannot be true for all the values of p.

In this example we started from a solution of the heat equation changing the ¢
variable, so that an Harnack inequality is still true but on cylinders that are no
longer of the form « (g, p?) ».

‘With some more effort, but basically with the same idea in mind, one can construct
an example of a time independent weight such that the non negative solutions of
the corresponding equation don’t satisfy H.I.P.C. The outline of the construction
follows.

ExaMPLE 1.6 (No Harnack, time independent). — Consider the equation:w,=
= Au 4+ V-Vu, where V is a vector function whose components V, are assumed
conveniently integrable. For such an equation it is well known that the fundamental
solution’s behavior is the same as for the equation #,= Aw. From this one can
show that only on the usual parabolic cylinders an Harnack inequality can be true.

This assumed we consider the (time independent) transformation Gw = x/|»|*
where o is a number conveniently cloge to zero.

By this change of space wvariables our equation is transformed in:

(1.3) | |9 == div (£ Vu) 4 |J| TV -J1-Vau .
Here: J is the jacobian matrix of T whose determinant is |J|; £ = |[J|(J1)*(J7)
((J-1)* denotes the transpose of J-1) and V() = V(Tx). (1.3) can be written as:

(1.4) Uy = divl%el.vu_v(m—l) A Vu + V-J-1-Vu .

Now A/|J|is a definite positive matrix whoge eigenvalues are of the order of |z|**.

We look for a ¥(x) of the form ¢(|z|)® such that the coefficient of Vu is zero.

This ¢ can be found so that the original V(z) is of the form: const- [#]*"~22 which,
for |x| close to zero, can be taken arbitrarily integrable.
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With this choice of V the solutions of (1.4) satisfy an Harnack inequality only
on the cylinders corresponding through the T to the standard ones.

2. — The degenerate parabolic equation.

We start giving some definitions and introducing some function spaces we will
need in the following.

Let 2 be an open set in R™, (a,b) CR. Let @ = 2 x({a,b). We will say that a
real, measurable, non negative function defined in @ is an 4,(1 < p < + oo} weight
- in 0, uniformly with respect to ¢ in (a, b), if:

(2.1)  esssupsup (% fw(x, 1) dw) (1%,—[ fco(w, 1) “1/<1’—1)dm)p_1 =M< +oo.
(4]

te(a,b) ¢
¢

Here the supremum is taken on all the m-dimensional cubes C contained in 0. A,
weights in (e, b) uniformly with respect to # in @ are defined in an analogous way.
(2.1)  is the usual definition of 4, weights for time independent weights.

Two fundamental properties of 4, weights are given by the following theorems:

THEOREM 2.1 (Reversed Holder Inequality; [C-F] Theor. IV, Lemma 2). — Let o
belong to A, in R™. Then the inequality:

1 L 1/(1+96) 1
(2.2) (l—c-,—| fw(m) +9 dm) = K, (m fw(w) da:)
¢

c

holds for all cubes C, with constanis K,, 6 > 0 dependent only on the A, constant of
w(x).

From this follows that if w(x)c 4, then we 4,_, for some positive e.

Let us now consider f € LL (R™. We will denote:

loc

Mlf(@)] = swp o f ) dy
{C:2eC} !GI &

its maximal funetion. Then the following result holds:

THEOREM 2.2 ([M]; [C.F.]). -~ Suppose w(z)c I (R™) is a non negative function,
1<p <+ oco. The inequality:

(2.3) ( f (M (f@) o) dw)””g & [(@)yoe dw)”p
3

Rm
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Tiolds for any f € L#(R™; w) (2); if and only if w(x) is an A, weight. K, depends only
on the A, constant of w(x). ‘

REMARK 2.1. — Let w(x,¢) be an A, weight in (a, b) -uniformly with respect to
z & Rm Then it i easy to prove that the extended weight:

B(w, 1) = w(x,t), te(a,b); (@, 1) = w(@, —t + 2a), t€(2a—b,a);

w(w, ) = (v, —1 4 2b), te(b, 2b—a); ete.

is still an A4, weight in R uniformly with respect to xe R», The 4, constants of o
and & are comparable.

Let 7 be a positive number and w(w,t) an. 4, weight in R», uniformly with
respect to ¢ in (0, 7) and an A, weight in (0, T') uniformly with respect to z in R~
In all what follows we will assume that o has been extended as in the above remark.

We will denote:

V (@) the space of the functions w € L*Q; w) whose distributional derivatives with
respect to the space variables xy, ..., x, belong fo L} Q; w).

Endowed with the scalar product: (u, v),, = f {uv + uw‘vwi}w dedt V,is a Hil-
bert space. @

Tc}w(Q) is the closure of D(Q) in V (@). If Q is bounded the inner product:
(thy V) 20y = f h,,0,, 0 d di, turns V (@) into a Hilbert space whose norm is equivalent
a

50 o]y, Let us remark that if v(w,?) € Ic}'w(Q) then for a.e. { € (0, 7) it belongs to
Hy(2; (-, 1)) and

nvnm,=( f o Dlasoc. &) 0

V'(Q) is the dual space of T(}m(Q). V,;(Q) is a Hilbert space and a subspace of

@

D'(@). Let us observe that F e D'(Q) is in VH',(Q) iff fi,.0uy fr exist, f.€ L¥HQ; 1/w)

() If 2 is an open set in B, o is a non negative function, w € I}, ,(2), we will denote

I?(Q; w) the space of (the classes of) real, Lebesgue measurable functions, such that:

[lf@)|? (@) dw < + co. Endowed with the norm: [|f]|;s, o) = ( [Ifi?e(x) de)V?, L*(Q; ) is a
Q Q

Banach space.
(®) For all values ¢ such that o(-,t) is an 4, weight in Q, Hy(2; w(+,1)) is the comple-
tion of D(2) with respect to the norm:

9] 2a; wt., o) = ( f vi, (@, 1) dx)* .
0
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guch that: # = — of,/0x; is inD'(Q). In fact if F e V;(Q), by the Riesz representa-
tion theorem, an fe I%w(Q) exists such that (¥, ¢> = (f, ¢)g. ) Y€ D(Q). Then:

<Fy @) =_<£;(%iw):¢>’ " Voe D).

Letting f,= (of/0x;) one gets the conclusion. Also [Fp. = [f[$.q- The
distribution (on £)

_ o (of(:y 1)
()“a—x,.( o,

w(-,t))e H— (Q; &)-(—1—’7)) (v) for a.e. t€(0,T)

T
and it is easy to see that: (&, ¢> =f_1<F(t), e@)>, dt, VF e V. (@), Yp e V _(Q) and:
0

|F|3, = f L) s 7000 -

W(Q) is the space of the functions u e Iofm(Q) 8.t. u; (in D'(Q)) belongs to V. (Q).
Endowed with the scalar product, (4, v), = (4, v)3, -+ (4,, v,)y,: W is aHilbert space.

REMARK 2.2. — If we W(Q) it is possible to find an extension # of u# s.t.
i e W(2 X R) (this being considered with respect to the weight extended as in the
Remark 2.1).

PrOOF. — Let p € OF7 (2% R), ¢ =11in 2X[0, T], ¢ = 0 in QX {B\(— T/2, $T)},
0= p=1. Define: w(»,?) = u(x, — 1) in (— T, 0), u,(, t) = u(x, 2T — ) in (T, 2T), ete.
Let %@ = u,p. Then 4 e W(Q X R), supp % c 2x[— T2, $T] and

I, )l xm= E(T) 4] 5 -

Two essential, but somewhat technical, lemmas are now stated. Their proof
will be given in Sec. 3.

LEMMA 2.1. — The subspace of the C°(Q) (5) functions with compact carrier in Q
for any te R is dense in W({). This implies: W(Q) < Co([0, T7; L3 (£)).

LEMMA 2.2. — Lot we V() N C°([0, T; LXR2)). Then ewist constanis K > 0 and
1> 1 (K depending only on the A, constant in the space variable, Q and m; | depending

() H(2; 1w(-,1)) is the dual space of Hg(Q; w(-,1)) for all the #'s for which the latter
exists. We will denote: _{-,-); the duality between H-1(Q; 1/w(-,1)) and Hi(Q; o(-,1)).
() § = QXR, | '
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on the A, constant in the space variable and m) such that:

3
][u[]ng(Q;a,)g (K max( fuz dm) -+ ”“”%,,(e)) .
I\ : e
Finally: Wi(Q) is the space of the u e Iofw(Q) such that w.€ L¥Q; 1/w). . _
W.(@Q) is a Hilbert space with theinner produet: (#, v), = (#, )%, + (U5 V) 1ag;1/w):

Lemma 2.1 still holds for W.(@). Also: if we W, and {,€[0, T] exists s.t. u(z, t,) = 0
then % e L¥Q;1/w), In fact:

’([fuz 15 do dt ééf ( 0J-?(ut(av, 1))2 i—}dt)( fw(w, 1) dt) ( fa_)(alc_,t_) dt) de .

Before turning to the study of the equation let us introduce for e L] (@) the
Steklov averages:

i+h [
1
Sy =u, = -}1; fu(:v, s)ds and S;u=u;= 7 fu(m, 8)ds (%) .
£ t=h

These averages are needed in the proof of some basic estimates and of Lemma 2.1.
Many important continuity properties of these regularizing operators are stated
and proved in See. 3.

We now consider in @ = Qx(0,7) (£ bounded open set in R=, T >0) the
divergence form parabolic equation:

0 ou\ Ou
(2-4) Lu—utz-a-z(a”(w, t) %;)——th ;f,

We assume that the coefficients a;;(%, ) are measurable functions a.e. defined in @
and fulfill the following:

@@y 1) = (@, 1), hhi=1,..,m

(2.5) 31> 0 such tha'fn:' %w(m, t)ISPg a:5(2, 0) €6, doola, 1)|E]2,
a.e in @, VieRm

where w(x, ) is an A, weight in R” uniformly with respect to ¢ in (0, 7) and an 4,
weight in (0, T) uniformly with respect to # in Q. We also assume that fe V;(Q).

() Now and in what follows we assume that w and » have been extended to the whole
QX E accordinig to Remarks 2.1-2.2.
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DEFINTTION 2.1. — We say that w €V _(Q) is a solution of (2.4) in @ if:
ou © 0
R L a‘;’}dm it =— gy, VpeWa@), pl0) = p(T) = 0.
Q .

DEFINITION 2.2. — Given uy(x) € L2(Q) we say that u € Iofm(Q) is a solution to the
Cauchy-Dirichlet problem (with u, Cauchy data, and homogeneous Dirichlet data) for
the equation (2.4) if:

0
(2.1) [ouit 22— wBlwvas—— 31,0 + [mi@oto, 0 20,
Q .

Vpe W, (I)=10.()
We can now state the following:
THEOREM 2.3. — Assume (2.5) holds. Let uy(x) € L2(Q) and fe V'(Q). Then there

exists a unique solution u to the problem (2.7). Moreover u € C°([0, TT; IX(Q)) and
lim (@, t) = uo(w) in L2(Q).
Let us remark that, once Theorem 2.3 has been proved, it is also possible to

solve the Cauchy-Dirichlet problem with non-homogeneous Dirichlet data. More
precisely we have:

COROLLARY 2.1. — Assume (2.5) holds. Let ug(z) € L (Q2) and fe Va'); Moreover
let g(a,t)€V,, gz, t) € V. and ge C([0, T1; L2(2)).
Then there exists a wnique w €V, 8.t.:
i) » is a solution of (2.4) (Definition 2.1);
if) w(-, ) — g(-, 1) € Hy(2; (-, #)) a.e. in (0, T);
iii) « is Co([0, T]; Lx(R2)) and lim u(z, 1) = uy(®) in L2(£).

PrOOF oF THEOREM 2.3. — Let us consgider ¢(z, {) € 0°(Q), p(», t) compactly sup-
ported in £ for all ¢.. For such ¢ we have:

) B |
28)  2orpiat), 9la, 05y, f(;i, fqo (1) )it = [g2(0, 7) s [, 00
Q Q

The above class of functions ¢ forms a dense subset of W, the space where the
solution «# of the problem (2.7) is to belong.

(") We should write: {(g,, ) in the place of futpt dx di, the braces standing for the duality
between V,(Q) and V.(Q).
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So that we can get an equality as (2.8) for u.
Let us define in Wx W the two forms:

T
oty 2) = — <1, 0> + [ [aco, D (@, 0., (2, 1) do dt
0o 2
and:

T
W (11, 0) = Cthe,y O + f f 045( ) (@, 1) 0, (@, 1) A .
0 2

We can now derive using (2.5) and (2.8):

2
2 Yo, Dl + [0, 0) 0 < 2200, )+ [, )
2 0

% [|ae{ez, t)“f}w(e) —|—fu,2(a;, T) de < 20" (u, u) —I— u?(x, 0) dr
P ,

2]

for all ueW.

The conclusion is obtained using standard techniques (see [T], p. 402 ff) from a
theorem of J. L. Lrows [L].

Let us remark that the continuity result in Theorem 2.3 follows from the belong-
ing of u (the solution of the Cauchy-Dirichlet problem (2.7)) to the class W recalling
Lemms 2.1. For more details and the proof of the Lemma 2.1 see Sec. 3.

We now study the boundedness properties of the solutions of (2.4)

THREOREM 2.4. — Let w(w,1) be a solution of problem (2.7) and assume that:

ess sup |uy(z)| = K<+ .
2

Let us also assume that f = — (f:),, be s.t. f:jw € I'(Q; o) with r > 21j(1 — 1), 1 being
the same as in Lemma 2.2.
Then

f

w

ess sup |u(z, )| < ess sup |u,(w)| + C‘
Q Q L7(Q; )

C being a constant depending on 8, T, the A, constants of w and r.

PROOF. — Let & Wy(R2x1— b, T[), §(#,t) = 0 for t=<0 and t = T — h (> 0).
Let us consider S;@. 8;¢ € Wu(Q) (see Sec. 3) and S;@(#, 0) = 8¢(x, T) = 0.
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Then, by the Fubini’s theorem,

(2.9) — f w(8:§), de dt = — f (8,0) G, dw At — f (Satt) o do dt
Q Q Q

so that we get from (2.6)

(2.10) [8htaun) o, (S10).5} @0 dt = [ (831 6., 0 .
Q Q

It is easy to check (see e.g.[L.8.U.], p. 142) that (2.10) holds for any ¢peT7'w that
vanishes for > v, where 7 is any number < T — h.
Hence we have

(2.11) [@iu.)puy+ (S10),9} do dt = [($41) g, dw at ()
Qr Q-

for any @€ I?’m(QT).
Let us now take ¢ = (8,)" = max {S,u(s, t) — K, 0} for K = K.
Since

f(S,,,u(w, ) (Shu(z, 1)) ® do di = % [ f{[Shu(m, £) ]} dm]
o

Qr

=7
t=

0

we can wrife {(2.11) as follows:

(2.12) f{Sh(os“uwj)(Sh%)g’} do dt - % [ f{[;S’hu(x, )] o}e da?]tﬂ:f(ghfi)(shu);f’ du dt .
/ t=0
0

Qr

T

Now let A approach zero. This is possibie for the first term since @s5g € L3(Q; 1]w)
and 8; acts continuously on this space (see Sec. 3) and (Shu);f’ converges in L2(Q; o)

to . The same is true for the right side while the f ([S»u(z, 7)]°) dw converges,
Q

for all #’s, to f[u‘z’(m, 7)]? dz because u € C°([0, T]; L¥(£)).
o]

From (2.12) using the boundedness assumption on #,{) it follows that

(2.13) J‘aﬁu%ug’ do dt + % f(u“"(x, 7)) do —_—ff,.uif’ dx dt
0 I a

for sl K> K.

(®) @, = 2x(0, 7).
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From-(2.13) using standard techniques we deduce that the

maxf[u“" (2, 1)]2 do —{—f[um (&, t) P oola, t) do dt < Cy| f2(x, 1) (; )dm dt
(0,71
Ax

where A, denotes the set: {(w,?)€Q: u(w, )= K}.
By Lemma 2.2 and the above it follows that

(ffu?}(w, tow(z,t) do dt)mg 02( fo (é)rw i dt) ( J’ ) du dt)l 2/7.
08 J ) |

Ax

Now, considering k> K, we get

f

2 (r—2)/r
1 ( f o do dt) .
W L7(Q; w)

Ax

Letting, for &> K, o(h f o(w, t) dv dt, p(h) is a non negative, nondecreasing
An
function such that the following inequality holds:

1
(h—K)Z( fwdmdt)l <0,
Ar

O;”f/w“%l’(aw) ' r—2

ph) = Th—K)® pE)F, p=1 >1

for all > K = K.

The theorem now follows by G. STAMPACCHIA’s Lemma (see [STA], page 93).

We would like to point out that no really new technique has been used in this
section; in fact all the proofs followed quite closely the ones given in the [L.8.U.]
treatise or any other work on parabolic divergence form equations. However, it
is the A, assumption in the time variable that allowed us the use of such standard
technical devices as the Steklov averages; .droppmg this assumption to get also the
most basic inequalities we should have assumed much stronger hypotheses on the
weight (e g. substantial time mdependence as in [IV- 3] or assumptlons on the form
of the function w(z,t) as in [N,], etc.). o : AR

Given this we will not give a detailed proof of the following theorem that can
be carried out in very similar way to [STAJ], Cor. 5.2, p. 141.

THEOREM 2.5. — Suppose u is a solution of (2.4) with f =0 such that u € C°([0, TT;
L2(9)) (this is true e.g. if we I}W(Q) or if some smoothness assumption is made on 02).
Suppose that uy(x) = ltl.l;% w(x, 1) is in Lo (R2). Then:

T
(0—1)/2
esssup |u(z, t)| < ess sup Lo (@)| + Kf[u(Mo)]zw do dt- ( f fw(w, t) do dt) o,
Br(z, T )

r(2g) X (0,7) Br(z Batay)x(0.7) [
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where: B,(w,) is the open ball centered at x,& 2 with radius R (?), M, is the

ess sup |u(2)], ) = max {u(@,t) — M,, 0}, Ay » is the subset of B(x,)x (0, T)
Br(a,)
where u(z, t) = M,, 8 is a number larger than 1-and K depends on the 4, constants

of w and R (it is unbounded for R — 0).

. . REMARK 2.3. — The theorem above is the best possible (under our assumptions)
« local boundedness » result for solutions of (2.4). These solutions, as we have seen
in See. 1, are not in general locally bounded.

3. — Machinery. Proofs of Lemmas 2.1, 2.2.

We begin with some facts about the Steklov averages introduced in Sec. 2. We
assume o and « have been extended to £ X R as in the Remark 2.1 and 2.2.

LemMmA 3.1. — For any w € ﬁw(Q) 18,480y = K|%]p.q) An analogous inequality
holds for S;u. Here K depends only on the A, constant of o in the time variable.

Proor. — For a.e. ¢ in 2, w(z, t) is an A, weight with respect to ¢. Hence

+ oo + o
[8, 02,000, 1 at = f [8:(1Ve) 2o, 1) dt <

— o0 — 00

+ o0 + oo
<K f [M,([Va)) 2o, t) < K f Val® oz, t) dt .

— oo — 0o

Here M ,(f) is the maximal function of f with respeet to the ¢ variable, V is the space
gradient and we have used Theorem 2.2. Integrating in £ and using the continuity
in V, of the extengion of # to .Q><R, the conclusion follows.

REMARK 3.1. — As we have just shown, an 4, condition in ¢, uniform with respect
to w e R, is sufficient to get the continuity of §, from L¥Q; o) to L*(Q; w). On the
other hand, as we will check immediately, the same condition is also necessary for
the continuity of all the 8, and &; (k> 0) from L*Q; o) to LXQ;w). Indeed,
assume that for a fixed h > 0 both the following inequalities hold:

t+h

f (;—; fv(w, S) dg)zw(:v, t) de it < K 7)2(60, t)w(a:, t) du dt :
Q t K
1

2
fv(w, 8) ds) w(x, t) de dt < K v (z, o, t) do dt
T IE) Q

(3.1)

(°) Here we take R so small that B(x,) C 2.
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for any non negative function v € L*@; w). Then

t-+h
f(zl—h fv(w, s) ds)zw(w, t)de dt £ K| v¥ (o, t) oz, t) do dt .
Q t a

Now let v(w, t) = u(®, 8) ¥q,5(8), for any [a,5]C (0, T) with b —~a="h and any
we L¥HQ; w), u= 0.

Then
b b b
2
a9 ¢ a @

b
wio, 1) = V4D Ghere a(w)zﬁ(w)( f @ )’1

Now let

(2, 1)

and f(x) is any non negative continuous funetion with compact support in Q, to get

b b
1 1 1 .
Q2 [ Q

a

b b
1 . 1 1 .
(b —a J.w(x, t) dt) (m f @, 1) dt\) <K ae inf

a

Therefore

for all the [a, 8] C (0, T) with b — a = h.
So that if we assume the validity of (3.1) for any &> 0 w(x,?) must satisfy an
A4, condition in (0, 7) uniformly with respect to » in Q.

LEMMA 3.2. — For any ue W, |8,u],< K|u|,. The same is true for §;. K is
as in Lemma 3.1.
It is enough to consider (8,u);. For any ¢ & D(Q):

t+h

I<(Shu)t7 ¢P>] = I<Shu, (Pt>l = If %, fu(my 8) dS(p,(w, 1) dw dtl = »(10)
2 t

13

|
fu(w, t)—lﬁ f(p,,(w, 8) ds do dt| = lfu(m, 1) (% f(p(fc, s)ds) dw dt
6 t—h

H =1
= [Cu(@, 1), (8;0) )] = [<u,, S;00] < [u,],. 18; 0lg = Elu),. | ¢ls, -

(10) Q = 2 xR,
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It we define (S, F, > = <F, 8;¢>, Yo D(Q) for F eV, (Q) then, for ue W,
(S};’M/)tZ Sh(‘ut).
Furthermore for F € V, N I} the new definition agrees with the old omne.

LeMvaA 3.3. — Let weW. Then S,u converges to w in W as h — 0.

Follows from Lemma 3.1, Llemma 3.2 and denseness of D(@) in I%w(Q) and V. (Q)

Let us remark that, in virtue of Theorem 2.2, it is pogsible to obtain the same
conclusions as in the above lemmas for u = g, (¢) where g, (t) is some family of €7 (R)
convolution kernels.

We are now able to give the

Proor or LEMMA 2.1. — Because of the remark immediately above we can
assume # to be in C®(R) for a.e. # € 2. Let us also remark that all the derivatives
with respect to ¢ of 4 can be assumed to belong to T(}w

Hence we can assume that #,c Tofwn V;.

For fixed ¢(z) e D(2) the function:

F(s) = [lul+,s) — ‘P(’)”H—I(Q;uw(-,s))-l‘ (-, 8) — (p(')”Hé(Q;w(-,s)) y

is an LY(R) function (see the remarks following the definition of V).
Hence by Lebesgue theorem:

Z+h

(3.2) limi fF(s) ds = F(s) a.e.in R.
>0 2k
z2—h

We point out that the exceptional set in (3.2) can be taken independent of ¢
for ¢ belonging to a convenient, still dense, countable subset of D(2). ’

For any given ¢ > 0 and 2z such that the space Hy(2; 1/w(z, 2)) is well defined
let @,(x), belonging to a countable dense subset of D(RQ), satisfy

”ut(m7 ) — (pz(w)”z‘l(ﬂ;llw(m,s)) + ”ut(mﬂ &) — (pz(w)”?ﬁ({);w(w,z))< o ().

Now, for all the # such that (3.2) holds, consider all the h,> 0 such that:

s+ he

1
5 f[]lut(-’v, 8) — @u@) | -1(@: 1/0@,9) T (4@, 8) — Po(@) |F11(9: 0@, ] d8 < 0 -

2—hz

(1) D(Q) is dense in Hy(Q; w(, 2)) N H-1(L2; 1/w(x, 2)) with the usual intersection norm.
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The family F' of intervals: (2 — h,, ¢ -+ h,) is a covering of R with the possible
exception of a null set. In particular it is a covering of (— 7/2, 37) (we recall that u
is supported in QX (— T/2, 3T)) up to a null subset that we call E,. '

Moreover, letting H = (— T'/2, 3T)\E,, F is a Vitali covering of E (see, e.g. [STE],
p. 24). .

A Then there exists a. null set ¥, and a countable disjoint subfamily F ot F (F’ =
= {(&,— h,,, 2,+ h,)}) such that: '

Teo T 3T
L=J1 (zn"“ hz,ﬂ Zn + hzn) == (—E! 7)\\(E0U El) .

Define a function g(x,?) in @ letting y(@, 1) = @, (¥) for te(z,—h, ,2,+h,)
and y(z,?) = 0 elsewhere.

y is a measurable function in @ and for all ¢ its carrier is a compact subset
of Q. Moreover, yeV,, pe V. and

87/2 s 3T/2 5
nw(w,t)um:( f Ilw(‘yt)llﬁs(a;ww,t))dt); u«pw,t)nm:( f Ilw(',t)ll"‘H—l(e;uw(m,n)dt) -
-T2 -—1"/2

Let us remark that

372
lwi@, t) — p(z, 1)[}, Zfllut( Wt — (s, t)ulzi"l(ﬂ; 1o(e,h) 06 ==
- T/2
ey
+ oo . e
— ) fllut(-’t)—-—(pzn(-)nﬂ_z(g;llw(.’t)) at < GZIth": 20’T,
n= =
#p—haey,

so that p can be taken «close» to «, in V.
Let now

|1 2
ey = (o, —5)+ [wio, o) s =[yio, 935

— 12 ~ T2
2 i .
xeV, and “u(m, 1) — x(@, t) fng “ fut(w, 8) ds —fw(w,s)ds L =
~Tr2 ~Ty2 Yo
8T 4
= f (we(, 8) — (2, $)) ds) ] (w,t) doe di <
~Te s T I S

r ds
= ( [(w— )P0 dS) ( f )w(w, t) do dt =
Qf f w(w, ) |

-T2 -/
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37/2 37/2 37/2

:f ( f[(“t‘"'l/))m]zw ds)( fw(; 5 ds)( fco(w, s) ds)§
2 -7 —T/2 ! ~7T/2
37 ‘
+ o0
< Kf (-5 8) — (-, Ol fz(e; w-,0) 4t < Ko 2127&," = Ko .
—T/g

This implies that y(x,?) can be taken close to # in I(}'m and in W. One more
regularization in the time variable (y 0,(t)) and the first part of the lemma, follows.
The second part is fairly standard (see eg. [T]). The idea is to write a relation

like (2.7) for a function ¢ € C°(£2 X R) compactly supported in Q for any ¢ From
that at once follows

max [g(+, )= Klp|wa -
[0,71

The conclusion follows from the denseness result of the first part.

The purpose of the last part of this section is to prove the Sobolev like Lemma 2.2.

The proof is divided into some steps. The first will be to obtain the following
variant of the Sobolev weighted inequalities obtained in [F.K.S.].

LEMMA 3.4. — Given w(z,t) € A, in B™, uniformly with respect to the time variable,

there exist constants K, p, § = d(u) > 0 s.t. for any ball B,, all uc O (B,;) and all
numbers h satisfying 1 < h<mfm—1) + 6

1 1/2h 1 k-
(33) m flu[zhwlﬂ‘ dﬁ) é KR(m fqulgw d.CU) (12) y
Br

Here K is dependent on m and the 4, constant of o in the space variable.
Let us also point out that it will be possible to choose k = 1 4 u obtaining

__J___ f]u|2(1+n)w1+y dw)M(HM)g KR ___1_._ qu[zw dx ¥ i
!t #(Bpg; 1) 3 - (Bg; t) ;

To prove Lemms 3.4 we will need the following:
Lemma 3.5, — Set

1f(0) = sup o2 [lfw)]dy
0<s B

(12) w(Bg; 1) =_fw(m, t) dw; Vu is the gradient in the space variable.

Br
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where f is measurable and supported in a ball B, of radius R. If w(xz,1t) is as in Lem-
ma 3.4 there exist positive constanis K, 6 and w s.t. for all the numbers b, 1< h =
=mf(m —1) < 4, and for all fe L*B,; ») we have

3.4 1 THhelt8(x, 1) d 1/2h< kR L 2 t) d ;
R [exmmorraay o) s k(S Jirota,nas).
B B

R R

PRrOOF. — From Theorem 2.1 it follows that o, 1/w € 4,_, for some &> 0; then,
for any p in the range: 0 < p<1/(1 — litfollows that w””( 1), o' TA(-, 1) € 4,.

From now on we will use the nota,tlon &(,t) = [w(-, )]*T#. The proof will follow
the one of Lemma 1.1 of [F.K.8.]. We may suppose that f is non negative. For
any positive number A set B, = {w € B,: Tf(x) > A}

For each xc K, there is a ball, B () such that

@ ff(?/) dy > 4.

Br)(z)

We can always take r(z) < 2R since the function

§ > ff(y) dy
By(w)
is decreasing for s> 2R and x e B,.

From the Vitali covering lemma ([STE], p. 9) we can select a subsequence of
disjoint balls B; = B,,(®;) from the above family so that E,C U,B;, where B =
= Biy(a)(@s)-

From what we have previously indicated all the balls B, are contained in B,,.

We want now to estimate &(Z,;?). Recalling that when o€ 4, then m(B*) =
< cw(B;) (the « doubling eondition ») we have for any h=1 and for any p larger
than 2 —e.

(3.5) ®(E;51) = K 3 &(By; 1) = K 3, (B 1) A-#*|B,| -0~ 1/m)ph( J} dw) =

‘ h
= A_c_ z &(Bj;; 1)| B, (B;; t)]-h( ffﬂw(m, 1) dw) .
i E
Now observe that it is possible to choose ¢ << 2 and cloge enough to 2 and >0
and small enough so that @&(-, ) belongs to 4, and w(-,?) € A1y 4n+15 With this

choice of ¢ and 5 the following inequalities follow from the Holder’s inequality and
the A, condition:

(36)  [wBsHIts 1Bj1—<1+(a-1>/<n+1>>( f (

Bj

1 \Me=1 _ \(@—1/Qa+mh
— o =
o) )=

< K[w(B;; )1
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and

1 A1)\t
(3.7) BB 1) < K|Bf|a( f (d)(w t)) dw) < 6@(B,; 1) .
Bj ’

substituting in (3.5) we get

Ol = K z ]Bj]a+ph/m—h(1+(Q—1)/(7l+1))( f( 1 )ll(q_l)dw)_(q—l)%((a*l)l(nﬂ)).

=SSP
-(Jﬂ’w(w, 1) dw) .

J
We now choose & so that ¢ -+ ph/m — h(1 4 (¢ — 1)/(n + 1)) = 0; this is equi-
valent to h < m/(m — 1) + 6 where 6 = d(m, ¢, p, ) > 0.
With this choice of 7 we get

CT)(EA;t)SER_Wb((a“1)/(77+1)+1)+am+11h( f(

= )rh

1 1/(g—1) #((a—1)/{n+1))—~(a—1)
dm .

( ff”w(w, 1) dw)h .
Br

Once again using the two relations (3.6) and (3.7)

(3.8) [5(0; 019 S 2 BB 1)1y t)]-lm( f o da:)w -
Br

This final inequality states that the operator 7 is continuous from L*(B,; w(-, t))
into the weak L**(Bg; o'"(-,1)) provided that 1< k< m/(m — 1) + 6 and for any
P =2 —¢e. The Marcinkiewicz interpolation theorem implies the boundedness of T
from I2(B,; w(+,¥) into L**(B,; »*™(-,1)). Moreover from the previous inequality
(3.8) we obtain the conclusion of Lemma 3.5.

Lemma 3.4 will now follow from Lemma 3.5 and the following theorem [M-W7:

THEOREM 3.1. — Given p e (1, - co) and w e A, (*®) there exvists a constant K > 0
such that for all measurable non negative functions f

| =]

(13) i.e. there exist positive constants K, § > 0 so that given any cube C and any
measurable subset EC O, o(E)/w(0) < E(|E|/|C))%:

= K| Tf| zz@m: o -
L?(B™; w)

11 - Annali di Malematica
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Now‘returning to the proof of Lemma 3.4
}<Kfl Ivuylm_ dy; since w't7e A,

Vau(
[ r—— »><K“ f ll o

w—y[m—

< K| T(|Vaul) | z2(zm: ornc-,0) -

L:h(Rm;an(.’t))

LEMMA 3.6. — Let u(x, t) € C°(B, X [0, T]), satisfy for all t€ [0, T], u(x, t) is com-
pactly supported in B,, and assume w(xz,t) € 4, in B™ uniformly in t. Then there are
constants K, n> 0 such that if 1 = (1 4 29)/(1 + n) > 1 we have:

([ feroa) "= ey foa) ([ Jru o

a Bz
for all (a, ) C (0, T).

Proor. — Let 5 be the same as in Theorem 2.1. Then, from the Holder inequality,

1/21 1/2U(1+1n) (‘1121)(1—1/(1+n))
( fu“w(w, 1) dm) é( fu2<1+”)[w(w, )P+ dw) ( J'u?' dw) .
B B B v

Since [w(z, 1)]T7e A,
@(Bg; 1) = K [ 7(By; £)]¥1+n |Ry[t—-1/+n)

From (3.9), (3.10) and Lemma 3.4 it follows that

1 Y wm_ 1 St 49, £ dm(uzl)(ll(wn))
(RO — n 7 .
(s [wwotsn o) "< K Gty [0 rowran @)
B

Br R
) (i J‘u2 dw)(1/21)(ll(1+ﬂ))<
|Bx| -
Br
<K (max 1 U2 dw)ﬂn/u“ﬂ))(————l f y2tn) plin(gp, §) d:v)%(ml”n))é
la,b] IBRI w*1(Bpg; t) Pl ’

<KR1/’( f )%(n/(1+2n)) ( 1 f]V 12 dw)lm
max u .
13,4 (Bai®)

R
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Now, taking the 2] power, multiplying by w(B,; t) and integrating in [a, b] we get:

: 1/21 1 -y [ 1/21
( f fu”w dx dt) < KRW(maX fuz da:) ( f ]]Vu]zw dx dt) <
ta,51 | Bzl
& Br 0 Br

1 3 3
< K{(max — | u? dao) + R( ~f|Vu[2a) dx dt) } .
[a,b] IBR|B 3 :
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