Graphs and Combinatorics

© Springer-Verlag 1989

On Directed Graphs with an Independent Covering Set

E.C. Milner and Robert E. Woodrow*

Department of Mathematics and Statistics, The University of Calgary, 2500 University Drive, Calgary, Alberta T2N 1N4, Canada

Abstract. We prove that if a directed graph, \mathcal{D} , contains no odd directed cycle and, for all but finitely many vertices, EITHER the in-degrees are finite OR the out-degrees are at most one, then \mathcal{D} contains an independent covering set (i.e. there is a kernel). We also give an example of a countable directed graph which has no directed cycle, each vertex has out-degree at most two, and which has no independent covering set.

1. Introduction

Throughout $\mathscr{D} = (V, E)$ denotes a simple directed graph with vertex set V and edge set $E \subseteq (V \times V) \setminus \{(x, x): x \in V\}$. For $X \subseteq V$ we define $\mathscr{D}(X) = \{y \in V: (x, y) \in E \text{ for} some x \in X\}$ and $\mathscr{D}^{-1}(X) = \{y \in V: (y, x) \in E \text{ for some } x \in X\}$. The *in-degree* of a vertex $x \in V$ is $|\mathscr{D}^{-1}(\{x\})|$ and the *out-degree* is $|\mathscr{D}(\{x\})|$. A subset $I \subseteq V$ is said to be *independent* if $(I \times I) \cap E = \mathscr{D}$. A subset $C \subseteq V$ is a *covering set* of \mathscr{D} if $V \subseteq C \cup \mathscr{D}(C)$. If $U \subseteq V$, the *restriction* of \mathscr{D} to U is the graph $D \upharpoonright U = (U, E \cap (U \times U))$, also we write $\mathscr{D} \setminus U = \mathscr{D} \upharpoonright (V \setminus U)$.

This note is motivated by a question riased by P. Duchet (private communication). Von Neumann and Morgenstern [6] observed that, if \mathscr{D} is finite and contains no directed cycle, then it has an independent covering set (in the terminology of [1] this is called a *kernel* of \mathscr{D}). This follows, by induction on |V|, from the fact that such a graph contains a *source* (i.e. a vertex $x \in V$ such that $\mathscr{D}^{-1}(\{x\}) = \mathscr{O}$). Richardson [5] later showed that it is enough to assume only that the finite graph \mathscr{D} contains no *odd* directed cycle. This result has been rediscovered and generalised by others (see [1, 2, 3, 4]) and we give our own proof of this fact (see Lemma 1 in §2). However, it is not true for infinite graphs. For example, denote by ω the directed graph with vertex set ω and edge-set $E(\omega) = \{(j, i): i < j < \omega\}$. Clearly, ω contains no directed cycle, every verted has only finite out-degree, and the only independent subsets are the singletons and so ω has no independent covering set. P. Duchet asked if a sufficient condition for an infinite directed graph \mathscr{D} to have an independent covering set is that \mathscr{D} contain no directed odd cycle and no isomorphic copy of ω .

^{*} Research supported by N.S.E.R.C. grants #69-0982 and #69-0259.

A fairly natural example which gives a negative answer to Duchet's question is provided by the line graph of ω , i.e., the directed graph \mathcal{D} whose vertex set is the set of edges of ω , $V(\mathcal{D}) = \{(j, i): i < j < \omega\}$, and whose edge set is the set $E(\mathcal{D}) =$ $\{((k, j), (j, i)): i < j < k < \omega\}$. Clearly \mathcal{D} contains no directed cycle and no copy of ω (it does not even contain a triangle). However, \mathcal{D} does not have an independent covering set. To see this suppose, for contradiction, that $I \subseteq V(\mathcal{D})$ is an independent covering set. For $0 < j \in \omega$ either (i) $(k, j) \in I$ for some k > j or (ii) $(j, i) \in I$ for every i < j. Clearly (ii) cannot hold for more than one value of j > 0 since I is independent. So (i) holds for every large enough j, and hence there are j < k < l such that (k, j)and (l, k) both belong to I, contradicting the assumption that I is independent.

The above example suggests some interesting variations of Duchet's original question. Notice that in the example, every vertex has infinite in-degree while the out-degrees are finite but unbounded. In the remaining sections we consider the questions whether, for directed graphs containing no odd cycle, a sufficient condition for the existence of an independent covering set is that either (1) the in-degrees are finite or (2) the out-degrees are uniformly bounded by some $n < \omega$.

2. All but Finitely Many Points Have Finite In-Degree

In this section we establish the following sufficient condition for the existence of an independent covering set.

Theorem 1. Let $\mathcal{D} = (V, E)$ be a directed graph which has no directed odd cycle. If only finitely many vertices of \mathcal{D} have infinite in-degree, then \mathcal{D} has an independent covering set.

The first step is to establish the result for finite graphs.

Lemma 1. If \mathcal{D} is a finite directed graph with no directed odd cycle, then \mathcal{D} has an independent covering set.

Proof. The proof is by induction on |V|. Since \mathscr{D} is finite, there is some vertex $d \in V$ such that, whenever $h \in V$ and there is a directed path from h to d, then there is also a directed path from d to h (in the case when \mathscr{D} is cycle-free, any source element has this property). Let H denote the set of all those elements $h \in V$ such that there is a directed path from h to d. Note that $d \in H \neq \emptyset$ and, for each $h \in H$, every directed path from h to d has the same length modulo 2. Let I_0 denote the set of vertices h such that there is a directed path of even length from h to d. Then I_0 is independent and $H \subseteq I_0 \cup \mathscr{D}(I_0)$. Let $V_1 = V \setminus (I_0 \cup \mathscr{D}(I_0))$. Note that there is no directed edge between V_1 and I_0 . By the induction hypothesis, there is an independent set $I_1 \subseteq V_1$ such that $V_1 \subseteq I_1 \cup \mathscr{D}(I_1)$. Then $I = I_0 \cup I_1$ is an independent covering set of \mathscr{D} .

Next we prove the theorem for the case when every vertex has finite in-degree by a simple application of (propositional) compactness. This result was independently obtained by François Bry (unpublished) without using compactness.

Lemma 2. If \mathcal{D} is a directed graph with no odd directed cycle, and if every vertex of \mathcal{D} has finite in-degree, then \mathcal{D} has an independent covering set.

Proof. For each vertex $x \in V$ introduce a propositional letter p_x . The intended interpretation is that p_x is assigned the value "true" just if x belongs to "the" independent covering set. The axioms are:

$$\neg (p_x \& p_y)$$
 for each pair $(x, y) \in E(\mathcal{D})$

and, for each vertex $x \in V$,

$$p_x$$
 or p_{y_1} or p_{y_2} or ... or p_{y_n} ,

where n = n(x) is finite and $\{y_1, y_2, \dots, y_n\} = \mathcal{D}^{-1}(\{x\})$. By Lemma 1 the system is finitely consistent and therefore consistent and hence there is an independent covering set.

Proof of Theorem 1. The proof is by induction on n, the number of vertices of \mathcal{D} having infinite in-degree. For n = 0, the result follows by Lemma 2. Suppose n > 0 and that x is a vertex having infinite in-degree.

For a subgraph \mathscr{D}' of \mathscr{D} , denote by $H(\mathscr{D}')$ the set of all vertices $y \in V(\mathscr{D}')$ such that there is a directed path from y to x in \mathscr{D}' , also let $R(\mathscr{D}')$ denote the set of all vertices $y \in V(\mathscr{D}')$ such that there is a directed path from x to y in \mathscr{D}' . We will say that x is *satisfactory* for \mathscr{D}' if $H(\mathscr{D}') \subseteq R(\mathscr{D}')$. In particular, x is satisfactory for \mathscr{D}' if $x \notin V(\mathscr{D}')$ (since $H(\mathscr{D}') = \mathscr{O} \subseteq R(\mathscr{D}')$).

We claim that, if x is satisfactory for a subgraph \mathscr{D}' , then \mathscr{D}' has an independent covering set. If x has finite in-degree in \mathscr{D}' this is an immediate consequence of the induction hypothesis since \mathscr{D}' has fewer than n vertices with infinite in-degree. Suppose $H(\mathscr{D}') \subseteq R(\mathscr{D}')$. Then, by the same argument that was used to prove Lemma 1, the set J_0 of all those $y \in H(\mathscr{D}')$ for which there is a directed path of even length from y to x is an independent set and $H(\mathscr{D}') \subseteq J_0 \cup \mathscr{D}(J_0)$. Now, by the induction hypothesis, $\mathscr{D}'_1 = \mathscr{D}' \setminus (J_0 \cup \mathscr{D}(J_0))$ has an independent covering set J_1 (since $x \notin V(\mathscr{D}'_1)$). Clearly there is no edge from J_0 to $V(\mathscr{D}'_1)$, and there is no edge from $V(\mathscr{D}'_1)$ to $H(\mathscr{D}')$. Therefore, $J_0 \cup J_1$ is an independent covering set of \mathscr{D}' and the claim is established.

Put $\mathscr{D}_0 = \mathscr{D}$, $H_0 = H(\mathscr{D}_0)$, $R_0 = R(\mathscr{D}_0)$. If x is satisfactory for \mathscr{D} , then, as we just observed, there is an independent covering set. Therefore, we may assume that x is not satisfactory for \mathscr{D}_0 . In this case $H_0 \setminus R_0 \neq \mathscr{D}$. Since $x \notin H_0 \setminus R_0$, it follows from the induction hypothesis that there is an independent covering set of $\mathscr{D} \upharpoonright (H_0 \setminus R_0)$, say I_0 . Put $\mathscr{D}_1 = \mathscr{D}_0 \setminus (I_0 \cup \mathscr{D}(I_0))$. Observe that there are no edges connecting I_0 and $V(\mathscr{D}_1)$ so that it will be enough to show that \mathscr{D}_1 has an independent covering set.

Generally, let α be an ordinal and suppose that we have defined subgraphs \mathscr{D}_{β} and independent sets I_{β} for $\beta < \alpha$ such that (i) x is not satisfactory for \mathscr{D}_{β} , (ii) $H_{\beta} \setminus R_{\beta} \neq \emptyset$, where $H_{\beta} = H(\mathscr{D}_{\beta})$ and $R_{\beta} = R(\mathscr{D}_{\beta})$, (iii) $I_{\beta} \subseteq H_{\beta} \setminus R_{\beta} \subseteq I_{\beta} \cup \mathscr{D}(I_{\beta})$, (iv) $\mathscr{D}_{\beta} = \mathscr{D} \setminus \bigcup \{I_{\gamma} \cup \mathscr{D}(I_{\gamma}): \gamma < \beta\}$. Put $\mathscr{D}_{\alpha} = \mathscr{D} \setminus \bigcup \{I_{\beta} \cup \mathscr{D}(I_{\beta}): \beta < \alpha\}$. If x is satisfactory for \mathscr{D}_{α} , then there is an independent covering set, J, of \mathscr{D}_{α} . Also, for $\gamma < \beta \leq \alpha$, there is no edge connecting $H_{\gamma} \setminus R_{\gamma}$ to $V(\mathscr{D}_{\beta})$. Consequently, $J \cup \bigcup \{I_{\beta}: \beta < \alpha\}$ is an independent covering set for \mathscr{D} , and the construction terminates. If on the other hand x is not satisfactory for \mathscr{D}_{α} , then $H_{\alpha} \setminus R_{\alpha} \neq \emptyset$, where $H_{\alpha} = H(\mathscr{D}_{\alpha}), R_{\alpha} = R(\mathscr{D}_{\alpha})$, and there is an independent set $I_{\alpha} \subseteq H_{\alpha} \setminus R_{\alpha}$ such that $H_{\alpha} \setminus R_{\alpha} \subseteq I_{\alpha} \cup \mathscr{D}(I_{\alpha})$.

Since the sets $H_{\alpha} \setminus R_{\alpha}$ so constructed are non-empty, pairwise disjoint subsets of $H(\mathcal{D})$, it follows that, if $|H(\mathcal{D})| = \kappa$, then for some $\alpha < \kappa^+$ the construction must terminate with x being satisfactory for \mathcal{D}_{α} , and we conclude that \mathcal{D} has an independent covering set.

3. Uniformly Bounded Out-Degrees

In this section we show that, if \mathcal{D} contains no odd directed cycle and if the out-degree of each vertex is at most one, then again \mathcal{D} has an independent covering set. In fact, slightly more is true since it is enough that all but finitely many of the vertices have out-degree at most one (Theorem 2).

Surprisingly, it is not possible to replace one by two. We give an example of a directed graph \mathcal{D} with no directed cycles in which every vertex has out-degree at most two and which has no independent covering set.

Theorem 2. If \mathcal{D} is a directed graph which contains no odd directed cycle and in which the out-degree of all but finitely many vertices is at most one, then \mathcal{D} has an independent covering set.

Proof. Put $\mathscr{D}_0 = \mathscr{D}$. Define \mathscr{D}_{α} by induction on α so that $\mathscr{D}_{\alpha} = \mathscr{D} \setminus \bigcup \{I_{\beta} \cup \mathscr{D}(I_{\beta}): \beta < \alpha\}$, where I_{β} is the set of sources of \mathscr{D}_{β} , i.e. $I_{\beta} = \{x \in V(\mathscr{D}_{\beta}): \mathscr{D}_{\beta}^{-1}(\{x\}) = \varnothing\}$. There is a least ordinal α such that $I_{\alpha} = \varnothing$ so that $\mathscr{D}_{\gamma} = \mathscr{D}_{\alpha}$ for all $\gamma \ge \alpha$. Now $I = \bigcup \{I_{\beta}: \beta < \alpha\}$ is an independent set and $\mathscr{D}_{\alpha} = \mathscr{D} \setminus (I \cup \mathscr{D}(I))$. Since there is no edge between I and $V(\mathscr{D}_{\alpha})$, it will be enough to show that \mathscr{D}_{α} has an independent covering set. In other words, without loss of generality, we may assume that \mathscr{D} has no sources. Also we may assume that \mathscr{D} is connected.

Suppose that \mathcal{D} contains *n* elements which have out-degree greater than one. We prove the result by induction on *n*.

We first assume n = 0, i.e. that every vertex has out-degree at most one. Note that, in this case, the only circuits in \mathcal{D} are directed cycles and therefore even. Consequently, any two (undirected) paths joining two fixed vertices x and y in \mathcal{D} have the same parity. Fix a vertex $x_0 \in V$ and let I be the set of all those vertices $x \in V$ such that there is an undirected path of even length from x to x_0 . Then I is an independent set and it is also a covering set since \mathcal{D} has no source elements.

Now assume n > 0, and that $x \in V$ has out-degree greater than one. The proof from now on continues in exactly the same way as for the proof of Theorem 1 (i.e. we call x satisfactory for a subgraph \mathcal{D}' of \mathcal{D} if $H(\mathcal{D}') \subseteq R(\mathcal{D}')$ etc.).

We conclude this section with an example of a denumerable directed graph \mathscr{D} which contains no directed circuits, every vertex has out-degree at most two, and for which there is no independent covering set.

The set of vertices of our graph \mathcal{D} is

$$V(\mathcal{D}) = \omega \cup \{(i,j): i+1 < j < \omega\} \cup \{(i,j)': i+1 < j < \omega \text{ and } j-i \text{ is even}\}.$$

We describe the edge set, $E(\mathcal{D})$, by describing $\mathcal{D}(\{x\})$ for each vertex x:

$$\begin{aligned} \mathscr{D}(\{0\}) &= \varnothing; \quad \mathscr{D}(\{1\}) = \{0\}; \quad \mathscr{D}(\{j\}) = \{j - 1, (j - 2, j)\} \quad (\text{for } 2 \leq j < \omega); \\ \mathscr{D}(\{(0, j)\}) &= \{0\} \quad \text{if } j \geq 3 \text{ is odd}; \\ \mathscr{D}(\{(0, j)\}) &= \{(0, j)'\} \quad \text{if } j \geq 2 \text{ is even}; \\ \mathscr{D}(\{(i, j)\}) &= \{(i - 1, j), i\} \quad \text{if } 2 \leq i + 1 < j \text{ and } j - i \text{ is odd}; \\ \mathscr{D}(\{(i, j)\}) &= \{(i - 1, j), (i, j)'\} \quad \text{if } 2 \leq i + 1 < j \text{ and } j - i \text{ is even}; \\ \mathscr{D}(\{(i, j)\}) &= \{(i - 1, j), (i, j)'\} \quad \text{if } 2 \leq i + 1 < j \text{ and } j - i \text{ is even}; \\ \mathscr{D}(\{(i, j)'\}) &= \{i\} \quad \text{if } i + 1 < j \text{ and } j - i \text{ is even}. \end{aligned}$$

Fig. 1

Figure 1 illustrates part of the graph \mathcal{D} .

It is easy to see that \mathscr{D} contains no directed cycle since all the edges are directed "downwards". Also $|\mathscr{D}(\{x\})| \leq 2$ for every vertex x. We have to show that there is no independent covering set.

Suppose, for contradiction, that I is an independent covering set. Suppose that $j \in I$ for some $j \in \omega$. Then it is easily seen that $(i,j) \in I$ if i + 1 < j and j - i is odd, and $(i,j) \notin I$ if i + 1 < j and j - i is even. Therefore, $(i,j)' \in I$ if i + 1 < j and j - i is even. It follows that $j - 1 \notin I$ and $i \notin I$ for i + 1 < j, i.e. $i \notin I$ for all i < j. Thus I contains at most one $j \in \omega$ and, without loss of generality, we may assume that $I \cap \omega = \emptyset$. It follows that $(i,j) \in I$ for $i + 1 < j < \omega$ and j - i even and hence that $(i,j)' \notin I$. Also $(i,j) \notin I$ for $i + 1 < j < \omega$ and j - i odd. Hence we see that no element of ω is covered by an element of I. This contradiction shows that \mathfrak{D} has no independent covering set.

4. Another Example

We have seen that, for a directed graph with no odd directed cycle, a sufficient condition for the existence of an independent covering set is that either every vertex has finite in-degree or that every vertex has out-degree at most one. In the example given in §3, each vertex $x \in \omega$ has infinite in-degree and (for x > 1) out-degree 2. This leaves open the possibility that a sufficient condition for the existence of an independent covering set is that \mathscr{D} should contain no odd directed cycle and satisfy the following condition:

K: for each vertex x, either x has finite in-degree, or x has out-degree at most one.

By a slight modification of our previous example, in which we replace the original vertices $n \in \omega$ by three vertices n, n' and n'', we obtain a directed graph \mathcal{D} which has no directed cycle, satisfies condition K and has no independent covering set. We omit the formal definition of \mathcal{D} but illustrate in Fig. 2 its essential features.

The proof that there is no independent covering set is similar to that given for the example in §3, the vertex n'' ($n \in \omega$) now playing the rôle of the vertex n in that example.

In this example, the vertices n'' $(n \in \omega)$ are the only vertices with infinite indegree, and the out-degree of n'' is at most one. Every other vertex has in-degree one and out-degree at most two.

5. Concluding Remark

We are grateful to the referee for pointing out to us the following Corollary of Theorems 1 and 2. A semi-kernel of a directed graph \mathcal{D} is an independent set I such that $V(\mathcal{D}) = I \cup \mathcal{D}(I) \cup \mathcal{D}(\mathcal{D}(I))$ (a more descriptive term is an independent two-step covering set). The referee observed that the following corollary may be proved by the same method that we used to prove Theorems 1 and 2. In fact, it is a direct corollary of these theorems.

Corollary. Let $\mathcal{D} = (V, E)$ be a directed graph such that EITHER there are only finitely many vertices with infinite in-degree OR there are only finitely many vertices with out-degree greater than one. Then \mathcal{D} has a semi-kernel.

Proof. Let < be any linear odering of V. Consider the directed graphs $\mathscr{D}_1 = (V, E_1)$ and $\mathscr{D}_2 = (V, E_2)$, where $(x, y) \in E(\mathscr{D}_1)$ if $(x, y) \in E$ and x < y, and $(x, y) \in E(\mathscr{D}_2)$ if $(x, y) \in E$ and x > y. Both \mathscr{D}_1 and \mathscr{D}_2 are cycle-free and satisfy the same conditions as \mathscr{D} . Therefore by Theorems 1 and 2, there is an independent covering set (kernel) I_1 for the graph \mathscr{D}_1 and an independent covering set $I_2 \subseteq I_1$ for the graph $\mathscr{D}_2 \upharpoonright I_1$. Then I_2 is a semi-kernel for \mathscr{D} .

References

- 1. Beige, C.: Graphes et hypergraphes. Paris: Dunod 1970
- Duchet, P.: Graphes noyau-parfaits. In: Proc. of the Joint Franco-Canadian Coll. Ann. Discrete Math. 9, 93-101 (1980)
- 3. Duchet, P., Meyniel, H., Une généralisation du théorème de Richardson sur l'existence de noyaux dans les graphes orientés. Discrete Math. 43, 21-27 (1983)
- 4. Galeana-Sanchez, H., Neumann-Lara, V.: On kernels and semi-kernels of digraphs. Discrete Math. 48, 67–76 (1984)
- 5. Richardson, M.: Solutions of irreflexive relations. Ann. of Math. 58, 573-580 (1953)
- Von Neumann, J., Morgenstern, O.: Theory of games and economic behaviour. Princeton, NJ: Princeton Univ. Press 1944

Received: February 5, 1986