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Abstract. We prove that ifa directed graph, 9, contains no odd directed cycle and, for all but finitely 
many ~ertices, EITHER the in-degrees are finite OR the out-degrees are at most one, then 
contains an independent covering set (i.e. there is a kernel). We also give an example of a countable 
directed graph which has no directed cycle, each vertex has out-degree at most two, and which has 
no independent covering set. 

1. Introduction 

Throughou t  ~ = (V, E) denotes a simple directed graph with vertex set V and edge 
set E = (V x V)\ {(x,x): x • V}. For  X _-= V we define ~ (X)  = {y • V: (x, y) • E for 
some x • X} and ~ - l ( X )  = {y • V: (y,x) • E for some x • X)o The in-degree of a 
vertex x • V is I~- l ({x}) l  and the out-degree is I~({x})l. A subset 1 - V is said 
to be independent if (I × I) NE  = ~ .  A subset C ~ V is a covering set of ~ if 
V S C U D ( C ) .  If U - V ,  the restriction of ~ to U is the graph D I ' U =  
(U, EN(U × U)), also we write ~ \ U  = @ I(V\U). 

This note is mot ivated by a quest ion riased by P. Duchet  (private communica-  
tion). Von Neumann  and Morgenstern  [6] observed that, if ~ is finite and contains 
no directed cycle, then it has an independent  covering set (in the terminology of I-1] 
this is called a kernel o f~ ) .  This follows, by induct ion on I VI, from the fact that such 
a graph contains a source (i.e. a vertex x • V such that  ~ - l ( { x } )  = ~ ) .  Richardson 
[5] later showed that it is enough to assume only that  the finite graph ~ contains 
no odd directed cycle. This result has been rediscovered and generalised by others 
(see [1, 2, 3, 4]) and we give our  own proof  of this fact (see Lemma i in §2). However,  
it is not  true for infinite graphs. For  example, denote  by ¢o the directed graph with 
vertex set ~ and edge-set E(co) = {(j, i): i < j < o9}. Clearly, co contains no directed 
cycle, every verted has only finite out-degree, and the only independent  subsets are 
the singletons and so co has no independent  covering set. P. Duchet  asked if a 
sufficient condit ion for an infinite directed graph ~ to have an independent  covering 
set is that  ~ contain no directed odd cycle and no isomorphic  copy of co. 
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A fairly natural example which gives a negative answer to Duchet's question is 
provided by the line graph of to, i.e., the directed graph ~ whose vertex set is the set 
of edges of to, V(@) = {(j,i): i < j  < co), and whose edge set is the set E(~) = 
{((k,j),(j, i)): i < j  < k < co}. Clearly ~ contains no directed cycle and no copy of 
to (it does not even contain a triangle). However, ~ does not have an independent 
covering set. To see this suppose, for contradiction, that I E V(~) is an independent 
covering set. For 0 < j ~ co either (i) (k,j) ~ I for some k > j or (ii) (j, i) ~ I for every 
i < j. Clearly (ii) cannot hold for more than one value ofj  > 0 since I is independent. 
So (i) holds for every large enough j, and hence there are j < k < l such that (k,j) 
and (l, k) both belong to 1, contradicting the assumption that I is independent. 

The above example suggests some interesting variations of Duchet's original 
question. Notice that in the example, every vertex has infinite in-degree while the 
out-degrees are finite but unbounded. In the remaining sections we consider the 
questions whether, for directed graphs containing no odd cycle, a sufficient condition 
for the existence of an independent covering set is that either (1) the in-degrees are 
finite or (2) the out-degrees are uniformly bounded by some n < co. 

2. All but Finitely Many Points Have Finite In-Degree 

In this section we establish the following sufficient condition for the existence of 
an independent covering set. 

Theorem 1. Let @ = (V, E) be a directed graph which has no directed odd cycle. I f  
only finitely many vertices of ~ have infinite in-degree, then ~ has an independent 
covering set. 

The first step is to establish the result for finite graphs. 

Lemma 1. I f  ~ is a finite directed graph with no directed odd cycle, then ~ has 
an independent covering set. 

Proof. The proof is by induction on I VI. Since ~ is finite, there is some vertex d e V 
such that, whenever h ~ V and there is a directed path from h to d, then there is also 
a directed path from d to h (in the case when ~ is cycle-free, any source element has 
this property). Let H denote the set of all those elements h ~ F such that there is 
a directed path from h to d. Note that d ~ H ~ ~Z~ and, for each h ~ H, every directed 
path from h to d has the same length modulo 2. Let I o denote the set of vertices h 
such that there is a directed path of even length from h to d. Then I o is independent 
and H ~ I o U ~(Io). Let Va = V\(Io U ~(Io)). Note that there is no directed edge 
between V 1 and I o. By the induction hypothesis, there is an independent set 11 ~ 1/1 
such that I"1 c_ 11 U ~(11). Then I = Io U 11 is an independent covering set of ~. 

[] 

Next we prove the theorem for the case when every vertex has finite in-degree by 
a simple application of (propositional) compactness. This result was independently 
obtained by Frangois Bry (unpublished) without using compactness. 
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Lemma 2. I f  9 is a directed graph with no odd directed cycle, and if every vertex of 
@ has finite in-degree, then 9 has an independent covering set. 

Proof. For each vertex x s V introduce a propositional letter p~. The intended 
interpretation is that p~ is assigned the value "true" just if x belongs to "the" 
independent covering set. The axioms are: 

-I (p~ & p~) for each pair (x,y)e E(9) 

and, for each vertex x e V, 

Px or py, or Pyz or . . .  or py,, 

where n = n(x)is finite and {Y~,Y2 . . . . .  y,} = N-~({x}). By Lemma 1 the system is 
finitely consistent and therefore consistent and hence there is an independent 
covering set. [] 

Proof of Theorem I. The proof is by induction on n, the number of vertices of 9 
having infinite in-degree. For n = 0, the result follows by Lemma 2. Suppose n > 0 
and that x is a vertex havinginfinite in-degree. 

For a subgraph 9 '  of 9, denote by H(9 ' )  the set of all vertices y ~ V(9') such 
that there is a directed path from y to x in 9 ' ,  also let R(9')  denote the set of all 
vertices y ~ V(9') such that there is a directed path from x to y in 9 ' .  We will say 
that x is satisfactory for 9 '  if H(9 ' )  S R(~'). In particular, x is satisfactory for 9 '  
if x ¢ V(~') (since H(9 ' )  = ~ c= R(~')). 

We claim that, ifx is satisfactory for a subgraph ~ ' ,  then ~ '  has an independent 
covering set. If x has finite in-degree in 9 '  this is an immediate consequence of 
the induction hypothesis since ~ '  has fewer than n vertices with infinite in-degree. 
Suppose H ( 9 ' ) S  R(~'). Then, by the same argument that was used to prove 
Lemma 1, the set Jo of all those y e H(@') for which there is a directed path of even 
length from y to x is an independent set and H ( ~ ' ) S  Jo U g(J0). Now, by the 
induction hypothesis, ~'1 = @' \ (JoUg(Jo))has  an independent covering set -/1 
(since x ¢ V(~)) .  Clearly there is no edge from Jo to V(9~), and there is no edge 
from V(@~) to H(9'). Therefore, Jo U J1 is an independent covering set of ~ '  and 
the claim is established. 

Put 9o = 9, Ho = H(~o), Ro = R(9o). I fx  is satisfactory for ~, then, as we just 
observed, there is an independent covering set. Therefore, we may assume that x is 
not satisfactory for 9 o. In this case Ho\R o ¢ ~J. Since x ¢ Ho\Ro, it follows from 
the induction hypothesis that there is an independent covering set of 9 I (Ho\Ro), 
say Io. Put 91 = 9o\(lo U ~(Io)). Observe that there are no edges connecting I0 and 
V(9~) so that it will be enough to show that 91 has an independent covering set. 

Generally, let a be an ordinal and suppose that we have defined subgraphs 
~p and independent sets Ip for fl < a such that (i) x is not satisfactory for 9p, 
(ii) Hp\Rp ~ ~Zi, where Hp = H(gt~ ) and R~ = R ( ~ ) ,  (iii) I~ E Ht~\R p S I~ U ~(I~), 
(iv) 9~ = ~\U{I~ U~(I~): 7 < fl}. Put ~ = 9\U{I~ U 9(Ip): fl < ~}. If x is satis- 
factory for ~ , ,  then there is an independent covering set, J, o fg , .  Also, for 7 < fl -< a, 
there is no edge connecting H~\R~ to V(~p). Consequently, JUU{Ip: fl < a} is 
an independent covering set for ~, and the construction terminates. If on the other 



366 E.C. Milner, R.E. Woodrow 

hand x is not satisfactory for 9~, then H~\R~ ~ ~ ,  where H~ = H(9~), R~ = R(9~), 
and there is an independent set I~ E H~\ R~ such that H~\ R~ ~= I~ t_J 9(I~). 

Since the sets H~\R~ so constructed are non-empty, pairwise disjoint subsets 
of H(9) ,  it follows that, if IH(9)I = x, then for some ~ < x + the construction 
must terminate with x being satisfactory for 9~, and we conclude that 9 has an 
independent covering set. []  

3. Uniformly Bounded Out-Degrees 

In this section we show that, if 9 contains no odd directed cycle and if the out-degree 
of each vertex is at most one, then again 9 has an independent covering set. In fact, 
slightly more is true since it is enough that all but finitely many of the vertices have 
out-degree at most one (Theorem 2). 

Surprisingly, it is not possible to replace one by two. We give an example of 
a directed graph 9 with no directed cycles in which every vertex has out-degree at 
most two and which has no independent covering set. 

Theorem 2. I f  9 is a directed graph which contains no odd directed cycle and in 
which the out-degree of all but finitely many vertices is at most one, then 9 has an 
independent covering set. 

Proof. Put 9o = ~. Define 9 ,  by induction on ~ so that 9 ,  = 9\U{Ia LJ 9(Ip): fl < ~}, 
where Ip is the set of sources o fgp ,  i.e. Ia = {x E V(gp): 9~-1({x}) = ~} .  There is a 
least ordinal ~ such that I, = ~ so that 9 r  = 9 ,  for all 7 > ~- Now I = t_J {Ip: fl < ~} 
is an independent set and 9 ,  = 9 \ (1U 9(1)). Since there is no edge between I and 
V(9,), it will be enough to show that 9 ,  has an independent covering set. In other 
words, without loss of generality, we may assume that 9 has no sources. Also we 
may assume that 9 is connected. 

Suppose that 9 contains n elements which have out-degree greater than one. 
We prove the result by induction on n. 

We first assume n = O, i.e. that every vertex has out-degree at most one. Note 
that, in this case, the only circuits in 9 are directed cycles and therefore even. 
Consequently, any two (undirected) paths joining two fixed vertices x and y in 9 
have the same parity. Fix a vertex x o ~ V and let ! be the set of all those vertices 
x e V such that there is an undirected path of even length from x to Xo. Then I is 
an independent set and it is also a covering set since 9 has no source elements. 

Now assume n > O, and that x e V has out-degree greater than one. The proof 
from now on continues in exactly the same way as for the proof of Theorem 1 
(i.e. we call x satisfactory for a subgraph 9 '  of 9 if H(9 ' )  E R(9 ' )  etc.). []  

We conclude this section with an example of a denumerable directed graph 9 
which contains no directed circuits, every vertex has out-degree at most two, and 
for which there is no independent covering set. 

The set of vertices of our graph 9 is 

V(9) = coU {(i,j): i + 1 < j  < co} U {(i,j)': i + 1 < j  < co an d j  - / i s  even}. 
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We describe the edge set, E(~) ,  by describing ~({x})  for each vertex x: 

~({0})  = J2~; ~ ( { 1 } ) =  {0}; @({j}) = {j  - 1 ,( j  - 2,j)} (for 2 __<j < co); 

~({(0, j )})  = {0} i f j  > 3 is odd; 

~({(O,j)}) = {(O,j)'} i f j  > 2 i s e v e n ;  

~({(i , j )})  = {(i - 1,j),i} i f2  < i + 1 < j  a n d j  - i is odd; 

~({(i , j )})  = { ( i -  1,j),(i,j)'} i f2  < i +  1 < j a n d j  - i i s  even; 

~({(i , j ) '})  = {i} i f i  + 1 < j a n d j -  i i s even .  

Q 

i --(2,4) 

(1,3) ,I(1'4) 
(0,3) ~ i~i~ / i0,2~7~, i(O, 4) 

(0,4) ' 
0 

Fig. 1 

Figure 1 illustrates par t  of  the graph  ~. 
It  is easy to see that  ~ contains  no directed cycle since all the edges are directed 

"downwards" .  Also I~({x})l _-< 2 for every vertex x. We have to show that  there is 
no independent  covering set. 

Suppose,  for contradict ion,  that  I is an independent  covering set. Suppose that  
j e I for some j e o9. Then  it is easily seen that  (i,j) ~ I if i + 1 < j and  j - i is odd, 
and (i,j) ¢ I if i + 1 < j and j - i is even. Therefore,  (i,j)' e I if i + 1 < j and j - i is 
even. It  follows that  j - 1 ¢ I and  i ¢ I for i + 1 < j, i.e. i ¢ I for all i < j. Thus  ! 
contains at  mos t  one j e o9 and, wi thout  loss of  generality, we m a y  assume that  
I N co = ~ .  It  follows that  (i,j) e I for i + 1 < j < co and  j - i even and hence that  
(i,j)' ¢ I. Also (i,j) ~ I for i + 1 < j < co a n d j  - i odd. Hence  we see that  no element 
of  co is covered by an element of  I .  This contradic t ion shows that  ~ has no 
independent  covering set. 
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4. Another Example 

We have seen that, for a directed graph with no odd directed cycle, a sufficient 
condition for the existence of an independent covering set is that either every vertex 
has finite in-degree or that every vertex has out-degree at most one. In the example 
given in §3, each vertex x e co has infinite in-degree and (for x > 1) out-degree 2. 
This leaves open the possibility that a sufficient condition for the existence of 
an independent covering set is that ~ should contain no odd directed cycle and 
satisfy the following condition: 

K: for each vertex x, either x has finite in-de#ree, or x has out-deoree at most one. 

By a slight modification of our previous example, in which We replace the 
original vertices n e co by three vertices n, n' and n", we obtain a directed graph 
which has no directed cycle, satisfies condition K and has no independent covering 
set. We omit the formal definition of ~ but illustrate in Fig. 2 its essential features. 

( i ,3)  

(0,3) 
(1,3)' 

3" 

(0,2) 

(2,4) 

(1,4) 

(0,4) 

Fig. 2 

The proof that there is no independent covering set is similar to that given for 
the example in §3, the vertex n" (n e co) now playing the r61e of the vertex n in that 
example. 
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In this example, the vertices n" (n e 09) are the only vertices with infinite in- 
degree, and the out-degree of n" is at most one. Every other vertex has in-degree 
one and out-degree at most two. 

5. Concluding Remark 

We are grateful to the referee for pointing out to us the following Corollary of 
Theorems 1 and 2. A semi-kernel of a directed graph 9 is an independent set I such 
that V(9) = 1 U 9(1)U 9(9(1))(a  more descriptive term is an independent two-step 
covering set). The referee observed that the following corollary may be proved by 
the same method that we used to prove Theorems 1 and 2. In fact, it is a direct 
corollary of these theorems. 

Corollary. Let @ = (V,E) be a directed graph such that E I T H E R  there are only 
finitely many vertices with infinite in-degree OR there are only finitely many vertices 
with out-degree greater than one. Then 9 has a semi-kernel. 

Proof. Let < be any linear odering of V. Consider the directed graphs 91 = (V, El)  
and 92 --(V, E2), where (x ,y )e  E ( g l ) i f  (x ,y)~ E and x < y, and (x ,y )e  E(92) i f  
(x, y) e E and x > y. Both 91 and 9 2 a r e  cycle-free and satisfy the same conditions 
as 9. Therefore by Theorems l a n d  2, there is an independent covering set (kernel) 
11 for the graph 91 and an independent covering set 12 S I i for the graph 9 2 I 11. 
Then I 2 is a semi-kernel for 9. 
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