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Abstract. Communica t ing  processes, which may  ex- 
hibit nondeterminis t ic  behaviour ,  are specified as 
state-transit ion systems. Equivalence and refine- 
ment  relations are defined in terms of the failures 
model  of processes. Downward  and upward  simu- 
lat ion are considered as p roof  methods  for refine- 
ment.  Various opera tors  on processes are defined 
and their refinement rules established. 
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1 Introduction 

In (Hoare  1985), a theory of communica t ing  pro-  
cesses (CSP) is expounded.  It  introduces a no ta t ion  
in which it is possible to specify and reason abou t  
distr ibuted systems. In particular,  a number  of pro-  
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cesses operat ing concurrent ly  may  be looked upon  
as a single process. Fur the rmore ,  no ment ion  is 
made  of internal  actions in describing the behav- 
iour of a process. Ano the r  feature of CSP is tha t  
explicit modell ing of the state of a process is 
avoided. 

CSP provides us with a large collection of alge- 
braic laws with which we are able to prove  pro-  
cesses equivalent.  A mathemat ica l  model  of pro-  
cesses, called the failures model (Brookes et al. 
1984; Brookes  and Roscoe  1984), has been used 
to establish the correctness of  these laws. (CCS 
(Milner 1980) and ACP~ (Baeten et al. 1985) also 
suppor t  p roof  by algebraic t ransformat ion  and are 
similar to CSP in several o ther  respects.) 

The fact that  CSP does not  facilitate model l ing 
of the state may  not,  however,  be advantageous.  
Experience with the specification languages V D M  
(Jones 1986) and Z (Hayes 1987), for example,  has 
shown that  such modell ing can be a very conve- 
nient way of describing complex systems. 

It also seems reasonable  to criticize CSP on 
the following grounds.  Al though the laws enable  
us to prove  that  one process is equivalent  to an- 
other,  we are in fact at l iberty to make  design de- 
cisions that  require us to prove that  one process 
is refined by another .  Refinement  is more  difficult 
to prove  than  equivalence in CSP. 

In contras t  to CSP, the approach  taken  in this 
paper  is to make  process state explicit and  to use 
state-transit ions as a means  of specifying how a 
process behaves. Machines  are defined in a similar 
way in au toma ta  theory.  There  is also a s t rong 
resemblance to the synchronisa t ion trees of (Milner 
1980). 

The state-based approach  is, nevertheless, just  
a mat te r  of convenience.  We are pr imari ly  con-  
cerned with the events (communicat ions)  in which 
processes engage. Two processes may  communi -  
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cate with their environment  in the same way, even 
though their state-based specifications seem very 
different. Indeed, the failures model remains the 
ultimate model of a process. That  is, every state- 
based specification can be identified with a process 
in the failures model. 

The main contr ibut ion of this paper is the pro- 
vision of a number  of simple rules by means of 
which one process can be shown to be a refinement 
of another. These rules are based on the idea of 
downward and upward simulation (He et al. 1986). 
That  paper was concerned with the refinement of 
abstract data  types into concrete data  types. Jifeng 
He (1988) has independently adapted the method  
to process refinement, with similar results to our 
o w n .  

This paper is organized as follows: 
Section 2 applies a state-based approach to the 

specification and refinement of non-divergent pro- 
cesses. A collection of refinement rules is presented 
and various CSP operators on processes (Hoare 
1985) are investigated. 

The theoretical underpinning is provided in 
Sect. 3. There, the concept of failures is introduced 
and equivalence and refinement relations between 
processes are defined. Soundness and completeness 
results are obtained, the latter being achieved by 
exploring a normal  form for processes. 

Before considering some examples of processes, 
we define two useful concepts: the next possible 
events in which a process P may  engage when in 
a particular state (7 are given by nexte(o-); those 
events in which P cannot  next engage are given 
by its complement,  nexte ((7). Formal ly:  

Definition 2.2. The functions nexte, nexte: S 
are defined by 

def e.) 
nexte(a) = {eeAl3(7' eS. (7 (7'} 

def 
nextp ((7) = A--  nexte((7). []  

>PA 

It is also convenient to extend the transition rela- 
tion , to sequences of events. That  is, >_~ 
S x A* x S, where 

(7 > (7/ ~=> (7 = (7/ 

st s (7: t (7t t 
(7 ) (7" <:> 3 (7' G S .  (7 > G '  A ) 

with e denoting the empty sequence. 

2.1 Examples  

2 Specification and refinement 

In this section we consider a way of specifying non- 
divergent systems, together with a set of refinement 
rules. A theoretical foundat ion for this approach 
is developed in Sect. 3. 

We begin with the definition of a process: 

Definition 2.1. A process is a tuple (A, S, >, R) 
with alphabet A - the set of (all possible) events 
in which it may  engage; state-space S the set 
of states of the system; transition relation > _ 

t. S x A x S the set of transitions a e ,  (7, region 
R _ S ,  R=# q5 - a specification of the initial state 
of the system. (A and S need not  be finite.) [] 

Thus, in specifying a process, if we do not  care 
whether it is initially in state O-o, a 1 or o-2, we sim- 
ply define R to be {(70, (71, o-2}. Note also that  a 
process in state (7 can only engage in event e if 
a transit ion (7 e(7, to some state (7' is possible. 
In fact, there may  be several such transitions, for 
example, (7 e ,  (7, and (7 e > (7", if it does not  mat ter  
whether the new state is (7' or a". 

The following examples have been adapted from 
(Hoare 1985). 

1. The process STOPA never engages in any event. 
One possible definition is (A, {0}, 4), {0}). We 
have that  next (0)= q~ for this process. 

2. The process (A, {0, 1}, { 0 - ~ 1 } ,  {0}) first en- 
gages in the event acA and then stops. In CSP 
this would be expressed as a > STOPa. Here, 
next (0) = {a} and next (1) = 4). 

3. The process C L O C K  ticks for ever. A suitable 
definition is 

tick 
({tick}, {on}, {on ,on}, {on}) 

. 

and we have that  nex t (on)=  {tick}. 

An object starts on the ground,  and may move 
up. At  any time thereafter it may move up or 
down, except that  when it is on the ground it 
cannot  move any further down. But when it is 
on the ground, it may  move around.  This behav- 
iour is specified by a process with alphabet {up, 
down, around}, state-space N (the natural  
numbers), region {0} and transit ion relation de- 
fined by 
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up 
i ~i'<=~i'=i+l 

down 
i >i '<:~i>OAi '=i--1  

around 
i ~ i'<=~i=OAil=O. 

For this process, next (0) = {up, around} and 
next (i + 1) = {up, down}. 

5. A variable, taking values in some set V, supports 
read and write operations. Suppose we decide 
to leave unspecified its initial value and its value 
after each (destructive) read operation. A pro- 
cess with this behaviour is defined by 

({read. v, write, v lyE V}, V, ~, V) 

where 

r e a d . v  
X > Xq<=~ V=X 

w r i t e . v  
X ) X I " c z ~ V = X  t. 

We have that 

next(x)= {read. x} u {write. v ]v~ V}. 

2.2 Traces 

From the specification of a process it is possible 
to determine its traces, those sequences of events 
in which it may engage. In the following let 
P = (A, S, >, R). Then: 

Definition 2.3. The traces of a process P are given 
by 

def 
t r a c e s ( P ) = { s ~ A * 1 3 a E R ,  a'ES, a ~ a ' } .  [] 

Proposition 2.1. The set of  traces of  a process has 
the following properties: 

1. eetraces (P). 
2. st~traces(P)=~sEtraces(P).  [] 

The above properties are in fact taken as axioms 
in the traces model (Hoare 1980). 

It is also useful to be able to reason about  the 
behaviour of a process after it has engaged in a 
particular sequence of events. 

Definition 2.4. For any setraces(P), 

d e f  
P a f t e r s = ( A , S ,  , , R') 

where a'~R'~:~3 a e R .  a ~ ,a'.  [] 

Proposition 2.2. For any s e traces (P), 

te t races(P after s ) ~ s t e t r a c e s ( P ) .  [] 

2.3 Refinement 
In designing a system, we proceed through a suc- 
cession of refinement steps. A simple example in- 
volves the design of a change-giving machine 
(Hoare 1985). We might begin with a specification 
that permits several different combinations of 
change to be returned, over which the user of the 
machine has no control. A refinement step could 
then involve the elimination of this nondetermin- 
ism: we might decide that a particular combination 
of change should always be returned. 

We record the refinement of a process P~ into 
a process P2 by writing P~ =_ P2- One condition that 
must be met is that the two processes have the 
same alphabet. The other condition can be stated 
informally as follows: every behaviour that is possi- 
ble for P2 must also be possible for P~. This means 
that if s is a trace of P2, then it is also a trace 
of Px. It also means that if P2 is offered some choice 
of events by its environment, but it cannot engage 
in any of them next, then it is possible for P~ to 
behave likewise. Fortunately, it is not necessary 
to try to analyse the behaviour of the processes 
in this way. Instead, one of the following refinement 
rules should be applied at each step. 

We now present three methods for proving re- 
finements correct: 

Our first rule may be used when refining a pro- 
cess into a second process which has been defined 
over the same state space, that is, P~ = (A, S, h-, 
Ri), i =  1, 2. 

Rule 2.1 

1. 

. 

. 

(Strengthening a specification). P~ =_ P2/f 

V a ~ S. nexte, (a) = nextp 2 (a) 
In any state, the processes must be able to engage 
in the same events. 

)1 ~ >2 
Every transition of  P2 must also be a transition 
of~. 

R I ~ R 2  
Every possible initial state of  Pz must also be 
a possible initial state of  Pa. [] 

For example, noting that in state 0 only event a 
can happen next and in state 1 only b, it is easy 
to see that 

({a, b}, {0,1}, {0 a , 0 , 0 - ~ l ,  1 b ,0 ,1  b ,1}, {0,1}) 

~_({a, b}, {0, 1}, {0 " ,  1, 1 b ,0}, {0}). 
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The other two rules enable us to change the state- 
space in performing the refinement. To apply these 
rules, we must establish a correspondence between 
the states of the two processes. In the following 
let Pi=(A, Si, 'i, Ri), i=  1, 2. 

Rule 2.2 (Downward simulation). P1 ~ P2 /f there is 
a relation D~S1 x $2 such that 

1. Va l~S i ,  o '2~S  2. 

o- 1D o- 5 =~ nextv, (al) = nexte2 (a2). 

I f  the processes are in corresponding states, they 
must be able to engage in the same events. 

2. Va i lS1 ,  a2, a'2~$2, eeA. 
! 

o_IDO.2Ao. 2 e ~'20"2 

=~3a,lESl.a 1 e ' Aa'ID ' ----'+1 ~71 if2. 

I f  the processes are in corresponding states and 
P2 can engage in e, P~ must be able to engage 
in e in such a way that the processes remain in 
corresponding states. 

3. V a 2 E R  2 . 3 a l ~ R  i . a i D a  2. 

Every possible initial state of P2 must correspond 
to a possible initial state of P1. [] 

For example, by taking iDj to be i=  0 v i=  1 and 
checking conditions 1-3 above, we can see that 

({a}, {0, 1, 2}, {0 a T 1, 1 a ) 0 } ,  {0}) 

__=({a}, {0}, 0}, {0}). 
The basic idea in the last rule was that P~ can 

simulate the behaviour of Pz so that they always 
remain in corresponding states. The following rule 
is far less obvious. This time the idea is that if 
Pz has reached some state after engaging in a se- 
quence of events, then it is possible to find a corre- 
sponding state of P1 ; from this state P~ can simulate 
P2 backwards, retracing the sequence of events until 
it has reached an initial state. 

Rule 2.3 (Upward simulation). P1-  P2 /f there is a 

relation U ~_ S 2 X 81 such that 

1. u 2. 3 o-leS 1. 

az Uai A nexte~ (al)-~ nexte~ (G~). 

For every state of P2, there is a corresponding 
state of Px such that, if P1 can next engage in 
e, so can P2. 

2. Va'aESi, a2, a'2ES2, e~A. 

0"2 e )2o_~Ao_~Uoj 1 

~ 3 a l E S i . a z U a l A a l  e,la,1. 

. 

I f  the processes are in corresponding states and 
Pz could have reached its state by engaging in 
e, then so could P1 in such a way that their pre- 
vious states also corresponded. 

ValES1, o-2ER 2. 0-2 Uo'l=:~O'l ERI. 

I f  the processes are in corresponding states and 
P2 may have been in its state initially, then P1 
may have been in its state initially. [] 

For example, by tak ingjUi  to be true and checking 
the above conditions, we can see that 

({a, b}, {0,1}, {0 a , o , o  a , l , a  b ,o ,  1 b ,1}, {0,1}) 

___({a, b}, {0}, {0 a ,0, 0 b ,0}, {0}). 

Note that this refinement could not have been 
proved by Rule 2.2. Conversely, in the previous 
example, the refinement could not have been 
proved by Rule 2.3. 

It can be seen that Rule 2.1 is just a special 
case of Rules 2.2 and 2.3 in which D or U is the 
identity relation. 

2.4 Opera tors  

We now consider three of Hoare's CSP operators: 
the first operator (Ill) allows several processes, exe- 
cuting independently and concurrently, to be re- 
garded as a single process; the second 01) deals 
similarly with processes that synchronize over cer- 
tain events; the third ( \ )  permits hiding of events, 
so that they may occur as internal, unobservable 
state-transitions of the system. Definitions are pro- 
vided for each of these operators. Refinement rules 
(derived from Rule 2.2) are also given. 

With these operators, we are able to express 
the refinement of a specification into a distributed 
system. For example, a first refinement step may 
be of a process P, specifying a system with an input 
and an output communication channel, into a pro- 
cess Q which has an internal communication chan- 
nel C in addition to the input and output channels. 
This design decision would be recorded as 

P~_Q\C 

and be subject to a proof of correctness. Q itself 
might then be refined into two processes R and 
S which communicate over the channel C: 

Q~_RIfS. 

Here, R may handle the input channel and S the 
output channel. Thus, the original single process 
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P has been decomposed into a distributed system, 
specified as (R l[ S) \C.  That  is: 

P~(R II s)\c. 

The processes R and S are now themselves candi- 
dates for refinement. 

2.4.1 The interleave operator 

For  any processes P~=(Ai, Si, ' i , R3, i =  1, 2, we 
can interleave their behaviours as follows: 

de f  
D e f i n i t i o n  2.5. PnIIIP2=(AlwA2,  S 1 x S 2 ,  >, 

Rn x R2) where V o'i, 6'1 eSn, o'2, o-'2eS2, eeA1 w A2. 

0"10"2 e , 6 , x a i < , ( e e A 1 A a  n ~ )10-,1A0-2__o.i) V 

( e E A 2 A O .  2 e , 2 0 . 1 A 0 . l = o . , 1 ) "  [ ]  

To prove that  P=-P1 III P2, we could first construct 
P~IIIP2 as above and then apply a refinement rule. 
However, it may  often be easier to apply the follow- 
ing rule directly. Let P = (A i w A2, S, ~, R). Then:  

R u l e  2 .4 .  P-~PI[IIP2 /f there is a relation D ~  
S x (S1 x $2) satisfying 

1. V a e S ,  0-neSt, o.2eS2. 

0-D o.n o.2 ~ nextp (a) = nextel (6 n) w nexte2 (o'2). 

2. (a )  V o'eS, o-i,0-' leSi,0-aeS2,eeA 1. 

o'Do'n 0-2 A o . i - f ~ n  o"1 

t 3 a eS. o--s 62. 

(b)  V o.eS, o - l e S 1 , 6 2 , a l e S z , e e A  2. 
e t 

o .Do ' i  ~ A o'2 ~ 2  0"2 

=~3 O-'ES. 6 e > 0"' A 0"'D0" 1 6 2 . 

3. V a i E R l ,  o'2ERz. 30"eR.o'D0"no" 2. [] 

For  example, it is easy to show that  P,, b-----P,, b III P., b 
where, for any events x, y, 

P~.r=({x,y} ,N,  {i ~ , i + l , i + l  " , i l i eN} , {O}) .  

(Take iD(j, k) to be i= j  + k.) 

2.4.2 The parallel operator 

The parallel composit ion of P1 and P2 may  be con- 
structed as follows: 

13 

de f  
D e f i n i t i o n  2.6. PI I IP2=(AnuA2 ,  S l x S z ,  ~, 

R n X R2) where V o'1, a'x eSn, a2, 0 - 1 E S 2 ,  eeA1 w A 2 . 

e t 
O- n 0" 2 > 0-~ 0" 2 

r  A2 A 0-i 

( e E A z - A  1 A0-  2 

(eeAn n Az A o-n 

e ,  n O.] A 0-2 = O.i) v 

e ~,2 0-i A 0-i = O.~.) v 

' n o.'l A o-2 ~ ' 2 o-i). [] 

For  example, with P~, y defined as above, the paral- 
lel composit ion of P,, ~ and Pc. b is given by 

def 
P~,~II ~,b = 

({a, b, c}, N x N, 
{(j,k) a ( j + l , k ) ,  

(j,k+l) b,(j,k), 
( j + l , k )  c , ( j , k + l ) ] j ,  keN},  

{(0, 0)}). 

Again, there is a special refinement rule that  can 
be used. Let P = (A n w A z, S, ,, R). Then: 

R u l e  2.5. P GP1 ]lPz if there is a relation O~_ 
S x (S 1 x $2) satisfying 

1. V a e S ,  a l e S i ,  o . 2 e S 2  . 

o-O o'1 a2 =~ nexte (o-) = nextv~ (o'~) u nextv2 (o-2). 

2. (a)  V o'eS, o ' l , o - ' l e S l , a z e S 2 , e e A 1 - A  2. 

o- D o" i o-2 A o" n ~ ' n a'l 

= ~ 6 '  ES.O- e )O-, A 6 , D o , 1 6 2 .  

(b )  V aeS,  arieS1, az, a'2eS2, e eA  2 - A  1 . 

0 - D O . l o - 2 A O . 2  e >2o. i  

=>~a' eS. 6 e ~6, Ao.,D6i o.,2. 

(c )  V o'eS, ai, o''leS1, a2, o''2eS2, e e A l n A 2 .  

o-Dalo-zAo'1 e 'lo.~AO-2 ~ ~2o'2 
! 

~ 3  a ' eS .  o- ~ ~ o.' A o.'D o.'l o.2. 

3. V61eRn,  o-2eR2, qo'eR,  o'D61o" 2. [] 

2.4.3 The hiding operator 

Finally, we provide a definition and a refinement 
rule for the hiding operator.  (Hiding a set C of 
events can be thought  of as declaring a local chan- 
nel C.) 

For  any process P=(A ,  S, ~, R) and set of 
events C c A : 
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Definition 2.7. P \ C  is well-defined only if 

V setraces (P). ---q V n~N. 3 te C*. 

t > n A st e traces (P). 

If this condition is met, then P \ C  is defined by 

def 
P \ C  = (A', S, ,', R') 

where 

2. (a)  V0.aeSI ,O2 ,a '2GS2 ,eEC.  

0.1D0.2A0.  2 e , 20 '2~0 .1Da,2 .  

(b)  g 0 .aeSa,a2,a '~cS2,eeA 1. 
e t 

0.1D 0.2/\  0.2 >20.2 

===~3 0 . ~ e S  1 . 0.1 e )a 0 . 1 A a ' t D a ' 2  �9 

3. V a 2 e R 2 . 3 0 . 1 e R l . a a D a 2 .  [] 

For example, in order to prove that 

1. A ' = A - C .  

2. Va, d e S ,  eeA'.  

e set ) 0.t. 
a /a'~=>3s, t ~ C * . a  

3. V a'eS. 

a'eR',*~3 0.eR, seC*. 0. ~ ~ 0.'. [] 

In the above definition, the restriction on P ensures 
that P \ C  can never diverge (engage indefinitely 
in hidden events). 

Let P/=(Ai, Si, )i, Ri), i=  1, 2, and C ~ A  2 
such that A I = A 2 - C  and P2\C is well-defined. 
Then: 

Rule 2.6. P1 ~- P2\C if there is a relation D ~_ $1 x $2 
satisfying 

1. V 0.1eSl ,0.2eS2,e~A 1. 

o- 1D 0.2 A e e nextvl (o-1) 

=:>3 0 . t 2 e S 2 ,  s e C  $. 0.2 se )2  ffe2" 

2. V 0.1eS1,0.2,a'2eS2,s, t e C * , e e A  1. 
set t 

0.1Do-2 A o- 2 ~20"2 

::::::~ 3 0.tl e S 1 . 61  e )1 0.tl A a'~ D a'2 . 

3. V 0.2ER2,#2ES2,seC*. 

0.2 ~ '2a'2=*'q0.1eRa.0.1D#2. [] 

By adding an invariant, condition 2. (a) below, the 
above rule may be smplified" 

Rule 2.7. P1 ~-P2\C if there is a relation D e S  1 x $2 
satisfying 

1. V a l e S a , a 2 6 S a , e e A  ~. 

aa D 0.2 A e~nextvl (0.a) 
! se l 

: : : ~  0 . 2ES2 ,  s ~ C * .  0.2 )2 0.2.  

take iD(j, k) to be i = j + k  and check conditions 
1-3 above. (We can show that hiding c is well- 
defined, as follows. After any trace s, j is bounded 
from above by ~ s. Each event c decreases j. Well- 
definedness follows by taking n > ~ s.) 

Rules 2.4-7 are only a small selection of the 
refinement rules available. Similar rules for upward 
simulation can be formulated. Rules can also be 
provided for other special cases, for example, 
P~ II P2--P and PI~CI~P2~C 2. 

3 Theoretical  foundations 

In this section, we introduce the failures model (for 
non-divergent processes). The refinement relation 
is formally defined as an ordering on failures. The 
operators defined in Sect. 2 are shown to have the 
usual failures semantics. 

We are then in a position to analyse the proof 
methods of downward and upward simulation. 
(These methods can be compared with the use of 
bi-sirnulation (Park 1981) to prove the equivalence 
of processes in CCS (Milner 1985).) 

The soundness of the methods is demonstrated 
first. Next, they are employed in the derivation of 
a normal form for processes. This concept of nor- 
mal form enables us to prove that the methods 
are together complete. 

3.1 F a i l u r e s  

A process P might engage in some sequence s of 
events and then refuse to engage in any event from 
some set X offered by its environment. Such a re- 
fusal is possible if the process has reached a state 
in which it cannot next engage in any event in 
X. The pair s X  is called a failure of P. 
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Definition 3.1. The failures of a process P are given 
by 

def 
failures (P) = {sX E A* x PA] 

3aeR ,  a'eS. 

a ~ ) a' A X ~ nexte (a')}. [] 

Proposition 3.1. The failures of a process enjoy the 
following properties: 

1. s 6 traces (P) ,~ s ~ ~ failures (P). 

2. X _~ YA s Ye failures (P)=*- s X E failures (P). 

3. sX  E failures (P) A (V e ~ Y. s e ~ trace (P)) 
~ s ( X w  Y)Efailures(P). [] 

These properties are axioms in the failures model 
(Brookes and Roscoe 1984). 

Two processes are equivalent if they have the 
same failures. That  is: 

Definition 3.2./91 -- P2 if 

failures (PI) = failures (P2). [] 

P~ is refined by P2 if the behaviour of P2 is always 
consistent with that  of P1. That  is: 

Definition 3.3. Px ~- P2 if 

failures (PO ~- failures (P2)- [] 

Note  that  ___ is a partial order over processes with 
alphabet  A. 

Finally, we examine the three operators on pro- 
cesses. Their meaning, in terms of failures, is consis- 
tent with that  given in (Hoare 1985). The operators 
are monotonic  and, hence, can be used in stepwise 
refinement. 

Theorem 3.2. 

failures (P1 II P0 

= { s X ~ A *  x PAl  

3 sl X1 e failures (P1), s2 X2 e failures (P2). 

S1 : s la , /~s2:s iA2/~X ~ X  1 k-) X2} .  []  

(The trace SIA is formed by restricting the trace 
s to those events in A.) 

Corollary 3.2. I f  PI =- Px' and P2 ~- P~ then 
P~ I I P2 =-P; I I PL [] 

Theorem 3.3. I f  P \  C is well-defined then 

failures ( P \ C )  

={s 'X ' eA '*  x P A ' ]  

3 sXefailures(P), s' =sla, A X = X ' w  C}. 

Proof Suppose s'X'~failures(P\C). Then, P can 
engage in a sequence of hidden events interleaved 
with s' to arrive at some state o- from which it 
cannot  engage in any event in X', even after per- 
forming further hidden events first. Because P \ C  
is well-defined, by engaging in hidden events, P 
can reach from o- a state o-' in which all hidden 
events are refused. Thus, X ' w  C_~nexte\c(a') and 
so 3 sX da i lu res  (P). s' = SlA, A X = X'  w C. 

Suppose instead sXefailures(P), s '=s la ,  and 
X = X ' w C ,  X'~_A'. Then, P can reach after s 
a state a with X_nexte(o-).  Since a refuses all 
hidden events, X'___ nexte\ c (a). Hence, s' X '  
failures (P\C). [] 

Corollary 3.3. If P ~_P' and P \ C  is well-defined, 
then P ' \ C  is well-defined and P \ C  ~_ P ' \C.  [] 

Theorem 3.1. 

failures (P1 III P2) 

= { s X ~ A *  x PAl 

Sx X1 ~ failures (P0, s2 X2 ~ failures (P2)- 

s interleaves (sl, s2)A 

X c ~ A I ~ X I A X ~ A 2 ~ - X 2 } .  [] 

(Informally, s interleaves (t, u) whenever the trace 
s is some interleaving of the traces t and u.) 

F r o m  Theorem 3.1, we can see that  ]]] is a 
monotonic  operator.  That  is: 

Corollary 3.1. I f  Px ~-P[ and P2 ~-P~ then 
P~ IIIP2---P; Ill PS. []  

3.2 D o w n w a r d  s imula t ion  

Let Pi = (A, Si, 'i, Ri), i = 1, 2: 

Definition 3.4. A relation D ~ _ S  1 x S 2 is a down- 
ward simulation between P1 and P2 if 

1. ~ 0"1 ~ $ 1 ,  0-2E82.  

0"lD o'2 =~ nextp 1 (a 1) ~ nextp2 (a2). 

2. V tT1ESI, tI2,tT~2ESE,eGA. 
0.1D0.2AO_ 2 e )2t7 ~ 

g ! t t 
=~ 3 0"~1 ~ $ 1 .  o-1 ,1 o ' 1A o-lDo-2 . 

3. Va2eRz .  3 a 1 6 R a . a l D a  e. [] 
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Suppose D is a downward  simulation. Then: 

L e m m a  3.1. V 0-1eS1, 0-2, 0-~2eS2, seA*. 

! 
0-100.2/ \0 .2  s )20-2 

s =>30-;eSl.0-1 ,10-'~/\0-'~D0-~. []  

Theorem 3.4. P1 =-Pz if there is a downward simula- 
tion between PI and P2. 

Proof 

s X e failures (P2) 

~ 0-2 e R2,  0-~ e S 2 . 0-2 s , 2 0-2/~ X (z2 nexte2 (0-~) 

~ 3  0-1eR1, 0-2eR2,  0-~eS 2 . 

0.1D 0-2 A 0" 2 s '2 0-2 A X ~ nexte~ (0-~) 

by Def. 3.4, condit ion 3. 

=~ 3 0-1eR 1, 0-'a eSI,  0-'2eS2. 

0-1 ~'  10-~ A o-'1D 0-~ A X ~ nexte~ (0.~) 

by L e m m a  3.1 

=~ 3 0-1 e R 1, ~ e S 1. a i ~ ' 10-~ A X c nexte~ (0.~) 

by Def. 3.4, condit ion 1 

*> sX  efailures (P1). [] 

Rule 2.2 follows from this theorem. 

3.3 U p w a r d  s imula t ion  

Theorem 3.5. Pa -~ P2 if there is an upward simulation 
between P2 and Pa. 

Proof 

s X e failures (P2) 
s ! 

~ q  0-2eR2, 0-~eS2.0-2 '2 0-~ A X_cnexte2 (0-2) 

=~ 3 0-'1eS1, 0-2eR2, 0-'zeS2. 

s 'A#2U0-'lAXC_nextel(0.'a) 0 - 2  ) 2  0 - 2  

by Def. 3.5, condit ion 1 

=~ 3 0-1eR1, 0-'a eS1. 0-1 ~ ~10-] A X ~ n e x t e ,  (0-]) 

by Lemma 3.2 

~:~ sX e failures (P1). [ ]  

Rule  2.3 follows from this theorem. 

3.4 R e a d i n e s s  and normal  f o r m  

A process P might engage in a trace s and arrive 
in a state for which Y is the set of events that 
are possible next. The set of all such pairs s Y de- 
fines the readiness of P (Olderog and Hoare  1986). 

Definition 3.6. The readiness of a process P is de- 
fined by 

def 
readiness (P) = {s YeA* x PA[ 

3 0-eR, 0-' eS. 

0- s 0-,A Y= nexte (0-')}. []  

Let P,. =(A, Si, 'i, Ri), i= 1, 2. 

Definition 3.5. A relation U_~ $2 x Sa is an upward  
simulation between P2 and P~ if 

1. V 0 - 2 e S  2 . 

3 0-1 e S 1 . 0 - 2  U0-1  A nexte, (0-1) ~ nexte2 (0-2)" 

2. g #aeSa,0-2,0-'zeS2,eeA. 
e t t 

0-2 ~20-2Aa2U0-'l 
=~0-1eS1.0-2U 0-1A0-1 e ~l a'~. 

3. g0-,eS1, 0-2eR2. a2Ua1=~0-1eR,. [] 

The following theorem states an impor tant  re- 
lat ionship between readiness and failures. 

Theorem 3.6. failures (P~) _ failures (P2)/f and only if 

V s2 Y2 ereadiness (P2). 

sl Ylereadiness(P1). s, =s2  A I71 --~ Y2. [ ]  

Another  theorem provides further insight into 
downward  simulation. 

Theorem 3.7. readiness (P1)-~ readiness (P2) if there 
is a downward simulation between P1 and P2. [] 

Suppose U is an upward  simulation. Then: 

L e m m a  3.2. V a'~ eS1, a z e R  2, ar2eS2, seA*. 

s t ! t 8 ! 
0-2 )2 0 - 2 / \  0-2 U0-1  =z~ 3 0-1 e R 1  �9 0-1 )10-1" []  

Our  reason for introducing readiness, however,  
is that  it turns out  to be useful in defining a normal  
form for a process, as we see next. 

The idea is that  each s Y in the readiness of 
a process P can be taken as a state of its normal  
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form P~. This state can only be reached after the 
trace s. The effect of this is to eliminate all the 
unreachable states of P. States of P are identified 
that can be reached after the same trace and which 
are able to engage in the same events next. Also, 
a state of P that can be reached after different traces 
gives rise to one state in P~ for each such trace. 

Definition 3.7. The normal form P~ of a process 
P is given by 

def 
P~ = (A, S% ,~, R ~) 

where 

1. S ~ = readiness (P). 

2. VsY, s 'Y ' eS%e~A.  

s Y  e ,~s'Y'<=>s'=seAeeY 

3. VsYES  ~. 

sY6R~ '~s=e .  [] 

Lemma 3.3. 

nextp~ (s Y) = Y, [] 

Lemma 3.4. There is an upward simulation between 
P~ and P. 

Proof s Y U a ' = 3 a e R ,  cr ~ ~cr' is such a simula- 
tion. [] 

Lemma 3.5. There is a downward simulation between 
P~ and P. 

Proof s YD a' = 3 a e R. o- s , o-' A Y= nexte (a') is 
such a simulation. [] 

The normal form theorem follows immediately 
from the last two lemmas: 

Theorem 3.8. 

P=- P~. [] 

3.5 C o m p l e t e n e s s  

Suppose it is the case that P1 ~P2. The question 
arises as to whether it is possible to prove the cor- 
rectness of this refinement by exhibiting suitable 
simulations. 

In fact, such a proof is always possible. P1 -~ P~ 
can be proved by upward simulation. P~ ___ P2 ~ can 

also be proved by upward simulation - see below. 
Finally, P2 ~ ___ P2 can be proved by downward simu- 
lation. P1 -~ P2 follows from the fact that refinement 
is transitive. 

Lemma 3.6. I f  P1 ~- P2 then there is an upward simu- 
lation between P2 ~ and P1 ~. 

Proof s2Y2Us1YI=(SI=S2) is such a simula- 
tion. [] 

Thus, we have the following completeness result: 

Theorem 3.9. Rules 2.2 and 2.3 are sufficient to 
prove that P1 is refined by P2 whenever this is in 
fact the case. [] 

(A similar result has been obtained for data refine- 
ment by He et al. (1986).) 

4 Conclus ion 

A state-based approach has been taken to the spec- 
ification and refinement of communicating pro- 
cesses. This might form the basis of a design meth- 
odology for distributed systems. In particular, 
Rules 2.1-7 may be of some assistance in develop- 
ing a distributed implementation that must satisfy 
a given specification. 

On the theoretical side, we have demonstrated 
the soundness (and completeness) of these methods 
with respect to the failures model of communicat- 
ing processes. In so doing, the relationships be- 
tween state-transition systems and the failures 
model and between simulation and refinement 
have been clarified. 
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