
Distributed Computing (1988) 3 : 9-18

�9 Springer-Verlag 1988

A state-based approach to communicating processes

Mark B. Josephs*
IBM Research Division, Yorktown

M a r k Josephs joined the
Programming Research Group
at Oxford University in 1983,
upon graduating from London
University with a degree in
Mathematics. One year later he
was awarded the Master's de-
gree in Computation. He re-
ceived the doctorate in 1986 for
his work in functional program-
ming and took up a Visiting
Scientist post at IBM York-
town Heights in their Specifica-
tion and Design Languages
Group. He has now returned to
the P.R.G. as a S.E.R.C. Re-
search Officer.

Abstract. Communica t ing processes, which may ex-
hibit nondeterminis t ic behaviour , are specified as
state-transit ion systems. Equivalence and refine-
ment relations are defined in terms of the failures
model of processes. Downward and upward simu-
lat ion are considered as p roof methods for refine-
ment. Various opera tors on processes are defined
and their refinement rules established.

Key words: Communica t ing processes - State- tran-
sition systems - Refinement - Simulat ion - Fail-
ures model

1 Introduction

In (Hoare 1985), a theory of communica t ing pro-
cesses (CSP) is expounded. It introduces a no ta t ion
in which it is possible to specify and reason abou t
distr ibuted systems. In particular, a number of pro-

* Current address: M.B. Josephs, Oxford University Computing
Laboratory, Programming Research Group, Keble Road, Ox-
ford OX 1 3 QD, UK

cesses operat ing concurrent ly may be looked upon
as a single process. Fur the rmore , no ment ion is
made of internal actions in describing the behav-
iour of a process. Ano the r feature of CSP is tha t
explicit modell ing of the state of a process is
avoided.

CSP provides us with a large collection of alge-
braic laws with which we are able to prove pro-
cesses equivalent. A mathemat ica l model of pro-
cesses, called the failures model (Brookes et al.
1984; Brookes and Roscoe 1984), has been used
to establish the correctness of these laws. (CCS
(Milner 1980) and ACP~ (Baeten et al. 1985) also
suppor t p roof by algebraic t ransformat ion and are
similar to CSP in several o ther respects.)

The fact that CSP does not facilitate model l ing
of the state may not, however, be advantageous.
Experience with the specification languages V D M
(Jones 1986) and Z (Hayes 1987), for example, has
shown that such modell ing can be a very conve-
nient way of describing complex systems.

It also seems reasonable to criticize CSP on
the following grounds. Al though the laws enable
us to prove that one process is equivalent to an-
other, we are in fact at l iberty to make design de-
cisions that require us to prove that one process
is refined by another . Refinement is more difficult
to prove than equivalence in CSP.

In contras t to CSP, the approach taken in this
paper is to make process state explicit and to use
state-transit ions as a means of specifying how a
process behaves. Machines are defined in a similar
way in au toma ta theory. There is also a s t rong
resemblance to the synchronisa t ion trees of (Milner
1980).

The state-based approach is, nevertheless, just
a mat te r of convenience. We are pr imari ly con-
cerned with the events (communicat ions) in which
processes engage. Two processes may communi -

10 M.B. Josephs: State-based processes

cate with their environment in the same way, even
though their state-based specifications seem very
different. Indeed, the failures model remains the
ultimate model of a process. That is, every state-
based specification can be identified with a process
in the failures model.

The main contr ibut ion of this paper is the pro-
vision of a number of simple rules by means of
which one process can be shown to be a refinement
of another. These rules are based on the idea of
downward and upward simulation (He et al. 1986).
That paper was concerned with the refinement of
abstract data types into concrete data types. Jifeng
He (1988) has independently adapted the method
to process refinement, with similar results to our
o w n .

This paper is organized as follows:
Section 2 applies a state-based approach to the

specification and refinement of non-divergent pro-
cesses. A collection of refinement rules is presented
and various CSP operators on processes (Hoare
1985) are investigated.

The theoretical underpinning is provided in
Sect. 3. There, the concept of failures is introduced
and equivalence and refinement relations between
processes are defined. Soundness and completeness
results are obtained, the latter being achieved by
exploring a normal form for processes.

Before considering some examples of processes,
we define two useful concepts: the next possible
events in which a process P may engage when in
a particular state (7 are given by nexte(o-); those
events in which P cannot next engage are given
by its complement, nexte ((7). Formal ly:

Definition 2.2. The functions nexte, nexte: S
are defined by

def e.)
nexte(a) = {eeAl3(7' eS. (7 (7'}

def
nextp ((7) = A-- nexte((7). []

>PA

It is also convenient to extend the transition rela-
tion , to sequences of events. That is, >_~
S x A* x S, where

(7 > (7/ ~=> (7 = (7/

st s (7: t (7t t
(7) (7" <:> 3 (7' G S . (7 > G ' A)

with e denoting the empty sequence.

2.1 Examples

2 Specification and refinement

In this section we consider a way of specifying non-
divergent systems, together with a set of refinement
rules. A theoretical foundat ion for this approach
is developed in Sect. 3.

We begin with the definition of a process:

Definition 2.1. A process is a tuple (A, S, >, R)
with alphabet A - the set of (all possible) events
in which it may engage; state-space S the set
of states of the system; transition relation > _

t. S x A x S the set of transitions a e , (7, region
R _ S , R=# q5 - a specification of the initial state
of the system. (A and S need not be finite.) []

Thus, in specifying a process, if we do not care
whether it is initially in state O-o, a 1 or o-2, we sim-
ply define R to be {(70, (71, o-2}. Note also that a
process in state (7 can only engage in event e if
a transit ion (7 e(7, to some state (7' is possible.
In fact, there may be several such transitions, for
example, (7 e , (7, and (7 e > (7", if it does not mat ter
whether the new state is (7' or a".

The following examples have been adapted from
(Hoare 1985).

1. The process STOPA never engages in any event.
One possible definition is (A, {0}, 4), {0}). We
have that next (0)= q~ for this process.

2. The process (A, {0, 1}, { 0 - ~ 1 } , {0}) first en-
gages in the event acA and then stops. In CSP
this would be expressed as a > STOPa. Here,
next (0) = {a} and next (1) = 4).

3. The process C L O C K ticks for ever. A suitable
definition is

tick
({tick}, {on}, {on ,on}, {on})

.

and we have that nex t (on)= {tick}.

An object starts on the ground, and may move
up. At any time thereafter it may move up or
down, except that when it is on the ground it
cannot move any further down. But when it is
on the ground, it may move around. This behav-
iour is specified by a process with alphabet {up,
down, around}, state-space N (the natural
numbers), region {0} and transit ion relation de-
fined by

M.B. Josephs: State-based processes 11

up
i ~i'<=~i'=i+l

down
i >i '<:~i>OAi '=i--1

around
i ~ i'<=~i=OAil=O.

For this process, next (0) = {up, around} and
next (i + 1) = {up, down}.

5. A variable, taking values in some set V, supports
read and write operations. Suppose we decide
to leave unspecified its initial value and its value
after each (destructive) read operation. A pro-
cess with this behaviour is defined by

({read. v, write, v lyE V}, V, ~, V)

where

r e a d . v
X > Xq<=~ V=X

w r i t e . v
X) X I " c z ~ V = X t.

We have that

next(x)= {read. x} u {write. v]v~ V}.

2.2 Traces

From the specification of a process it is possible
to determine its traces, those sequences of events
in which it may engage. In the following let
P = (A, S, >, R). Then:

Definition 2.3. The traces of a process P are given
by

def
t r a c e s (P) = { s ~ A * 1 3 a E R , a'ES, a ~ a ' } . []

Proposition 2.1. The set of traces of a process has
the following properties:

1. eetraces (P).
2. st~traces(P)=~sEtraces(P). []

The above properties are in fact taken as axioms
in the traces model (Hoare 1980).

It is also useful to be able to reason about the
behaviour of a process after it has engaged in a
particular sequence of events.

Definition 2.4. For any setraces(P),

d e f
P a f t e r s = (A , S , , , R')

where a'~R'~:~3 a e R . a ~ ,a'. []

Proposition 2.2. For any s e traces (P),

te t races(P after s) ~ s t e t r a c e s (P) . []

2.3 Refinement
In designing a system, we proceed through a suc-
cession of refinement steps. A simple example in-
volves the design of a change-giving machine
(Hoare 1985). We might begin with a specification
that permits several different combinations of
change to be returned, over which the user of the
machine has no control. A refinement step could
then involve the elimination of this nondetermin-
ism: we might decide that a particular combination
of change should always be returned.

We record the refinement of a process P~ into
a process P2 by writing P~ =_ P2- One condition that
must be met is that the two processes have the
same alphabet. The other condition can be stated
informally as follows: every behaviour that is possi-
ble for P2 must also be possible for P~. This means
that if s is a trace of P2, then it is also a trace
of Px. It also means that if P2 is offered some choice
of events by its environment, but it cannot engage
in any of them next, then it is possible for P~ to
behave likewise. Fortunately, it is not necessary
to try to analyse the behaviour of the processes
in this way. Instead, one of the following refinement
rules should be applied at each step.

We now present three methods for proving re-
finements correct:

Our first rule may be used when refining a pro-
cess into a second process which has been defined
over the same state space, that is, P~ = (A, S, h-,
Ri), i = 1, 2.

Rule 2.1

1.

.

.

(Strengthening a specification). P~ =_ P2/f

V a ~ S. nexte, (a) = nextp 2 (a)
In any state, the processes must be able to engage
in the same events.

)1 ~ >2
Every transition of P2 must also be a transition
of~.

R I ~ R 2
Every possible initial state of Pz must also be
a possible initial state of Pa. []

For example, noting that in state 0 only event a
can happen next and in state 1 only b, it is easy
to see that

({a, b}, {0,1}, {0 a , 0 , 0 - ~ l , 1 b ,0 ,1 b ,1}, {0,1})

~_({a, b}, {0, 1}, {0 " , 1, 1 b ,0}, {0}).

12 M.B. Josephs: State-based processes

The other two rules enable us to change the state-
space in performing the refinement. To apply these
rules, we must establish a correspondence between
the states of the two processes. In the following
let Pi=(A, Si, 'i, Ri), i= 1, 2.

Rule 2.2 (Downward simulation). P1 ~ P2 /f there is
a relation D~S1 x $2 such that

1. Va l~S i , o '2~S 2.

o- 1D o- 5 =~ nextv, (al) = nexte2 (a2).

I f the processes are in corresponding states, they
must be able to engage in the same events.

2. Va i lS1 , a2, a'2~$2, eeA.
!

o_IDO.2Ao. 2 e ~'20"2

=~3a,lESl.a 1 e ' Aa'ID ' ----'+1 ~71 if2.

I f the processes are in corresponding states and
P2 can engage in e, P~ must be able to engage
in e in such a way that the processes remain in
corresponding states.

3. V a 2 E R 2 . 3 a l ~ R i . a i D a 2.

Every possible initial state of P2 must correspond
to a possible initial state of P1. []

For example, by taking iDj to be i= 0 v i= 1 and
checking conditions 1-3 above, we can see that

({a}, {0, 1, 2}, {0 a T 1, 1 a) 0 } , {0})

__=({a}, {0}, 0}, {0}).
The basic idea in the last rule was that P~ can

simulate the behaviour of Pz so that they always
remain in corresponding states. The following rule
is far less obvious. This time the idea is that if
Pz has reached some state after engaging in a se-
quence of events, then it is possible to find a corre-
sponding state of P1 ; from this state P~ can simulate
P2 backwards, retracing the sequence of events until
it has reached an initial state.

Rule 2.3 (Upward simulation). P1- P2 /f there is a

relation U ~_ S 2 X 81 such that

1. u 2. 3 o-leS 1.

az Uai A nexte~ (al)-~ nexte~ (G~).

For every state of P2, there is a corresponding
state of Px such that, if P1 can next engage in
e, so can P2.

2. Va'aESi, a2, a'2ES2, e~A.

0"2 e)2o_~Ao_~Uoj 1

~ 3 a l E S i . a z U a l A a l e,la,1.

.

I f the processes are in corresponding states and
Pz could have reached its state by engaging in
e, then so could P1 in such a way that their pre-
vious states also corresponded.

ValES1, o-2ER 2. 0-2 Uo'l=:~O'l ERI.

I f the processes are in corresponding states and
P2 may have been in its state initially, then P1
may have been in its state initially. []

For example, by tak ingjUi to be true and checking
the above conditions, we can see that

({a, b}, {0,1}, {0 a , o , o a , l , a b ,o , 1 b ,1}, {0,1})

___({a, b}, {0}, {0 a ,0, 0 b ,0}, {0}).

Note that this refinement could not have been
proved by Rule 2.2. Conversely, in the previous
example, the refinement could not have been
proved by Rule 2.3.

It can be seen that Rule 2.1 is just a special
case of Rules 2.2 and 2.3 in which D or U is the
identity relation.

2.4 Opera tors

We now consider three of Hoare's CSP operators:
the first operator (Ill) allows several processes, exe-
cuting independently and concurrently, to be re-
garded as a single process; the second 01) deals
similarly with processes that synchronize over cer-
tain events; the third (\) permits hiding of events,
so that they may occur as internal, unobservable
state-transitions of the system. Definitions are pro-
vided for each of these operators. Refinement rules
(derived from Rule 2.2) are also given.

With these operators, we are able to express
the refinement of a specification into a distributed
system. For example, a first refinement step may
be of a process P, specifying a system with an input
and an output communication channel, into a pro-
cess Q which has an internal communication chan-
nel C in addition to the input and output channels.
This design decision would be recorded as

P~_Q\C

and be subject to a proof of correctness. Q itself
might then be refined into two processes R and
S which communicate over the channel C:

Q~_RIfS.

Here, R may handle the input channel and S the
output channel. Thus, the original single process

M.B. Josephs : Sta te-based processes

P has been decomposed into a distributed system,
specified as (R l[S) \C. That is:

P~(R II s)\c.

The processes R and S are now themselves candi-
dates for refinement.

2.4.1 The interleave operator

For any processes P~=(Ai, Si, ' i , R3, i = 1, 2, we
can interleave their behaviours as follows:

de f
D e f i n i t i o n 2.5. PnIIIP2=(AlwA2, S 1 x S 2 , >,

Rn x R2) where V o'i, 6'1 eSn, o'2, o-'2eS2, eeA1 w A2.

0"10"2 e , 6 , x a i < , (e e A 1 A a n ~)10-,1A0-2__o.i) V

(e E A 2 A O . 2 e , 2 0 . 1 A 0 . l = o . , 1) " []

To prove that P=-P1 III P2, we could first construct
P~IIIP2 as above and then apply a refinement rule.
However, it may often be easier to apply the follow-
ing rule directly. Let P = (A i w A2, S, ~, R). Then:

R u l e 2 .4 . P-~PI[IIP2 /f there is a relation D ~
S x (S1 x $2) satisfying

1. V a e S , 0-neSt, o.2eS2.

0-D o.n o.2 ~ nextp (a) = nextel (6 n) w nexte2 (o'2).

2. (a) V o'eS, o-i,0-' leSi,0-aeS2,eeA 1.

o'Do'n 0-2 A o . i - f ~ n o"1

t 3 a eS. o--s 62.

(b) V o.eS, o - l e S 1 , 6 2 , a l e S z , e e A 2.
e t

o .Do ' i ~ A o'2 ~ 2 0"2

=~3 O-'ES. 6 e > 0"' A 0"'D0" 1 6 2 .

3. V a i E R l , o'2ERz. 30"eR.o'D0"no" 2. []

For example, it is easy to show that P,, b-----P,, b III P., b
where, for any events x, y,

P~.r=({x,y} ,N, {i ~ , i + l , i + l " , i l i eN} , {O}) .

(Take iD(j, k) to be i= j + k.)

2.4.2 The parallel operator

The parallel composit ion of P1 and P2 may be con-
structed as follows:

13

de f
D e f i n i t i o n 2.6. PI I IP2=(AnuA2 , S l x S z , ~,

R n X R2) where V o'1, a'x eSn, a2, 0 - 1 E S 2 , eeA1 w A 2 .

e t
O- n 0" 2 > 0-~ 0" 2

r A2 A 0-i

(e E A z - A 1 A0- 2

(eeAn n Az A o-n

e , n O.] A 0-2 = O.i) v

e ~,2 0-i A 0-i = O.~.) v

' n o.'l A o-2 ~ ' 2 o-i). []

For example, with P~, y defined as above, the paral-
lel composit ion of P,, ~ and Pc. b is given by

def
P~,~II ~,b =

({a, b, c}, N x N,
{(j,k) a (j + l , k) ,

(j,k+l) b,(j,k),
(j + l , k) c , (j , k + l)] j , keN},

{(0, 0)}).

Again, there is a special refinement rule that can
be used. Let P = (A n w A z, S, ,, R). Then:

R u l e 2.5. P GP1]lPz if there is a relation O~_
S x (S 1 x $2) satisfying

1. V a e S , a l e S i , o . 2 e S 2 .

o-O o'1 a2 =~ nexte (o-) = nextv~ (o'~) u nextv2 (o-2).

2. (a) V o'eS, o ' l , o - ' l e S l , a z e S 2 , e e A 1 - A 2.

o- D o" i o-2 A o" n ~ ' n a'l

= ~ 6 ' ES.O- e)O-, A 6 , D o , 1 6 2 .

(b) V aeS, arieS1, az, a'2eS2, e eA 2 - A 1 .

0 - D O . l o - 2 A O . 2 e >2o. i

=>~a' eS. 6 e ~6, Ao.,D6i o.,2.

(c) V o'eS, ai, o''leS1, a2, o''2eS2, e e A l n A 2 .

o-Dalo-zAo'1 e 'lo.~AO-2 ~ ~2o'2
!

~ 3 a ' eS . o- ~ ~ o.' A o.'D o.'l o.2.

3. V61eRn, o-2eR2, qo'eR, o'D61o" 2. []

2.4.3 The hiding operator

Finally, we provide a definition and a refinement
rule for the hiding operator. (Hiding a set C of
events can be thought of as declaring a local chan-
nel C.)

For any process P=(A , S, ~, R) and set of
events C c A :

14 M.B. Josephs: State-based processes

Definition 2.7. P \ C is well-defined only if

V setraces (P). ---q V n~N. 3 te C*.

t > n A st e traces (P).

If this condition is met, then P \ C is defined by

def
P \ C = (A', S, ,', R')

where

2. (a) V0.aeSI ,O2 ,a '2GS2 ,eEC.

0.1D0.2A0. 2 e , 20 '2~0 .1Da,2 .

(b) g 0 .aeSa,a2,a '~cS2,eeA 1.
e t

0.1D 0.2/\ 0.2 >20.2

===~3 0 . ~ e S 1 . 0.1 e)a 0 . 1 A a ' t D a ' 2 �9

3. V a 2 e R 2 . 3 0 . 1 e R l . a a D a 2 . []

For example, in order to prove that

1. A ' = A - C .

2. Va, d e S , eeA'.

e set) 0.t.
a /a'~=>3s, t ~ C * . a

3. V a'eS.

a'eR',*~3 0.eR, seC*. 0. ~ ~ 0.'. []

In the above definition, the restriction on P ensures
that P \ C can never diverge (engage indefinitely
in hidden events).

Let P/=(Ai, Si,)i, Ri), i= 1, 2, and C ~ A 2
such that A I = A 2 - C and P2\C is well-defined.
Then:

Rule 2.6. P1 ~- P2\C if there is a relation D ~_ $1 x $2
satisfying

1. V 0.1eSl ,0.2eS2,e~A 1.

o- 1D 0.2 A e e nextvl (o-1)

=:>3 0 . t 2 e S 2 , s e C $. 0.2 se)2 ffe2"

2. V 0.1eS1,0.2,a'2eS2,s, t e C * , e e A 1.
set t

0.1Do-2 A o- 2 ~20"2

::::::~ 3 0.tl e S 1 . 61 e)1 0.tl A a'~ D a'2 .

3. V 0.2ER2,#2ES2,seC*.

0.2 ~ '2a'2=*'q0.1eRa.0.1D#2. []

By adding an invariant, condition 2. (a) below, the
above rule may be smplified"

Rule 2.7. P1 ~-P2\C if there is a relation D e S 1 x $2
satisfying

1. V a l e S a , a 2 6 S a , e e A ~.

aa D 0.2 A e~nextvl (0.a)
! se l

: : : ~ 0 . 2ES2 , s ~ C * . 0.2)2 0.2.

take iD(j, k) to be i = j + k and check conditions
1-3 above. (We can show that hiding c is well-
defined, as follows. After any trace s, j is bounded
from above by ~ s. Each event c decreases j. Well-
definedness follows by taking n > ~ s.)

Rules 2.4-7 are only a small selection of the
refinement rules available. Similar rules for upward
simulation can be formulated. Rules can also be
provided for other special cases, for example,
P~ II P2--P and PI~CI~P2~C 2.

3 Theoretical foundations

In this section, we introduce the failures model (for
non-divergent processes). The refinement relation
is formally defined as an ordering on failures. The
operators defined in Sect. 2 are shown to have the
usual failures semantics.

We are then in a position to analyse the proof
methods of downward and upward simulation.
(These methods can be compared with the use of
bi-sirnulation (Park 1981) to prove the equivalence
of processes in CCS (Milner 1985).)

The soundness of the methods is demonstrated
first. Next, they are employed in the derivation of
a normal form for processes. This concept of nor-
mal form enables us to prove that the methods
are together complete.

3.1 F a i l u r e s

A process P might engage in some sequence s of
events and then refuse to engage in any event from
some set X offered by its environment. Such a re-
fusal is possible if the process has reached a state
in which it cannot next engage in any event in
X. The pair s X is called a failure of P.

M.B. Josephs: State-based processes 15

Definition 3.1. The failures of a process P are given
by

def
failures (P) = {sX E A* x PA]

3aeR , a'eS.

a ~) a' A X ~ nexte (a')}. []

Proposition 3.1. The failures of a process enjoy the
following properties:

1. s 6 traces (P) ,~ s ~ ~ failures (P).

2. X _~ YA s Ye failures (P)=*- s X E failures (P).

3. sX E failures (P) A (V e ~ Y. s e ~ trace (P))
~ s (X w Y)Efailures(P). []

These properties are axioms in the failures model
(Brookes and Roscoe 1984).

Two processes are equivalent if they have the
same failures. That is:

Definition 3.2./91 -- P2 if

failures (PI) = failures (P2). []

P~ is refined by P2 if the behaviour of P2 is always
consistent with that of P1. That is:

Definition 3.3. Px ~- P2 if

failures (PO ~- failures (P2)- []

Note that ___ is a partial order over processes with
alphabet A.

Finally, we examine the three operators on pro-
cesses. Their meaning, in terms of failures, is consis-
tent with that given in (Hoare 1985). The operators
are monotonic and, hence, can be used in stepwise
refinement.

Theorem 3.2.

failures (P1 II P0

= { s X ~ A * x PAl

3 sl X1 e failures (P1), s2 X2 e failures (P2).

S1 : s la , /~s2:s iA2/~X ~ X 1 k-) X2} . []

(The trace SIA is formed by restricting the trace
s to those events in A.)

Corollary 3.2. I f PI =- Px' and P2 ~- P~ then
P~ I I P2 =-P; I I PL []

Theorem 3.3. I f P \ C is well-defined then

failures (P \ C)

={s 'X ' eA '* x P A ']

3 sXefailures(P), s' =sla, A X = X ' w C}.

Proof Suppose s'X'~failures(P\C). Then, P can
engage in a sequence of hidden events interleaved
with s' to arrive at some state o- from which it
cannot engage in any event in X', even after per-
forming further hidden events first. Because P \ C
is well-defined, by engaging in hidden events, P
can reach from o- a state o-' in which all hidden
events are refused. Thus, X ' w C_~nexte\c(a') and
so 3 sX da i lu res (P). s' = SlA, A X = X' w C.

Suppose instead sXefailures(P), s '=s la , and
X = X ' w C , X'~_A'. Then, P can reach after s
a state a with X_nexte(o-). Since a refuses all
hidden events, X'___ nexte\ c (a). Hence, s' X '
failures (P\C). []

Corollary 3.3. If P ~_P' and P \ C is well-defined,
then P ' \ C is well-defined and P \ C ~_ P ' \C. []

Theorem 3.1.

failures (P1 III P2)

= { s X ~ A * x PAl

Sx X1 ~ failures (P0, s2 X2 ~ failures (P2)-

s interleaves (sl, s2)A

X c ~ A I ~ X I A X ~ A 2 ~ - X 2 } . []

(Informally, s interleaves (t, u) whenever the trace
s is some interleaving of the traces t and u.)

F r o m Theorem 3.1, we can see that]]] is a
monotonic operator. That is:

Corollary 3.1. I f Px ~-P[and P2 ~-P~ then
P~ IIIP2---P; Ill PS. []

3.2 D o w n w a r d s imula t ion

Let Pi = (A, Si, 'i, Ri), i = 1, 2:

Definition 3.4. A relation D ~ _ S 1 x S 2 is a down-
ward simulation between P1 and P2 if

1. ~ 0"1 ~ $ 1 , 0-2E82.

0"lD o'2 =~ nextp 1 (a 1) ~ nextp2 (a2).

2. V tT1ESI, tI2,tT~2ESE,eGA.
0.1D0.2AO_ 2 e)2t7 ~

g ! t t
=~ 3 0"~1 ~ $ 1 . o-1 ,1 o ' 1A o-lDo-2 .

3. Va2eRz . 3 a 1 6 R a . a l D a e. []

16 M.B. Josephs: State-based processes

Suppose D is a downward simulation. Then:

L e m m a 3.1. V 0-1eS1, 0-2, 0-~2eS2, seA*.

!
0-100.2/ \0 .2 s)20-2

s =>30-;eSl.0-1 ,10-'~/\0-'~D0-~. []

Theorem 3.4. P1 =-Pz if there is a downward simula-
tion between PI and P2.

Proof

s X e failures (P2)

~ 0-2 e R2, 0-~ e S 2 . 0-2 s , 2 0-2/~ X (z2 nexte2 (0-~)

~ 3 0-1eR1, 0-2eR2, 0-~eS 2 .

0.1D 0-2 A 0" 2 s '2 0-2 A X ~ nexte~ (0-~)

by Def. 3.4, condit ion 3.

=~ 3 0-1eR 1, 0-'a eSI, 0-'2eS2.

0-1 ~' 10-~ A o-'1D 0-~ A X ~ nexte~ (0.~)

by L e m m a 3.1

=~ 3 0-1 e R 1, ~ e S 1. a i ~ ' 10-~ A X c nexte~ (0.~)

by Def. 3.4, condit ion 1

*> sX efailures (P1). []

Rule 2.2 follows from this theorem.

3.3 U p w a r d s imula t ion

Theorem 3.5. Pa -~ P2 if there is an upward simulation
between P2 and Pa.

Proof

s X e failures (P2)
s !

~ q 0-2eR2, 0-~eS2.0-2 '2 0-~ A X_cnexte2 (0-2)

=~ 3 0-'1eS1, 0-2eR2, 0-'zeS2.

s 'A#2U0-'lAXC_nextel(0.'a) 0 - 2) 2 0 - 2

by Def. 3.5, condit ion 1

=~ 3 0-1eR1, 0-'a eS1. 0-1 ~ ~10-] A X ~ n e x t e , (0-])

by Lemma 3.2

~:~ sX e failures (P1). []

Rule 2.3 follows from this theorem.

3.4 R e a d i n e s s and normal f o r m

A process P might engage in a trace s and arrive
in a state for which Y is the set of events that
are possible next. The set of all such pairs s Y de-
fines the readiness of P (Olderog and Hoare 1986).

Definition 3.6. The readiness of a process P is de-
fined by

def
readiness (P) = {s YeA* x PA[

3 0-eR, 0-' eS.

0- s 0-,A Y= nexte (0-')}. []

Let P,. =(A, Si, 'i, Ri), i= 1, 2.

Definition 3.5. A relation U_~ $2 x Sa is an upward
simulation between P2 and P~ if

1. V 0 - 2 e S 2 .

3 0-1 e S 1 . 0 - 2 U0-1 A nexte, (0-1) ~ nexte2 (0-2)"

2. g #aeSa,0-2,0-'zeS2,eeA.
e t t

0-2 ~20-2Aa2U0-'l
=~0-1eS1.0-2U 0-1A0-1 e ~l a'~.

3. g0-,eS1, 0-2eR2. a2Ua1=~0-1eR,. []

The following theorem states an impor tant re-
lat ionship between readiness and failures.

Theorem 3.6. failures (P~) _ failures (P2)/f and only if

V s2 Y2 ereadiness (P2).

sl Ylereadiness(P1). s, =s2 A I71 --~ Y2. []

Another theorem provides further insight into
downward simulation.

Theorem 3.7. readiness (P1)-~ readiness (P2) if there
is a downward simulation between P1 and P2. []

Suppose U is an upward simulation. Then:

L e m m a 3.2. V a'~ eS1, a z e R 2, ar2eS2, seA*.

s t ! t 8 !
0-2)2 0 - 2 / \ 0-2 U0-1 =z~ 3 0-1 e R 1 �9 0-1)10-1" []

Our reason for introducing readiness, however,
is that it turns out to be useful in defining a normal
form for a process, as we see next.

The idea is that each s Y in the readiness of
a process P can be taken as a state of its normal

M.B. Josephs: State-based processes 17

form P~. This state can only be reached after the
trace s. The effect of this is to eliminate all the
unreachable states of P. States of P are identified
that can be reached after the same trace and which
are able to engage in the same events next. Also,
a state of P that can be reached after different traces
gives rise to one state in P~ for each such trace.

Definition 3.7. The normal form P~ of a process
P is given by

def
P~ = (A, S% ,~, R ~)

where

1. S ~ = readiness (P).

2. VsY, s 'Y ' eS%e~A.

s Y e ,~s'Y'<=>s'=seAeeY

3. VsYES ~.

sY6R~ '~s=e . []

Lemma 3.3.

nextp~ (s Y) = Y, []

Lemma 3.4. There is an upward simulation between
P~ and P.

Proof s Y U a ' = 3 a e R , cr ~ ~cr' is such a simula-
tion. []

Lemma 3.5. There is a downward simulation between
P~ and P.

Proof s YD a' = 3 a e R. o- s , o-' A Y= nexte (a') is
such a simulation. []

The normal form theorem follows immediately
from the last two lemmas:

Theorem 3.8.

P=- P~. []

3.5 C o m p l e t e n e s s

Suppose it is the case that P1 ~P2. The question
arises as to whether it is possible to prove the cor-
rectness of this refinement by exhibiting suitable
simulations.

In fact, such a proof is always possible. P1 -~ P~
can be proved by upward simulation. P~ ___ P2 ~ can

also be proved by upward simulation - see below.
Finally, P2 ~ ___ P2 can be proved by downward simu-
lation. P1 -~ P2 follows from the fact that refinement
is transitive.

Lemma 3.6. I f P1 ~- P2 then there is an upward simu-
lation between P2 ~ and P1 ~.

Proof s2Y2Us1YI=(SI=S2) is such a simula-
tion. []

Thus, we have the following completeness result:

Theorem 3.9. Rules 2.2 and 2.3 are sufficient to
prove that P1 is refined by P2 whenever this is in
fact the case. []

(A similar result has been obtained for data refine-
ment by He et al. (1986).)

4 Conclus ion

A state-based approach has been taken to the spec-
ification and refinement of communicating pro-
cesses. This might form the basis of a design meth-
odology for distributed systems. In particular,
Rules 2.1-7 may be of some assistance in develop-
ing a distributed implementation that must satisfy
a given specification.

On the theoretical side, we have demonstrated
the soundness (and completeness) of these methods
with respect to the failures model of communicat-
ing processes. In so doing, the relationships be-
tween state-transition systems and the failures
model and between simulation and refinement
have been clarified.

Acknowledgements. I am most grateful to Tony Hoare for en-
couraging me to undertake this research and for providing me
with much helpful advice. Jifeng He was kind enough to point
out a mistake in a previous draft of this paper. I also wish
to thank Charles Barton and Carroll Morgan for their com-
ments and Jim Woodcock and Nils Klarlund for their interest.
The financial support of IBM is acknowledged.

References

Baetan JCM, Bergstra JA, Klop JW (1985) Conditional axioms
and ~/fl calculus in process algebra. Report CS-R8502.
Centre for Mathematics and Computer Science, Amsterdam

Brookes SD, Hoare CAR, Roscoe AW (1984) A theory of com-
municating sequential processes. J Assoc Comput Mach
31 : 56(~599

Brookes SD, Roscoe AW (1984) An improved failures model
for communicating sequential processes. Lect Notes Comp
Sci 197:281 305

18 M.B. Josephs : State-based processes

Hayes IJ (1987) Specification case studies. Prentice-Hall Inter-
national, London

He J (1988) Process refinement. Refinement Workshop, Univer-
sity of York

He J, Hoare CAR, Sanders JW (1986) Data refinement refined.
Lect Notes Comp Sci 213:187 196

Hoare CAR (1980) A model for communicating sequential pro-
cesses. In: McKeag RM, McNaghton AM (eds) On the con-
struction of programs. Cambridge University Press, Cam-
bridge, UK, pp 229-243

Hoare CAR (1985) Communicating sequential processes. Pre-
ntice-Hail International, London

Jones CB (1986) Systematic software development using VDM.
Prentice-Hall International, London

Milner AJRG (1980) A calculus of communicating systems. Lect
Notes Comp Sci 92

Milner AJRG (1985) Lectures on a calculus for communicating
systems. In: Broy M (ed) Control flow and data flow. Sprin-
ger, Berlin Heidelberg New York Tokyo

Olderog E-R, Hoare CAR (1986) Specification-oriented seman-
tics for communicating processes. Acta Informatica 23:9
66

Park D (1981) Concurrency and automata on infinite sequences.
Lect Notes Comp Sci 104:167 183

