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Abstract. Let D be a relative difference with parameters (n, n,n, 1) in an abelian group G of even
order n*. By a result of Ganley [3], n is necessarily a power of 2 and G is a direct sum of copies of Z,.
We present a simple (and much shorter) alternative proof of this result, based on a geometric
argument and a simple characterisation of the groups in question.

Recall that a relative difference set with parameters (n, nn, 1) is an n-subset D of a
group G of order n? with a normal subgroup N of order n such that an element
g # 0 of G has a (necessarily unique) representation g = d — d’(d,d’ e D) if and only
if g¢ N. In [3] Ganley proved the following result.

Theorem 1. Let D be a relative difference set with parameters (n,n, n,1) where n is
even and G is abelian. Then n is a power of 2, G is isomorphic to a direct sum of copies
of Z,, and N is elementary abelian.

Theorem 1 may be interpreted in terms of quasiregular collineation groups of
projective planes (cf. p. 181 [1]): A relative difference set with parameters (n,n,n, 1)
in G is equivalent to a projective plane of order n with G as a quasiregular collinea-
tion group of type ¢ (see p. 182 [1] and [3]). Ganley’s proof of Theorem 1 makes
use of this equivalence and proceeds via coordinatizing the corresponding projective
plane by a certain type of cartesian group and studying the absolute points of certain
polarities; this rests on results of [2]. It is the aim of this note to provide an alter-
native proof of Ganley’s theorem which avoids coordinatizing the plane and is both
simpler and considerably shorter. We shall use D to (implicitly) produce an oval in
the associated projective plane; this is similar to the approach to planar abelian
difference sets used in [8]. This approach enables us to reduce the problem to a
combinatorial characterization of the groups described in Theorem 1:

Lemma 2. Let D be a relative difference set with parameters (n, n,n, 1) where n is even
and G is abelian. Assume 0€ D; then the following properties hold:

(i) 2D =N;

(i) D is a system of coset representatives for N,

(iii) N contains all involutions of G.
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Proof. Statements (ii) and (iii) are clear from the definition. To prove statement (i)
we define an incidence structure D = (G, {D + x: xe G}, €). Then for two distinct
points g, he G, it holds that if g — h¢ N then there exists exactly one line D + x
such that g, heD + x, and if g — he N then there is no such line. Now suppose that
aline D + x intersects — D in two points,sayc + x = —dand ¢’ + x = —d’. Then
d"—d=c—c and socither d’ = d or d’ = ¢ = —(d + x). This means that a line
D + x intersects —D in at most two points, and it intersects —D in exactly one
point if and only if x = —2d for some d e D. (Such a line is referred to as a tangent
of —D.) Now pick ge G with g¢ —D. By (ii), there exists exactly one point be —D
such that g — be N. That is, the lines of D passing through g cover all pointsin —D
except for b. Since |— D| = n is even, there exists a tangent that passes through g.
Note that for de D, D — 2d is a tangent at —d; thus every ge G is on a tangent
of —D. Hence | J,.p(P — 2d) = G. Since |D| = n and |G| = n?, this implies that
(D —2c)N(D — 2d) = gforall ¢, de D with ¢ # d. Using 0e D, we see that N = 2D.

It is now almost trivial to finish the proof of Theorem 1. For let G be a group
satisfying conditions (i), (i), (iii) of Lemma 2. Suppose that there exists be N with
2b # 0, and choose de D such that 2d = 2b. If d¢ N, then 2(d — b) = 0 contradicts
(iii). Thus d e N; but then 2x # 0 for all xe D\{d} by (ii) and (iii), and thus 2d = 0
by (i) which is absurd. Hence 2N = 0. Since 2G = N by (i) and (ii), we have 4G = 0,
and the desired conclusion follows from (iii).

We remark that the incidence structure D in the proof of Lemma 2 is a divisible
design which yields an affine plane A of order n by adjoining the cosets N + x as
new lines (cf. [6]). Then — A is an arc of D which extends to an oval (and then, for
n even) to a hyperoval of the projective extension P of A (see [7]). Using properties
of ovals (cf. [5]), our proof of Lemma 2 might be further shortened.

It may be helpful to briefly discuss the known examples of relative difference
sets with parameters (1, n, n, 1). These all belong to projective planes of order n which
are coordinatized by a semi-field K (or “division ring” in the terminology of [5]),
and the group G consists of the translations with direction the special point on the
line at infinity plus shears. One always obtains a “Singer group” G in this way from
which one then may derive a relative difference set with the desired parameters. To
guarantee that G is abelian one has to assume that K is commutative. In this case,
G will be elementary abelian if n is odd, and as in Theorem 1 if n is even. (In
particular, one may always use the Desarguesian planes to construct examples for
all prime power values of n.) All these facts are basically due to Hughes [4]; see also
[6] where the language of divisible designs is used more explicitly. As far as the
author knows the general structure of projective planes admitting this type of
quasiregular group has not been determined up to now; in particular it seems to be
- unknown if they have to be translation planes.

We finally remark that the groups of Theorem 1 admit other examples of sets

D satisfying the conclusion of Lemma 2 than relative difference sets: We may always

take D = {0,1}* in G = Z%. Clearly then 2D = {0,2}* = Z%; also, d — d’ has co-

» ordinates 0, 1 and 3 only, showing that D satisfies the conclusion of Lemma 2. But

D is not a relative difference set, since e.g. (1,1,0,...,0)<1,0,...,0) = (0,1,0,...,0)-
(0,...,0).
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A more general investigation of the role of arcs corresponding to relative differ-

ence sets (also with other parameters) is undertaken in [7].
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