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Abstract. Let D be a relative difference with parameters (n, n, n, 1) in an abelian group G of even 
order n 2. By a result of Ganley [3], n is necessarily a power of 2 and G is a direct sum of copies of Z 4. 
We present a simple (and much shorter) alternative proof of this result, based on a geometric 
argument and a simple characterisation of the groups in question. 

Recall that  a relative difference set with parameters  (n, n, n, 1) is an n-subset D of a 
group  G of order  n z with a normal  subgroup  N of order  n such that  an element 
g : / 0  of  G has a (necessarily unique) representat ion 9 = d - d' (d, d ' ~  D) if and only 
if 9 ¢ N. In [3] Gan ley  proved  the following result. 

Theorem 1. Let  D be a relative difference set with parameters (n, n, n, 1) where n is 
even and G is abelian. Then n is a power of  2, G is isomorphic to a direct sum of  copies 
o f  Z4, and N is elementary abelian. 

Theorem 1 m a y  be interpreted in terms of quasiregular  collineation groups of 
projective planes (cf. p. 181 Eli): A relative difference set with parameters  (n, n, n, 1) 
in G is equivalent  to a projective plane of order  n with G as a quasiregular  collinea- 
t ion group  of type e (see p. 182 [1] and [3]). Ganley 's  p roof  of Theorem 1 makes  
use of this equivalence and proceeds via coordinatizing the corresponding projective 
plane by a certain type of cartesian group  and studying the absolute points of  certain 
polarities; this rests on results of  E2]. It is the aim of this note to provide an alter- 
native p roo f  of Ganley ' s  theorem which avoids coordinat izing the plane and is both  
simpler and considerably shorter.  We shall use D to (implicitly) produce  an oval in 
the associated projective plane; this is similar to the approach  to p lanar  abelian 
difference sets used in [8]. This approach  enables us to reduce the prob lem to a 
combina tor ia l  character izat ion of the groups  described in Theorem 1: 

Lemma 2. Let  D be a relative difference set with parameters (n, n, n, 1) where n is even 
and G is abelian. Assume 0 ~ D; then the followin9 properties hold: 
(i) 2D = N; 
(ii) D is a system o f  coset representatives for N; 
(iii) N contains all involutions o f  G. 
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Proof. Statements  (ii) and (iii) are clear f rom the definition. To  prove  s ta tement  (i) 
we define an incidence structure D = (G, {D + x: x e G}, e). Then for two distinct 
points g, h e G, it holds that  if g - h ~ N then there exists exactly one line D + x 
such that  g, h e D + x, and i fg  - h e N then there is no such line. N o w  suppose that  
a l ine  D + x intersects - D  in two points, say c + x = - d  and c' + x = - d ' .  Then 
d' - d = c - c', and so either d' = d or d' = c = - ( d  + x). This means  that  a line 
D + x intersects - D  in at most  two points, and it intersects - D  in exactly one 
point  if and only if x = - 2d for some d e D. (Such a line is referred to as a tangent 
of - D . )  N o w  pick g e G with g ~ - D .  By (ii), there exists exactly one point  b e - D  
such that  g - b e N. Tha t  is, the lines of  D passing through g cover  all points  in - D 
except for b. Since 1 -D]  = n is even, there exists a tangent  that  passes through g. 
Note  that  for d e D, D - 2d is a tangent  at - d ;  thus every g e G is on a tangent  
of - D .  Hence  Ue~/~(D - 2d) = G. Since [D[ = n and [G] = n 2, this implies that  
(D - 2c) n (D - 2d) = ~ for all c, d e D with c # d. Using 0 e D, we see that  N = 2D. 

It  is now almost  trivial to finish the p roof  of Theorem 1. Fo r  let G be a group 
satisfying condit ions (i), (ii), (iii) of L e m m a  2. Suppose that  there exists b e N with 
2b # 0, and choose d e D such that  2d = 2b. If d ~ N, then 2(d - b) = 0 contradicts  
(iii). Thus  deN; but  then 2x # 0 for all xeD\{d}  by ( i i )and (iii), and thus 2d = 0 
by (i) which is absurd. Hence 2N = 0. Since 2G = N by (i) and (ii), we have 4G = 0, 
and the desired conclusion follows f rom (iii). 

We remark  that  the incidence structure D in the p roof  of L e m m a  2 is a divisible 
design which yields an affine plane A of order  n by adjoining the cosets N + x as 
new lines (cf. I-6]). Then - A  is an arc of D which extends to an oval (and then, for 
n even) to a hyperoval  of the projective extension P of A (see [7]). Using propert ies  
of ovals (cf. [5]), our  p roof  of L e m m a  2 might  be further shortened. 

I t  may  be helpful to briefly discuss the known examples  of relative difference 
sets with paramete rs  (n, n, n, 1). These all belong to projective planes of order  n which 
are coordinat ized by a semi-field K (or "division ring" in the te rminology of [5]), 
and the group  G consists of the translat ions with direction the special point  on the 
line at infinity plus shears. One  always obtains  a "Singer group"  G in this way f rom 
which one then may  derive a relative difference set with the desired parameters .  To  
guarantee  that  G is abelian one has to assume that  K is commuta t ive .  In this case, 
G will be e lementary abelian if n is odd, and as in Theorem 1 if n is even. (In 
particular,  one may  always use the Desarguesian planes to construct  examples  for 
all pr ime power  values of n.) All these facts are basically due to Hughes  [4]; see also 
[6] where the language of divisible designs is used more  explicitly. As far as the 
au thor  knows the general structure of projective planes admit t ing this type of 
quasiregular  group has not  been determined up to now; in part icular  it seems to be 

• unknown  if they have to be t ranslat ion planes. 
We finally remark  that  the groups of Theorem 1 admit  other  examples  of sets 

D satisfying the conclusion of L e m m a  2 than relative difference sets: We may  always 
take D = {0,1} k in G = Z~. Clearly then 2D = {0,2} k ~ Z~; also, d - d' has co- 

. ordinates 0, 1 and 3 only, showing that  D satisfies the conclusion of L e m m a  2. But 
D is not a relative difference set, since e.g. (1, 1, 0 . . . . .  0)-(1, 0 , . . . ,  0) = (0, 1, 0 . . . . .  0)- 
(o,...,o). 
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A more  general  inves t iga t ion  of the role of arcs co r re spond ing  to relat ive differ- 

ence sets (also with o ther  parameters )  is unde r t aken  in [7]. 
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