
Graphs and Combinatorics 2, 113-121 (1968) 

Graphs and 
Combinatorics 
© Springer-Verlag 1986 

The Asymptotic Number of Graphs not Containing 
a Fixed Subgraph and a Problem for Hypergraphs 
Having No Exponent 

P. Erd6s  ~, P. F rank l  2 and V. R6dl  3 

Mathematical Institute of the Hungarian Academy of Science, P.O.B. 127, 1364 Budapest, 
Hungary 
2 CNRS, Quai Anatole France, 75007, Paris, France 
3 Department of Mathematics, FJFI, (2VUT, Husova 5, 11000 Praha 1, Czechoslovakia, and 
AT&T Bell Laboratories, Murray Hill, NJ 07974, USA 

Abstract. Let H be a fixed graph of chromatic number r. It is shown that the number of graphs on n 
n 1 

vertices and not containing H as a subgraph is 2(2)(1-,-~ -÷°~1~). Let h,(n) denote the maximum 
number of edges in an r-uniform hypergraph on n vertices and in which the union of any three edges 
has size greater than 3r - 3. It is shown that h,(n) = o(n 2) although for every fixed c < 2 one has 
l i m ~  h,(n)/n ~ = oo. 

1. Introduction 

Let H be an a rb i t ra ry  graph,  IH] denotes  the n u m b e r  of  edges of  H. Let T,(H) denote  
the T u r i n  n u m b e r  of H, i.e., the m a x i m u m  n u m b e r  of  edges which a graph  on n 
vertices and not  containing H as a subgraph  m a y  have. Let X be an n-element set 
and let X = X1 U - ' - U  Xr be an a rb i t ra ry  par t i t ion  of X. The  complete r-partite 
graph K ( X I  . . . .  , X , )  consists of  all edges connect ing distinct Xi and Xj. Note  that  
this g raph  conta ins  no Kr+l and has chromat ic  n u m b e r  r i fXi  ~ N, i = 1 . . . .  , r. To  
maximize  IK(X~ . . . . .  Xr)J one chooses the Xi  to have as equal  sizes as possible, i.e., 

l n j  < IXi[ < [ n l .  Then Tur /m's  theorem states 

Theorem 1.1. 1-23] T , ( K r + I ) J K ( X I  . . . . .  Xr)l ( ~ ) ( 1  1 ) )  . . . .  + o(1 . Tak ing  all 
r 

subgraphs  of  K ( X  I . . . . .  X , )  one obtains  2 r"tx-÷l) distinct labeled graphs  on n 
vertices wi thout  Kr+l.  

Definition 1.2. Call a g raph  H-free  if it contains  no subgraph  i somorphic  to H. Let  
F,(H)  denote  the n u m b e r  of  distinct labeled H-free g raphs  on n vertices. Extending 
earlier results of  Erd6s,  Kle i tman  and Rothschi ld  I-8] Kolaitis,  Pr6mel  and  Roths-  
child p roved  that  the number  of  Kr+l-free g raphs  is a sympto t i c  to the n u m b e r  of 
the r -par t i te  graphs.  This in par t icular  implies 
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Theorem 1.3. [ 16] 
F,,(K,) = 2 r"(r')(i*°(1)). (1) 

Let x(H) denote the chromatic number of H. An old result of Erd6s, Stone and 
Simonovits shows that T,(H) and T,(Kz(m) are closely related. 

Theorem 1.4. [7, 9] Set z(H) = r, r > 3. Then 

T,,(K,) < T,(H) <_ (1 + o(1))Tn(K,.). " 

Our first result extends (2). 

(2) 

Theorem 1.5. Let  eo be an arbitrary positive number and G an H-free 9raph on n 
vertices. Then for n > no(e o, 11) one can remove less than eo nz edyes from G so that 
the remainin9 9raph is Krfree,  where r = x(H). 

This may be further extended in the following way: Let H i, H 2 be two graphs. 
A mapping O: V ( H i ) ~  V(H2)is  called a homomorphism if {x,y} e E ( H I ) i m p l i e s  
{q/(x), 0(y)} • E(H2). Note that 0 - i  (x)is an independent set for all x • V(H2). Also 
if z (HI)  = r then r is the smallest integer for which there exists a homomorphism 
~9: Hi--* K ,. 

The following is a slight generalization of Theorem 1.5: 

Theorem 1.5'. Suppose that H 2 is a homomorphic imaoe o f  H l, e 0 is an arbitrary 
positive real and G is an Hi-free 9raph with n vertices. Then for n > no(eo, Hi)  it is 
possible to remove at most eo n2 edges f rom G so that the remaining graph is H2-free. 

[] 

We do not include the proof here, it uses an argument very similar to that of 
the proof of Theorem 1.5. Note also that some stronger statements of the same 
flavor were obtained by R6dl [19]. The present proof is similar. Theorem 1.5. is 
shown to imply easily: 

Theorem 1.6. Suppose x(H) = r > 3. Then 

F,,(H) = 2 r"(K')(i+°(1)'. (3) 

Note that for H = K, (3)is much weaker than (2) and this special case was already 
proved in [8]. 

It seems likely that 
F,,(H) = 2 T"(H)(i +o(1)) 

holds for bipartite H as well. However, this is not even known for H = C,, the cycle 
of length 4. For  this case the best known upper bound (2 c"3'2) is due to Kleitman 
and Winston [15]. 

Our last but probably most interesting result concerns r-uniform hypergraphs. 
Recall that an r-uniform hypergraph is simply a collection of distinct r-element sets, 
called edges. Let 9,(v, e, r) denote the maximum number of edges in a r-uniform 
hypergraph on n vertices in which the union of any e edges has size greater than v 
(i.e., no v vertices span e or more edges). 

Theorem 1.7. Suppose r > 3. Then the followino hold. 

9,(3r - 3, 3, r) = o(n2), (4) 
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lira 9,(3r - 3,3,r)/n ~ = ~ for all c < 2. (5) 
n ~  o~ 

Our  p roo f  of  (4) is based on Szemer6di's uniformity lemma [22]. 
Let us ment ion  that  the special case r = 3 of  (4) and (5) is a celebrated result of 

Ruzsa and Szemer6di [21]. However,  the present p roof  is much simpler and probably 
more  insightful. In [21] it is shown that  9,(6, 3, 3) > nr3(n)/lO0 where r3(n) is the 
maximum size of a subset A c { 1, 2 . . . . .  n} which contains no  arithmetical progres- 
sion of length 3. Thus  (4)implies r3(n ) = o(n) which was proved in a s tronger form 
by Roth  [20]. 

Let G = (V, E) be a graph and A, B c V be a pair  of disjoint subsets of V. The 
density of a pair (A, B) is the fraction d(A, B) = e(A, 13)/I AlIBi where e(A, B)is the 
number  of  edges with one endpoint  in A and second in B and FA[, fBI denote  the 
cardinalites of  A and B, respectively. The pair (A, B) is called e-uniform if for every 
A' c A, B' ~ B, IA'[ > elA[, [B'I > elB[ [d(A',B') -- d(a,B)l < e holds. The part i t ion 
V = Co U C~ U.-- U Ck is called t -uniform if 
i) ICol <,elVl 
ii) ICll = I C 2 1  ~ - - " " =  I C k l  

iii) all but e ( ~ )  of the pairs (C,, Cj) are e-uniform, l <_ i < j <_ k. 
/ 

Uniformity L e m m a  [22]. For every e > 0 and positive integer E, there exist positive 
integers no(e,g) and mo(e,E ) such that every graph with at least no(e,g ) vertices has 
an e-uniform partition into k classes, where k is an integer satisfying E < k < mo(e, f). 

[] 

Another  simple p roof  of 9,(6, 3, 3) = o(n 2) (which is also based on [22]) was 
independently found by E. Szemer6di. 

2. P roo f  of  Theorem 1.5. 

Without  loss of  generality assume that to < 1/r and set d = I-1/eo], e = (eo/6) Ir(u)l 
and no(eo) > n(e, f). Let  Co U Ct U-." U Ck be an e-uniform part i t ion of G(n). Consider  
the graph G with vertex set {1, 2 . . . . .  k} and {i,j} jo ined  if (C,  Cj) is an e-uniform 
pair of density at least eo/3. We prove that  this graph does not  contain K,  as a 
subgraph. This follows from the following. 

Claim 2.1. I f  (Ci, Ci) is e = (to/6) ~ uniform for every 1 < i < j < r then the graph 
induced on U~'=l ci contains all complete r-partite graphs on v points. (In particular, 
G contains H, contradicting our hypothesis.) 

Proof of Claim 2.1. As each of the pairs (Ci, C,) i < i < r - 1 is e-uniform we can 
find (1 - (r - 1)e)lC,] points in C, which are jo ined to at least (e0/3 - e) lC, l points 
of Ci for each i = 1, 2, . . . ,  r - 1. Take  one such point  x 1 E Cr and denote  by C[ the 
set of all vertices of  Ci which are joined to x l  (i = 1, 2, . . . ,  r - 1). Set C~ = C, - {xl }; 
we have tGI -> (Co/3 - e) I f J  > (eo/6) l f J  for  every i = 1, 2 . . . . .  r and hence each of 
the pairs (C;, Cj) 1 < i < j  < r is (Co/6) "-1 uniform. N o w  we take x 2 from one of  the 
sets C' 1, C~ . . . . .  C" (say Cj) and repeat  the a rgument  to construct  sets C~ 2) . . . . .  C~ 2) 
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of  size at least (eo/6)~-2[Ci[, i = 1, 2 . . . . .  r and  with the p roper ty  that  x 2 is jo ined 
to every point  of  r I, rt2) Repeat ing this p rocedure  v - 1 times (on i-th step using k , . . J i # j  ~"i  " 

that  (eo /6)~- l ( r  - t) < 1 and e0/3 - (Co /6 )  ~-I > Co/6) we can construct  a sequence 
of  points  x l ,  x 2 . . . . .  x~ which span a g raph  i somorphic  to any complete  r part i te  
g raph  on v points.  [ ]  

N o w  we can finish the p roof  of T h e o r e m  1.5. quite easily: The  n u m b e r  of  edges 
not  conta ined in pairs with density at  least Co/3 is clearly at mos t  

k n 2 k n 2 

After omission of these edges we get a g raph  which can be m a p p e d  on G by h o m o -  
m o r p h i s m  and hence (according to Cla im 2.1.) does not  contain Kr. [ ]  

3. The Proof  of  Theorem 1.6. 

Let z(H) = r. According to Theo rem 1.5. every g raph  on n points  n > no(e ) not  
containing H can be written as a union o f a  K,-free graph  and  ~o nz edges. Thus  the 
n u m b e r  of  such graphs  is according to T h e o r e m  1.3. (here we could use also the 

earlier, weaker  result of [8])  smaller  than  (1 + o(1))2 r-~Kr) As go can be 
2 " 

\ 0  / 

arbi t rar i ly  small we get (3). [ ]  

4. The Proof  of  the First Part of  Theorem 1.7. 

We prove  (4)in the following form: F o r  every el > 0 there exists n i = hi(el)  so tha t  
if n > n I and  G = (V, E) is an r -uniform hype rg raph  with IV[ = n and with the 
p roper ty  that  every set o f3r  - 3 vertices spans  at  mos t  two r-tuples, then IEI < ex n z. 

First  we show that  the s ta tement  holds (with n I replaced by n2) if G is connected.  
Consider  the graph  G = (V, F) defined by 

F = { { x , y } ,  3z  l ,  z 2 . . . . .  z , - 2 { x ,  y,  z l ,  z2 . . . . .  zr-2} ~E} 

As there is no triangle with all three edges in different r- tuples (this would yield 
(3r - 3, 3) a subgraph  of 3 edges on 3r - 3 points)  we infer that  

i) The  set o f  r- tuples of  G = the set o f  r cliques of  (~. 
Moreover ,  as G is connected we get that  

ii) Every two r-cliques of  ~ intersect in at mos t  one point  (Otherwise we get an 
(d, 2), d < 2r - 2 the vertices o fwhich  canno t  be con ta ined  in any  other  clique since 
this would immedia te ly  yield (3r - 3, 3)). 

Set H = K 1 ..... 1.2 (a complete  r -par t i te  g raph  with r + 1 points) G does not  
conta in  H for otherwise we would get (by i)) two r- tuples  intersecting in r - 1 points  
which contradic ts  to ii). If  n 2 > no(el) we get (using T h e o r e m  1.5.) that  there are 
el n2 edges which if omit ted  destroy all cliques of  size r. Hence  by i) and ii) lEI < ~1 n2. 

1 
Set now n 1 = - - n  2 and suppose that  the sizes of  the vertex set of  the connected 

81 

componen t s  of  G are m 1, rn 2 . . . .  , rap. Let I c { I, 2 . . . . .  p} be the set of those i for 
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which m; _> n 2. Then  we get 

[e[ _< 2 gl m2 + 2 m~ < e ln  2 
i6I i~l  

117 

[ ]  

5. The Proof  of  the Lower Bound in Theorem 1.7. 

For  the p r o o f  of  (5) we need the following s ta tement ,  

L e m m a  5.1. There  ex i s t s  a set  o f  posi t ive  in tegers  A c {1, 2 , . . . ,  n} not containing 

n 
three terms  o f  any  ar i thmet ical  progress ion o f  length  r and such that  t A [ >_ 

e c log r t x / ~  

f o r  some abso lu te  cons tan t  c > O. 

The p r o o f  is based on the me thod  developed by Behrend [2]. F o r  d _> 2, E _> 1 
we m a y  write any  a, 1 _< a _< n to the base 2rd 

a = a o + al(2dr) + a2(2dr) z + . . .  + a~(2dr) k 

/ k \ m  
S e t N ( g ) = { Z a / 2 J  , w h e r e - f f = ( a o ,  a l , - - . , a * )  . F ° r s >  l s e t  

V=O / 

A = A,,a,s = {a, 1 < a <_ n, 0 < a, < d for all i, (N(~')) 2 = s} 

First we p rove  the following. 

Cla im 5.2. T h e  set  A contains  no three terms  o f  any  ar i thmet ical  progression o f  
length r. 

Proof .  Suppose  that  A contains three distinct posi t ive integers a = ~ ai(2dr) i, b = 
bi(2dr) i, c = ~ ci(2dr) i such that  r l (h  - c ) =  r2(c - a), where rx, r 2 are positive 

integers smal ler  than  r. Then  r2a + q b - ( q  + r2)c = 0. Since a i, hi, cl < d there is 
no carrying in r2ai + q b i  or (q  + re)ci for  0 < i _< k and hence 

r2a  i + r i b  i - (r 1 + r2)c  i -~- 0 for 0 _< i _< k. 

Then  

which yields tha t  

r2 rl 
o < ( a , -  e,) + (b, - ci) 

r~ + r 2 q + r 2 

rl - r2 a2i + b } - c }  
r~ + r 2 r 1 + r z 

r2 rl (b)) 
s = ( N ( T ) )  2 < -  r (N(a'))2 2- " - + (N 2 = s  

r 1 + r 1 -4- r z 

a contradic t ion.  

N o w  we finish the p roo f  of  the Lemma.  F o r  a given r and d 

log n 
k holds. 

log(2dr) 

[ ]  
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There  are at  mos t  d2k possible values of  s. The  union of  A,,a,, over  all s contains  
all sums 2 ai(Zdr) i < n, 0 < ai < d. This is approx ima te ly  n(Zr) -k elements. 

Consequent ly  for some  s 

IA,,n,~I - d2k(2r)---- ~ 

Setting d -- e ~ ( k  - I x / ~ )  we infer 

n 

e c log r 1 ~  

for some c > O. [ ]  

N o w  we prove  (5). T a k e  r-copies Xo, X 1 , . . . ,  X,-1 of X = { 1, 2 . . . . .  m}, where 
m = [n/r] and consider  the set N of all r- tuples {x, x + a . . . . .  x + (r - 1)a}, where 
x + i a e X i  for all i = 0, 1 , . . . ,  r - I. We  have clearly [P] > nZ-" for every e > 0 and 
n > no(e ). Moreover ,  IP (7 P'] < 1 for all distinct P, P '  e ~ ' .  Suppose  that  there are 
P , = { x , x + a  . . . . .  x + ( r - 1 ) a } ,  P 2 = { Y , Y + b  . . . . .  y + ( r - 1 ) b }  and  P 3 = { z ,  
z + c . . . . .  z + (r - 1)c} ~ such that  [ ~ = i  Pil -< 3r -- 3. Then  there exist i,j, k (cf. 
Fig. 1) such tha t  

x + ia = y + ib 

We infer that  

z + j c  = x + j a  

y + kb = z + kc 

(i -- j )a  + (k - i)b = (k - j )c  

which contradicts  to the choice of  the set A. 

6. Remarks and Open Problems 

The first quest ion which comes  to mind  is whether  T h e o r e m  1.5. can be generalized 
to hypergraphs  let Ks(l, r) denote  the t-part i te  comple te  r -graph  having vertex set 
X 1 U . . . U X  t with [XiJ = l and F, IF[ = r being an edge if and  only if [F~Xi[  < 1 
for i = 1, . . . ,  l. Tha t  is K,(l, r)is  empty  for r > t, Ks(l ,  r ) i s  just  Ks(r ), the complete  
r -graph on t vertices. 

Problem 6.1. Suppose H is a K~(l, r)-free r-uniform hypergraph on n vertices, t > r. 
Let  e be an arbitrarily small positive real n > n0(e, r, t, 1). Is it possible to remove en r 
edges from H so that the remaining hypergraph is Kt(r)-free? 

A posit ive answer  would imply tha t  the logar i thmical ly  a sympto t i c  number  of  
Kt(l, r)-free r -uniform hyperg raphs  is the same as the n u m b e r  of  those wi thout  Kt(r ) 
for t > r, i.e., it would  extend T h e o r e m  1.6. This n u m b e r  should certainly be 
2~x +om)r,tr,~,)). Let us ment ion,  however,  that  the de te rmina t ion  of  T~(Kt(r)) appears  
to be a very difficult p rob l em - it is Tur~n ' s  p rob lem (cf. [4, 5, 13] for more  
information).  
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x + i a = y + i b J  

y + k b = z + k c  
. . . .  Xk.  

Xi 

Xi 
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Fig. 1 

Let c be a posit ive real and G a g raph  on n vertices and with at least cn 2 edges 
in which every edge is contained in a triangle. Szemerrdi  (unpublished) p roved  that  
for every integer l and n > no(C, l) there is an edge in G which is conta ined in at 
least l triangles. This follows also easily f rom T h e o r e m  1.5 choosing r = 3 and  H 
the union of  I triangles sharing an edge. O n  the other  hand  Alon [1] p roved  that  

the same s ta tement  does not  hold for  c sufficiently small and  l = x/~*.  
The  invest igat ion of the function g,(v, e, r) goes back  to E r d f s  [6]. Actually, the 

value of  g,(3, 3, 2) was a l ready de termined  - a l though in different no ta t ion  - by 
Mante l  [17] in 1907. The value is [n2/4j.  

The  exact  and even asympto t ic  value of  g,(4, 4, 2) is unknoWn. It  is only known  
tha t  9,(4, 4, 2) = O(n3/2); note  that  f(n) = @(9(n)) means  tha t  c 1 < f(n)/9(n) < c 2 
holds for  posit ive absolute  constants  cl, c2 and  for n sufficiently large (cf. [10] for 
more  p rob lems  and results concerning the r = 2 case). 

The  general  p rob lem was first considered by Brown, Erd6s  and Vera S6s [3]. 

Very little is known for r > 3. Obvious ly ,  g, v, r ,r = T,(K~(r)) holds, i.e., 

the comple te  de te rmina t ion  of g,(v, e, r) would  include solving Tur~in's problem.  
Even the de terminat ion  of g,(r + 1, 2, r) is difficult. It  is the m a x i m u m  n u m b e r  

of  r -e lement  subsets of  an n-set no two shar ing r - 1 points. This yields the upper  

bound  g.(r  + 1, 2, r) < r, with equal i ty  iff there exists a S(n, r, r - 1) Steiner- 
- -  r - - 1  

system. N o t e t h a t i t i s w e l l - k n o w n t h a t g . ( r + l , 2 , r ) > _ ( 1 - o ( 1 ) ) ( r n l ) / r - c f .  

[18] for a general  a sympto t i c  bound.  
F o r  v = r + 1, e = 3, r _> 3 not  even asympto t i c  bounds  are known.  It  was 

* The problem ofestimatingf(n, c)-  the maximal number of triangles which must share an edge 
in any graph G with above properties was proposed by P. Erd/Ss and B.L. Rothschild. 
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shown by Gi raud  [14] and by Frank l  and F/iredi [12] tha t  

On  the other  hand  de Caen  [5.] p roved  g,(4, 3, 3) _< ( ~  + o(1))  ( ~ ) .  

Theorem 1.7 shows tha t  g,(3r  - 3, 3, r) # @(n c) for any  c. The  same might  ho ld  
for g , ( E ( r -  2 ) +  3 , ~ , r ) , f , r  > 3, in general. 

Prob lem 6.2. Is  it true in general that for  all f ,  r >_ 3 and e > 0 
n 2-~ < g,(2(r - 2) + 3,2,3) = o(n 2) holds for n > no(e,E,r)? 

By a construct ion of Ruzsa  [21-] g.(7,4,3)  > n 2-~ holds for all e > 0, n > no(e ). 
However ,  to prove  g,(7, 4,3) = o(n 2) appears  to be difficult. 

The p roof  of  Theo rem 1.7. implies that  if a 4-uniform hype rg raph  on n vertices 
has more  than en 2 edges, n > no(e ) then it either contains an (11 ,4 )o r  a (16,6). 

An apparen t ly  easier case is the following. 

Proposit ion 6.3. g,(2 + (r - 2 )e , e , r )=  @(n 2) 

Sketch of  proof. The upper  bound  follows by not ing that  th rough  given two vertices 
there are at mos t  e -  1 edges. The  lower bound  can be p roved  bo th  by direct 
const ruct ion or by a r a n d o m  choice of  cn z subsets of  size r and then omit t ing  all 
edges f rom every (2 + (r - 2)e)-element set containing at  least e of  them. [ ]  
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Remark added in proof. Problem 6.1 has been recently positively answered by P. Frankl and 
V. R/Sdl. The proof uses an extension of Szemertdi's regularity lemma to hypergraphs. 


