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Abstract. We investigate relations of the minimum degree and the independence number of 
a simple graph for the existence of regular factors. 

1. Introduction 

Sufficient conditions for the existence of regular factors in simple graphs depend- 
ing on graphical parameters have been much studied (see for example [1, 5-12, 
14, 15, 17-19, 25]). This topic is greatly influenced by some results or questions 
from hamiltonian graph theory. In this paper we present relations between the 
minimum degree and the independence number of a graph implying the existence 
of regular factors of degree at least two. Thereby, we obtain a condition, for 
which no corresponding statement for the existence of a hamilton cycle can hold 
(see the remark at the end of the paper). Moreover, we will show that our results 
generalize a theorem of Katerinis [10], which involves the relation of the con- 
nectivity and the independence number of a graph. 

We begin with a few definitions and some notations. All graphs in this paper 
are simple. Let G be a graph with vertex set V(G), edge set E(G) and order 
n = [V(G)I. By dG(u) we denote the degree of a vertex u ~ V(G) in G and Ù(G) 
denotes the minimum degree of G. A graph is called k-regular, if every vertex 
has degree k. A k-regular spanning subgraph of G is called a k-factor of G. The 
independence number ~(G) is the cardinality of a maximum set of independent 
vertices of G. For the (vertex-)connectivity of G we use x(G). The union and the 
join of two disjoint graphs G and H are denoted by G U H and G + H, respec- 
tively. For a positive integer p the graph pG consists of p disjoint copies of G. The 
complete graph of order n is denoted by K,. 

Our first result, which motivated this paper, deals with the existence of 2- 
factors. 

Theorem 1. Let G be a graph with O(G) > ~(G). Then G has a 2-factor. 
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To see that the condition of this theorem is best possible let Ga = Ka-~ + dK2 for 
some integer d _> 2. Then it holds 6(Ga) = ~(Ga) = d and it is easy to see that G 
has no 2-factor. 

In [14] we investigated relations of the minimum degree, the independence 
number, and the order of the graph for the existence of regular factors. In particu- 
lar, for 2-factors we obtained that every graph G satisfying 6(G) > max{a, (n + 2)/ 
3} has a 2-factor (this is closely related to a result of Nash-Williams [13] stat- 
ing that under the same condition every 2-connected graph is even hamiltonian). 
Comparing this with Theorem 1 we see that the condition g)(G) > (n + 2)/3 can be 
dropped, if only 6(G) > c~(G) instead of 6(G) > ~(G) is required. From this point of 
view it is interesting to investigate the case 6(G)= e(G) in more detail. As an 
extension of Theorem 1 we prove the following 

Theorem 2. Let G be a graph with 6(G) > ~(G) having no 2-factor. Then it holds 
6(G) = ~(G) and either 

(i) G has a vertex that belongs to no cycle of G or 
(ii) G = H + 6(G)K 2, where H is a graph of order 6(G) - 1, and 6(G) > 2. 

Note that every graph G satisfying 6(G) >_ ~(G) > 2 and having a vertex that does 
not belong to any cycle of G consists of 6(G) cliques, each of size at least 6(G) + 1, 
and an additional vertex, which is joined to each clique by exactly one edge. 

Now we turn to the existence of k-factors with k > 3. Here we have to distin- 
guish depending on the parity of k. We start with the simpler case. 

Theorem 3. Let k >_ 4 be an even integer and let G be a graph of order at least 
k + 1. I f  G satisfies 

then G has a k-factor. 

5 k -  3 2 
6(G) > a(G) + 8 k' 

The lower bound for the minimum degree is for every even integer k > 4 nearly 
best possible. To show this let e and 6 be positive integers with 

k + 2  k 2 

Then we have ct(G) = e and 6(G) = 6 for the graph 

G = K~_k/2 + o~K(k+2)/2. 

To see that G has no k-factor one can choose (D,S)= (V(Ko-k/2), V(otK(k+2)/2)) 
in the k-factor-theorem (Theorem 7) below. If ~ is small compared to k, then there 
exist similar graphs having the minimum degree even closer to the bound of the 
theorem. 

Before we give our result on k-factors with k odd, we show that some addi- 
tional hypotheses will be necessary in this case. Clearly, a graph of odd order has 
no regular factor of odd degree, and thus we consider only graphs of even order. 
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But apart from this obvious restriction, we need another condition, since for 
every integer ~ > 2 there exist graphs without k-factor having independence num- 
ber equal to ~ and arbitrary large minimum degree. To give examples for this 
remark, we consider the graphs K b + aKd, where b > 0 and d > 1 are integers 
with ct > bk + 2, d odd and b + ad even. These graphs do not contain a k-factor 
(choose (D,S)= (V(Kb),O) in the k-factor-theorem below) and have minimum 
degree d + b - 1, where d can be made arbitrarily large. 

Choosing an additional condition we were led by the proof technique of the 
case with k even, where it is possible to assume that a (k - 2)-factor exists. 

Theorem 4. Let k > 3 and l be odd integers with 1 < I < k, and let G be a graph of 
even order at least k + 1 having an l-factor. I f  G satisfies 

( k + l )  2e(G) 5 k - 4  2 
6(G) > 4 ~  + ~ k' 

then G has a k-factor. 

The lower bound for the minimum degree is for every k > 3 again nearly best 
possible. Let therefore e, 6, 1 be positive integers with I < k and 

t k - 3  ( l+  1) 2 5 1 - 4  2 t ( k + l )  2 k - 1  2 
m a x ~ + T ,  41 ~ + 8 . j < 6 <  4k a +  2 k' 

and let 

k - 1  k + l  
6 - - - + a - -  

2 2 

be even. Then the graph 

G = K,~_(k_l)/2 "b ~K(k+l)/2 

is of even order with e(G) = e and 6(G) = 6. Since 6 - (k - 1)/2 > e, it is easy to 
see that G has a 1-factor. Thus by Theorem 4 we obtain that G has a/ ' -factor for 
every odd l' satisfying 1 < l' < I. Finally, one can see that G does not contain a 
k-factor by choosing (D,S)= (V(K~-(k-1)/2), V(aK~k÷I~/2)) in the k-factor-theorem 
(Theorem 7) below. 

From the preceding results it is easy to deduce the following 

Corollary 5. Let k be a positive integer and let G be a graph of order n with 
n >_ k + 1 and kn even. I f  G satisfies 

I ~ ( G )  + 5 k -  3 2 i f k i s even  
8 k 

x(G)>  / ~ | ( k +  1) 2 ,~, + 5k 4 2 i f k i sodd ,  (1) 
L 4k ~tt') 8 k 

then G has a k-factor. 

The first result of this type is the following theorem of Katerinis, which was moti- 
vated by a well-known result for hamiltonicity due to ChvAtal and Erd6s [4]. 
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Theorem 6 [10]. Let k be a positive integer and let G be a graph of order n with 
n > k + 1 and kn even. I f  G satisfies 

(k + 1) 2 5 k -  4 2 
~c(G) > 4---k--e(G) + ~ k' 

then G has a k-factor. 

Corollary 5 is for even k a slight improvement of Theorem 6. A closely related 
result is due to Nishimura [18], who showed that the terms on the right-hand- 
side of (1) not depending on e(G) can be removed, if the connectivity is at least 
[(k -k- 1)2/4j. This result cannot be derived from our results. 

2. Proofs 

We need some further notation. Let G be a graph and let S ~_ V(G) be non-empty. 
For convenience we write d~(S) instead of ~ s d ~ ( x ) .  By G[S] we denote the 
subgraph of G induced by S. If u ~ V(G) - S, then eG(u, S) denotes the number of 
edges joining u to a vertex in S. If T ~_ V(G) - S, then we write eG(T, S) instead of 
Y~.~ T edu, S). 

Our proofs depend on a special case of Tutte's f-factor theorem [21], which 
was first proved by Belck [3] and characterizes those graphs that do not have 
a k-factor, where k is a non-negative integer. Let D, S be disjoint subsets of 
V(G). We call a component of G - (D U S) an odd component (of G with respect to 
(D, S, k)), if k[ V(C)I + eG(V(C), S) is odd, and by qG(D, S, k) we denote the number 
of odd components. Let OG(D, S, k) = k i D [ -  k[S[ + d~_o(S ) - qG(D,S, k). 

Theorem 7 (k-factor-theorem). Let G be a graph of order n and let k be a non- 
negative integer with kn even. Then the following statements hold. 

(i) [21] OG(D, S, k) is even for all disjoint sets D, S ~_ V(G); 
(ii) [3, 21] G does not have a k-factor if and only if G has a k-Tutte-pair, that is a 

pair of disjoint subsets (D, S) of V(G) with O6(D, S, k) <_ - 2. 

The k-factor-theorem is often difficult to apply. One of the known approaches to 
obtain additional information depends on suitable choices of the k-Tutte-pairs. 
Especially, two choices, which have been made first by Katerinis [9] and Katerinis 
and Woodall [-11] and by Enomoto, Jackson, Katerinis and Saito [7], respec- 
tively, have been used frequently. Here we need a partial combination of those. 
(Note that all choices of k-Tutte-pairs can be seen as consequences of the transfer 
principle described by Tutte [22, 233. Another approach, which uses two k-Tutte- 
pairs simultaneously, was developed in [16].) 

Lemma 8. Let k be a positive integer and let G be a graph of order n with kn even. 
I f  (D, S) is a k-Tutte-pair of G such that iS] - [D] is minimal, then the following two 
statements hold: 
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a) e6(u, S) < k - 1 for  every u ~ V(G) - (D t_J S), 
b) dG_o(x ) < k - 2 + c(x) < k - 2 + qG(D,S,k) for  every x ~ S, where c(x) = 

c(x, D, S, k) denotes the number of  odd components of  G with respect to (D, S, k) 
containing a neighbor of  x. 

Proof. a) If u ~ V(G) - (D U S), then (D U {u}, S) is not a k-Tutte-pair of G by the 
choice of (D, S). Hence by Theorem 7 

- 2 >_ O~(D,  S, k) - O ~ ( D  U {u}, S, k) 

= - k + eo(u, S) - qG(D, S, k) + qa(D O {u}, S, k) 

>>_ - k + eG(u, S) - 1, 

and thus eo(u, S) < k - 1. 

b) Similar to a) we have that ( D , S -  {x}) is not a k-Tutte-pair for every x e S. 
Now it follows together with qG(D, S - {x}, k) > qG(D, S, K) - c(x) 

- 2 >_ OG(D, S, k) - O o ( D ,  S - {x}, k) 

= - k  + d~_o(x ) - q6(D, S, k) + q~(D, S - {x}, k) 

> - k  + do_o(x ) - c(x), 

and so dG_D(x ) < k - 2 + c(x) < k - 2 + qG(D, S, k). [] 

The following lemma will be very useful. 

Lemma 9. Let  G be a 9raph without k-factor, where k > 2 is an inteoer. I f  G has a 
(k - 2)-factor, then it holds IS[ > IOl + 1 for  every k-Tutte-pair (D,S) o f  G. 

Proof. Let (D, S) be a k-Tutte-pair of G. Then we have O~(D,S, k ) <  - 2  and 
O~(D, S, k - 2) > 0 by Theorem 7. Since it holds q~(D, S, k) = qo(D, S, k - 2), we 
obtain 

- 2  > Oo(D,S ,k  ) - Oo(D,S ,k  - 2) = 2IDI - 2lSI, 

and therefore ISI >- IDI + 1. []  

Proofs o f  Theorem I and Theorem 2. Let G be a graph with 6(G) > a(G) having no 
2-factor. Then G has a 2-Tutte-pair (D, S) by Theorem 7. Since G has a 0-factor, it 
holds by Lemma 9 

Ial > IDI + 1 (2) 

for every 2-Tutte-pair (D,S) of G. Let (D,S) be chosen such that ISl - IOl is mini- 
mal. Then we have dG-o(x) < c(x) for every x ~ S by Lemma 8 b), and therefore S 
is an independent set and the neighbors of every x ~ S in G - D belong to differ- 
ent components of G - (D U S). 

Suppose first that ISI < 1. Then we obtain ISI = 1 and IDI = 0 by (2). Let v 
denote the vertex in S. Since the neighbors of v belong to different components of 
G - v, v is not contained in any cycle of G. Moreover, we have a(G) > co(G - v)> 
dG(v ) > 6(G) > a(G), and thus 6(G) = e(G). So, the theorems are proved, if ISI -< 1. 
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Let now [SI > 2 .  For  convenience we set d = m i n { d G _ o ( x ) t x e S }  and 
q = qG(D,S,2). Obviously,  it holds IDI >- 6(G) - d. Furthermore,  by co we denote 
the number  of  components  of G - (D U S). 

Case A. 6(G) > e(G). 
With (2) we obtain  

6(G) - 1 > ~(G) > ISl -> IDI + 1 > 6(G) - d + 1, 

and hence d > 2. Since (D, S) is a 2-Tutte-pair,  we have now 

~(G) > q~(0 ,S ,2)  > 210[ - 21SI + dG-o(S) + 2 

>_ 2101 + ISt(d - 2) + 2 _> 2(a (a )  - d) + 2(d - 2) + 2 

= 26(G) - 2 > 2~(G). 

So, this case cannot  occur. No te  that  thereby Theorem 1 is already proved. 

Case B. 6(G) = ~(G). 
We may  assume that  G has at least three vertices, since otherwise G = Kz and 
so G has a vertex that  belongs to no cycle of G. Especially, we have therefore 
a(G) > 2, since G cannot  be complete. N o w  let us verify 

d = 1, (3) 

6(6)  = ~(a) = ISl = I01 + 1, (4) 

and 

q = co = d~-o(S) = ISI. (5) 

Suppose, contrari ly to (3), that  d ¢ 1. If  d = 0, then we obtain the contradict ion 
6(G) = ~(G) > ISI -> IDI + 1 _> 6(G) + 1. I f d  > 2, then we get similar to Case A 

~(a) > co > q > 21DI - 2[SI + d~_o(S) + 2 

_> 2191 + ISl(d - 2) + 2 _> 2(6(6)  - d) + 2(d - 2) + 2 

= 26(G) - 2 = 2~(G) - 2. 

By ~(G) > 2 we have therefore ~(G) = 2, and equality must  hold in all estimations 
above. This yields ~(G) = 6(G) = co = q = d = ISI = 2 and ]De = 0. Since it is easy 
to see that  no graph can satisfy these equalities, we obtain again a contradiction.  

With  (2) and (3) we get (4) by 

a (a )  = ~(G) >__ ISI >- 191 + 1 >_ 6(G) - a + 1 = a(G). 

Next  we observe that  with (4) it holds 

q > 21DI - 21SI + d~_~(S) + 2 = d~_D(S ). 

Thus we obtain  with (4) and (3) 

q < co < ~(G) = [SI = dlSI < d~_o(S) < q, 

from which (5) follows. 
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By (3), (4) and (5) we can easily complete the proof. Since S is an independent 
set of G - D with ISI = ~(G), every vertex of V(G) - (D t_J S) is joined by at least 
one edge to a vertex of S. So we have ISI -- d~_l~(S) >IV(G) - (D t3 S)I > q = ISI, 
impling that V(G) - (D U S) is an independent set of vertices, where each vertex 
has degree one in G - D. Since S is an independent set, the same statement holds 
for S because o f d  = 1 and dG-D(S) = ISl. Thus G - D = I S I g 2  = 6(G)K2. Final- 
ly, [DI = ~5(G) - 1 yields G = H + 6(G)K2, where H is a graph of order 6(G) - 1. 
This completes the proof of Theorem 2. []  

In the next proof we need the following lower bound for the independence num- 
ber due to Wei [24], which is often also attributed to Y. Caro (unpublished). 

Theorem 10. For every 9raph G it holds 

1 
c~(G) 2 

x~V~G) 1 + dG(X )" 

Proofs of Theorem 3 and 4. The proof is by contradiction. We suppose that an 
integer k > 3 and a graph G exist, which satisfy the hypotheses of Theorem 3 or 
Theorem 4 (depending on the parity of k) such that G has no k-factor. Without 
loss of generality we may assume that k is chosen minimal with respect to these 
properties. Then G has a (k - 2)-factor. This follows for k = 4 by Theorem 1 and 
for k # 4 by the choice of k. 

By Lemma 9 we have 

ISI > IDI + 1 > 1 (6) 

for every k-Tutte-pair (D, S) of G. We choose a k-Tutte-pair (D, S) of G, which is 
minimal with respect to ISI - IDI. By Lemma 8 we have 

and 

eG(u, S) < k - 1 for every u ~ V(G) - (D U S) (7) 

dG_o(x ) < k - 2 + q~(D, S, k) for every x e S. (8) 

It is easy to verify that the lower bounds for the minimum degree in the hypo- 
theses imply 

a ( G ) -  3 
6(G) > ~ + k (9) 

and 

~(G) - 2 
6(G) > ~ + k. (10) 

This is left to reader, who should notice therefore that ct(G) > 2, since G cannot 
be complete because of n > k + 1 and nk even. 

Let q = qa(D,S,k) and d = min{da_D(x)[x ~ V(G) - D}. 
We now consider three cases. 
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Case l. d < k - 1 .  
Here we use the ideas of the proof  of Theorem 6 from [10]. We only improve 
some of the estimations in the case where k is even. 

Let  U = {u 1 . . . . .  uq} be a set containing exactly one vertex of every odd 
component  of G -  (D U S) with respect to (D,S). Then let H -  G[SU U]. For  
i =  0, 1 . . . . .  A, where A = A(G) is the max imum degree of G, we set S~ = 

{x ~ SIdG-o(x) = i} and si = IS, I. 
By Theorem 10 and (7) we obtain 

1 q 1 

~(c) >_ ~(H) >_ y~ 1 + d.(x) + j~=~ ~,~s .= 1 + dn(ui) 

1 ~ 1 ~ S l  q 
>- ~ 1 + d~_~(x) + >- + ~ s  j=l l + eG(uj, S) i=a ~ k" 

Thus 

si q 
a(G) > + (11) 

Let  first k be even. Then  it holds k(k + 2)/4 > (k - i)(1 + i) for every integer i. 
So, if we multiply (11) by k(k + 2)/4, we obtain with k > 2 

2) ~ k ( k + Z ) s i  k + 2  k(k + c~(G) > ~ + ~ q  > ~ ( k -  i)s i + q. 
4 i=d 4(1 + i) - ~=d 

The right-hand-side of this inequali ty is equal to kISI - da-D(S) + q, and there- 
fore at least k lDI + 2, since (D,S) is a k-Tutte-pair  of G. Together  with I DI > 
b(G) - d and the lower bound  for the min imum degree we obtain 

k(k + 
2)c~(G) > kiD[ + 2 > kb(G) - kd + 2 

4 

k ( k + 2 )  k ( 5 k -  3) 
> - - ~ ( G )  + kd. 

4 8 

Rearranging yields d > (5k - 3)/8. 
If k is odd, then we multiply (11) by (k + 1)2/4 and obtain analogously 

d > (5k - 4)/8. 
Next  we are going to multiply (11) by (k - d)(1 + d). Therefore we notice that 

for i _> d > (5k - 4)/8 it holds 

(k - d)(1 + d) >_ (k - i)(1 + i), 

since (k - i)(1 + i) is mono tone  decreasing for i > (k - 1)/2. Moreover ,  we have 
( k - d ) ( l + d ) > _ k f o r 0 _ < d _ _ _ k - l .  So we get as above 

z] 

(k - d)(1 + d)~(G) >_ ~ (k - i)si + q = klS] - da_D(S) + q 
i = d  

_> klDI + 2 _> k~(G) - kd + 2. 
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Using the lower bounds for the minimum degree from the hypotheses we obtain 
after rearranging 

8 

if k is even, and 

k(5k - 4) 

k(5k - 3) [ k ( k 4  2)] < ( k -  d)(1 + d) - c~(G) + kd, 

< [(k - d)(1 + d) ( k 4 1 ) Z l ~ ( G )  + kd , 

if k is odd. Since the terms in the brackets are less than or equal to 0 for every 
integer d and since e (G)>  2, we may replace e(G) by 2 in these inequalities. 
Thereafter rearranging yields 

if k is even, and 

9k 2 + 13k < 8 ( 3 k -  2d)(1 + d), 

9k 2 + 12k + 4 < 8(3k - 2d)(1 + d), 

if k is odd. Next we observe that 8(3k - 2d)(1 + d) becomes maximum for d = 
(3k - 2)/4, and thus 8(3k - 2d)(1 + d) < 9k 2 + 12k + 4. Thereby we have already 
a contradiction if k is odd, and for even k we obtain k < 4, a contradiction. 

Case 2. d = k. 

Since (D, S) is a k-Tutte-pair of G, we obtain with ~(G) > q and IDI -> ~(G) - d 

~(G) >_ q > klDI - klSI + d6_u(S) + 2 > klDI + 2 > k6(G) - k 2 + 2. 

This yields 6(G) < (a(G) - 2)/k + k, contradicting (10). 

Case 3. d > k +  1. 
Since (D, S) is a k-Tutte-pair, we have 

q >_ klOl - klSI + dG-D(S) + 2 > IDI + ISJ + 2. (12) 

We have now two subcases. 

Case 3.1. IS[ < k - 1. 
Since S is non-empty by (6), we can choose a vertex x e S. 

First we consider the situation with k = 3. By (6) we have 0 < IDI < 1, where 
ISI = 2, if IDI = 1. By (8) and the lower bounds for the minimum degree we obtain 

17 
1 + ~(G) > 1 + q > do_o(x  ) > 6(G) - IDI > ~ ( a )  + ~ - IDI. 

So, if IDI = 0, we get already the contradiction a(G) < 1. If IDI = 1, we have only 
c~(G) < 4. A contradiction is then obtained with (12) by 

4 >  1 + 0~(G) > 1 + q  > 1 + IDI + ISI + 2 >  6. 
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Let now k >_ 4. By (12) and (6) it holds ~(G) > q > IDI + ISI + 2 > 21DI + 3. 
Thus it follows with (8) 

k - 2 + o~(G) > k -  2 + q > dG_D(X ) 

e(G) - 3 
> 6(G) - I O l  -> 6(G) 2 

Hence 

2k - 7 + 3~(G) 
> 6(G). (13) 

Now we use the lower bounds for the minimum degree from the hypotheses in 
(13). For even k we get with e(G) > 2 after rearranging 

3 k -  25 2 ~ k -  4 
+ ~ > co(G) >_ 

Now it is easy to see that this is impossible for k ~ 4. For odd k > 5 we get 
analogously 

3 k - 2 4  2 k 2 - 4 k + 1  k 2 - 4 k + 1  
+ k > 4k e(G) > 2k 

which is impossible also. Thus we have obtained a contradiction for k > 4. 

Case 3.2. IS[ > k. 
By (12) and (6) it follows e(G) > q > tDI + ISI + 2 > 21Oi + 3, and therefore 
iDa < (~(G) - 3)/2. Together with (9) we have 

co(G) > q > kIDI - klSI + dG-D(S) + 2 

> k L D t -  klSI + I S I ( 6 ( G ) - I D I )  + 2 

-- (k -ISI)IDI + ISI(b(G)- k) + 2 

_>(k-Ial)(?(6-) 2- 3 ) + l S l ( , ~ ( G ) - k ) + 2  

- + ISI 6(G) - k ~ + 2 

> ke(G)2- 3 ( e ( G ) -  3)  + k 6(O) - k ~ + 2  

= k(6(G) - k) + 2. 

Thus 

a(G) - 2 
3(G) _< ~ + k, 

contradicting (10). [] 
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Proof of Corollary 5. Clearly, 6(G) > x(G) holds for every graph G. So, for even 
k the statement follows directly from Theorem 2 and Theorem 3. If k is odd, it 
will suffice by Theorem 4 to prove that G has a 1-factor. Suppose therefore that G 
has no 1-factor. Then by Tutte's 1-factor theorem (see 1-20]) there exists a set 
D ~ V(G) such that o(G - D) > ID[, where o(G - D) denotes the number of com- 
ponents of odd order of G - D. Since G is of even order, we have o(G - D) > 
IDI + 2. This implies in particular that D is a cutset of G and so IDI > ~c(a). Now 
it follows 

(k + 1) 2 5 k -  4 2 
o(G - D) - 2 > IDI -> to(G) > 4 ~  'ct(G) + 8 k 

> ~(G) -  2 > o ( G -  D ) -  2. 

This contradiction completes the proof of the corollary. [] 

Remark. As we mentioned in the introduction, no relation of the minimum degree 
and the independence number can be sufficient for hamiltonicity. This is obvious, 
since such relations do not imply that a graph is 2-connected or 1-tough. More- 
over, there exist some well-known examples of 1-tough, non-hamiltonian graphs 
having independence number equal to three and arbitrarily large minimum 
degree (for example graphs consisting of three disjoint cliques of size at least three 
and the edge-sets of two vertex-disjoint triangles containing exactly one vertex of 
every clique). The well-known examples have connectivity equal to two. Recently, 
Bauer, Broersma, van den Heuvel and Veldman [2] gave two families of graphs 
with arbitrarily large connectivity. To describe one of these families let I and m be 
positive integers. Denote by H1 . . . . .  H2m+l disjoint copies of Kt and let T be a 
copy of K2m+~ disjoint from H1, .. . ,  H2m+l with V(T) = {ul . . . . .  U2m+l }. Form 
Ht,,. by joining the vertex ui to all vertices of Hi for i = 1 . . . . .  2m + 1. Now let 
Gl,., = K,. + Hi,.,. Then Gl,,. is a non-hamiltonian graph with 6(Gl,,.)= l+  m, 
e(Gl,m) = 2m + 1, x(Gl, r. ) = m + 1 and toughness equal to 3m/(2m + 1). 

Acknowledgement. I would like to thank D. Bauer for pointing out the examples in [2]. 
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