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Abstract. A transformation is presented which converts any pushdown 
automaton (PDA) M 0 with n o states and P0 stack symbols into an equivalent 
PDA M with n states and [no/n]2po + 1 stack symbols for any desired value 
of n, 1 ~< n < n 0. This transformation preserves realtime behavior but not 
determinism. The transformation is proved to be the best possible one in the 
following sense: for each choice of the parameters n o and P0, there is a 
realtime PDA M 0 such that any equivalent PDA M (whether realtime or not) 

having n states must have at l e a s t [ ( n 0 / n ) Z p o ]  stack symbols. Furthermore, 
the loss of deterministic behavior cannot be avoided, since for each choice of 
n o and P0, there is a deterministic PDA M 0 such that no equivalent PDA M 
with fewer states can be deterministic. 

1. Introduct ion  

It is well known that there is an algorithm to minimize the number  of states in a 
deterministic finite automaton. Since each move of a pushdown automaton 
(PDA) depends on the top stack symbol as well as on the state and the input 
symbol, the product of the number  of states and the number  of stack symbols in a 
PDA is in a sense analogous to the number  of states in a finite automaton,  and it 
might be desirable to minimize this product. However, an argument by Gruska [6] 
can be modified to show that there is no algorithm to accomplish this. On the 
other hand, minimizing the number  of states in a PDA is trivial: since each PDA 
is equivalent to a context-free grammar  (CFG), it easily follows that each PDA is 
equivalent to a one-state PDA. (We assume that acceptance is by empty stack, so 
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that a separate accepting state is unnecessary.) This construction replaces stack 
symbols by (state, stack symbol, state)-triples, and hence multiplies the number of 
stack symbols by approximately no 2, where n o is the original number of states. 
Thus, although one cannot effectively minimize the state-stack symbol-product 
for a PDA, one can collapse the finite-state control to a single state, but only at a 
large cost in the size of the stack alphabet. This suggests the question, can one 
reduce the size of  the finite-state control less drastically at a lesser cost? 

The present paper shows that a natural generalization of the "tr iple" con- 
struction for converting a PDA to a CFG will reduce the number of states in any 
PDA from n o to n for any desired n, 1 ~ n < no, at the cost of increasing the size 
of the stack alphabet from Po to [no/n]2po + 1. Like the triple construction, it 
preserves realtime behavior but not determinism. Furthermore, this construction 
is more or less the best possible, in the sense that an expansion in the stack 

alphabet to size r l(no/n)2po ] is sometimes unavoidable even if realtime behavior 
need not be preserved, and also in the sense that no general state-reduction 
procedure can preserve determinism. 

Section II describes this generalized triple construction. Section III shows 
that the construction cannot be improved. 

II. The Generalized Triple Construction 

We adopt the usual notation M = (Q, Y., F, 8, q0, Zo, F )  for a PDA (see, e.g., [8]), 
with the following modifications: 

1. Since M accepts by empty stack, we omit F. 
2. To facilitate comparisons between PDAs and CFGs, we shall write the 

move 

(q, BtB2.. .Bm) ~ ~ ( p , x , A )  

in the form 

pA ~ xqB IB2... Bm. (,) 

Here, p and q are states in Q; x is in Z U(e)  (e is the empty string); A, B1, 
B 2 . . . . .  B m are stack symbols in F; m >/0; and Q, Z, F are assumed to be pairwise 
disjoint. 

Thus, pA --* xqB l. . .  Bm denotes the move that changes state from p to q while 
consuming x from the input stream, and popping A and pushing B~. . .B m on the 
stack. (B l is the new top stack symbol if m >/1.) Then M is realtime if pA ~ xq 13, 
13 ~ F*, implies x ~ e. And M is deterministic if, for each p ~ Q, A ~ F, a ~ E, the 
set of moves 

( pA - ,  aq13[q ~ Q, fl e F*) o ( pA ~ q131q ~ Q, 13~F*) 

contains at most one move of M. 
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Note that the language L ( M )  defined by M by empty stack may be obtained 
by interpreting the moves (*) as context-sensitive productions, adding the produc- 
tions 

q ~ e , q ~ Q ,  

and taking qoZo as the axiom for a grammar: 

L ( M )  = ( w ~  Y.*lqoZo*w).  

Obviously, if M has only one state, then the states can be omitted from (,), 
resulting in context-free productions which generate L ( M )  from Z 0. So a 
one-state PDA is essentially identical to a CFG, and leftmost derivations of the 
CFG correspond to computations of the PDA. From this point of view, the usual 
" tr iple" construction [3] for converting a PDA to a CFG is merely a construction 
for reducing the number of states in a PDA to a single state * as follows. 

Triple Construction 

Replace each move 

pA ~ xpoBi . . .B  m, m >t 0, 

by the (gZQ)" moves 

*(pAp,,,) --* x* (poB ,p , ) . . .  (p~_~B,,pm), (p~ . . . . .  Pro) ~ Qm; 

and ifpA = q0Zo, then also add the moves 

*Zo ---" x*(poB~p~> ... (P,, ~BmP~>, (P~ . . . . .  Pro) ~ Qm. 

The new set of stack symbols consists of the starting symbol Z 0 and -~(Q x F × Q) 
new symbols (pAq),  one for each triple in Q x F × Q. It is a routine matter to 
verify by induction on the length of the derivations that 

+ 
qoZo ~ wpoB l ... B m 

for the first PDA if and only if there exists (p~ . . . . .  Pro) ~ Qm such that 

,Zo + w,(poB~p,> ... (p~_~B~pm> 

for the second PDA, so that both PDAs accept the same language. 
This construction can be generalized as follows. Suppose that M =  

(Q, Y, F, 8, qo, Z0) is a PDA, and suppose that Q c Q" x Q" for some sets Q' and 
Q" having n and k elements respectively. Let qo = (q~, q(~') ~ Q' x Q". 
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Generalized Triple Construction 

Replace each move 

( p ' , p " ) A  --, x (p6,  p~ ' )B t . . .B  m, m >1 O, 

by the k '~ moves 

p'(p"Ap~,) ~ xp~(p~'Bip',')... (p~,_lBmp'~), (p'; . . . . .  p~,) ~ ( Q " ) ' ,  

and if (p',  p")A = (q~, q[;)Z o then also add the moves 

q~Z o ~ xp'o(P'o'B~p'~')... ( p ' _ , B , , , p ' ) ,  (p'~', . . . .  p~)  ~ ( Q " ) " .  

Thus, when m = 0, the popping move (p' ,  p")A--,  x (p '  o, P'o') is replaced by the 
popping move p'(p"Ap~')  ~ xp~. The new set of states is Q'  with initial state q~, 
and the new set of stack symbols is 

r '  = {Z0) u ( (p"Aq") IP" ,  q " ~  Q", A ~ F) 

with initial stack symbol Z 0. Note that the Generalized Triple Construction is 
essentially the Triple Construction when n = 1 and produces essentially no change 
when k = 1. Also, note that the construction transforms realtime PDAs to 
realtime PDAs, but in general transforms deterministic PDAs to PDAs that are 
not deterministic. 

Lemma. I f  M = ( Q , E , F ,  8, qo, Zo) is a PDA with Q c _ Q ' x Q "  and M ' =  
(Q', E, F', 8', q~, Zo) is the PDA produced from M by the Generalized Triple 
Construction, then M' is equivalent to M, i.e., L( M' )= L( M).  

Proof. Just as in the case of the Triple Construction, one may prove by 
induction on the length of derivations that 

(q~,q~')Z o + w(p~, p~')B~ ... B m in M 

if and only if there exists (p '( ,  . . . .  p , )  ~ (Q,,)m such that 

q~Z o + wp'o( P'o'Bip~' ) ... ( p~_lB,,,p~) in M' .  

Taking m = 0, the lemma follows. [] 

Theorem 1. For ever)' PDA M o with n o states and Po stack symbols and for every 
integer n in the range 1 <~ n < n o, there is an equivalent PDA M with n states and 
[no/n]2Po + 1 stack symbols such that M is realtime if M o is. 

Proof. Let Q'  be a set of size n and Q" be a set of size k =  [no /n  ] . Then 
Q'  x Q" has size nk >1 n o, so the state set of M 0 can be identified with a subset of 
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Q' x Q". The Generalized Triple Construction now produces a PDA M satisfying 
the theorem. In particular, M has n states and kpok + 1 - -  [no/n]2po +1 stack 
symbols. [] 

II1. Can the Generalized Triple Construction be Improved? 

The Generalized Triple Construction reduces the number of states in a PDA from 
n o to n at the cost of increasing the size of the stack alphabet from Po to 
[no/n]2po + 1. It preserves realtime behavior but not determinism. There are two 
questions one might raise in seeking to improve this construction. 

- - I s  there is a general construction to lower the number of states of a PDA 
that increases the stack alphabet to a size substantially smaller than [no/n]2po + 1, 
perhaps at the cost of destroying realtime behavior? 

- - I s  there a general construction to lower the number of states of a PDA 
while preserving nondeterminism, perhaps at the cost of a larger increase in the 
size of the stack alphabet? 

The answer to both questions is no, as the two theorems in this section show. 

Theorem 2. For every pair of positive integers n o and Po. there is a PDA M o with 
n o states andPo stack symbols such that every equivalent PDA M with n states has 

at least /(n0/n)2p0/ stack symbols. Furthermore, the PDA M o is realtime and 
I ' " 1  

deterministic. 

Proof In [5], it is shown that, for every pair of positive integers n o and Po, there 
is a realtime deterministic PDA M 0 with n o states and Po stack symbols such that 
every equivalent CFG G has at least n2oPo self-embedding variables. (The variable 
A is self-embedding if A * uAv, uv ~: e, for some terminal strings u and v.) Let M 
be a PDA with n states and p stack symbols that is equivalent to M o. The Triple 
Construction converts M to an equivalent CFG G with at most n2p self-embed- 
ding variables, since the one additional starting symbol is not self embedding. 
Hence, n2p >1 naP o, sop  >/(no/n)2po,  and the theorem follows. [] 

Lemmas 11.6.1 and 11.6.3 in Harrison [7] prove that, for each n o >/1, there is 
a deterministic PDA with n o states and five stack symbols such that every 
equivalent deterministic PDA has at least as many states. The next theorem 
extends this result to deterministic PDAs with just one stack symbol. 

Theorem 3. For every pair of positive integers n o and Po, there is a deterministic 
PDA M o with n o states and po stack symbols such that every PDA M equivalent to 
M o having fewer than n o states is not deterministic. Furthermore, the PDA M o is 
realtime. 

Proof It obviously suffices to prove the theorem for the case in which Po = 1, for 
one can then add additional, useless stack symbols to M o to increase Po to any 
desired value. Thus, what is needed is a language that can be recognized by a 
deterministic "one-counter" automaton M o (i.e., a deterministic PDA with one 
stack symbol) with n o states, but not by any deterministic PDA with fewer states. 
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Intuitively, to a first approximation such a language is 

L o = (amc, b~ lm  >1 O, 0 <~ i < no), 

since, on encountering c,, a deterministic finite-state control must remember  i in 
order to insure that the remaining input symbols are b~'s. However, for this choice 
of L o, one additional state would be needed to enforce the formatting restriction 
that every string lie in 

R = a* .  (cil0 ~< i < no). (bil0 ~< i < no)*. 

So in order to avoid this complication, the formatting restriction will be relaxed 
slightly, and the machine M 0 defined below will also accept some strings not in R, 
such as abob o or aCoC v 

For any n o, let M o = (Qo, ~,(Zo),  8o, qo, Zo), where 

Qo = (qilO <~ i < no), 

Z = ( a , b  i ,c i[O~<i<no) ,  

and 80 consists of the moves 

qoZo ~ aqoZoZ  o, 

qoZo ~ c iq i ,O ~ i < n o, 

qiZo ~ biqi,O <~ i < no. 

Then M o is a realtime deterministic PDA having n o states and one stack symbol, 
so it suffices to prove that any equivalent deterministic PDA has at least n o states. 
Let M = (Q, ~, F, 8, Po, Zo) be such a PDA. For each m >/0 and k, 0 ~< k < n o, 
a'ckb~'  ~ L ( M o ) =  L ( M ) ,  so there is a computation in M of the form 

PoZo ~ a"p. ,Z.~a. .  ~ a"ckPmkBmka..,  Pmkfl..k ~ b~"P'mk, P'~kam ~ b~ "'~, 
(*) 

where r,, k + s,, k = m, for some Pro, Pink, Prink ~ Q, Z,,  ~ F, a m, t~,~ k ~ F*, rink, 
S,. k >10. Note that p,~Zma m is determined by a m since M is deterministic and the 
following move consumes an input symbol. Whenever two (m, k)  pairs (m l, k~) 
and (m 2, k2) have the same value (p ,  Z, p ' )  for (Pro, Zm, P ' k ) ,  

PoZo * a m , p Z a ~  ~ a " ' c  " t~ a k 2 1 1 m 2 k 2 1 ~ m 2 k 2  m I 

• a . . ,Ck2b~2p 'am ' ~. am'Ck2brk~2~2b~"~L'L (**) 

If there were infinitely many (m, k)  pairs for which s.~ k = 0 then there would be 
two such pairs (m~, kl)  and (m 2, k2) with different m values having the same 
(p ,  Z, p ' )  value. It would then follow from (**) that m I = rm2k~+ Sm,k~ = rm~k.; 
while by (*), m 2 = rm2k2 + Smzk. - = rm2k2; SO that m 1 = rn2, contrary to hypothesis. 
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Thus, for any large enough m, Sink > 0 for all k, 0 ~< k < n 0. For such a fixed m, 
suppose that two different k values have the same value p' for p'~ .  Since m is 

m l  rm2k 2 Stalk I fixed, the valuesp and Z Of Pm and Z,, also coincide, so by (**), a ck2bk2 bk, 
is in L ( M )  = L(Mo). Since Sin,k, > 0, this is only possible if k I = k2, contrary to 
hypothesis. Thus, the states Pink must be distinct for each of the n o different 
values of  k, and so M has at least n o states. [] 

As a final observation, note that the Generalized Triple Construction con- 
verts a PDA with n o states and Po stack symbols to a PDA with n < n o states and 
[no/n]2po + 1  stack symbols, and Theorem 2 proves that at least [ (no /n)2po]  
stack symbols are sometimes necessary. There is a slight gap between these two 
bounds. Thus, it remains an open question whether a very slight improvement in 
the Generalized Triple Construction is possible. 

References 

I. A.V. Aho and J. D. Ullman. The Theory of Parsing, Translation, and Compiling, Vol. I: Parsing. 
Prentice-Hall: Englewood Cliffs, 1972. 

2. Y. Bar-Hillel, M. Perles, and E. Shamir. On formal properties of simple phrase structure 
grammars, in Y. Bar-Hillel, Language and Information. Reading: Addison-Wesley, 116-150, 
1964. 

3. S. Ginsburg. The Mathematical Theory of Context-Free Languages. New York: McGraw-Hill, 
1966. 

4. S. Ginsburg and S. A. Greibach. Deterministic context-free languages, Information and Control 9, 
563-582, 1966. 

5. J. Goldstine, J. K. Price, and D. Wotschke. A pushdown automaton or a context-free 
grammar--which is more economical?, Theoretical Computer Science 18, 33-40, 1982. 

6. J. Gruska. Complexity and unambiguity of context-free grammars and languages, Information 
and Control 18, 502-519, 1971. 

7. M.A. Harrison. Introduction to Formal Language Theory. Reading: Addison-Wesley, 1978. 
8. J. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computation. 

Reading: Addison-Wesley, 1979. 
9. M.O. Rabin and D. Scott. Finite automata and their decision problems, in E. F. Moore (ed.). 

Sequential Machines: Selected Papers. Reading: Addison-Wesley, 63-91, 1964. 
10. M. P. Schutzenberger. On context-free languages and push-down automata, Information and 

Control 6,246-264, 1963. 

Received October 6, 1981, and in final form May 10, 1982. 


