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Abstract. Reasoning about  a distributed algorithm is 
simplified if we can ignore the time needed to send and 
deliver messages and can instead pretend that a process 
sends a collection of messages as a single atomic action, 
with the messages delivered instantaneously as part  of 
the action. A theorem is derived that proves the validity 
of such reasoning for a large class of algorithms. It  gener- 
alizes and corrects a well-known folk theorem about  
when an operation in a multiprocess p rogram can be 
considered atomic. 
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1 Introduction 

Consider a finite, connected network of processes, where 
a process can send messages to its neighbors. The follow- 
ing algorithm causes each process i eventually to wind 
up with its local variable d[i] equal to the distance 
(number of links in the minimum-length path) from i 
to a distinguished root process. We assume that initially 
d [i] = oo for every process i, and all message buffers are 

empty except for the root 's  buffer, which contains the 
single message "0".  

Distance-Finding Algorithm 
for each process i do 

while true do 
wait until input buffer nonempty;  
remove some message " m "  from buffer; 
if d [i] > m 

then d [i] .'=m; 
for each neighbor j do send "m + 1" to j 

To prove the correctness of this algorithm, one needs 
a more precise description of it. We adopt  the common  
approach of formally defining an execution of a concur- 
rent algorithm to be a sequence of atomic actions; con- 
current actions of separate processes are assumed to be 
"interleaved" in an arbitrary manner.  A formal descrip- 
tion of the Distance-Finding Algori thm requires specify- 
ing which of the algorithm's operations are atomic. Con- 
sider a single iteration of process i's while loop that re- 
moves a message " m "  from the input buffer, where 
d [i] > m. In a naive representation of the algorithm, each 
of the following actions might be separate atomic opera- 
tions. 

�9 Remove message " m "  from buffer. 
�9 Test if d [-i] > m. 
�9 Set d [i] to m. 
�9 Send "m + 1" to a neighbor j. 

In addition, there would be separate message-delivery 
actions, performed by the communicat ion network, that  
put messages into the processes' input buffers. 

Reducing the number  of a tomic actions makes rea- 
soning about  a concurrent p rogram easier because there 
are fewer interleavings to consider. For  assertional rea- 
soning, it leads to a simpler invariant and fewer actions 
to consider in the proof  of invariance. The number  of 
atomic actions in the Distance-Finding Algori thm can 
be reduced by appealing to the following popular  obser- 
vation. 
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Folk Theorem. When reasoning about a multiprocess pro- 
gram, we can combine into one atomic action any sequence 
of operations that contains only a single access to a single 
shared variable. 

Although this theorem is usually asserted for shared- 
variable programs, it applies as well to other kinds of 
multiprocess program because any form of interprocess 
communication can be modeled with shared variables. 

Since d[i] is local to process i, the Folk Theorem 
allows us to combine the first three operations - remov- 
ing the message, evaluating the expression d [i] > m, and 
setting d[i] - into a single atomic action. Depending 
upon how message passing is modeled, the Folk Theo- 
rem might also allow the sending of messages to process 
i's neighbors to be part of the same atomic action. How- 
ever, the network actions that put the messages into the 
neighbors' buffers would still be separate actions. 

In this paper, we derive a Reduction Theorem that 
allows one to consider an iteration of process i's while 
loop and the delivery of any messages generated by it 
to be a single atomic action. Thus, not only are all the 
operations listed above considered to comprise one 
atomic action, but the send operations put the messages 
directly into the recipients' input buffers. There are no 
separate message-delivery actions. Our Reduction Theo- 
rem is a generalization of the Folk Theorem. Further- 
more, it includes some essential, subtle hypotheses miss- 
ing from the Folk Theorem. 

In general, we consider a distributed algorithm d 
in which each process performs a sequence of nonatomic 
operations, where an operation removes a (possibly 
empty) set of messages from the process's input buffers, 
performs some computation, and sends a (possibly 
empty) set of messages to other processes. Let the reduced 
version ~& of algorithm d be one in which an entire 
operation is a single atomic action and message trans- 
mission is instantaneous - a message appears in the re- 
ceiver's input buffer when the message is sent. (Any loss 
or corruption of messages occurs when they are sent.) 
Algorithm ~ is simpler than the original algorithm sJ, 
since it has no computation states in which a process 
is in the middle of an operation or a message is in transit. 
Hence, it is easier to reason about s~ than about d .  
In this paper, we prove the following: 

Reduction Theorem. I f  conditions CI -C6  (given below) 
are satisfied, then ~4 satisfies a correctness property P 
if and only if s~  satisfies P. 

The major part of this paper consists of the development 
of conditions C1-C6. A state-based approach is taken, 
in which the execution of an algorithm produces a se- 
quence of states, and a property is an assertion about 
the sequence produced by each individual execution. 

The derivation of conditions C1-C6 is perhaps more 
interesting than the conditions themselves, which are not 
hard to obtain once one understands why each of them 
is needed. To prevent simple concepts from being ob- 
scured by formalism, the exposition is informal. A se- 
quence of notes indicates how the arguments can be 

made rigorous, but they do not attempt to give a com- 
plete formal exposition. The formalism is at the semantic 
level, and is independent of language issues. A list of 
notations appears at the end. 

2 The conditions and proof of the theorem 

2.1 C1 : The restriction on P 

An execution of ~ '  consists of a finite or infinite sequence 
of the form 

Gt 1 ~t 2 ~t 3 

S O - - - - ~ S  1 >S 2 > . . .  

where the si are states, the ~i are atomic actions, and 
s~_, ~ s i  denotes an execution of action ~i that takes 
the algorithm from state s~_ 1 to state s~. A state consists 
of the following: 

�9 The values of a set of externally visible variables. An 
externally visible variable is either local to a process, 
meaning that it is accessed (read or written) only by 
that process, or global, meaning that it is accessed by 
more than one process. 
�9 The internal state of each process, consisting of the 
state of its input buffers, the values of its local internal 
variables, and its program control state. A process can- 
not access the internal state of another process. 
�9 The state of the communication network, which de- 
scribes the status of all messages in transit. 

In the Distance-Finding Algorithm, each d [i] is an exter- 
nally visible variable that is local to process i. Each pro- 
cess has a local internal variable m that holds the value 
of the message removed from the buffer. A process's con- 
trol state indicates where the process is in its execution 

that is, what statement it will execute next. The state 
of the communication network could simply be a multi- 
set of message, source, destination triples, or it could 
contain additional structure describing the order in 
which messages may be delivered. 

We allow a global externally visible variable to be 
read and written by any process. Thus, our Reduction 
Theorem can be applied to algorithms in which processes 
communicate with shared variables, as well as to distrib- 
uted algorithms. For  programs that communicate only 
through shared variables, our theorem provides a rigor- 
ous formulation of the Folk Theorem. Since the Folk 
Theorem is so well-known, we will not discuss the appli- 
cation of our theorem to shared-variable programs. 

Formalism. We provisionally define an algorithm to be 
a quadruple (C, {So: ceC},  So, A), where C is a set of 
state components, the Sc are sets of values, the set of 
initial states So is a subset of the set of states S, which 
is the Cartesian product I~{sc: ceC}, and A is a set 
of actions, where an action is defined to be a subset 
of S x S. (The definition is extended later to include live- 
ness conditions.) 

An execution is a (finite or infinite) sequence So, Sl, ... 
of states such that so~So and, for each si with i>0 ,  there 
is an ~ieA such that ( S i - 1 ,  Si)~O~ i .  
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For  seS  and ceC, we let s.c denote the c-component 
of state s, so s.ceSc, and let s~ denote the state s' such 
that s ' .c=v and s'.c'=s.c' for all c'#c. An action 
modifies component  c if there exists (s, t) e e with s. c + t. c; 
action ~ accesses component c if it modifies c or if there 
exist (s, t ) ~  and veS~ such that s~eS and (s~, t~)$c~. (The 
latter condition is a language-independent definition of 
what it means for ~ to read the value of c.) 

We assume that the set of actions A is partitioned 
into a set of communication actions and a collection 
of processes. (Formally, a process is the set of actions 
belonging to the process.) We also assume that state 
components are classified as input buffers, local internal 
variables, etc. One state component represents the state 
of the communication network. We assume the existence 
of a set of messages in transit that depends only on the 
communication network's state. [] 

The first condition for the Reduction Theorem char- 
acterizes the class of properties P. We assume that P 
is a property of executions, and we say that it holds 
for algorithm d if it is true for all executions of sJ. 
We require that P satisfy the following condition: 

C1. P depends only on the sequence of different values 
assumed by the externally visible variables. 

In the Distance-Finding Algorithm, the correctness 
property P asserts that there exists some n such that, 
for all l>n, state sz is one in which each d[i] equals 
the distance of process i to the root. This property sat- 
isfies C1 because it depends only upon the sequence of 
values assigned to the d [i], which are externally visible 
variables. 

Condition C1 requires that P depend on the sequence 
of values assumed by externally visible variables; not 
on when (at which step of the execution) those values 
are assumed. In the physical world, the notion of when 
an event occurs can be defined only relative to the occur- 
rence of other events for example, relative to the ticking 
of a clock or counter. Condition C1 permits the specifica- 
tion of when values are assumed only if the relevant 
clock or counter is an externally visible variable. 

Formalism. Let E denote the set of externally visible state 
components, and let ~: S ' H {So: ceE} denote the pro- 
jection mapping. We extend any mapping whose domain 
is S to a mapping on the set of sequences of states in 
the obvious way, so g(So, sl ,  . . .)=g(s0),  g(s,)  . . . . .  For  
any sequence 2, let r N denote the sequence obtained 
by removing repeated elements from N - f o r  example, 

1, 2, 2, 2, 3, 3 = 1, 2, 3 and ~ 1, 1, 1, . . . =  1. Condition 
C1 asserts that P is a Boolean-valued function on se- 
quences of states such that ~ g ( Z ) = ~ g ( U )  implies 
P(2)=P(Z'). [] 

Even if the desired correctness property depends upon 
parts of the state that are not externally visible, adding 
dummy variables '  to the algorithm usually allows the 

1 A dummy variable is one that does not affect the execution of 
the algorithm and need not be implemented [9] 

correctness property to be restated in a form satisfying 
C1. For  example, one might want to prove that the Dis- 
tance-Finding Algorithm eventually terminates, meaning 
that it reaches a state in which there are no more mes- 
sages in any input buffer or in transit. As stated, this 
termination property does not satisfy C1 because it de- 
pends upon the state of the communication network and 
of the processes' input buffers, which are not externally 
visible variables. (Making them externally visible would 
violate other hypotheses of the Reduction Theorem.) 
However, we can add a global externally visible dummy 
variable x whose value equals the number of unprocessed 
messages, and we can modify the algorithm so that after 
process i removes a message from its input buffer, it 
increments x by the number of messages it is going to 
send in response minus one. The termination property 
is expressed by the assertion that x eventually equals 
zero - an assertion that satisfies condition C1. Similarly, 
by adding a dummy variable to count the total number 
of messages sent, P can express message-complexity 
properties. 

Formalism. Let d = ( C ,  {So: ceC}, So, A), and d '=(C ' ,  
{S,: ceC'}, S;, A') be algorithms such that C ' = C u  {y}, 
~ (S ' )=S ,  and ~/(S~)=So, where S and S' are the state 
spaces of d and d ' ,  respectively, and ~ is the obvious 
projection mapping. We say that d '  is obtained from 

by adding the dummy component  y if there is a one- 
to-one correspondence e+--~' between A and A' such 
that (i) if (s', t ' ) ~ '  then (Yg(s'), ~/(t '))~t and (ii) if (s, t)ecq 
s'eS', and ql(s ')=s, then there exists t 'eS '  such that 
(s', t')ec(. If d '  is obtained from d in this way, then 
Z is an execution of d if and only if there is an execution 
Z' of d '  such that Z = ~(X'). []  

2.2 C2-C5: Actions and commutativity 

An atomic action executed by a process is assumed to 
be one of the following. 

�9 An internal action that may access the process's local 
internal variables and control state, and may read (but 
not modify) externally visible variables that are local to 
the process. 
�9 A receive action that removes a message from the 
process's input buffer; it may read the contents of the 
buffers, it may access the process's internal state, and 
it may read the process's local externally visible vari- 
ables. (The action may be executed only if the input 
buffer is nonempty.) 
�9 A send action that changes the state of the communi- 
cation network to indicate that an additional message 
is in transit from this process to another  process. (The 
message's destination is determined when it is sent.) The 
action may also access the process's local variables and 
control state and may read the process's local externally 
visible variables. 
�9 An externally visible action that may (but need not) 
access externally visible variables, variables local to the 
process, and the process's control state. 
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In addition to these process actions, we assume that the 
communication network executes deliver actions, which 
put a message (sent by a previous send action) into a 
process's input buffer. We allow a deliver action to cor- 
rupt the message or simply destroy it without delivering 
it, so faulty communication can be modeled. Delivery 
of multiple copies of a message can be modeled by al- 
lowing multiple send actions, each sending a copy of 
the same message. (The program can nondeterministi- 
cally choose how many copies to send.) Thus, we can 
model a network that loses, corrupts, or duplicates mes- 
sages. 

Process i of the Distance-Finding Algorithm executes 
the following actions: 

�9 A receive action that waits for the buffer to be non- 
empty and removes a message from it, storing the mes- 
sage's value in a local internal variable and changing 
the control state. 
�9 An internal action that evaluates the expression 
d [i] > m and modifies the control state accordingly. 
�9 An externally visible action that sets d[i], accessing 
the local internal variable m and modifying the control 
state. 
�9 For  each neighbor j, a send action that initiates the 
transmission of a message from i toj .  

The first condition on ~ is 

C2. In ~' ,  each process's algorithm executes a sequence 
of operations of the form R; <X);  L, where 

�9 R consists only of receive or internal actions. 
�9 L consists only of send or internal actions. 
�9 ( X )  is a single externally visible action. 
�9 If control has reached L, then there exists a ter- 
minating execution of L. 

The only other actions in ~ '  are deliver actions per- 
formed by the communication network. It is always 
possible for all messages in transit to be delivered 
(or lost) by deliver actions without any further pro- 
cess actions. 

The requirement that there exists a terminating execu- 
tion of L rules out, for example, a communication net- 
work in which a message cannot be sent until the pre- 
vious message was delivered - since there would be no 
terminating execution of L if the previous message had 
not been delivered. 

In the Distance-Finding Algorithm, each iteration of 
a process's while loop is an operation that executes a 
receive action followed by an internal action (evaluating 
d[i] >m) and then either does nothing or else executes 
an externally visible action followed by a sequence of 
send actions. An operation that does not execute an ex- 
ternally visible action can be considered to be part of 
the " R "  of the next iteration's operation. Thus, Condi- 
tion C2 is satisfied. 

Alternatively, we can pretend that when process i 
finds d[i] < m, it executes an external action that does 
not change the value of any externally visible variable. 
By C1, adding such an action does not affect the truth 
of property P. Adding this dummy action makes each 

iteration of a process's loop have the form R; ( X ) ;  L 
of Condition C2. (In the condition, R or L may be null.) 

In general, we could extend C2 to allow operations 
of the form R; L, but adding this extra case would com- 
plicate our discussion. 

For  C2 to be satisfied by the modified version of 
the Distance-Finding Algorithm, where the variable x 
has been added to detect termination, the same atomic 
action that changes d[i] must also change x. Since x 
is a dummy variable added only for the proof, we are 
free to choose which action modifies it. 

Formalism. We assume that the actions in A are disjoint 
(sets of pairs of states). This implies that if Z = So, sl . . . .  
is an execution, then for each i > 0  there is a unique 
action ~i such that (si_l, si)E~, so we can consider Z 
to be the sequence so ~'~sl "2~s2 ~3 .... (This represen- 
tation of Z is used throughout  the proof  of the Reduction 
Theorem. Making the actions in A disjoint could, but 
seldom will, require adding dummy variables.) 

The internal state of each process contains program 
control information for that process. This information 
can be expressed by a function JV~ such that Yp(s) is 
the set of possible next actions of process p. For  any 
action a in process p, if there exists a state t with (s, t)~a, 
then a E ~ ( s ) ;  but the converse need not be true. If an 
action fl in A is not an action of process p, and (s, t)~fl, 
then JVp(s)= JV; (t). 

A set of actions all belonging to the same process 
is called an operation of that process. A terminating exe- 
cution of an operation A of a process p is a finite sequence 
So . . . .  , s, such that each (s~_ 1, s~) belongs to an element 
of A and JVp(s,) is disjoint from A. An operation A can 
terminate from state s if there exists a terminating execu- 
tion of A starting with s. 

We define " ; "  by saying that, if A and B are opera- 
tions of process p, then the operation A t3 B is of the 
form A; B if the following conditions hold: (i) A and 
B are disjoint, (ii) for all ~ A ,  if (s, t ) ~  then Xp(t) is 
a subset either of A or of B, and (iii) for all fi~B, if 
(s, t)Efl then JVp(s) is a subset either of A or of B and 
~ , ( t )  is either a subset of or disjoint from B. It follows 
that A u B u C  is of the form (A;B); C if and only if 
it is of the form A; (B; C), in which case we say that 
it is of the form A; B; C. 

Condition C2 asserts that the set of actions of each 
process is the disjoint union of operations of the form 
R; <X);  L for sets of actions R, <X), and L, where: (i) 
( X )  contains a single action, (ii) the actions in R, <X),  
and L can modify and access the appropriate state com- 
ponents, (iii) if JVv(s ) contains an action in L, then L 
can terminate from state s, and (iv) for any initial state 
s in So, JVp(s) contains actions only from the sets R. We 
assume that send and deliver actions have the obvious 
effects on the set of messages in transit, and that deliver 
and receive actions are the only ones that access a pro- 
cess's input buffer. []  

If algorithm ~ '  satisfies C2, then an atomic action 
of ~r has the form (R;  ( X ) ;  L) ,  where R; ( X ) ;  L is 
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an operation of a process p in d ,  and L consists of 
the actions of L together with the deliver actions that 
deliver (or lose) messages sent by the send actions in 
L. Given any execution 2; of ~ ,  we obtain an execution 

of d by expanding each action <R; <X);  L )  of d 
into the sequence R; <X);  L of actions of ~r The exter- 
nally visible variables are changed only by <X>, so it 
follows from C1 that 2; satisfies property P if and only 
if Z does. Since an algorithm satisfies a property if and 
only if all its executions do, this implies that if s~r satisfies 
P, then ~g also satisfies P. 

For  convenience, we identify the execution Z of ~ 
with the corresponding execution Z of ~/. Thus, the set 
of executions of ~ is a subset of the set of executions 
o f ~ ' .  

Formalism. Let o denote the usual composition operator 
on relations, defined by (s, u)~c~ofl if and only if there 
exists t such that (s, t ) se  and (t, u)sfl.  For  any send ac- 
tion a and deliver action 6, let a ~ be the (possibly empty) 
subaction of ao 6 consisting of all pairs (s, t) for which 

s r176 represents the action of sending a message and 
then immediately delivering that message. (If the state 
of the communication network contains unordered 
multisets of messages, it may be necessary to add a 
dummy variable for a ~ to be defined.) Let ~ be the union 
of the actions a ~ for all deliver actions 6. 

For  any operation A, define <A) to be the action 
consisting of the set of all pairs (s, t) such that there 
exists a terminating execution S=So, sl, ..., s , = t  of A 
with n>0.  Condition C2 asserts of d that the set of 
actions of each process p is the disjoint union of actions 
of the form R ; < X > ; L .  The algorithm d is defined to 
have the same components, states, and initial states as 
~ ' ,  and to have a set of actions consisting of all 
the actions <R;<X);L~,  where Lis obtained from L b y  
replacing each send action a with & [] 

To complete the proof of the Reduction Theorem, 
we must prove that if s~ satisfies property P then ~4 
does too. We do this by constructing, for every execution 
N of ~4, a corresponding execution 2 of ~4 ̂ such that 
P is true of 2; if and only if it is true of 2. We first 
consider the case in which s is finite-more precisely, 
when 2 is a finite initial segment of an execution. (2; 
may be a complete execution if the execution is finite.) 
The extension to complete infinite executions is given 
in Sect. 2.3. 

In an execution of sd, actions of other processes and 
of the communication network may be interleaved be- 
tween the actions of a single operation R ; < X > ; L  and 
between the send actions in L and their corresponding 
deliver actions. We construct 2 from 2; by permuting 
the order in which actions are executed so that there 
are no other actions interleaved between the actions in 
a single operation R; < X ) ; L .  We do this by moving ac- 
tions of R to the right and actions of L to the left. In 
constructing 2, we first delete any action from a partially 
completed operation in which the <X) action has not 
been executed (which we can do because actions in R 
affect only the process's internal state) and complete any 

unfinished operation in which <X> has been executed 
(which we can do because condition C2 guarantees the 
existence of a terminating execution of L) and add ac- 
tions to deliver any outstanding messages (which C2 al- 
lows us to do). 

We say that on atomic action p right commutes with 
an atomic action 2, or that 2 left commutes with p, if 
and only if, whenever p;2 (a p action followed by a 2 
action) can be executed, it is also possible to produce 
the same result by executing 2;p. In other words, if 

s P~t ~--~,u is possible then s x , t '  P~u is possible for 
some state t'. Two actions are said to commute if and 
only if each right commutes with the other. Commutati-  
vity of two actions means that executing them in either 
order has the same effect. 

Formalism. Action p right commutes with action 2 if 
and only if p o 2 _  2op. If neither action accesses any 
component  modified by the other action, then p o 2 = 2 o p, 
so the actions commute. [] 

We will construct 2 from X by a series of inter- 
changes, replacing a sequence of the form 

. . . ~ s  a , . . . b y  ... a , s ' -e - ,  ~ .... We can do this if p 
right commutes with 2. 

To construct 2 from 2;, actions in R must be moved 
to the right, while actions in L and deliver actions must 
be moved to the left. Actions belonging to the same 
process do not have to be interchanged, so commutati-  
vity relations between actions from the same process are 
not needed. Two actions obviously commute if they do 
not both access the same variable or state component,  
so we have the following commutativity relations. 

�9 An internal action commutes with every action not 
belonging to the same process. 
�9 An "<X>"  action commutes with every deliver action 
and every action of another process except another  
" < X ) "  action. 
�9 A receive action commutes with all actions in other 
processes, and with deliver actions delivering messages 
to other processes. 

By C2, R contains only receive and internal actions, and 
L contains only send and internal actions. Therefore, 2 
can be constructed by commuting the actions of Z if 
the following commutativity relations are satisfied. 

�9 A send action must commute with 
- send actions of other processes. 
- deliver actions. 

�9 A receive action in a process p must right commute 
with actions that deliver a message to p. 
�9 A deliver action delivering a message to process p 
must 

- commute with other deliver actions. 
- commute with send actions. 
- left commute with receive actions of process p. 

These commutativity relations are sufficient to allow the 
construction of 2, but they are not all necessary. A send 
action need not commute with the corresponding deliver 
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action - the one that delivers the message that the send 
had sent. Also, two deliver actions need not commute 
if they occur in the same order as their corresponding 
send actions. The remaining commutativity relations are 
implied by the following three conditions, where A (p, q) 
denotes the set of deliver actions that deliver to process 
q a message sent by process p. 

C3. A send action a commutes with every send action 
in another process and with every deliver action ex- 
cept the one that delivers the message sent by ~r. 

C4. A receive action of process p right commutes with 
every deliver action that delivers a message to p. 

C5. For  every pair of processes p, q: if messages from 
p to q are delivered in the order in which they are 
sent, then every action in A (p, q) commutes with 
every deliver action not in A (p, q); otherwise, if mes- 
sages may be delivered out of order, then every ac- 
tion in A (p, q) commutes with every other deliver 
action (including ones in A (p, q)). 

The following are two examples of communication 
schemes that satisfy these conditions. 

(a) The state of the communication system consists of 
an unordered set of message, source, destination tri- 
ples; and each process's input buffer is an unordered 
set of message, source pairs. A process can receive 
any message in its input buffer. 

(b) The state of the communication system contains a 
FIFO (first-in-first-out) message queue for each 
sender, receiver pair; and each process has a separate 
FIFO input buffer for each sender process. A process 
can receive a message at the head of any queue. 

Condition C3 is not satisfied if a process that tries 
to send a message can be suspended because other pro- 
cesses have filled the network's message buffers, so the 
condition essentially requires unbounded buffering by 
the communication network. Although communication 
schemes can be devised that fail to satisfy C3 despite 
having unbounded buffering, they don't  seem to arise 
in practice. 

Condition C4 states that if a receive action can be 
performed before a message is delivered, then that same 
action can be performed after the delivery. We can re- 
state this condition somewhat more informally as: 

C4'. A process's operation cannot depend upon the ab- 
sence of a message. 

For  example, the algorithm cannot require that a certain 
action be taken only if a process's input buffer is empty. 
In example (b) above, C4' implies that a process cannot 
query its input queues in a fixed order, since there would 
then be states in which the absence of a message in one 
queue is necessary for the process to receive a message 
from the following queue. 

There appears to be no simple, intuitive restatement 
of condition C5. However, the two examples above are 
common enough that they are worth stating as the fol- 
lowing condition, which implies C5. 

C5'. For  each process p, either 
(a) p has an input buffer consisting of an unordered 

set of messages, or 
(b) p has a separate input queue for each process 

from which it receives messages, and messages 
from any single process are delivered in the 
order that they are sent. 

For  example, process p cannot maintain a single FIFO 
input queue in which it puts messages from all processes. 
If it did, two deliver actions that deliver messages from 
different processes would not commute because reversing 
their order of execution reverses the order of the mes- 
sages in the queue. 

Do C3-C5 hold for the Distance-Finding Algorithm? 
C3 is a condition on the communication network, which 
we haven't specified. It is implied by the assumption of 
unbounded buffering usually made when studying this 
type of algorithm. Condition C4 asserts that receipt of 
a message cannot prevent a process from performing 
an action that it could have performed had the message 
not arrived - an assertion that holds for this algorithm. 
Condition C5 depends upon the queueing discipline em- 
ployed by the algorithm. By not specifying which mes- 
sage is to be removed from the buffer, we have allowed 
each process to maintain a single buffer containing an 
unordered set of messages an implementation for which 
C5'(a) holds. 

Since no queueing policy is specified, the Distance- 
Finding Algorithm can be implemented by any policy. 
The most general queueing policy is represented by a 
single, unordered buffer. Any other policy is a special 
case, whose executions are the same as possible execu- 
tions with the unordered buffer. The correctness of the 
more general algorithm implies the correctness of the 
special case. For  example, the buffer could be imple- 
mented as a single FIFO queue. However, C5 does not 
hold for this queueing discipline, so if the algorithm were 
to specify a single FIFO buffer, then our Reduction The- 
orem would not apply. We would then have to generalize 
the algorithm to allow an unordered buffer in order to 
simplify the proof. 

Formalism. The formal statement of Conditions C3 and 
C4 is straightforward, since they simply express commu- 
tativity relations among the actions of A. In C3, the 
fact that commutativity is not required between the ac- 
tions of sending and delivering the same message is ex- 
pressed by requiring for any send action a and deliver 
action 6 only that a o b = ~ o 6 u a  a, rather than full com- 
mutativity. 

Condition C5 assumes that the set of communication 
network actions can be partit ioned into the sets A (p, q). 
To make this partition possible, one might have to modi- 
fy A by partitioning a single action e into subactions 
cq . . . .  , ct,,. Such a change does not alter the set of execu- 
tions. []  

2.3 Safety, liveness, and C6 

Conditions C2-C5 guarantee that, for any finite initial 
segment s of an execution of d ,  we can construct an 
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execution ,~ in which the actions in any process's opera- 
tion and the corresponding deliver actions are contigu- 
ous. Moreover, P holds for Z if and only if it holds 
for 2. Before considering arbitrary executions, we must 
return to the question of how one specifies an algorithm. 

The specification of an algorithm is the conjunction 
of two parts: a safety specification that describes what 
the actions may do, and a liveness specification that de- 
scribes what actions must eventually be performed, z 
Consider an algorithm containing the program state- 
ment <x:=x+l>. The algorithm's safety specification 
implies that executing this statement may change the 
value of x only by adding one to it, but it does not 
imply that the statement is ever executed. A requirement 
that the statement must eventually be executed when 
control reaches it would be part of the liveness specifica- 
tion, which is usually implicit in the semantics of the 
programming language. 

In general, the safety specification may be any safety 
property, which is one that holds for an execution if 
and only if it holds for all finite initial segments of the 
execution. Mutual exclusion, F IFO service, and partial 
correctness are all safety properties. 

The liveness specification must be a liveness property, 
which is one for which any finite sequence of states and 
actions can be extended to a sequence that satisfies the 
property [1]. This definition is independent of any algo- 
rithm. A liveness specification may not be an arbitrary 
liveness property, but must satisfy the stronger require- 
ment that any finite sequence of states and actions that 
satisfy the algorithm's safety specification can be ex- 
tended to a sequence that satisfies both its liveness and 
safety properties. This stronger requirement essentially 
means that the liveness specification does not specify 
any additional safety properties; it is satisfied by all com- 
monly used liveness specifications. 

An arbitrary property P holds for an algorithm if 
and only if it is implied by the conjunction of the algo- 
rithm's safety and liveness specifications. But a safety 
property holds for an execution if and only if it holds 
for every finite initial segment of the execution, and every 
such segment that satisfies the safety specification can 
be extended to an execution that satisfies both the safety 
and the liveness specifications. Therefore, a safety prop- 
erty is satisfied by the algorithm if and only if it is implied 
by the algorithm's safety specification alone, which is 
true if and only if the property holds for every finite 
initial segment of every execution. 

Conditions C2-C5 were chosen to guarantee that the 
execution Z constructed from the finite initial segment 
Z of an execution of sue satisfies the safety specification 
of s~t. Hence, 2~ is a finite initial segment of an execution 
of ~r Moreover, C1 implies that P holds for 2 if and 
only if it holds for ~. Hence, our construction of 2~ from 
Z proves that if P is a safety property, then s~' satisfies 
P if and only if ~ does. We have therefore proved the 
Reduction Theorem for a safety property P without us- 
ing C6. Condition C6 need apply only when P is not 
a safety property. 

2 The term "fairness" is sometimes used in place of "liveness" 

Formalism. Let N be any finite portion of an execution 
of d .  Let 2;' be obtained from N by appending to it 
L actions and deliver actions so that, in the last state, 
there are no undelivered messages and control in every 
process is either not inside its operation or inside its 
R operation. (Condition C2 implies the existence of 22'.) 
Since no actions have been added that affect the external- 
ly visible state, C1 implies that 22' satisfies P if and only 
if 2; does. By commuting actions as allowed by C2-C5 
and the assumptions about which actions can access and 
modify which state components, we can transform 2'  
to a sequence 2~ of the form 1~1, ..., Yi, ~, where each 
Yj is a subsequence consisting of a complete execution 
of the operation R; <X>; L of some process and q~ con- 
sists only of R actions. (Each deliver action 6 is moved 

left until reaching a position ... ~ , t ~ , u for a send ac- 
tion a with (s, u)~o-~ Moreover, the states immediately 
before and after each <X> action are the same in Z' 
and in 2, so C1 implies that 2;' satisfies P if and only 
if 2~ does. But ~ is an execution of ~J, so we have proved 
that, for every finite execution N of d ,  there exists an 
execution 2~ of A that satisfies P if and only if 22 does. 
This proves the Reduction Theorem if P is a safety prop- 
erty. []  

To prove the Reduction Theorem for any arbitrary 
property P, we need to construct ~ when s is an infinite 
execution of d .  Conditions C2 C5 are not enough to 
make this construction possible. In ~, every process op- 
eration R; <X>; L is completed and every message sent 
by L is delivered. In the finite case, we could complete 
unfinished operations by adding actions to the end of 
2. We cannot do this in the infinite case; the actions 
must already be in N. To construct ~, in the execution 
2 every process operation must be completed and every 
message delivered. This can be guaranteed by requiring 
that these conditions be part of d ' s  liveness specification. 
("Delivery" of a message includes the possibility that 
the message is destroyed, so requiring eventual delivery 
does not rule out the possibility of losing messages.) With 
this requirement, we can construct 2~ as the limit of the 
sequences Z", where 2;" consists of the first n steps of 
1;. (The required liveness conditions imply that each op- 
eration of ~ consists of actions from 2;.) 

Requiring these liveness conditions to be part of ~r 
liveness specification ensures that ~ can be constructed, 
but it does not guarantee the validity of the Reduction 
Theorem if the specification contains other liveness con- 
ditions as well. The problem is that ~ need not satisfy 
these other liveness properties, so it need not be an exe- 
cution of ~J. Thus, P can hold for ~ without holding 
for d .  As an example, consider the following algorithm 
s~' with two processes, p and q. Process p repeatedly 
performs an operation that sends two messages to q; 
process q repeatedly performs an operation that removes 
one message from its input queue and then nondetermin- 
istically sets the externally visible variable x to either 
0 or 1. To this safety specification we add the liveness 
requirement that if q's input buffer ever contains two 
messages, then some later action of q (not necessarily 
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the next one) must set x to 1. Let property P assert 
that x must equal 1 at some point in the execution. 
In algorithm sfl, the two messages that p's operation 
sends to q are put into the buffer simultaneously, so 
the liveness requirement implies that P holds for every 
execution of ~ .  However, ~ has a possible execution 
Z in which process q removes messages from its buffer 
as fast as they arrive, so its buffer never contains two 
messages, and it always sets x equal to 0. (For this ~, 
the sequence ~ is not an execution of ~r Then P holds 
for ~r but not for ~ .  

The simplest statement of the precise condition C6 
needed to complete the Reduction Theorem is that, when 
P is not a safety condition, if ~ satisfies the liveness 
specification of ~r then the sequence s~ can be con- 
structed and satisfies the liveness specification. However, 
such a condition is not very convenient because verifying 
it requires reasoning about  executions. Instead, we give 
the following more restrictive condition that seems to 
handle most cases of interest. An action e is said to 
be enabled in a state if it is possible to execute e starting 
in that state - that is, if the safety specification allows 
such an execution of e. 

C6. If P is not a safety property, then the liveness specifi- 
cation for d must include the following conditions: 

�9 Every process operation (which by C2 has the 
form R; {X) ;  L) that is begun is eventually complet- 
ed. 
�9 For  every execution of a send action there is a 
corresponding execution of a deliver action that de- 
livers (or destroys) the message that was sent. 
The liveness specification also may include any of 
the following types of conditions: 
�9 For  the entire algorithm: sJ does not halt if some 
action is enabled. 
�9 For  an individual process p: 

- If there is a message in p's input buffer, then 
some action of p is eventually executed. 
- If there is a message from a particular process 
q in p's input buffer, then p eventually removes 
some message from q from its input buffer. 

�9 For  the communication network: if infinitely 
many messages are sent from process p to process 
q, then infinitely many of them eventually arrive 
at their destination. 

Condition C6 has two parts. The first part describes the 
conditions that the liveness specification must contain; 
it guarantees that the sequence Z can be constructed 
for any execution Z of d .  The sequence ~ obviously 
also satisfies these conditions. The second part describes 
the only other conditions that the liveness specification 
may (but need not) contain. To complete the proof of 
the Reduction Theorem, we need only show that if Z 
satisfies any such condition, then Z does as well. It is 
easy to check that this is the case. For  example, if 
satisfies the last kind of allowed condition, then Z also 
satisfies it because every message that is sent from p 
to q in execution Z, or that arrives at its destination 
in execution Z, also does so in execution 2. 

In the Distance-Finding Algorithm, we have tacitly 
assumed a liveness specification with the following con- 
ditions: 

1. If there is a message in process p's input buffer, then 
(a) some message is removed from the buffer and (b) 
the entire operation of reading the message and reacting 
to it is eventually completed. 
2. Every message that is sent eventually arrives at its 
destination. 

Condition l(a) is a type of condition allowed by C6, 
and l(b) is the first of the two conditions required by 
C6. Condition 2 is the conjunction of two conditions: 
(a) every send action has a corresponding deliver action, 
which is the second of C6's required conditions, and 
(b) no deliver action destroys a message, which is part 
of the safety specification. Therefore, the Distance-Find- 
ing Algorithm satisfies C6. 

Formalism. We must extend our original definition of 
an algorithm as a quadruple (C, {So: ceC}, So, A), to 
include a liveness specification. The liveness conditions 
used in specifying most algorithms can be expressed by 
adding a set of weak fairness conditions and a set of 
strong fairness conditions. A fairness condition is a pair 
(L, F) where L is a Boolean-valued function on the set 
of states and F is a subset of the set of actions. 

An infinite sequence So, sl, ... satisfies the weak fair- 
ness condition (L, F) if and only if the following condi- 
tion is satisfied (where ~ means "is an element of an 
element of"): 

Vi3j>_i: (sj, s j+l )eeF or ~L(s i )  

The sequence satisfies the strong fairness condition (L, F) 
if and only if the following condition is satisfied: 

Vi~j>_i: (s: ,s j+x)eeF or Vk>_j: ~L(s~)  

A finite sequence So . . . .  , s, is considered to be equivalent 
to the infinite one s o . . . .  , s,, s,, s,, . . . .  An execution of 
the algorithm is now required to satisfy the fairness con- 
ditions. 

The liveness conditions allowed by C6 for the entire 
algorithm and for an individual process are weak fairness 
conditions. The condition allowed for the communica- 
tion network is a strong fairness condition (L, F), where 
L asserts that a message has been sent from p to q and 
F is the set of actions that successfully deliver such a 
message. 

The required condition that each send has a corre- 
sponding deliver implies that for any portion of an execu- 

tion st ~ ~ si + 1... sj where o- is a send action, we cab deter- 
mine if the message sent by a has already been delivered 
when state s i is reached. If this can be determined by 
just examining state s j, then the condition can be ex- 
pressed by weak fairness conditions. Otherwise, it is a 
more complicated type of condition and must be added 
separately to the liveness specification. 

C6's required liveness conditions allow us to extend 
to infinite executions the method given above for con- 
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structing the execution Z of sg  from the finite execution 
27 of d .  As before, Z satisfies P if and only if 2 does. 
To prove the Reduction Theorem, we must show that 
if the execution 27 satisfies any of the liveness conditions 
allowed by C6, then 2 also satisfies these conditions. 

C6's entire-algorithm condition is maintained be- 
cause, if 2; does not halt, then neither does X. An individ- 
ual-process condition allowed by C6 is a weak fairness 
condition of the form (L, F) where F is a set of receive 
actions. Moreover, L is initially false; it is made true 
by executing a deliver action; and it is made false again 
only by executing a corresponding action of F. This weak 
fairness condition asserts that an execution contains ei- 
ther an infinite number of F actions, or else L is false 
infinitely often. If X has an infinite number of F actions, 
then so does Z. If 2; has only a finite number of F actions, 
then L false infinitely often implies that there are only 
a finite number of deliver actions that make L true, each 
of which has a receive action that makes L false again. 
If this latter condition holds for 2;, then it must also 
hold for Z, which is obtained from 2; by commuting 
receive actions to the right and deliver actions to the 
left. 

A communication-network condition allowed by C6 
is a strong fairness condition (L, F) where L is made 
true by executing a send action and is made false only 
by executing a corresponding deliver action in F. In con- 
structing 2~, a deliver action is never moved to the right 
of its corresponding send action, so Z satisfies the condi- 
tion if27 does. []  

3 Discussion 

The six hypotheses of the Reduction Theorem may seem 
like a formidable array of conditions that would prevent 
the theorem from being of much practical value. How- 
ever, the Distance-Finding Algorithm is not a fluke, but 
rather an example of a broad class of distributed algo- 
rithms to which the theorem can be applied. Condition 
C3 implies unbounded buffering, which is assumed of 
most distributed algorithms considered in the literature. 
The only condition that eliminates a large class of algo- 
rithms is C4. By requiring that the receipt of a message 
not disable an action, C4 rules out real-time algorithms 
in which a process does something when it has not re- 
ceived a message within a certain length of time. 

C4 may also be violated because of unnecessary 
overspecification of the input buffer. The well-known 
minimum spanning tree algorithm of Gallager, Humblet, 
and Spira, as described in [5], does not satisfy C4 be- 
cause is specifies that each process maintain a single 
FIFO input queue. The algorithm does not require the 
single queue; it can be generalized by having a process 
maintain a separate queue for each neighboring process? 
This is still not sufficient, because the algorithm moves 
certain messages that cannot be processed immediately 
to the end of the input queue. C4 is not satisfied because 

3 Multiple input queues are a generalization because they can be 
implemented by a single queue 

the action of moving a message to the end of the queue 
does not right commute with the action of delivering 
a new message to the queue; the order of messages in 
the queue depends upon the order in which the actions 
are executed. However, the algorithm can just as well 
be implemented by not moving a message to the back 
of the queue, but  allowing messages later in the queue 
to be processed before it. With this additional modifica- 
tion, the minimum spanning tree algorithm satisfies C1-  
C6, and the reduction theorem can be applied. 

Our Reduction Theorem can be applied to a multi- 
process algorithm in which there is no message passing, 
so all interprocess communication is performed with 
global, externally visible shared variables. In this case, 
C3-C5 are vacuous, and condition C2 is just the hypoth- 
esis of the Folk Theorem. However, conditions C1 and 
C6, which are not mentioned by the Folk Theorem, are 
not vacuous. These or similar conditions are necessary 
for the Folk Theorem to be valid. 

The Folk Theorem asserts that two programs the 
original and the reduced version - are equivalent. Equiv- 
alence means that they satisfy the same properties, and 
it can be valid only if one specifies the class of properties 
under consideration. Condition C1 rectifies this omission 
from the Folk Theorem. 

Condition C6, which is needed to apply the Reduc- 
tion Theorem to liveness properties, is a more insidious 
omission from the hypotheses of the Folk Theorem. The 
Folk Theorem is not valid for arbitrary liveness proper- 
ties without some additional hypothesis such as C6. 
Counterexamples are easily obtained by using liveness 
specifications that determine under what conditions a 
process is guaranteed eventually to execute its next ac- 
tion. For  example, consider a multiprocess program with 
the following process 

( x : = 2 ) ;  
while true do (x. '= 1 ); 

@. '=n+  1);  
(x ,=2) 

od 

where x is local to the process. The Folk Theorem would 
allow us to make the entire loop body a single atomic 
action. However, suppose that the program contained 
the liveness specification that the process is only guaran- 
teed to take a next step when x 4= 1. The reduced program 
satisfies the liveness property that n must get arbitrarily 
large, but the original program does not, since it permits 
an execution in which this process does nothing after 
the first time it sets x to 1. 
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List of notations 

A The set of program actions. 
d The algorithm under consideration. 
sd  The reduced version of algorithm d .  
(A)  The action obtained by executing the operation A as an 

atomic action. 
C The set of state components. 
d [i] A variable of the Distance-Finding Algorithm. 
L An operation of d ,  as in C2. 
L The operation obtained by adding to L the actions that 

deliver messages sent by L. 
JVp(s) The set of possible next actions of process p from state s. 
P The correctness property. 
R An operation of d ,  as in C2. 
S The set of states. 

So The set of initial states. 
Sc The range of values of state component c. 
( X )  An action of d ,  as in C2. 
2; Usually denotes an execution of ~r 
2~ The execution of s J  that corresponds to an execution 2; 

o f d .  
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