
Distributed Computing (1990) 4:59-68

DnsSB BS?ED
�9 Springer-Verlag 1990

A theorem on atomicity in distributed algorithms
Leslie Lamport

Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA

Received July 20, 1989 / Accepted February 20, 1990

When snow conditions are poor,
Dr. L. Lamport works at Digital
Equipment Corporation's Systems
Research Center. As an undergrad-
uate, he took a course in atomic
physics.

Abstract. Reasoning about a distributed algorithm is
simplified if we can ignore the time needed to send and
deliver messages and can instead pretend that a process
sends a collection of messages as a single atomic action,
with the messages delivered instantaneously as part of
the action. A theorem is derived that proves the validity
of such reasoning for a large class of algorithms. It gener-
alizes and corrects a well-known folk theorem about
when an operation in a multiprocess p rogram can be
considered atomic.

Key words: Message passing - Reduction

1 Introduction

Consider a finite, connected network of processes, where
a process can send messages to its neighbors. The follow-
ing algorithm causes each process i eventually to wind
up with its local variable d[i] equal to the distance
(number of links in the minimum-length path) from i
to a distinguished root process. We assume that initially
d [i] = oo for every process i, and all message buffers are

empty except for the root 's buffer, which contains the
single message "0".

Distance-Finding Algorithm
for each process i do

while true do
wait until input buffer nonempty;
remove some message " m " from buffer;
if d [i] > m

then d [i] .'=m;
for each neighbor j do send "m + 1" to j

To prove the correctness of this algorithm, one needs
a more precise description of it. We adopt the common
approach of formally defining an execution of a concur-
rent algorithm to be a sequence of atomic actions; con-
current actions of separate processes are assumed to be
"interleaved" in an arbitrary manner. A formal descrip-
tion of the Distance-Finding Algori thm requires specify-
ing which of the algorithm's operations are atomic. Con-
sider a single iteration of process i's while loop that re-
moves a message " m " from the input buffer, where
d [i] > m. In a naive representation of the algorithm, each
of the following actions might be separate atomic opera-
tions.

�9 Remove message " m " from buffer.
�9 Test if d [-i] > m.
�9 Set d [i] to m.
�9 Send "m + 1" to a neighbor j.

In addition, there would be separate message-delivery
actions, performed by the communicat ion network, that
put messages into the processes' input buffers.

Reducing the number of a tomic actions makes rea-
soning about a concurrent p rogram easier because there
are fewer interleavings to consider. For assertional rea-
soning, it leads to a simpler invariant and fewer actions
to consider in the proof of invariance. The number of
atomic actions in the Distance-Finding Algori thm can
be reduced by appealing to the following popular obser-
vation.

60

Folk Theorem. When reasoning about a multiprocess pro-
gram, we can combine into one atomic action any sequence
of operations that contains only a single access to a single
shared variable.

Although this theorem is usually asserted for shared-
variable programs, it applies as well to other kinds of
multiprocess program because any form of interprocess
communication can be modeled with shared variables.

Since d[i] is local to process i, the Folk Theorem
allows us to combine the first three operations - remov-
ing the message, evaluating the expression d [i] > m, and
setting d[i] - into a single atomic action. Depending
upon how message passing is modeled, the Folk Theo-
rem might also allow the sending of messages to process
i's neighbors to be part of the same atomic action. How-
ever, the network actions that put the messages into the
neighbors' buffers would still be separate actions.

In this paper, we derive a Reduction Theorem that
allows one to consider an iteration of process i's while
loop and the delivery of any messages generated by it
to be a single atomic action. Thus, not only are all the
operations listed above considered to comprise one
atomic action, but the send operations put the messages
directly into the recipients' input buffers. There are no
separate message-delivery actions. Our Reduction Theo-
rem is a generalization of the Folk Theorem. Further-
more, it includes some essential, subtle hypotheses miss-
ing from the Folk Theorem.

In general, we consider a distributed algorithm d
in which each process performs a sequence of nonatomic
operations, where an operation removes a (possibly
empty) set of messages from the process's input buffers,
performs some computation, and sends a (possibly
empty) set of messages to other processes. Let the reduced
version ~& of algorithm d be one in which an entire
operation is a single atomic action and message trans-
mission is instantaneous - a message appears in the re-
ceiver's input buffer when the message is sent. (Any loss
or corruption of messages occurs when they are sent.)
Algorithm ~ is simpler than the original algorithm sJ,
since it has no computation states in which a process
is in the middle of an operation or a message is in transit.
Hence, it is easier to reason about s~ than about d .
In this paper, we prove the following:

Reduction Theorem. I f conditions CI -C6 (given below)
are satisfied, then ~4 satisfies a correctness property P
if and only if s~ satisfies P.

The major part of this paper consists of the development
of conditions C1-C6. A state-based approach is taken,
in which the execution of an algorithm produces a se-
quence of states, and a property is an assertion about
the sequence produced by each individual execution.

The derivation of conditions C1-C6 is perhaps more
interesting than the conditions themselves, which are not
hard to obtain once one understands why each of them
is needed. To prevent simple concepts from being ob-
scured by formalism, the exposition is informal. A se-
quence of notes indicates how the arguments can be

made rigorous, but they do not attempt to give a com-
plete formal exposition. The formalism is at the semantic
level, and is independent of language issues. A list of
notations appears at the end.

2 The conditions and proof of the theorem

2.1 C1 : The restriction on P

An execution of ~ ' consists of a finite or infinite sequence
of the form

Gt 1 ~t 2 ~t 3

S O - - - - ~ S 1 >S 2 > . . .

where the si are states, the ~i are atomic actions, and
s~_, ~ s i denotes an execution of action ~i that takes
the algorithm from state s~_ 1 to state s~. A state consists
of the following:

�9 The values of a set of externally visible variables. An
externally visible variable is either local to a process,
meaning that it is accessed (read or written) only by
that process, or global, meaning that it is accessed by
more than one process.
�9 The internal state of each process, consisting of the
state of its input buffers, the values of its local internal
variables, and its program control state. A process can-
not access the internal state of another process.
�9 The state of the communication network, which de-
scribes the status of all messages in transit.

In the Distance-Finding Algorithm, each d [i] is an exter-
nally visible variable that is local to process i. Each pro-
cess has a local internal variable m that holds the value
of the message removed from the buffer. A process's con-
trol state indicates where the process is in its execution

that is, what statement it will execute next. The state
of the communication network could simply be a multi-
set of message, source, destination triples, or it could
contain additional structure describing the order in
which messages may be delivered.

We allow a global externally visible variable to be
read and written by any process. Thus, our Reduction
Theorem can be applied to algorithms in which processes
communicate with shared variables, as well as to distrib-
uted algorithms. For programs that communicate only
through shared variables, our theorem provides a rigor-
ous formulation of the Folk Theorem. Since the Folk
Theorem is so well-known, we will not discuss the appli-
cation of our theorem to shared-variable programs.

Formalism. We provisionally define an algorithm to be
a quadruple (C, {So: ceC}, So, A), where C is a set of
state components, the Sc are sets of values, the set of
initial states So is a subset of the set of states S, which
is the Cartesian product I~{sc: ceC}, and A is a set
of actions, where an action is defined to be a subset
of S x S. (The definition is extended later to include live-
ness conditions.)

An execution is a (finite or infinite) sequence So, Sl, ...
of states such that so~So and, for each si with i>0 , there
is an ~ieA such that (S i - 1 , Si)~O~ i .

61

For seS and ceC, we let s.c denote the c-component
of state s, so s.ceSc, and let s~ denote the state s' such
that s ' .c=v and s'.c'=s.c' for all c'#c. An action
modifies component c if there exists (s, t) e e with s. c + t. c;
action ~ accesses component c if it modifies c or if there
exist (s, t) ~ and veS~ such that s~eS and (s~, t~)$c~. (The
latter condition is a language-independent definition of
what it means for ~ to read the value of c.)

We assume that the set of actions A is partitioned
into a set of communication actions and a collection
of processes. (Formally, a process is the set of actions
belonging to the process.) We also assume that state
components are classified as input buffers, local internal
variables, etc. One state component represents the state
of the communication network. We assume the existence
of a set of messages in transit that depends only on the
communication network's state. []

The first condition for the Reduction Theorem char-
acterizes the class of properties P. We assume that P
is a property of executions, and we say that it holds
for algorithm d if it is true for all executions of sJ.
We require that P satisfy the following condition:

C1. P depends only on the sequence of different values
assumed by the externally visible variables.

In the Distance-Finding Algorithm, the correctness
property P asserts that there exists some n such that,
for all l>n, state sz is one in which each d[i] equals
the distance of process i to the root. This property sat-
isfies C1 because it depends only upon the sequence of
values assigned to the d [i], which are externally visible
variables.

Condition C1 requires that P depend on the sequence
of values assumed by externally visible variables; not
on when (at which step of the execution) those values
are assumed. In the physical world, the notion of when
an event occurs can be defined only relative to the occur-
rence of other events for example, relative to the ticking
of a clock or counter. Condition C1 permits the specifica-
tion of when values are assumed only if the relevant
clock or counter is an externally visible variable.

Formalism. Let E denote the set of externally visible state
components, and let ~: S ' H {So: ceE} denote the pro-
jection mapping. We extend any mapping whose domain
is S to a mapping on the set of sequences of states in
the obvious way, so g(So, sl , . . .)=g(s0), g(s,) For
any sequence 2, let r N denote the sequence obtained
by removing repeated elements from N - f o r example,

1, 2, 2, 2, 3, 3 = 1, 2, 3 and ~ 1, 1, 1, . . . = 1. Condition
C1 asserts that P is a Boolean-valued function on se-
quences of states such that ~ g (Z) = ~ g (U) implies
P(2)=P(Z'). []

Even if the desired correctness property depends upon
parts of the state that are not externally visible, adding
dummy variables ' to the algorithm usually allows the

1 A dummy variable is one that does not affect the execution of
the algorithm and need not be implemented [9]

correctness property to be restated in a form satisfying
C1. For example, one might want to prove that the Dis-
tance-Finding Algorithm eventually terminates, meaning
that it reaches a state in which there are no more mes-
sages in any input buffer or in transit. As stated, this
termination property does not satisfy C1 because it de-
pends upon the state of the communication network and
of the processes' input buffers, which are not externally
visible variables. (Making them externally visible would
violate other hypotheses of the Reduction Theorem.)
However, we can add a global externally visible dummy
variable x whose value equals the number of unprocessed
messages, and we can modify the algorithm so that after
process i removes a message from its input buffer, it
increments x by the number of messages it is going to
send in response minus one. The termination property
is expressed by the assertion that x eventually equals
zero - an assertion that satisfies condition C1. Similarly,
by adding a dummy variable to count the total number
of messages sent, P can express message-complexity
properties.

Formalism. Let d = (C , {So: ceC}, So, A), and d '=(C ' ,
{S,: ceC'}, S;, A') be algorithms such that C ' = C u {y},
~ (S ')=S , and ~/(S~)=So, where S and S' are the state
spaces of d and d ' , respectively, and ~ is the obvious
projection mapping. We say that d ' is obtained from

by adding the dummy component y if there is a one-
to-one correspondence e+--~' between A and A' such
that (i) if (s', t ') ~ ' then (Yg(s'), ~/(t '))~t and (ii) if (s, t)ecq
s'eS', and ql(s ')=s, then there exists t 'eS ' such that
(s', t')ec(. If d ' is obtained from d in this way, then
Z is an execution of d if and only if there is an execution
Z' of d ' such that Z = ~(X'). []

2.2 C2-C5: Actions and commutativity

An atomic action executed by a process is assumed to
be one of the following.

�9 An internal action that may access the process's local
internal variables and control state, and may read (but
not modify) externally visible variables that are local to
the process.
�9 A receive action that removes a message from the
process's input buffer; it may read the contents of the
buffers, it may access the process's internal state, and
it may read the process's local externally visible vari-
ables. (The action may be executed only if the input
buffer is nonempty.)
�9 A send action that changes the state of the communi-
cation network to indicate that an additional message
is in transit from this process to another process. (The
message's destination is determined when it is sent.) The
action may also access the process's local variables and
control state and may read the process's local externally
visible variables.
�9 An externally visible action that may (but need not)
access externally visible variables, variables local to the
process, and the process's control state.

62

In addition to these process actions, we assume that the
communication network executes deliver actions, which
put a message (sent by a previous send action) into a
process's input buffer. We allow a deliver action to cor-
rupt the message or simply destroy it without delivering
it, so faulty communication can be modeled. Delivery
of multiple copies of a message can be modeled by al-
lowing multiple send actions, each sending a copy of
the same message. (The program can nondeterministi-
cally choose how many copies to send.) Thus, we can
model a network that loses, corrupts, or duplicates mes-
sages.

Process i of the Distance-Finding Algorithm executes
the following actions:

�9 A receive action that waits for the buffer to be non-
empty and removes a message from it, storing the mes-
sage's value in a local internal variable and changing
the control state.
�9 An internal action that evaluates the expression
d [i] > m and modifies the control state accordingly.
�9 An externally visible action that sets d[i], accessing
the local internal variable m and modifying the control
state.
�9 For each neighbor j, a send action that initiates the
transmission of a message from i toj .

The first condition on ~ is

C2. In ~' , each process's algorithm executes a sequence
of operations of the form R; <X); L, where

�9 R consists only of receive or internal actions.
�9 L consists only of send or internal actions.
�9 (X) is a single externally visible action.
�9 If control has reached L, then there exists a ter-
minating execution of L.

The only other actions in ~ ' are deliver actions per-
formed by the communication network. It is always
possible for all messages in transit to be delivered
(or lost) by deliver actions without any further pro-
cess actions.

The requirement that there exists a terminating execu-
tion of L rules out, for example, a communication net-
work in which a message cannot be sent until the pre-
vious message was delivered - since there would be no
terminating execution of L if the previous message had
not been delivered.

In the Distance-Finding Algorithm, each iteration of
a process's while loop is an operation that executes a
receive action followed by an internal action (evaluating
d[i] >m) and then either does nothing or else executes
an externally visible action followed by a sequence of
send actions. An operation that does not execute an ex-
ternally visible action can be considered to be part of
the " R " of the next iteration's operation. Thus, Condi-
tion C2 is satisfied.

Alternatively, we can pretend that when process i
finds d[i] < m, it executes an external action that does
not change the value of any externally visible variable.
By C1, adding such an action does not affect the truth
of property P. Adding this dummy action makes each

iteration of a process's loop have the form R; (X) ; L
of Condition C2. (In the condition, R or L may be null.)

In general, we could extend C2 to allow operations
of the form R; L, but adding this extra case would com-
plicate our discussion.

For C2 to be satisfied by the modified version of
the Distance-Finding Algorithm, where the variable x
has been added to detect termination, the same atomic
action that changes d[i] must also change x. Since x
is a dummy variable added only for the proof, we are
free to choose which action modifies it.

Formalism. We assume that the actions in A are disjoint
(sets of pairs of states). This implies that if Z = So, sl
is an execution, then for each i > 0 there is a unique
action ~i such that (si_l, si)E~, so we can consider Z
to be the sequence so ~'~sl "2~s2 ~3 (This represen-
tation of Z is used throughout the proof of the Reduction
Theorem. Making the actions in A disjoint could, but
seldom will, require adding dummy variables.)

The internal state of each process contains program
control information for that process. This information
can be expressed by a function JV~ such that Yp(s) is
the set of possible next actions of process p. For any
action a in process p, if there exists a state t with (s, t)~a,
then a E ~ (s) ; but the converse need not be true. If an
action fl in A is not an action of process p, and (s, t)~fl,
then JVp(s)= JV; (t).

A set of actions all belonging to the same process
is called an operation of that process. A terminating exe-
cution of an operation A of a process p is a finite sequence
So , s, such that each (s~_ 1, s~) belongs to an element
of A and JVp(s,) is disjoint from A. An operation A can
terminate from state s if there exists a terminating execu-
tion of A starting with s.

We define " ; " by saying that, if A and B are opera-
tions of process p, then the operation A t3 B is of the
form A; B if the following conditions hold: (i) A and
B are disjoint, (ii) for all ~ A , if (s, t) ~ then Xp(t) is
a subset either of A or of B, and (iii) for all fi~B, if
(s, t)Efl then JVp(s) is a subset either of A or of B and
~ , (t) is either a subset of or disjoint from B. It follows
that A u B u C is of the form (A;B); C if and only if
it is of the form A; (B; C), in which case we say that
it is of the form A; B; C.

Condition C2 asserts that the set of actions of each
process is the disjoint union of operations of the form
R; <X); L for sets of actions R, <X), and L, where: (i)
(X) contains a single action, (ii) the actions in R, <X),
and L can modify and access the appropriate state com-
ponents, (iii) if JVv(s) contains an action in L, then L
can terminate from state s, and (iv) for any initial state
s in So, JVp(s) contains actions only from the sets R. We
assume that send and deliver actions have the obvious
effects on the set of messages in transit, and that deliver
and receive actions are the only ones that access a pro-
cess's input buffer. []

If algorithm ~ ' satisfies C2, then an atomic action
of ~r has the form (R; (X) ; L) , where R; (X) ; L is

63

an operation of a process p in d , and L consists of
the actions of L together with the deliver actions that
deliver (or lose) messages sent by the send actions in
L. Given any execution 2; of ~ , we obtain an execution

of d by expanding each action <R; <X); L) of d
into the sequence R; <X); L of actions of ~r The exter-
nally visible variables are changed only by <X>, so it
follows from C1 that 2; satisfies property P if and only
if Z does. Since an algorithm satisfies a property if and
only if all its executions do, this implies that if s~r satisfies
P, then ~g also satisfies P.

For convenience, we identify the execution Z of ~
with the corresponding execution Z of ~/. Thus, the set
of executions of ~ is a subset of the set of executions
o f ~ ' .

Formalism. Let o denote the usual composition operator
on relations, defined by (s, u)~c~ofl if and only if there
exists t such that (s, t) se and (t, u)sfl. For any send ac-
tion a and deliver action 6, let a ~ be the (possibly empty)
subaction of ao 6 consisting of all pairs (s, t) for which

s r176 represents the action of sending a message and
then immediately delivering that message. (If the state
of the communication network contains unordered
multisets of messages, it may be necessary to add a
dummy variable for a ~ to be defined.) Let ~ be the union
of the actions a ~ for all deliver actions 6.

For any operation A, define <A) to be the action
consisting of the set of all pairs (s, t) such that there
exists a terminating execution S=So, sl, ..., s , = t of A
with n>0. Condition C2 asserts of d that the set of
actions of each process p is the disjoint union of actions
of the form R ; < X > ; L . The algorithm d is defined to
have the same components, states, and initial states as
~ ' , and to have a set of actions consisting of all
the actions <R;<X);L~, where Lis obtained from L b y
replacing each send action a with & []

To complete the proof of the Reduction Theorem,
we must prove that if s~ satisfies property P then ~4
does too. We do this by constructing, for every execution
N of ~4, a corresponding execution 2 of ~4 ̂ such that
P is true of 2; if and only if it is true of 2. We first
consider the case in which s is finite-more precisely,
when 2 is a finite initial segment of an execution. (2;
may be a complete execution if the execution is finite.)
The extension to complete infinite executions is given
in Sect. 2.3.

In an execution of sd, actions of other processes and
of the communication network may be interleaved be-
tween the actions of a single operation R ; < X > ; L and
between the send actions in L and their corresponding
deliver actions. We construct 2 from 2; by permuting
the order in which actions are executed so that there
are no other actions interleaved between the actions in
a single operation R; < X) ; L . We do this by moving ac-
tions of R to the right and actions of L to the left. In
constructing 2, we first delete any action from a partially
completed operation in which the <X) action has not
been executed (which we can do because actions in R
affect only the process's internal state) and complete any

unfinished operation in which <X> has been executed
(which we can do because condition C2 guarantees the
existence of a terminating execution of L) and add ac-
tions to deliver any outstanding messages (which C2 al-
lows us to do).

We say that on atomic action p right commutes with
an atomic action 2, or that 2 left commutes with p, if
and only if, whenever p;2 (a p action followed by a 2
action) can be executed, it is also possible to produce
the same result by executing 2;p. In other words, if

s P~t ~--~,u is possible then s x , t ' P~u is possible for
some state t'. Two actions are said to commute if and
only if each right commutes with the other. Commutati-
vity of two actions means that executing them in either
order has the same effect.

Formalism. Action p right commutes with action 2 if
and only if p o 2 _ 2op. If neither action accesses any
component modified by the other action, then p o 2 = 2 o p,
so the actions commute. []

We will construct 2 from X by a series of inter-
changes, replacing a sequence of the form

. . . ~ s a , . . . b y ... a , s ' -e - , ~ We can do this if p
right commutes with 2.

To construct 2 from 2;, actions in R must be moved
to the right, while actions in L and deliver actions must
be moved to the left. Actions belonging to the same
process do not have to be interchanged, so commutati-
vity relations between actions from the same process are
not needed. Two actions obviously commute if they do
not both access the same variable or state component,
so we have the following commutativity relations.

�9 An internal action commutes with every action not
belonging to the same process.
�9 An "<X>" action commutes with every deliver action
and every action of another process except another
" < X) " action.
�9 A receive action commutes with all actions in other
processes, and with deliver actions delivering messages
to other processes.

By C2, R contains only receive and internal actions, and
L contains only send and internal actions. Therefore, 2
can be constructed by commuting the actions of Z if
the following commutativity relations are satisfied.

�9 A send action must commute with
- send actions of other processes.
- deliver actions.

�9 A receive action in a process p must right commute
with actions that deliver a message to p.
�9 A deliver action delivering a message to process p
must

- commute with other deliver actions.
- commute with send actions.
- left commute with receive actions of process p.

These commutativity relations are sufficient to allow the
construction of 2, but they are not all necessary. A send
action need not commute with the corresponding deliver

64

action - the one that delivers the message that the send
had sent. Also, two deliver actions need not commute
if they occur in the same order as their corresponding
send actions. The remaining commutativity relations are
implied by the following three conditions, where A (p, q)
denotes the set of deliver actions that deliver to process
q a message sent by process p.

C3. A send action a commutes with every send action
in another process and with every deliver action ex-
cept the one that delivers the message sent by ~r.

C4. A receive action of process p right commutes with
every deliver action that delivers a message to p.

C5. For every pair of processes p, q: if messages from
p to q are delivered in the order in which they are
sent, then every action in A (p, q) commutes with
every deliver action not in A (p, q); otherwise, if mes-
sages may be delivered out of order, then every ac-
tion in A (p, q) commutes with every other deliver
action (including ones in A (p, q)).

The following are two examples of communication
schemes that satisfy these conditions.

(a) The state of the communication system consists of
an unordered set of message, source, destination tri-
ples; and each process's input buffer is an unordered
set of message, source pairs. A process can receive
any message in its input buffer.

(b) The state of the communication system contains a
FIFO (first-in-first-out) message queue for each
sender, receiver pair; and each process has a separate
FIFO input buffer for each sender process. A process
can receive a message at the head of any queue.

Condition C3 is not satisfied if a process that tries
to send a message can be suspended because other pro-
cesses have filled the network's message buffers, so the
condition essentially requires unbounded buffering by
the communication network. Although communication
schemes can be devised that fail to satisfy C3 despite
having unbounded buffering, they don't seem to arise
in practice.

Condition C4 states that if a receive action can be
performed before a message is delivered, then that same
action can be performed after the delivery. We can re-
state this condition somewhat more informally as:

C4'. A process's operation cannot depend upon the ab-
sence of a message.

For example, the algorithm cannot require that a certain
action be taken only if a process's input buffer is empty.
In example (b) above, C4' implies that a process cannot
query its input queues in a fixed order, since there would
then be states in which the absence of a message in one
queue is necessary for the process to receive a message
from the following queue.

There appears to be no simple, intuitive restatement
of condition C5. However, the two examples above are
common enough that they are worth stating as the fol-
lowing condition, which implies C5.

C5'. For each process p, either
(a) p has an input buffer consisting of an unordered

set of messages, or
(b) p has a separate input queue for each process

from which it receives messages, and messages
from any single process are delivered in the
order that they are sent.

For example, process p cannot maintain a single FIFO
input queue in which it puts messages from all processes.
If it did, two deliver actions that deliver messages from
different processes would not commute because reversing
their order of execution reverses the order of the mes-
sages in the queue.

Do C3-C5 hold for the Distance-Finding Algorithm?
C3 is a condition on the communication network, which
we haven't specified. It is implied by the assumption of
unbounded buffering usually made when studying this
type of algorithm. Condition C4 asserts that receipt of
a message cannot prevent a process from performing
an action that it could have performed had the message
not arrived - an assertion that holds for this algorithm.
Condition C5 depends upon the queueing discipline em-
ployed by the algorithm. By not specifying which mes-
sage is to be removed from the buffer, we have allowed
each process to maintain a single buffer containing an
unordered set of messages an implementation for which
C5'(a) holds.

Since no queueing policy is specified, the Distance-
Finding Algorithm can be implemented by any policy.
The most general queueing policy is represented by a
single, unordered buffer. Any other policy is a special
case, whose executions are the same as possible execu-
tions with the unordered buffer. The correctness of the
more general algorithm implies the correctness of the
special case. For example, the buffer could be imple-
mented as a single FIFO queue. However, C5 does not
hold for this queueing discipline, so if the algorithm were
to specify a single FIFO buffer, then our Reduction The-
orem would not apply. We would then have to generalize
the algorithm to allow an unordered buffer in order to
simplify the proof.

Formalism. The formal statement of Conditions C3 and
C4 is straightforward, since they simply express commu-
tativity relations among the actions of A. In C3, the
fact that commutativity is not required between the ac-
tions of sending and delivering the same message is ex-
pressed by requiring for any send action a and deliver
action 6 only that a o b = ~ o 6 u a a, rather than full com-
mutativity.

Condition C5 assumes that the set of communication
network actions can be partit ioned into the sets A (p, q).
To make this partition possible, one might have to modi-
fy A by partitioning a single action e into subactions
cq , ct,,. Such a change does not alter the set of execu-
tions. []

2.3 Safety, liveness, and C6

Conditions C2-C5 guarantee that, for any finite initial
segment s of an execution of d , we can construct an

65

execution ,~ in which the actions in any process's opera-
tion and the corresponding deliver actions are contigu-
ous. Moreover, P holds for Z if and only if it holds
for 2. Before considering arbitrary executions, we must
return to the question of how one specifies an algorithm.

The specification of an algorithm is the conjunction
of two parts: a safety specification that describes what
the actions may do, and a liveness specification that de-
scribes what actions must eventually be performed, z
Consider an algorithm containing the program state-
ment <x:=x+l>. The algorithm's safety specification
implies that executing this statement may change the
value of x only by adding one to it, but it does not
imply that the statement is ever executed. A requirement
that the statement must eventually be executed when
control reaches it would be part of the liveness specifica-
tion, which is usually implicit in the semantics of the
programming language.

In general, the safety specification may be any safety
property, which is one that holds for an execution if
and only if it holds for all finite initial segments of the
execution. Mutual exclusion, F IFO service, and partial
correctness are all safety properties.

The liveness specification must be a liveness property,
which is one for which any finite sequence of states and
actions can be extended to a sequence that satisfies the
property [1]. This definition is independent of any algo-
rithm. A liveness specification may not be an arbitrary
liveness property, but must satisfy the stronger require-
ment that any finite sequence of states and actions that
satisfy the algorithm's safety specification can be ex-
tended to a sequence that satisfies both its liveness and
safety properties. This stronger requirement essentially
means that the liveness specification does not specify
any additional safety properties; it is satisfied by all com-
monly used liveness specifications.

An arbitrary property P holds for an algorithm if
and only if it is implied by the conjunction of the algo-
rithm's safety and liveness specifications. But a safety
property holds for an execution if and only if it holds
for every finite initial segment of the execution, and every
such segment that satisfies the safety specification can
be extended to an execution that satisfies both the safety
and the liveness specifications. Therefore, a safety prop-
erty is satisfied by the algorithm if and only if it is implied
by the algorithm's safety specification alone, which is
true if and only if the property holds for every finite
initial segment of every execution.

Conditions C2-C5 were chosen to guarantee that the
execution Z constructed from the finite initial segment
Z of an execution of sue satisfies the safety specification
of s~t. Hence, 2~ is a finite initial segment of an execution
of ~r Moreover, C1 implies that P holds for 2 if and
only if it holds for ~. Hence, our construction of 2~ from
Z proves that if P is a safety property, then s~' satisfies
P if and only if ~ does. We have therefore proved the
Reduction Theorem for a safety property P without us-
ing C6. Condition C6 need apply only when P is not
a safety property.

2 The term "fairness" is sometimes used in place of "liveness"

Formalism. Let N be any finite portion of an execution
of d . Let 2;' be obtained from N by appending to it
L actions and deliver actions so that, in the last state,
there are no undelivered messages and control in every
process is either not inside its operation or inside its
R operation. (Condition C2 implies the existence of 22'.)
Since no actions have been added that affect the external-
ly visible state, C1 implies that 22' satisfies P if and only
if 2; does. By commuting actions as allowed by C2-C5
and the assumptions about which actions can access and
modify which state components, we can transform 2'
to a sequence 2~ of the form 1~1, ..., Yi, ~, where each
Yj is a subsequence consisting of a complete execution
of the operation R; <X>; L of some process and q~ con-
sists only of R actions. (Each deliver action 6 is moved

left until reaching a position ... ~ , t ~ , u for a send ac-
tion a with (s, u)~o-~ Moreover, the states immediately
before and after each <X> action are the same in Z'
and in 2, so C1 implies that 2;' satisfies P if and only
if 2~ does. But ~ is an execution of ~J, so we have proved
that, for every finite execution N of d , there exists an
execution 2~ of A that satisfies P if and only if 22 does.
This proves the Reduction Theorem if P is a safety prop-
erty. []

To prove the Reduction Theorem for any arbitrary
property P, we need to construct ~ when s is an infinite
execution of d . Conditions C2 C5 are not enough to
make this construction possible. In ~, every process op-
eration R; <X>; L is completed and every message sent
by L is delivered. In the finite case, we could complete
unfinished operations by adding actions to the end of
2. We cannot do this in the infinite case; the actions
must already be in N. To construct ~, in the execution
2 every process operation must be completed and every
message delivered. This can be guaranteed by requiring
that these conditions be part of d ' s liveness specification.
("Delivery" of a message includes the possibility that
the message is destroyed, so requiring eventual delivery
does not rule out the possibility of losing messages.) With
this requirement, we can construct 2~ as the limit of the
sequences Z", where 2;" consists of the first n steps of
1;. (The required liveness conditions imply that each op-
eration of ~ consists of actions from 2;.)

Requiring these liveness conditions to be part of ~r
liveness specification ensures that ~ can be constructed,
but it does not guarantee the validity of the Reduction
Theorem if the specification contains other liveness con-
ditions as well. The problem is that ~ need not satisfy
these other liveness properties, so it need not be an exe-
cution of ~J. Thus, P can hold for ~ without holding
for d . As an example, consider the following algorithm
s~' with two processes, p and q. Process p repeatedly
performs an operation that sends two messages to q;
process q repeatedly performs an operation that removes
one message from its input queue and then nondetermin-
istically sets the externally visible variable x to either
0 or 1. To this safety specification we add the liveness
requirement that if q's input buffer ever contains two
messages, then some later action of q (not necessarily

66

the next one) must set x to 1. Let property P assert
that x must equal 1 at some point in the execution.
In algorithm sfl, the two messages that p's operation
sends to q are put into the buffer simultaneously, so
the liveness requirement implies that P holds for every
execution of ~ . However, ~ has a possible execution
Z in which process q removes messages from its buffer
as fast as they arrive, so its buffer never contains two
messages, and it always sets x equal to 0. (For this ~,
the sequence ~ is not an execution of ~r Then P holds
for ~r but not for ~ .

The simplest statement of the precise condition C6
needed to complete the Reduction Theorem is that, when
P is not a safety condition, if ~ satisfies the liveness
specification of ~r then the sequence s~ can be con-
structed and satisfies the liveness specification. However,
such a condition is not very convenient because verifying
it requires reasoning about executions. Instead, we give
the following more restrictive condition that seems to
handle most cases of interest. An action e is said to
be enabled in a state if it is possible to execute e starting
in that state - that is, if the safety specification allows
such an execution of e.

C6. If P is not a safety property, then the liveness specifi-
cation for d must include the following conditions:

�9 Every process operation (which by C2 has the
form R; {X) ; L) that is begun is eventually complet-
ed.
�9 For every execution of a send action there is a
corresponding execution of a deliver action that de-
livers (or destroys) the message that was sent.
The liveness specification also may include any of
the following types of conditions:
�9 For the entire algorithm: sJ does not halt if some
action is enabled.
�9 For an individual process p:

- If there is a message in p's input buffer, then
some action of p is eventually executed.
- If there is a message from a particular process
q in p's input buffer, then p eventually removes
some message from q from its input buffer.

�9 For the communication network: if infinitely
many messages are sent from process p to process
q, then infinitely many of them eventually arrive
at their destination.

Condition C6 has two parts. The first part describes the
conditions that the liveness specification must contain;
it guarantees that the sequence Z can be constructed
for any execution Z of d . The sequence ~ obviously
also satisfies these conditions. The second part describes
the only other conditions that the liveness specification
may (but need not) contain. To complete the proof of
the Reduction Theorem, we need only show that if Z
satisfies any such condition, then Z does as well. It is
easy to check that this is the case. For example, if
satisfies the last kind of allowed condition, then Z also
satisfies it because every message that is sent from p
to q in execution Z, or that arrives at its destination
in execution Z, also does so in execution 2.

In the Distance-Finding Algorithm, we have tacitly
assumed a liveness specification with the following con-
ditions:

1. If there is a message in process p's input buffer, then
(a) some message is removed from the buffer and (b)
the entire operation of reading the message and reacting
to it is eventually completed.
2. Every message that is sent eventually arrives at its
destination.

Condition l(a) is a type of condition allowed by C6,
and l(b) is the first of the two conditions required by
C6. Condition 2 is the conjunction of two conditions:
(a) every send action has a corresponding deliver action,
which is the second of C6's required conditions, and
(b) no deliver action destroys a message, which is part
of the safety specification. Therefore, the Distance-Find-
ing Algorithm satisfies C6.

Formalism. We must extend our original definition of
an algorithm as a quadruple (C, {So: ceC}, So, A), to
include a liveness specification. The liveness conditions
used in specifying most algorithms can be expressed by
adding a set of weak fairness conditions and a set of
strong fairness conditions. A fairness condition is a pair
(L, F) where L is a Boolean-valued function on the set
of states and F is a subset of the set of actions.

An infinite sequence So, sl, ... satisfies the weak fair-
ness condition (L, F) if and only if the following condi-
tion is satisfied (where ~ means "is an element of an
element of"):

Vi3j>_i: (sj, s j+l)eeF or ~L(s i)

The sequence satisfies the strong fairness condition (L, F)
if and only if the following condition is satisfied:

Vi~j>_i: (s: ,s j+x)eeF or Vk>_j: ~L(s~)

A finite sequence So , s, is considered to be equivalent
to the infinite one s o , s,, s,, s,, An execution of
the algorithm is now required to satisfy the fairness con-
ditions.

The liveness conditions allowed by C6 for the entire
algorithm and for an individual process are weak fairness
conditions. The condition allowed for the communica-
tion network is a strong fairness condition (L, F), where
L asserts that a message has been sent from p to q and
F is the set of actions that successfully deliver such a
message.

The required condition that each send has a corre-
sponding deliver implies that for any portion of an execu-

tion st ~ ~ si + 1... sj where o- is a send action, we cab deter-
mine if the message sent by a has already been delivered
when state s i is reached. If this can be determined by
just examining state s j, then the condition can be ex-
pressed by weak fairness conditions. Otherwise, it is a
more complicated type of condition and must be added
separately to the liveness specification.

C6's required liveness conditions allow us to extend
to infinite executions the method given above for con-

67

structing the execution Z of sg from the finite execution
27 of d . As before, Z satisfies P if and only if 2 does.
To prove the Reduction Theorem, we must show that
if the execution 27 satisfies any of the liveness conditions
allowed by C6, then 2 also satisfies these conditions.

C6's entire-algorithm condition is maintained be-
cause, if 2; does not halt, then neither does X. An individ-
ual-process condition allowed by C6 is a weak fairness
condition of the form (L, F) where F is a set of receive
actions. Moreover, L is initially false; it is made true
by executing a deliver action; and it is made false again
only by executing a corresponding action of F. This weak
fairness condition asserts that an execution contains ei-
ther an infinite number of F actions, or else L is false
infinitely often. If X has an infinite number of F actions,
then so does Z. If 2; has only a finite number of F actions,
then L false infinitely often implies that there are only
a finite number of deliver actions that make L true, each
of which has a receive action that makes L false again.
If this latter condition holds for 2;, then it must also
hold for Z, which is obtained from 2; by commuting
receive actions to the right and deliver actions to the
left.

A communication-network condition allowed by C6
is a strong fairness condition (L, F) where L is made
true by executing a send action and is made false only
by executing a corresponding deliver action in F. In con-
structing 2~, a deliver action is never moved to the right
of its corresponding send action, so Z satisfies the condi-
tion if27 does. []

3 Discussion

The six hypotheses of the Reduction Theorem may seem
like a formidable array of conditions that would prevent
the theorem from being of much practical value. How-
ever, the Distance-Finding Algorithm is not a fluke, but
rather an example of a broad class of distributed algo-
rithms to which the theorem can be applied. Condition
C3 implies unbounded buffering, which is assumed of
most distributed algorithms considered in the literature.
The only condition that eliminates a large class of algo-
rithms is C4. By requiring that the receipt of a message
not disable an action, C4 rules out real-time algorithms
in which a process does something when it has not re-
ceived a message within a certain length of time.

C4 may also be violated because of unnecessary
overspecification of the input buffer. The well-known
minimum spanning tree algorithm of Gallager, Humblet,
and Spira, as described in [5], does not satisfy C4 be-
cause is specifies that each process maintain a single
FIFO input queue. The algorithm does not require the
single queue; it can be generalized by having a process
maintain a separate queue for each neighboring process?
This is still not sufficient, because the algorithm moves
certain messages that cannot be processed immediately
to the end of the input queue. C4 is not satisfied because

3 Multiple input queues are a generalization because they can be
implemented by a single queue

the action of moving a message to the end of the queue
does not right commute with the action of delivering
a new message to the queue; the order of messages in
the queue depends upon the order in which the actions
are executed. However, the algorithm can just as well
be implemented by not moving a message to the back
of the queue, but allowing messages later in the queue
to be processed before it. With this additional modifica-
tion, the minimum spanning tree algorithm satisfies C1-
C6, and the reduction theorem can be applied.

Our Reduction Theorem can be applied to a multi-
process algorithm in which there is no message passing,
so all interprocess communication is performed with
global, externally visible shared variables. In this case,
C3-C5 are vacuous, and condition C2 is just the hypoth-
esis of the Folk Theorem. However, conditions C1 and
C6, which are not mentioned by the Folk Theorem, are
not vacuous. These or similar conditions are necessary
for the Folk Theorem to be valid.

The Folk Theorem asserts that two programs the
original and the reduced version - are equivalent. Equiv-
alence means that they satisfy the same properties, and
it can be valid only if one specifies the class of properties
under consideration. Condition C1 rectifies this omission
from the Folk Theorem.

Condition C6, which is needed to apply the Reduc-
tion Theorem to liveness properties, is a more insidious
omission from the hypotheses of the Folk Theorem. The
Folk Theorem is not valid for arbitrary liveness proper-
ties without some additional hypothesis such as C6.
Counterexamples are easily obtained by using liveness
specifications that determine under what conditions a
process is guaranteed eventually to execute its next ac-
tion. For example, consider a multiprocess program with
the following process

(x : = 2) ;
while true do (x. '= 1);

@. '=n+ 1);
(x ,=2)

od

where x is local to the process. The Folk Theorem would
allow us to make the entire loop body a single atomic
action. However, suppose that the program contained
the liveness specification that the process is only guaran-
teed to take a next step when x 4= 1. The reduced program
satisfies the liveness property that n must get arbitrarily
large, but the original program does not, since it permits
an execution in which this process does nothing after
the first time it sets x to 1.

Acknowledgements. In [8], Lipton proved a reduction theorem simi-
lar to ours for reasoning about partial correctness and deadlock-
freedom properties of nondistributed programs, concentrating on
programs that use semaphores. His result was extended by
Doeppner [4] to a somewhat larger class of safety properties. In
[2] and [3], Dijkstra proved a restricted version of our reduction
theorem for reasoning about partial correctness properties of two-
process distributed programs. Using a formalism based upon event
traces instead of states, Jonsson proved in [6] what is essentially
a special case of our reduction theorem for a system with FIFO
buffers, and he cited a related result by Pachl for reachability and

68

deadlock properties. There have undoubtedly been many other
variations on the same theme that we are unaware of. The observa-
tion that the Folk Theorem is not valid for liveness properties
was made by Reino Kurki-Suonio and Ralph Back, and reported
to us by Kurki-Suonio.

Discussions with Fred Schneider led to the writing of this paper,
which in turn led to our generalizing Lipton's and Doeppner's
result in [7]. I wish to thank Martin Abadi, Eike Best, Richard
Koo, Michael Merritt, Gil Neiger, Van Nguyen, Prasad Sistla, and
Sam Toueg for their comments on earlier drafts.

List of notations

A The set of program actions.
d The algorithm under consideration.
sd The reduced version of algorithm d .
(A) The action obtained by executing the operation A as an

atomic action.
C The set of state components.
d [i] A variable of the Distance-Finding Algorithm.
L An operation of d , as in C2.
L The operation obtained by adding to L the actions that

deliver messages sent by L.
JVp(s) The set of possible next actions of process p from state s.
P The correctness property.
R An operation of d , as in C2.
S The set of states.

So The set of initial states.
Sc The range of values of state component c.
(X) An action of d , as in C2.
2; Usually denotes an execution of ~r
2~ The execution of s J that corresponds to an execution 2;

o f d .

References

1. Alpern B, Schneider FB: Defining liveness. Inf Process Lett 21
(4): 181-185 (1985)

2. Dijkstra EW: When messages may crawl. EWD708 (1979)
3. Dijkstra EW: When messages may crawl, ii. EWD710 (1979)
4. Doeppner TW: Parallel program correctness through refinement.

In: Fourth Annual ACM Symposium on Principles of Program-
ming Languages, pp 155 169, ACM, January 1977

5. Gallager RG, Humblet PA, Spira PM: A distributed algorithm
for minimum-weight spanning trees. ACM Trans Program Lang
Syst 5 (1):66 77 (1983)

6. Jonsson B: Compositional verification of distributed systems.
PhD thesis, Uppsala University (1987)

7. Lamport L, Schneider FB: Pretending atomicity. Res Rep 44.
Digital Equipment Corporation, Systems Research Center (1989)

8. Lipton R J: Reduction: a method of proving properties of parallel
programs. Commun ACM 18 (12):717 721 (1975)

9. Owicki S, Gries D: An axiomatic proof technique for parallel
programs. Acta Inf 6 (4):319 340 (1976)

