
Distributed Computing (1986) l : 77-85

Springer-Verlag 1986

On interprocess communication
Part I: Basic formalism*

Leslie Lamport
Digital Equipment Corporation, Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA

Dr. Lamport is a member
of Digital Equipment Corpo-
ration's Systems Research
Center. In previous incarna-
tions, he was with SRI Inter-
national and Massachusetts
Computer Associates. The
central topic of his research
has been concurrency, and
he can write TEX macros
and chew gum at the same
time.

Abstract. A formalism for specifying and rea-
soning about concurrent systems is described.
Unlike more conventional formalisms, it is not
based upon atomic actions. A definition of
what it means for one system to implement a
higher-level system is given and justified. In
Part II, the formalism is used to specify several
classes of interprocess communicat ion mecha-
nisms and to prove the correctness of algo-
rithms for implementing them.

Key words: Concurrent reading and writing -
Nonatomic operations - Shared data

Introduction

This is the first part of a two-part paper ad-
dressing what I believe to be fundamental ques-

* Much of this research was performed while the author
was a member of the Computer Science Laboratory at
SRI International, where it was sponsored by the Office
of Naval Research Project under contract number
N00014-84-C-0621 and the Rome Air Development
Command Project under contract number F30602-85-C-
0024

tions in the theory of interprocess communi-
cation. It develops a formal definition of what it
means to implement one system with a lower-
level one and provides a method for reasoning
about concurrent systems. The definitions and
axioms introduced here are applied in Part II
[5] to algorithms that implement certain in-
terprocess communicat ion mechanisms.

To motivate the formalism, let us consider
the question of atomicity. Most treatments of
concurrent processing assume the existence of
atomic operations "- an atomic operation being
one whose execution is performed as an in-
divisible action. The term operation is used to
mean a class of actions such as depositing mon-
ey in a bank account, and the term operation
execution to mean one specific instance of
executing such an action - for example, deposit-
ing $100 in account number 14335 at
10:35 a.m. on December 14, 1987. Atomic oper-
ations must be implemented in terms of lower-
level operations. A high-level language may
provide a P operation to a semaphore as an
atomic operation, but this operation must be
implemented in terms of lower-level machine-
language instructions. Viewed at the machine-
language level, the semaphore operation is not
atomic. Moreover, the machine-language oper-
ations must ultimately be implemented with cir-
cuits in which operations are manifestly non-
atomic - the possibility of harmful "race con-
ditions" shows that the setting and the testing
of a flip-flop are not atomic actions.

Part II considers the problem of implement-
ing atomic operations to a shared register with
more primitive, nonatomic operations. Here, a
more familiar example of implementing ato-
micity is used: concurrency control in a database.
In a database system, higher-level transactions,

Reprinted Issue I
w/thout ,'~

78 L. Lamport: On interprocess communication. I

which may read and modify many individual
data items, are implemented with lower-level
reads and writes of single items. These lower-
level read and write operations are assumed to
be atomic, and the problem is to make the
higher-level transactions atomic. It is cus tomary
to say that a semaphore operat ion is atomic
while a database t ransact ion appears to be
atomic, but this verbal distinction has no fun-
damental significance.

In database systems, atomicity of transac-
tions is achieved by implementing a serializable
execution order. The lower-level accesses per-
formed by the different transactions are sched-
uled so that the net effect is the same as if the
transactions had been .executed in some serial
order - first executing all the lower-level ac-
cesses comprising one transaction, then execut-
ing all the accesses of the next t ransacuon,
and so on. The transactions should not actu-
ally be scheduled in such a serial fashion,
since this would be inefficient; it is necessary
only that the effect be the same as if that were
done. 1

In the li terature on concurrency control in
databases, serializability is usually the only cor-
rectness condit ion that is stated [1]. However,
serializability by itself does not ensure correct-
ness. Consider a database system in which each
transaction either reads from or writes to the
database, but does not do both. Moreover , as-
sume that the system has a finite lifetime, at the
end of which it is to be scrapped. Serializability
is achieved by an implementat ion in which
reads always return the initial value of the data-
base entries and writes are simply not executed.
This yields the same results as a serial execu-
tion in which one first performs all the read
transactions and then all the writes. While such
an implementat ion satisfies the requirement of
serializability, no one would consider it to be
correct.

This example illustrates the need for a care-
ful examinat ion of what it means for one sys-
tem to implement another. It is reconsidered in
Sect. 2, w h e r e the addit ional correctness condi-
tion needed to rule out this absurd implementa-
tion is stated.

1 In the context of databases, atomicity often denotes the
additional property that a failure cannot leave the da-
tabase in a state reflecting a partially completed transac-
tion. In this paper, the possibility of failure is ignored,
so no distinction between atomicity and serializability is
made

1 S y s t e m executions

Almost all models of concurrent processes have
indivisible a tomic actions as primitive elements.
For example, models in which a process is re-
presented by a sequence or " t race" [10, 12, 13]
assume that each element in the sequence repre-
sents an indivisible action. Net models [2] and
related formalisms [9, 11] assume that the fir-
ing of an individual transition is atomic. These
models are not appropriate for studying such
fundamental questions as what it means to
implement an atomic operation, in which the
nonatomici ty of operations must be directly ad-
dressed.

More conventional formalisms are therefore
eschewed in favor of one int roduced in [4] and
refined in [3], in which the primitive elements
are operation executions that are not assumed
to be atomic. This formalism is described be-
low; the reader is referred to [4] and [3] for
more details.

A system execution consists of a set of oper-
ation executions, together with certain temporal
precedence relations on these operation exe-
cutions. Recall that an operat ion execution re-
presents a single execution of some operation.
When all operations are assumed to be atomic,
an operat ion execution A can influence another
operat ion execution B only if A precedes B -
meaning that all actions of A are completed
before any action of B is begun. In this case,
one needs only a single temporal relation ---.,
read "precedes", to describe the temporal or-
dering among operat ion executions. While tem-
poral precedence is usually considered to be a
total ordering of a tomic operations, in distrib-
uted systems it is best thought of as an irre-
flexive partial ordering (see [6]).

Nonatomic i ty introduces the possibility that
an operat ion execution A can influence an
operation execution B without preceding it; it is
necessary only that some action of A precede
some action of B. Hence, in addit ion to the pre-
cedence relation ----,, one needs an additional
relation - - . , read "can affect", where A - - . B
means that some action of A precedes some
action of B.

Definition I. A system execution is a triple
(J , - - ~ , - - ~) , where ~ is a finite or countably
infinite set whose elements are called operation
executions, and --~ and --~ are precedence re-
lations on ~ satisfying axioms A 1 - A 5 below.

L. Lamport: On interprocess communication. I 79

To assist in understanding the axioms for the
, and - - . relations, it is helpful to have a

semantic model for the formalism. The model
to be used is one in which an operat ion execu-
tion is represented by a set of primitive actions
or events, where A----~B means that all the
events of A precede all the events of B, and
A - - . B means that some event of A precedes
some event of B. Letting E denote the set of all
events, and , the temporal precedence relation
among events, we get the following formal defi-
nition.

Definition 2. A model of a system execution
(~,-----*, --~.) consists of a triple E,----*,/~, where
E is a set, ----, is an irreflexive partial ordering
on E, and # is a mapping that assigns to each
operat ion execution A of ~ a nonempty subset
#(A) of E, such that for every pair of operat ion
executions A and B of ~ :

A .~B = Vaep(A) : Vb~p(B): a : -~b

A - - . B - ~ a ~ # (A) : ~ b ~ # (B) : a , b o r a = b . (1)

Note that the same symbol , denotes the "pre-
cedes" relation both between operat ion exe-
cutions in 6 a and between events in E.

Other than the existence of the temporal
part ial ,ordering relation ----*, no assumption is
made about the structure of the set of events E.
In particular, operat ion executions may be mod-
eled as infinite sets of events. An impor tant
class of models is obtained by letting E be the
set of events in four-dimensional spacetime,
with �9 the "happens before" relation of special
relativity, where a ,b means that it is tem-
porally possible for event a to causally affect
event b.

Another simple and useful class of models is
obtained by letting E be the real number line
and representing each operat ion execution A as
a closed interval.

Definition 3. A global-time model of a system
execution (~ , - - - - - , , - - .) is one in which E is the
set of real numbers,----* is the ordinary < re-
lation, and each set p(A) is of the form Is A, fa]
with s a <fA"

Think of sa and fA as the starting and finish-
ing times of A. In a global-time model, A ,B
means that A finishes before B starts, and
A - - . B means that A starts before (or at the
same time as) B finishes. These relations are
illustrated by Fig. 1, where operat ion executions

A B

C
J I

Fig. 1. Three operation executions in a global-time model

A B
I I I t

C D
I I} I

Fig. 2. An illustration of Axiom A4

A, B, and C, represented by the three indicated
intervals, satisfy: A------, B, A , C, B - - , C, and
C - - . B . (In this and similar figures, the number
line runs from left to right, and overlapping
intervals are drawn one above the other.)

To complete Definit ion 1, the axioms for the
precedence relations ----. and - - . of a system
execution must be given. They are the following,
where A, B, C, and D denote arbi t rary oper-
ation executions in ~. Axiom A 4 is illustrated
(in a global-time model) by Fig. 2; the reader is
urged to draw similar pictures to help under-
stand the other axioms.

A1. The relation , is an irreflexive partial
ordering.

A2. I f A , B t h e n A - - ~ B a n d B /.~A.
A3. I f A , B - - , C o r A - - . B - - - - - , C

then A - - �9 C.

A4. I f A , B - - . C , D t h e n A ,D.
A5. For any A, the set of all B such that

A / , B is finite.

(These axioms differ from the ones in [3] be-
cause only terminat ing operat ion executions are
considered here.)

Axioms A 1 - A 4 follow from (1), so they do
not constrain the choice of a model. Axiom A5
does not follow from (1); it restricts the class of
allowed models. Intuitively, A5 asserts that a
system execution begins at some point in time,
rather than extending into the infinite past.
When E is the set of events in space-time, A5
holds for any model in which: (i) each oper-
ation occupies a finite region of space-time, (ii)
any finite region of space-time contains only a
finite number of operat ion executions, and (iii)
the system is not expanding faster than the
speed of light. 2

Most readers will find it easiest to think about

2 A system expanding faster than the speed of light could
have an infinite number of operation executions none of
which are preceded by any operation

80 L. Lamport: On interprocess communication. I

system executions in terms of a global-time
model, and to interpret the relations and
--+ as indicated by the example in Fig. 1.
Such a mental model is adequate for most pur-
poses. However, the reader should be aware
that in a system execution having a global-time
model, for any distinct operat ion executions A
and B, either A -----* B or B - - + A. (In fact, this is a
necessary and sufficient condit ion for a system
execution to have a global-time model [8].)
However, in a system execution without a glob-
al-time model, it is possible for neither A , B
nor B- -+ A to hold. As a trivial counterexample,
let ~ consist of two elements and let the re-
lations , and --+ be empty.

While a global-time model is a valuable aid
to acquiring an intuitive understanding of a
system, it is better to use more abstract reason-
ing when proving properties of systems. The
relations ~ and --~. capture the essential tem-
poral properties of a system execution, and A 1-
A5 provide the necessary tools for reasoning
about these relations. It has been my experience
that proofs based upon these axioms are sim-
pler and more instructive than ones that in-
volve modeling operat ion executions as sets of
events.

2 Hierarchical views

A system can be viewed at different levels of
detail, with different operat ion executions at
each level. Viewed at the customer's level, a
banking system has operat ion executions such
as deposit $1000. Viewed at the programmer 's
level, this same system executes operations such
as dep_amt[cust].. = 1000. The fundamental
problem of system building is to implement one
system (like a banking system) as a higher-level
view of another system (like a Pascal program).

A higher-level operat ion consists of a set of
lower-level operat ions - the set of operations
that implement it. Let (Y, ---., --~,) be a system
execution and let ~f' be a set whose elements,
called higher-level operatiq~ executions, are sets
of operat ion executions from ~. A model for
(~ , ---,, - - ~) represents each operat ion execution
in ~ by a set of events. This gives a representa-
tion of each higher-level operat ion execution H
in Jr ' as a set of events - namely, the set of all
events contained in the representation of the
lower-level operat ion executions that comprise
H. This in turn defines precedence relations --:--,
and -* ~, where G ~ H means that all events in

(the representat ion 00 G precede all events in
H, and G-*-+H means that some event in G
precedes some event in H. for G and H in

To express all this formally, let E, ---,. # be
a model for (Y, , . - - ,) , define the mapping
#* on . ~ by

and define the precedence relations --~ and -*-+
on W by

G--~ H - V g~#*(G): V h~#*(H): g ---.h

G-*-~,H- 3g~#*(G): 3h~#*(H): g ,h or g=h.

Using (1), it is easy to show that these pre-
cedence relations are the same ones obtained by
the following definitions"

G * , H - V A ~ G ' V B ~ H : A ,B
G - : ~ H - 3 A~G: 3 BsH: A--~B or A=B. (2)

Observe that --a--;and - : + are expressed directly
in terms of the , and --+ relations on ~,
without reference to any model. We take (2) to
be the definition of the relations *, and -**.

For the triple (~r ~ , , - * +) to be a system
execution, the relations *, and -:+ must satisfy
axioms A I - A 5 . If each element of g is as-
sumed to be a nonempty set of operat ion exe-
cutions, then Axioms A I - A 4 follow from (2)
and the corresponding axioms for , and --~.
For A5 to hold, it is sufficient that each ele-
ment of g consist of a finite number of ele-
ments of ~, and that each element of ~ belong
to a finite number of elements of ~ . Adding the
natural requirement that every lower-level oper-
ation execution be part of some higher-level
one, this leads to the following definition.

Definition 4. A higher-level view of a system
execution (~ , , , - - +) consists of a set . ~
such that:

H 1. Each element of ~ is a finite, nonempty
set of elements of ~.

H2. Each element of ~,~ belongs to a finite,
nonzero number of elements of ~ .

In most cases of interest, ~" is a partit ion of
~, so each element of 6" belongs to exactly one
element of ~ . However, Definition 4 allows the
more general case in which a single lower-level
operat ion execution is viewed as part of the
implementat ion of more than one higher-level
one.

Let us now consider what it should mean

L. Lamport: On interprocess communication. I 81

for one system to implement another. If the
system execution (~ , , --*> is an implementa-
tion of a system execution <J~, x:,. ~ > ,
then we expect ~,~ to be a higher-level view of

- that is, each operation in ~ should consist
of a set of operation executions of ~ satisfying
H 1 and H2. This describes the elements of .~,
but not the precedence relations Je and -~-~.
What should those relations be?

If we consider the operation executions in 6 p
to be the "real" ones, and the elements of ._~
to be fictitious groupings of the real operation
executions into abstract, higher-level ones, then
the induced precedence relations -.*, and -*-. rep-
resent the "real" temporal relations on ~ .
These induced relations make the higher-level
view g a system execution, so they are an
obvious choice for the relations Je, and -~-~,.
However, as we shall see, they may not be the
proper choice.

Let us return to the problem of implement-
ing atomic database operations. Atomicity re-
quires that, when viewed at the level at which
the operation executions are the transactions,
the transactions appear to be executed sequen-
tially. In terms of our formalism, the correct-
ness condition is that, in any system execution
<.~, Je,, ~ , > of the database system, all the
elements of ,,~ (the transactions) must be totally
ordered by --~. This higher-level view of the
database operations is implemented by lower-
level operations that access individual database
items. The higher-level system execution <~ ,
Je,, _~_~> must be implemented by a lower-

level one <~,-----~, --~> in which each transaction
H in X is implemented by a set of lower-level
operation executions in ~.

Suppose G = { G 1 , . . . , G , , } and H = { H 1 , . . . ,
H,} are elements of ~ , where the G i and H i are
operation executions in ~ For G - - ~ H to hold,
each G i must precede (,) each Hi, and, con-
versely, H -z--,G only if each Hi.precedes each G~.
In a situation like the one m Fig. 3, neither
G-z--,H nor H --z--~ G holds. (For a system with a
global-time model, this means that both G-*-,H
and H-*-~G hold.) If we required that the
relations Je, and X~ be the induced relations
--:--, and -*-+, then the only way to implement a
serializable system, in which ~e is a total or-
dering of the transactions, would be to prevent
the type of interleaved execution shown in
Fig. 3. The only allowable system executions
would be those in which the transactions were
actually executed serially - each transaction be-
ing completed before the next one is begun.

Gt H, G=

Fig. 3. An example with G ~-7-~ H and H--r-G

~r 2
I f

Serial execution is, of course, too stringent a
requirement because it prevents the concurrent
execution of different transactions. We merely
want to require that the system behave as if
there were a serial execution. To show that a
given system correctly implements a serializable
database system, one specifies both the set of
lower-level operation executions corresponding
to each higher-level transaction and the pre-
cedence relation Je that describes the "as if"
order, where the transactions act as if they had
occurred in that order. This order must be con-
sistent with the values read from the database -
each read obtaining the value written by the
most recent write of that item, where "most
recent" is defined by ~ , .

As was observed in the introduction, the
condition that a read obtain a value consistent
with the ordering of the operations is not the
only condition that must be placed upon .ye~.
For the example in which each transaction
either reads from or writes to the database, but
does not do both, we must rule out an imple-
mentat ion that throws writes away and lets a
read return the initial values of the database
entries - an implementat ion that achieves
serializability with a precedence relation
in which all the read transactions precede all
the write transactions. Al though this implemen-
tation satisfies the requirement that every read
obtain the most recently written value, this pre-
cedence relation is absurd because a read is
defined to precede a write that may really have
occurred years earlier.

Why is such a precedence relation absurd?
In a real system, these database transactions
may occur deep within the computer ; we never
actually see them happen. What is wrong with
defining the precedence relation ~e, to pretend
that these operation executions happened in any
order we wish? After all, we are already pre-
tending, contrary to fact, that the operations
occur m some serial order.

In addit ion to reads and writes to database
items, real systems perform externally observ-
able operation executions such as printing on
terminals. By observing these operation exe-
cutions, we can infer precedence relations among
the internal reads and writes. We need some
condition on ~ and -~-~ to rule out pre-

82 L. Lamport : On interprocess communication. I

I ~(B) I

,,CA) ~(C)

t A I ~'(B) II ~'()1 I ~,'(c)
Fig. 4. An illustration of Proposition 1

cedence relations that contradict such obser-
vations.

It is shown below that these contradictions
are avoided by requiring that if one higher-level
operation execution "really" precedes another,
then that precedence must appear in the "pre-
tend" relations. Remembering that *, and -*-§
are the "real" precedence relations and
and -~-. are the "pre tend" ones, this leads to
the following definition.

Definition 5. A system execution (5(, , , - - ~)
implements a system execution (g f , - -~ ~ , -~-.)
if 9 f is a higher-level view of ~.~ and the follow-
ing condition holds:

H3. For any G, Hsg f ' : if G * ,H then G : e H,
where *, is defined by (2).

One justification for this definition in terms
of global-time models is given by the following
proposition, which is proved in [8]. (Recall that
a global-time model is determined by the map-
ping #, since the set of events and their order-
ing is fixed.)

Proposition l. Let < J , , , - - +) and (~, --~ , - '- .)
be system executions, both o f which have global-
time models, such that for any A, Be~C~ A----*B
implies A--:-.B. For any global-~ime model # of
< ~ , - - * , - - +) there exists a global-time model #'
o f <J, ' , , - : .> such that #'(A)~_p(A) for every
A i n U .

This proposit ion is illustrated in Fig. 4, where:
(i) ~ = { A , B , C}, (ii) A - - C is the only - - .
relation, and (iii) B ' , A ' , C. To apply Prop-
osition 1 to Definition 5, substitute ~ for ~ ,
substitute ~ and -*-* for ~ and - - . , and sub-
stitute ~ and J-* for --:-* and - '* . The propo-
sition then states that the "pretend" precedence
relations are obtained from the real ones by
shrinking the time interval during which the
operation execution is considered to have oc-
curred.

Let us return to the example of implement-
ing a serializable database system. The formal
requirement is that any system execution
(6<, ,, - - +), whose operation executions consist

of reads and writes of individual database
items, must implement a system <Jr, ~--~,
: - .) , whose operations are database trans-
actions, such that ~-~ is a total ordering of
By Proposit ion 1, this means that not only must
the transactions be performed as if they had
been executed in some sequential order, but
that this order must be one that could have
been obtained by executing each transaction
within some interval of time during the period
when it actually was executed. This rules out
the absurd implementat ion described above,
which implies a precedence relation ~ that
makes writes come long after they actually oc-
curred.

Another justification for Definition 5 is de-
rived from the following result, which is proved
in [8]. Its statement relies upon the obvious
fact that if <~, , , - - .) is a system execution,
then <J,, ,, - - . > is also a system execution for
any subset F of ~. (The symbols ---. and - - .
denote both the relations on 9 ~ and their re-
strictions to F Also, in the proposition, the set
F is identified with the set of all singleton sets
{A} for A e F)

Proposit ion 2. Let ~ w J , , , , - - . be a system
execution, where ~ and 3- are disjoint; let
< ~ , - - * , - - ~) be an implementation of a system
execution <~, ~e,, _~_.); and let ~ and -*-.
be the relations defined on 9 f u 3 - by (2). Then
there exist precedence relations ~ and ~-J~
such that:

�9 ~ , , ~ , ~:* is a system execution that is
implemented by 6~ w f ,, ---*, - - . .

�9 The restrictions of ~ and ~-J~ to ~ equal
and -g-y, respectively.

�9 The restrictions of ~ and ~ to 9- are
extensions o f the relations -:--, and _5% re-
spectively.

To illustrate the significance of this proposi-
tion for Definition 5, let <~, ---*,--~> be a sys-
tem execution of reads and writes to database
items that implements a higher-level system ex-
ecution (gf, ~-~--,, f - .) of database transac-
tions. The operation executions of 9 ~ pre-
sumably occur deep inside the computer and
are not directly observable. Let F be the set of
all other operation executions in the system,
including the externally observable ones. Prop-
osition 2 means that, while the "pretend" pre-
cedence relations - ~ and ;~-. may imply new
precedence relations on the operation exe-

L. Lamport: On interprocess communication. I 83

cutions in .f, these relations (~---~ and ~J,) are
consistent with the "real" precedence relations
--~ and -*-, on .7. Thus, pretending that the
database transactions occur in the order given
by ~ does not contradict any of the real,
externally observable orderings among the
operations in Y.

When implementing a higher-level system,
one usually ignores all operation executions
that are not part of the implementation. For
example, when implementing a database system,
one considers only the transactions that access
the database, ignoring the operation executions
that initiate the transactions and use their re-
suits. This is justified by Proposit ion 2, which
shows that the implementat ion cannot lead to
any anomalous precedence relations among the
operation executions that are being ignored.

A particularly simple kind of implementat ion
is one in which each higher-level operation execu-
tion is implemented by a single lower-level one.

Definition 6. An implementat ion (J , , , - - .)
.of (W, ze , ~ .) is said to be trivial if every
element of ~" is a singleton set.

In a trivial implementation, the sets ~ and o~
are (essentially) the same; the two system exe-
cutions differ only in their precedence relations.
A trivial implementat ion is one that is not an
implementat ion in the ordinary sense, but mere-
ly involves choosing new precedence relations
("as if" temporal relations).

3 Systems
A system execution has been defined, but not a
system. Formally, a system is just a set of sys-
tem executions - a set that represents all possi-
ble executions of the system.

Definition 7. A system is a set of system execu-
tions.

The usual method of describing a system is
with a program written in some programming
language. Each execution of such a program
describes a system execution, and the program
represents the system consisting of the set of all
such executions. When considering communi-
cation and synchronization properties of con-
current systems, the only operation executions
that are of interest are ones that involve in-
terprocess communicat ion - for example, the
operations of sending a message or reading a

shared variable. Internal "calculation" steps can
be ignored. If x, y, and : are shared variables
and a is local to the process in question, then
an execution of the statement x : = y + a , - in-
cludes three operation executions of interest: a
read of y, a read of z, and a write of x. The
actions of reading a, computing the product,
and computing the sum are independent of the
actions of other processes and could be consid-
ered to be either separate operation executions
or part of the operation that writes the new
value of x. For analyzing the interaction among
processes, what is significant is that each of the
two reads precedes (----~) the write, and that no
precedence relation is assumed between the two
reads (assuming that the programming language
does not specify an evaluation order within ex-
pressions).

A formal semantics for a programming lan-
guage can be given by defining, for each syn-
tactically correct program, the set of all possible
executions. This is done by recursively defining
a succession of lower and lower higher-level
views, in which each operation execution repre-
sents a single execution of a syntactic program
unit. 3 At the highest-level view, a system execu-
tion consists of a single operation execution
that represents an execution of the entire pro-
gram. A view in which an execution of the
statement S; T is a single operation execution is
refined into one in which an execution consists
of an execution of S followed by (,) an execu-
tion of T.* While this kind of formal semantics
may be useful in studying subtle programming
language issues, it is unnecessary for the simple
language constructs generally used in describing
synchronization algorithms like the ones in
Part II, so these ideas will just be employed
informally.

Having defined what a system is, the next
step is to define what it means for a system S to
implement a higher-level system H. The higher-
level system H can be regarded as a specifi-
cation of the lower-level one S, so we must
decide what it should mean for a system to
meet a specifieation.

The system executions of S involve lower-level
concepts such as program variables; those

3 For nonterminating programs, the formalism must be
extended to allow nonterminating higher-level operation
executions, each one consisting of an infinite set of
lower-level operation executions

4 In the general case, we must also allow the possibility
that an execution of S: T consists of a nonterminating
execution of S

84 L. Lamport: On interprocess communication. I

of H involve higher-level concepts such as
transactions. The first thing we need is some
way of interpreting a "concrete" system execu-
tion (.Z , , - - .) of the "real" implementat ion
S as an "abstract" execution of the "imaginary"
high-level system H, Thus, there must be some
mapping t that assigns to any system execution
(~ , , - - .) of S a higher-level system execu-
tion z ((~ ----,, - - .)) that it implements. The im-
plementat ion S, which is a set of system exe-
cutions, yields a set t(S) of higher-level system
executions. What should be the relation be-
tween z(S) and H?

There are two distinct approaches to specifi-
cation, which may be called the prescriptive and
restrictive approaches. The prescriptive ap-
proach is generally employed by methods in
which a system is specified with a high-level
program, as in [9] and [11]. An implementa-
tion must be equivalent to the specification in
the sense that it exhibits all the same possible
behaviors as the specification. In the prescrip-
tive approach, one requires that every possible
execution of the specification H be represented
by some execution of S, so z(S) must equal H.

The restrictive approach is employed primar-
ily by axiomatic methods, in which a system
is specified by stating the properties i t must
satisfy. Any implementat ion that satisfies those
properties is acceptable; it is not necessary for
the implementat ion to allow all possible be-
haviors that satisfy the properties. If H is the
set of all system executions satisfying the re-
quired properties, then the restrictive approach
requires only that every execution of S repre-
sent some execution of H, so t(S) must be con-
tained in H.

To illustrate the difference between the two
approaches, consider the problem of imple-
menting a program containing the statement
x'. = y + a * z with a lower-level machine-lan-
guage program. The statement does not specify in
which order y and z are to be read, so H should
contain executions in which y is read before z,
executions in which z is read before y, as well
as ones in which they are read concurrently.
With the prescriptive approach, a correct imple-
mentat ion would have to allow all of these
possibilities, so a machine-language program
that always reads y first then z would not be a
correct implementation. In the restrictive ap-
proach, this is a perfectly acceptable implemen-
tation because it exhibits one of the allowed
possibilities.

The usual reason for not specifying the or-

der of evaluation is to allow the compiler to
choose any convenient order, not to require
that it produce nondeterministic object code. I
therefore find the restrictive approach to be the
more natural and adopt it in the following defi-
nition.

Definition 8. The system S implements a system
H if there is a mapping t: S~--,H such that, for
every system execution (~ , , - - § in S,
(55, , , - - .) implements l ((~ - -~ . - -§

In taking the restrictive approach, one faces
the question of how to specify that the system
must actually do anything. The specification of a
banking system must allow a possible system
execution in which no customers happen to use
an automatic teller machine on a particular af-
ternoon, and it must include the possibility that
a customer will enter an invalid request. How
can we rule out an implementat ion in which the
machine simply ignores all customer requests
during an afternoon, or interprets any request
as an invalid one?

The answer lies in the concept of an inter-
face specification, discussed in [7]. The specifi-
cation m u s t explicitly describe how certain in-
terface operations are to be implemented; their
implementat ion is not left to the implementer.
The interface specification for the bank includes
a description of what sequences of keystrokes at
the teller machine constitute valid requests, and
the set of system executions only includes ones
in which every valid request is serviced. What it
means for someone to use the machine is part
of the interface specification, so the possibility
of no one using the machine on some afternoon
does not allow the implementat ion to ignore
someone who does use it.

Part II considers only the internal operations
that effect communicat ion between processes
within the system, not the interface operations
that effect communicat ion between the system
and its environment. Therefore, the interface
specification is not considered further. The
reader is referred to [7] for a discussion of this
subject.

References
l. Bernstein PA. Goodman N (1981) Concurrency con-

trol in distributed database systems. ACM Comput
Surv 13:185-222

2. Brauer W (ed) (1980) Net Theory and Applications.
Lect Notes Comput Sci 84, Springer-Verlag, Berlin
Heidelberg New York

L. Lamport: On interprocess communication, l 85

3. Lamport L tin pressl The mutual exclusion problem. J
ACM

4. Lamport L (19791 A new approach to proving the
correctness of multiprocess programs. ACM Trans
Program Lang Syst 1 : 84-97

5. Lamport L. On interprocess communication. Part II:
Algorithms. Distributed Computing 1 : 85-101

6. Lamport L (1978) Time, clocks and the ordering of events
in a distributed system. Commun ACM 21:558-565

7. Lamport L (1985) What it means for a concurrent
program to satisfy a specification: why no one has
specified priority. In: Proceedings of the Twelfth ACM
Symposium on Principles of Programming Languages,
ACM SIGACT-SIGPLAN, New Orleans

8. Lamport L (1985) Interprocess Communication. SRI
Technical Report, March 1985

9. Lauer PE, Shields MW. Best E (19791 Formal Theory
of the Basic COSY Notation. Technical Report
TR143. Computing Laboratory, University of New-
castle upon Tyne

10. Mazurkiewicz A (1984) Semantics of Concurrent Sys-
tems: A Modular Fixed Point Trace Approach. Tech-
nical Report 84-19, Institute of Applied Mathematics
and Computer Science, University of Leiden

11. Milner R (1980) A Calculus of Communicating
Systems. Lect Notes Comput Sci 92, Springer-Verlag,
Berlin Heidelberg New York

12. Pnueli A (1977) The temporal logic of programs. In:
Proc. of the 18th Symposium on the Foundations of
Computer Science, ACM, November 1977

13. Winskel G (1980) Events in Computation. PhD thesis,
Edinburgh University

