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Abstract. A formalism for specifying and rea- 
soning about concurrent systems is described. 
Unlike more conventional formalisms, it is not 
based upon atomic actions. A definition of 
what it means for one system to implement a 
higher-level system is given and justified. In 
Part II, the formalism is used to specify several 
classes of interprocess communicat ion mecha- 
nisms and to prove the correctness of algo- 
rithms for implementing them. 
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Introduction 

This is the first part of a two-part paper ad- 
dressing what I believe to be fundamental ques- 
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tions in the theory of interprocess communi-  
cation. It develops a formal definition of what it 
means to implement  one system with a lower- 
level one and provides a method  for reasoning 
about concurrent systems. The definitions and 
axioms introduced here are applied in Part II 
[5] to algorithms that implement certain in- 
terprocess communicat ion mechanisms. 

To motivate the formalism, let us consider 
the question of atomicity. Most treatments of 
concurrent processing assume the existence of 
atomic operations "- an atomic operation being 
one whose execution is performed as an in- 
divisible action. The term operation is used to 
mean a class of actions such as depositing mon- 
ey in a bank account, and the term operation 
execution to mean one specific instance of 
executing such an action - for example, deposit- 
ing $100 in account number  14335 at 
10:35 a.m. on December 14, 1987. Atomic oper- 
ations must be implemented in terms of lower- 
level operations. A high-level language may 
provide a P operation to a semaphore as an 
atomic operation, but this operation must  be 
implemented in terms of lower-level machine- 
language instructions. Viewed at the machine- 
language level, the semaphore operation is not 
atomic. Moreover, the machine-language oper- 
ations must ultimately be implemented with cir- 
cuits in which operations are manifestly non- 
atomic - the possibility of harmful "race con- 
ditions" shows that the setting and the testing 
of a flip-flop are not atomic actions. 

Part II considers the problem of implement- 
ing atomic operations to a shared register with 
more primitive, nonatomic operations. Here, a 
more familiar example of implementing ato- 
micity is used: concurrency control in a database. 
In a database system, higher-level transactions, 

Reprinted Issue I 
w/thout ,'~ 



78 L. Lamport: On interprocess communication. I 

which may read and modify many individual 
data items, are implemented with lower-level 
reads and writes of single items. These lower- 
level read and write operations are assumed to 
be atomic, and the problem is to make  the 
higher-level transactions atomic. It is cus tomary 
to say that a semaphore  operat ion is atomic 
while a database t ransact ion appears to be 
atomic, but  this verbal distinction has no fun- 
damental  significance. 

In database systems, atomicity of transac- 
tions is achieved by implementing a serializable 
execution order. The lower-level accesses per- 
formed by the different transactions are sched- 
uled so that the net effect is the same as if the 
transactions had been .executed in some serial 
order  - first executing all the lower-level ac- 
cesses comprising one transaction, then execut- 
ing all the accesses of the next t ransacuon,  
and so on. The transactions should not  actu- 
ally be scheduled in such a serial fashion, 
since this would be inefficient; it is necessary 
only that the effect be the same as if that were 
done. 1 

In the li terature on concurrency control in 
databases, serializability is usually the only cor- 
rectness condit ion that is stated [1]. However,  
serializability by itself does not ensure correct- 
ness. Consider a database system in which each 
transaction either reads from or writes to the 
database, but does not do both. Moreover ,  as- 
sume that the system has a finite lifetime, at the 
end of which it is to be scrapped. Serializability 
is achieved by an implementat ion in which 
reads always return the initial value of the data- 
base entries and writes are simply not executed. 
This yields the same results as a serial execu- 
tion in which one first performs all the read 
transactions and then all the writes. While such 
an implementat ion satisfies the requirement  of 
serializability, no one would consider it to be 
correct. 

This example illustrates the need for a care- 
ful examinat ion of what  it means for one sys- 
tem to implement  another.  It is reconsidered in 
Sect. 2, w h e r e  the addit ional  correctness condi- 
tion needed to rule out  this absurd implementa-  
tion is stated. 

1 In the context of databases, atomicity often denotes the 
additional property that a failure cannot leave the da- 
tabase in a state reflecting a partially completed transac- 
tion. In this paper, the possibility of failure is ignored, 
so no distinction between atomicity and serializability is 
made 

1 S y s t e m  executions 

Almost  all models of concurrent  processes have 
indivisible a tomic actions as primitive elements. 
For  example, models  in which a process is re- 
presented by a sequence or " t race"  [10, 12, 13] 
assume that each element in the sequence repre- 
sents an indivisible action. Net  models [2] and 
related formalisms [9, 11] assume that the fir- 
ing of an individual transition is atomic. These 
models are not appropriate  for studying such 
fundamental  questions as what  it means to 
implement an atomic operation, in which the 
nonatomici ty  of operations must be directly ad- 
dressed. 

More  conventional  formalisms are therefore 
eschewed in favor of one int roduced in [4] and 
refined in [3], in which the primitive elements 
are operation executions that are not assumed 
to be atomic. This formalism is described be- 
low; the reader is referred to [4] and [3] for 
more  details. 

A system execution consists of a set of oper- 
ation executions, together with certain temporal  
precedence relations on these operation exe- 
cutions. Recall that an operat ion execution re- 
presents a single execution of some operation. 
When all operations are assumed to be atomic, 
an operat ion execution A can  influence another  
operat ion execution B only if A precedes B - 
meaning that all actions of A are completed 
before any action of B is begun. In this case, 
one needs only a single temporal  relation ---., 
read "precedes",  to describe the temporal  or- 
dering among operat ion executions. While tem- 
poral precedence is usually considered to be a 
total ordering of a tomic operations, in distrib- 
uted systems it is best thought  of as an irre- 
flexive partial ordering (see [6]). 

Nonatomic i ty  introduces the possibility that 
an operat ion execution A can influence an 
operation execution B without preceding it; it is 
necessary only that some action of A precede 
some action of B. Hence, in addit ion to the pre- 
cedence relation ----,, one needs an additional 
relation - - . ,  read "can affect", where A - - . B  
means that some action of A precedes some 
action of B. 

Definition I. A system execution is a triple 
( J , - - ~ , - - ~ ) ,  where ~ is a finite or countably 
infinite set whose elements are called operation 
executions, and --~ and --~ are precedence re- 
lations on ~ satisfying axioms A 1 - A 5  below. 
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To assist in understanding the axioms for the 
, and - - .  relations, it is helpful to have a 

semantic model  for the formalism. The model  
to be used is one in which an operat ion execu- 
tion is represented by a set of primitive actions 
or events, where A----~B means that all the 
events of A precede all the events of B, and 
A - - . B  means that some event of A precedes 
some event of B. Letting E denote the set of all 
events, and , the temporal  precedence relation 
among events, we get the following formal defi- 
nition. 

Definition 2. A model of a system execution 
(~,-----*, --~.) consists of a triple E,----*,/~, where 
E is a set, ----, is an irreflexive partial ordering 
on E, and # is a mapping that assigns to each 
operat ion execution A of ~ a nonempty  subset 
#(A) of E, such that for every pair of  operat ion 
executions A and B of ~ :  

A .~B = Vaep(A) :  Vb~p(B): a : -~b 

A - - . B - ~ a ~ # ( A ) : ~ b ~ # ( B ) : a  , b o r a = b .  (1) 

Note  that the same symbol , denotes the "pre-  
cedes" relation both between operat ion exe- 
cutions in 6 a and between events in E. 

Other  than the existence of the temporal  
part ial ,ordering relation ----*, no assumption is 
made  about the structure of the set of events E. 
In particular, operat ion executions may be mod-  
eled as infinite sets of events. An impor tant  
class of models is obtained by letting E be the 
set of events in four-dimensional spacetime, 
with �9 the "happens  before" relation of special 
relativity, where a ,b means that it is tem- 
porally possible for event a to causally affect 
event b. 

Another  simple and useful class of models is 
obtained by letting E be the real number  line 
and representing each operat ion execution A as 
a closed interval. 

Definition 3. A global-time model of a system 
execution ( ~ , - - - - - , , - - . )  is one in which E is the 
set of real numbers,----* is the ordinary < re- 
lation, and each set p(A) is of the form Is A, fa ]  
with s a <fA" 

Think of sa and fA as the starting and finish- 
ing times of A. In a global-time model, A ,B  
means that A finishes before B starts, and 
A - - . B  means that A starts before (or at the 
same time as) B finishes. These relations are 
illustrated by Fig. 1, where operat ion executions 

A B 

C 
J I 

Fig. 1. Three operation executions in a global-time model 
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Fig. 2. An illustration of Axiom A4 

A, B, and C, represented by the three indicated 
intervals, satisfy: A------, B, A , C, B - - ,  C, and 
C - - . B .  (In this and  similar figures, the number  
line runs from left to right, and overlapping 
intervals are drawn one above the other.) 

To complete  Definit ion 1, the axioms for the 
precedence relations ----. and - - .  of  a system 
execution must  be given. They are the following, 
where A, B, C, and D denote  arbi t rary oper- 
ation executions in ~. Axiom A 4  is illustrated 
(in a global-time model)  by Fig. 2; the reader  is 
urged to draw similar pictures to help under-  
stand the other  axioms. 

A1. The relation , is an irreflexive partial 
ordering. 

A2. I f A  , B t h e n A - - ~ B a n d B  /.~A. 
A3. I f A  , B - - , C o r A - - . B - - - - - , C  

then A - - �9 C. 

A4. I f A  , B - - . C  , D t h e n A  ,D. 
A5. For  any A, the set of all B such that 

A / , B  is finite. 

(These axioms differ from the ones in [3] be- 
cause only terminat ing operat ion executions are 
considered here.) 

Axioms A 1 - A 4  follow from (1), so they do 
not constrain the choice of a model. Axiom A5 
does not follow from (1); it restricts the class of 
allowed models. Intuitively, A5 asserts that  a 
system execution begins at some point in time, 
rather than extending into the infinite past. 
When E is the set of  events in space-time, A5 
holds for any model  in which: (i) each oper- 
ation occupies a finite region of space-time, (ii) 
any finite region of space-time contains only a 
finite number  of operat ion executions, and (iii) 
the system is not expanding faster than the 
speed of light. 2 

Most readers will find it easiest to think about  

2 A system expanding faster than the speed of light could 
have an infinite number of operation executions none of 
which are preceded by any operation 
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system executions in terms of a global-time 
model, and to interpret the relations ...... and 
--+ as indicated by the example in Fig. 1. 
Such a mental  model  is adequate  for most pur- 
poses. However,  the reader should be aware 
that in a system execution having a global-time 
model, for any distinct operat ion executions A 
and B, either A -----* B or B - -  + A. (In fact, this is a 
necessary and sufficient condit ion for a system 
execution to have a global-time model [8].) 
However,  in a system execution without a glob- 
al-time model, it is possible for neither A , B 
nor  B- -+  A to hold. As a trivial counterexample,  
let ~ consist of two elements and let the re- 
lations , and --+ be empty. 

While a global-time model  is a valuable aid 
to acquiring an intuitive understanding of a 
system, it is better to use more  abstract reason- 
ing when proving properties of systems. The 
relations ~ and --~. capture the essential tem- 
poral properties of a system execution, and A 1- 
A5 provide the necessary tools for reasoning 
about  these relations. It has been my experience 
that proofs based upon these axioms are sim- 
pler and more  instructive than ones that in- 
volve modeling operat ion executions as sets of 
events. 

2 Hierarchical views 

A system can be viewed at different levels of  
detail, with different operat ion executions at 
each level. Viewed at the customer's level, a 
banking system has operat ion executions such 
as deposit $1000. Viewed at the programmer 's  
level, this same system executes operations such 
as dep_amt[cust].. = 1000. The fundamental  
problem of system building is to implement  one 
system (like a banking system) as a higher-level 
view of another  system (like a Pascal program). 

A higher-level operat ion consists of a set of 
lower-level operat ions - the set of operations 
that implement  it. Let (Y, ---., --~,) be a system 
execution and let ~f' be a set whose elements, 
called higher-level operatiq~ executions, are sets 
of operat ion executions from ~. A model for 
( ~ ,  ---,, - -  ~) represents each operat ion execution 
in ~ by a set of  events. This gives a representa- 
tion of each higher-level operat ion execution H 
in Jr '  as a set of events - namely, the set of all 
events contained in the representation of the 
lower-level operat ion executions that comprise 
H. This in turn defines precedence relations --:--, 
and -* ~, where G ~ H means that all events in 

(the representat ion 00 G precede all events in 
H, and G-*-+H means that some event in G 
precedes some event in H. for G and H in 

To express all this formally, let E, ---,. # be 
a model  for (Y, , . - - , ) ,  define the mapping 
#* on . ~  by 

and define the precedence relations --~ and -*-+ 
on W by 

G--~ H - V g~#*(G): V h~#*(H):  g ---.h 

G-*-~,H- 3g~#*(G): 3h~#*(H): g ,h or g=h. 

Using (1), it is easy to show that these pre- 
cedence relations are the same ones obtained by 
the following definitions" 

G * , H - V A ~ G ' V B ~ H : A  ,B 
G - : ~ H -  3 A~G: 3 BsH: A--~B or A=B. (2) 

Observe that --a--;and - :  + are expressed directly 
in terms of the , and --+ relations on ~, 
without reference to any model. We take (2) to 
be the definition of the relations *, and -**. 

For  the triple (~r ~ , , - * + )  to be a system 
execution, the relations *, and -:+ must satisfy 
axioms A I - A 5 .  If each element of g is as- 
sumed to be a nonempty  set of operat ion exe- 
cutions, then Axioms A I - A 4  follow from (2) 
and the corresponding axioms for , and --~. 
For  A5 to hold, it is sufficient that each ele- 
ment of g consist of a finite number  of ele- 
ments of ~, and that each element of ~ belong 
to a finite number  of elements of ~ .  Adding the 
natural  requirement  that every lower-level oper- 
ation execution be part of some higher-level 
one, this leads to the following definition. 

Definition 4. A higher-level view of a system 
execution ( ~ ,  , , - - + )  consists of a set . ~  
such that:  

H 1. Each element of ~ is a finite, nonempty  
set of elements of ~. 

H2. Each element of ~,~ belongs to a finite, 
nonzero number  of elements of ~ .  

In most  cases of interest, ~" is a partit ion of 
~, so each element of 6" belongs to exactly one 
element of ~ .  However,  Definition 4 allows the 
more general case in which a single lower-level 
operat ion execution is viewed as part of the 
implementat ion of more than one higher-level 
one. 

Let us now consider what it should mean 
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for one system to implement another. If the 
system execution ( ~  , ,  --*> is an implementa- 
tion of a system execution <J~, x:,. ~ > ,  
then we expect ~,~ to be a higher-level view of 

- that is, each operation in ~ should consist 
of a set of operation executions of ~ satisfying 
H 1 and H2. This describes the elements of .~, 
but not the precedence relations Je and -~-~. 
What should those relations be? 

If we consider the operation executions in 6 p 
to be the "real" ones, and the elements of ._~ 
to be fictitious groupings of the real operation 
executions into abstract, higher-level ones, then 
the induced precedence relations -.*, and -*-. rep- 
resent the "real" temporal relations on ~ .  
These induced relations make the higher-level 
view g a system execution, so they are an 
obvious choice for the relations Je, and -~-~,. 
However, as we shall see, they may not be the 
proper choice. 

Let us return to the problem of implement- 
ing atomic database operations. Atomicity re- 
quires that, when viewed at the level at which 
the operation executions are the transactions, 
the transactions appear to be executed sequen- 
tially. In terms of our formalism, the correct- 
ness condition is that, in any system execution 
<.~, Je,, ~ , >  of the database system, all the 
elements of ,,~ (the transactions) must be totally 
ordered by --~.  This higher-level view of the 
database operations is implemented by lower- 
level operations that access individual database 
items. The higher-level system execution <~ ,  
Je,, _~_~> must be implemented by a lower- 

level one <~,-----~, --~> in which each transaction 
H in X is implemented by a set of lower-level 
operation executions in ~. 

Suppose G = { G 1 , . . . , G , , }  and H = { H 1 , . . . ,  
H,} are elements of ~ ,  where the G i and H i are 
operation executions in ~ For G - - ~ H  to hold, 
each G i must precede ( ,) each Hi, and, con- 
versely, H -z--,G only if each Hi.precedes each G~. 
In a situation like the one m Fig. 3, neither 
G-z--,H nor H --z--~ G holds. (For a system with a 
global-time model, this means that both G-*-,H 
and H-*-~G hold.) If we required that the 
relations Je, and X~ be the induced relations 
--:--, and -*-+, then the only way to implement a 
serializable system, in which ~e is a total or- 
dering of the transactions, would be to prevent 
the type of interleaved execution shown in 
Fig. 3. The only allowable system executions 
would be those in which the transactions were 
actually executed serially - each transaction be- 
ing completed before the next one is begun. 

Gt H, G= 

Fig. 3. An example with G ~-7-~ H and H--r-G 

~r 2 
I f 

Serial execution is, of course, too stringent a 
requirement because it prevents the concurrent 
execution of different transactions. We merely 
want to require that the system behave as if 
there were a serial execution. To show that a 
given system correctly implements a serializable 
database system, one specifies both the set of 
lower-level operation executions corresponding 
to each higher-level transaction and the pre- 
cedence relation Je that describes the "as if" 
order, where the transactions act as if they had 
occurred in that order. This order must  be con- 
sistent with the values read from the database - 
each read obtaining the value written by the 
most recent write of that item, where "most  
recent" is defined by ~ , .  

As was observed in the introduction, the 
condition that a read obtain a value consistent 
with the ordering of the operations is not the 
only condition that must be placed upon .ye~. 
For the example in which each transaction 
either reads from or writes to the database, but 
does not do both, we must rule out an imple- 
mentat ion that throws writes away and lets a 
read return the initial values of the database 
entries - an implementat ion that achieves 
serializability with a precedence relation 
in which all the read transactions precede all 
the write transactions. Al though this implemen- 
tation satisfies the requirement that every read 
obtain the most recently written value, this pre- 
cedence relation is absurd because a read is 
defined to precede a write that may really have 
occurred years earlier. 

Why is such a precedence relation absurd? 
In a real system, these database transactions 
may occur deep within the computer ;  we never 
actually see them happen. What is wrong with 
defining the precedence relation ~e, to pretend 
that these operation executions happened in any 
order we wish? After all, we are already pre- 
tending, contrary to fact, that the operations 
occur m some serial order. 

In addit ion to reads and writes to database 
items, real systems perform externally observ- 
able operation executions such as printing on 
terminals. By observing these operation exe- 
cutions, we can infer precedence relations among 
the internal reads and writes. We need some 
condition on ~ and -~-~ to rule out pre- 
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I ~(B) I 

,,CA) ~(C) 

t A I ~'(B) II ~'( )1 I ~,'(c) 
Fig. 4. An illustration of Proposition 1 

cedence relations that contradict such obser- 
vations. 

It is shown below that these contradictions 
are avoided by requiring that if one higher-level 
operation execution "really" precedes another, 
then that precedence must appear in the "pre- 
tend" relations. Remembering that *,  and -*-§ 
are the "real" precedence relations and 
and -~-. are the "pre tend"  ones, this leads to 
the following definition. 

Definition 5. A system execution (5(, , , - - ~ )  
implements a system execution (g f , - -~  ~ , -~-.) 
if 9 f  is a higher-level view of ~.~ and the follow- 
ing condition holds: 

H3. For any G, Hsg f ' :  if G * ,H then G : e  H, 
where *, is defined by (2). 

One justification for this definition in terms 
of global-time models is given by the following 
proposition, which is proved in [8]. (Recall that 
a global-time model is determined by the map- 
ping #, since the set of events and their order- 
ing is fixed.) 

Proposition l. Let < J ,  , , - - + ) and ( ~,  --~ , - '- . ) 
be system executions, both o f  which have global- 
time models, such that for any A, Be~C~ A----*B 
implies A--:-.B. For any global-~ime model # of  
< ~ , - - * , - - + )  there exists a global-time model #' 
o f  <J, ' , ,  - : .>  such that #'(A)~_p(A) for every 
A i n U .  

This proposit ion is illustrated in Fig. 4, where: 
(i) ~ = { A , B ,  C}, (ii) A - -  C is the only - - .  
relation, and (iii) B ' ,  A ' ,  C. To apply Prop- 
osition 1 to Definition 5, substitute ~ for ~ ,  
substitute ~ and -*-* for ~ and - - . ,  and sub- 
stitute ~ and J-* for --:-* and - '* .  The propo- 
sition then states that the "pretend" precedence 
relations are obtained from the real ones by 
shrinking the time interval during which the 
operation execution is considered to have oc- 
curred. 

Let us return to the example of implement- 
ing a serializable database system. The formal 
requirement is that any system execution 
(6<, ,, - - +), whose operation executions consist 

of reads and writes of individual database 
items, must implement a system <Jr, ~--~, 
: - . ) ,  whose operations are database trans- 
actions, such that ~-~ is a total ordering of 
By Proposit ion 1, this means that not only must 
the transactions be performed as if they had 
been executed in some sequential order, but 
that this order must  be one that could have 
been obtained by executing each transaction 
within some interval of time during the period 
when it actually was executed. This rules out 
the absurd implementat ion described above, 
which implies a precedence relation ~ that 
makes writes come long after they actually oc- 
curred. 

Another  justification for Definition 5 is de- 
rived from the following result, which is proved 
in [8]. Its statement relies upon the obvious 
fact that if <~, , , - - . )  is a system execution, 
then <J,, ,, - - . >  is also a system execution for 
any subset F of ~. (The symbols ---. and - - .  
denote both the relations on 9 ~ and their re- 
strictions to F Also, in the proposition, the set 
F is identified with the set of all singleton sets 
{A} for A e F )  

Proposit ion 2. Let ~ w J , ,  , , - - .  be a system 
execution, where ~ and 3- are disjoint; let 
< ~ , - - * , - - ~ )  be an implementation of  a system 
execution <~,  ~e,, _~_.); and let ~ and -*-. 
be the relations defined on 9 f  u 3 -  by (2). Then 
there exist precedence relations ~ and ~-J~ 
such that: 

�9 ~ , , ~ ,  ~:* is a system execution that is 
implemented by 6~ w f ,, ---*, - - . .  

�9 The restrictions of  ~ and ~-J~ to ~ equal 
and -g-y, respectively. 

�9 The restrictions of  ~ and ~ to 9- are 
extensions o f  the relations -:--, and _5% re- 
spectively. 

To illustrate the significance of this proposi- 
tion for Definition 5, let <~, ---*,--~> be a sys- 
tem execution of reads and writes to database 
items that implements a higher-level system ex- 
ecution (gf,  ~-~--,, f - . )  of database transac- 
tions. The operation executions of 9 ~ pre- 
sumably occur deep inside the computer  and 
are not  directly observable. Let F be the set of 
all other operation executions in the system, 
including the externally observable ones. Prop- 
osition 2 means that, while the "pretend" pre- 
cedence relations - ~  and ;~-. may imply new 
precedence relations on the operation exe- 
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cutions in .f, these relations (~---~ and ~J,) are 
consistent with the "real" precedence relations 
--~ and -*-, on .7. Thus, pretending that the 
database transactions occur in the order given 
by ~ does not contradict any of the real, 
externally observable orderings among the 
operations in Y. 

When implementing a higher-level system, 
one usually ignores all operation executions 
that are not part of the implementation. For 
example, when implementing a database system, 
one considers only the transactions that access 
the database, ignoring the operation executions 
that initiate the transactions and use their re- 
suits. This is justified by Proposit ion 2, which 
shows that the implementat ion cannot lead to 
any anomalous precedence relations among the 
operation executions that are being ignored. 

A particularly simple kind of implementat ion 
is one in which each higher-level operation execu- 
tion is implemented by a single lower-level one. 

Definition 6. An implementat ion ( J ,  , , - - . )  
.of (W, ze ,  ~ . )  is said to be trivial if every 
element of ~" is a singleton set. 

In a trivial implementation, the sets ~ and o~ 
are (essentially) the same; the two system exe- 
cutions differ only in their precedence relations. 
A trivial implementat ion is one that is not an 
implementat ion in the ordinary sense, but mere- 
ly involves choosing new precedence relations 
("as if" temporal  relations). 

3 Systems 
A system execution has been defined, but not a 
system. Formally, a system is just a set of sys- 
tem executions - a set that represents all possi- 
ble executions of the system. 

Definition 7. A system is a set of system execu- 
tions. 

The usual method of describing a system is 
with a program written in some programming 
language. Each execution of such a program 
describes a system execution, and the program 
represents the system consisting of the set of all 
such executions. When considering communi-  
cation and synchronization properties of con- 
current systems, the only operation executions 
that are of interest are ones that involve in- 
terprocess communicat ion - for example, the 
operations of sending a message or reading a 

shared variable. Internal "calculation" steps can 
be ignored. If x, y, and : are shared variables 
and a is local to the process in question, then 
an execution of the statement x : = y + a , -  in- 
cludes three operation executions of interest: a 
read of y, a read of z, and a write of x. The 
actions of reading a, computing the product, 
and computing the sum are independent  of the 
actions of other processes and could be consid- 
ered to be either separate operation executions 
or part of the operation that writes the new 
value of x. For analyzing the interaction among 
processes, what is significant is that each of the 
two reads precedes (----~) the write, and that no 
precedence relation is assumed between the two 
reads (assuming that the programming language 
does not specify an evaluation order within ex- 
pressions). 

A formal semantics for a programming lan- 
guage can be given by defining, for each syn- 
tactically correct program, the set of all possible 
executions. This is done by recursively defining 
a succession of lower and lower higher-level 
views, in which each operation execution repre- 
sents a single execution of a syntactic program 
unit. 3 At the highest-level view, a system execu- 
tion consists of a single operation execution 
that represents an execution of the entire pro- 
gram. A view in which an execution of the 
statement S; T is a single operation execution is 
refined into one in which an execution consists 
of an execution of S followed by ( ,) an execu- 
tion of T.* While this kind of formal semantics 
may be useful in studying subtle programming 
language issues, it is unnecessary for the simple 
language constructs generally used in describing 
synchronization algorithms like the ones in 
Part II, so these ideas will just be employed 
informally. 

Having defined what a system is, the next 
step is to define what it means for a system S to 
implement a higher-level system H. The higher- 
level system H can be regarded as a specifi- 
cation of the lower-level one S, so we must 
decide what it should mean for a system to 
meet a specifieation. 

The system executions of S involve lower-level 
concepts such as program variables; those 

3 For nonterminating programs, the formalism must be 
extended to allow nonterminating higher-level operation 
executions, each one consisting of an infinite set of 
lower-level operation executions 

4 In the general case, we must also allow the possibility 
that an execution of S: T consists of a nonterminating 
execution of S 
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of H involve higher-level concepts such as 
transactions. The first thing we need is some 
way of interpreting a "concrete" system execu- 
tion ( .Z  , , - - . )  of the "real" implementat ion 
S as an "abstract" execution of the "imaginary" 
high-level system H, Thus, there must be some 
mapping t that assigns to any system execution 
( ~  ....... , , - - . )  of S a higher-level system execu- 
tion z ( ( ~  ----,, - - . ) )  that it implements. The im- 
plementat ion S, which is a set of system exe- 
cutions, yields a set t(S) of higher-level system 
executions. What should be the relation be- 
tween z(S) and H? 

There are two distinct approaches to specifi- 
cation, which may be called the prescriptive and 
restrictive approaches. The prescriptive ap- 
proach is generally employed by methods in 
which a system is specified with a high-level 
program, as in [9] and [11]. An implementa- 
tion must be equivalent to the specification in 
the sense that it exhibits all the same possible 
behaviors as the specification. In the prescrip- 
tive approach, one requires that every possible 
execution of the specification H be represented 
by some execution of S, so z(S) must equal H. 

The restrictive approach is employed primar- 
ily by axiomatic methods, in which a system 
is specified by stating the properties i t  must 
satisfy. Any implementat ion that satisfies those 
properties is acceptable; it is not necessary for 
the implementat ion to allow all possible be- 
haviors that satisfy the properties. If H is the 
set of all system executions satisfying the re- 
quired properties, then the restrictive approach 
requires only that every execution of S repre- 
sent some execution of H, so t(S) must be con- 
tained in H. 

To illustrate the difference between the two 
approaches, consider the problem of imple- 
menting a program containing the statement 
x'. = y + a * z with a lower-level machine-lan- 
guage program. The statement does not specify in 
which order y and z are to be read, so H should 
contain executions in which y is read before z, 
executions in which z is read before y, as well 
as ones in which they are read concurrently. 
With the prescriptive approach, a correct imple- 
mentat ion would have to allow all of these 
possibilities, so a machine-language program 
that always reads y first then z would not be a 
correct implementation. In the restrictive ap- 
proach, this is a perfectly acceptable implemen- 
tation because it exhibits one of the allowed 
possibilities. 

The usual reason for not specifying the or- 

der of evaluation is to allow the compiler to 
choose any convenient order, not to require 
that it produce nondeterministic object code. I 
therefore find the restrictive approach to be the 
more natural and adopt it in the following defi- 
nition. 

Definition 8. The system S implements a system 
H if there is a mapping t: S~--,H such that, for 
every system execution ( ~  , , - - §  in S, 
(55, , , - - . )  implements l ( ( ~  - -~ . - -§  

In taking the restrictive approach, one faces 
the question of how to specify that the system 
must actually do anything. The specification of a 
banking system must allow a possible system 
execution in which no customers happen to use 
an automatic teller machine on a particular af- 
ternoon, and it must include the possibility that 
a customer will enter an invalid request. How 
can we rule out an implementat ion in which the 
machine simply ignores all customer requests 
during an afternoon, or interprets any request 
as an invalid one? 

The answer lies in the concept of an inter- 
face specification, discussed in [7]. The specifi- 
cation m u s t  explicitly describe how certain in- 
terface operations are to be implemented;  their 
implementat ion is not left to the implementer. 
The interface specification for the bank includes 
a description of what sequences of keystrokes at 
the teller machine constitute valid requests, and 
the set of system executions only includes ones 
in which every valid request is serviced. What it 
means for someone to use the machine is part 
of the interface specification, so the possibility 
of no one using the machine on some afternoon 
does not allow the implementat ion to ignore 
someone who does use it. 

Part II considers only the internal operations 
that effect communicat ion between processes 
within the system, not the interface operations 
that effect communicat ion between the system 
and its environment. Therefore, the interface 
specification is not considered further. The 
reader is referred to [7] for a discussion of this 
subject. 
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