
Distributed Computing (1989) 3:130-145

�9 Springer-Verlag 1989

Step semantics for "true" concurrency with recursion

J.-J.C. Meyer and E.P. de Vink
Department of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan 1081, NL-1081 HV Amsterdam,
The Netherlands

John-Jules Meyer received
his Master's degree in Mathe-
matics in 1979 from the Univer-
sity of Leiden, and his Ph.D. de-
gree in 1985 from the Free Uni-
versity Amsterdam. He is cur-
rently a Professor of Theoretical
Computer Science, both at the
Free University Amsterdam
and at the University of Nijme-
gen. His current research inter-
ests include semantics of pro-
gramming languages and logics
for computer science, in partic-
ular artifical intelligence.

Erik de Vink received the
M.S. degree in Mathematics
from the University of Amster-
dam. He is currently a Junior
Researcher at the Department
of Mathematics and Computer
Science of the Free University
Amsterdam. At the moment his
main research concerns the se-
mantics of concurrent and logic
programming languages.

Abstract. We present a variety of denotational lin-
ear time semantics for a language with recursion
and "true' ' concurrency in a form of synchronous
co-operation, which in the literature is known as
step semantics. We show that this can be done
by a generalization of known results for interleav-
ing semantics. A general method is presented to
define semantical operators and denotational se-

Offprint requests to: J.-J.C. Meyer

mantics in the Smyth powerdomain of streams.
With this method, first a naive and then more so-
phisticated semantics for synchronous co-opera-
tion are developed, which include such features as
interleaving and synchronization. Then we refine
the semantics to deal with a bounded number of
processors, subatomic actions, maximal parallelism
and a real-time operator. Finally, it is indicated
how to apply these ideas to branching-time models,
where it becomes possible to analyze deadlock
behaviour as well as a form of "true" concurrency.

Key words: Denotational semantics - True concur-
rency - Smyth powerdomain of streams

1 Introduction

Much work has been done in the field of denota-
tional semantics of languages with parallel opera-
tors and recursion where this parallelism is mod-
eled by means of interleaving. (See de Bakker et al.
(1986) for an overview.) This idea of using the inter-
leaving model is motivated by two reasons: (i) In-
terleaving can be seen as scheduling the "parallel"
components on o n e processing unit. (ii) Theoreti-
cally, interleaving reduces parallelism to nondeter-
minism, a notion well-understood in semantic
theory (e.g., de Nicola and Hennessy 1987).

On the other hand, however, workers in other
(theoretical) frameworks such as Petri nets, have
always stressed the importance of being able to
distinguish between non-determinism and what is
called " t rue" concurrency (cf., Reisig 1985).

In this paper we present a denotational seman-
tics in the style of e.g., de Bakker et al. (1986) for
a language with recursion and a form of " t rue"

J.-J.C. Meyer and E.P. de Vink: Step semantics 131

concurrency which is very close to what is called
step semantics in Taubner and Vogler (1987). In
fact, our proposal is a direct generalization of what
is known for the interleaving model and can be
viewed as a "non-standard" model of Bergstra and
Klop's process algebras for interleaving semantics,
(see Bergstra and Klop 1984). This generalized
model can be thought of as containing a number
of processors, all executing in parallel some parts
of a program. In the program it is explicitly given
what has to be executed in parallel. At any moment
the number of active processors is assumed to be
finite. (It is not very realistic to consider this other-
wise.) However, in principle we assume that a finite
but unbounded number of processors is available.
(In Sect. 4 where we treat refinements of our se-
mantics we consider how to deal with a bounded
number of available processors.)

The semantics of a statement gives the set of
possible schedulings for the parallel (concurrent)
execution of this statement. In our model we as-
sume the following: (i) There is a global clock. (ii)
All processors co-operate synchronously, like in a
systolic system. (iii) All atomic actions take one
tick of the global clock to be executed. (We shall
show how to generalize this in Sect. 4 again.)

Of course, these assumptions do not say any-
thing about how to schedule the atomic actions
of a program on the processors; we still have free-
dom to make choices concerning this and we shall
investigate some of the alternatives that are possi-
ble here.

The main point of this paper is to show that
we can still use the same techniques and concepts
as for interleaving - including the Smyth powerdo-
main and techniques based on the Smyth ordering
- once it is decided upon how to model the " t ruly"
concurrent execution of two actions. In fact, we
discuss several ways of modeling this behaviour,
both using the idea of collecting concurrent actions
in a multi-set or bag just as nondeterministic ac-
tions are collected in sets. (Naturally, we have to
discriminate strictly between the multisets model-
ing concurrency and the sets representing nonde-
terminism.)

As in the linear time semantics for interleaving
we use streams and sets of streams (cf., Broy 1986;
Meyer 1985). In this setting, however, we use
streams of multi-sets of elementary (or atomic) ac-
tions rather than streams of just elementary ac-
tions. The idea behind this is the following:
streams record sequences (histories) of the actions
that are (or have been) executed. If we allow truly
concurrent actions we have to record sequences
of "action packages" that are thought of as being

executed together (simultaneously). This being
understood we have to decide how the simul-
taneous performance of complex (i.e., nonelemen-
tary) actions are denoted in terms of these streams
of action packages. For this we have two obvious
choices: (i) a naive one, where it is assumed that
two concurrent actions start at the same time; (ii)
a more sophisticated one, where it is allowed
that two concurrent actions may arbitrarily start
in parallel: perhaps one of them starts before the
other, and possibly suspends at some moment the
execution of the next action for a while.

At first sight the second choice seems slightly
awkward to work out, while the first choice is rath-
er easy. However, the second choice of modeling
can be elaborated using general techniques that
were developed in the framework of interleaving
semantics (cf., Meyer and de Vink 1987). Further-
more, in the second model of synchronous co-oper-
ation it is possible to include special synchroniza-
tion primitives in order to obtain a denotational
semantics for a much more realistic language, in
which one can control the way co-operation is syn-
chronized. This appears to work just as in the case
of interleaving.

Next we investigate somewhat more refined
issues, such as a multi-processor semantics for a
bounded number of processors, a semantic model
that deals with atomic actions that may take more
than one tick of the clock to be executed, we discuss
how maximal parallelism can be incorporated in
our models and comment on real-time aspects in-
volving a delay operator.

Finally, we indicate how to generalize the ideas
expounded in the Sects. 3 and 4 to branching time
semantics in the style of de Bakker and Zucker
(1982), where it becomes possible to analyze dead-
lock as well as a form of " t rue" concurrency. We
view this as an attempt to synthesize the metric
approach of de Bakker and Zucker (1982) with ap-
proaches such as Taubner and Vogler (1987) and
Aceto et al. (1987).

We appreciate that the present proposal is only
a first attempt to obtain the full sophistication of
true concurrency. Our model of concurrency is an
extension of the models of de Bakker et al. for in-
terleaving semantics, stretched as far as possible
towards " t rue" concurrency. It is in between the
interleaving model and "partial order" semantics
for concurrency as it appears in the literature. In
fact, since our model has an implicit notion of time
(timing), it may be viewed as a manner of shaping
the general partial order model into this built-in
timing mechanism, thus rendering a more concrete
model. Concrete in the sense that when two state-

132 J.-J.C. Meyer and E.P. de Vink: Step semantics

ments sl and s2 are to be executed in parallel, their
mutual independence is reflected in our model by
means of a set of specific schedulings on a multi-
processor of the atomic actions that constitute the
statements s~ and s2. This seems to be in agreement
with the results in Aceto et al. (1987), where the
relationship between these three models of true
concurrency is investigated in detail.

As we said before, our model has a close rela-
tionship with the step (failure) semantics of
Taubner and Vogler (1987). Although we do not
deal with failure sets we believe that this is not
essential for our approach. We expect that our
framework can be easily generalized to a failure
(or ready set) model. We have chosen not to do
this in order not to obscure the main issue of this
paper, which is a rigorous treatment of recursion
in the context of step semantics by means of fixed-
point theory. Moreover, the emphasis in this paper
is on a uniform method to prove the continuity
of variations of parallel operators in this frame-
work.

It would, of course, be interesting to investigate
more precise relationships between our approach
and other approaches to true concurrency, such
as Petri nets (cf. e.g., Reisig 1985), Mazurkiewicz
trace theory (Mazurkiewicz 1978), Winskel's (la-
beled) event structures (Winskel 1980) and subset
and multiset languages (cf. e.g., Rozenberg and
Verraedt 1983; Janicki 1987). We would like to
mention van Glabbeek and Vaandrager (1987) in
this context, where an interesting attempt is made
to treat Petri nets by means of process algebra,
and Degano et al. (1987), where a partially success-
ful translation is given from CCS to a certain class
of Petri nets. Also the recent work of Boudol and
Castellani (Boudol and Castellani 1987a; Boudol
and Castellani 1987b) must be mentioned here: in
these papers an operational semantics based on
a Plotkin-style transition system, is proposed such
that sequentiality, non-determinism and concur-
rency are properly distinguished, using a synthesis
of Milner's CCS and Winskel's event structures.
These attempts of synthesizing superficially entirely
different frameworks are of paramount importance
in order to understand the full complexity of" true"
concurrency.

2 Mathematical preliminaries
In this section we present some syntactial and se-
mantical preliminaries that we shall need in the
sequel of our paper. We start with the definition
of our two languages. Then we introduce the do-
main of streams ~st and the powerdomain of com-

pact stream sets ~* (~st). We proceed with a gener-
al method to construct continuous functions on
compact stream sets. We conclude this section with
a scheme for denotational semantics for uniform
concurrency with recursion, where the interpreta-
tion of the concurrency operator can still be varied.

2.1. Definition. Fix an alphabet ~r of atomic ac-
tions, an alphabet cg of synchronization actions
and a set 3 of program variables, with typical ele-
ments a, c and ~, respectively.

(i) The language 5o0 is given by BNF:
s : : =alsl;s2[sl US2IS1 II s2[~1]/~ I s] �9

(ii) The language 5Ol is given by BNF:
S:: =alc]s1; s2ls1L)s2]s 1 Ns21~[~[s].

This syntax for So and 5or is widely used in papers
such as de Bakker et al. (1986) and de Bakker and
Meyer (1987) as a core language for (uniform) con-
currency with recursion. In the present paper the
sets ~r and ~ are not assumed to be finite. The
language 5oo contains atomic actions in ~r (which
remain uninterpreted), sequential composition,
nondeterministic choice also known as local non-
determinism (Francez et al. 1979), a parallel com-
position, variables and the recursive y-construct.
The language 5~ is an extension of ~o with syn-
chronization actions in ~. We refer with the term
elementary action to either an atomic action or a
synchronization action. We distinguish ~ r Fur-
ther, we stipulate a bijection : ~ , ~ which for
every ce<g yields a matching synchronization ac-
tion g ~ , and such that g = c for all cE~. (Cf.,
Milner 1980.)

In the papers mentioned above the parallel
composition operator is interpreted in the inter-
leaving model. The intention of this paper is to
vary the interpretation of this parallel operator in
order to deal with " t rue" concurrency.

Next we present an overview of the basic defini-
tions and facts regarding the domain of stream sets
and the Smyth powerdomain that we shall employ
in this paper. On the latter we shall base our se-
mantic definitions.

Let ~ o = { B : d----- ,NIB(a)+0 for a finite and
positive number of a e ~ } stand for the collection
of all finite non-empty multi-sets or bags over s~.
Let ~ I = { B : s~'wcg ~NIB(e)+0 for a finite and
positive number of e e d u W} stand for the collec-
tion of all finite non-empty multi-sets over sJ w <g.
One can think of elements of do and N1 as non-
empty "buckets" or "packages" of atomic actions
and elementary actions, respectively. In such pack-
ages a particular action may occur more than once;
hence the use of multi-sets rather than (ordinary)

J.-J.C. Meyer and E.P. de Vink: Step semantics 133

sets. We consider action buckets as a collection
of (non-necessarily different) actions that can be
executed simultaneously by a bunch of processors.
(We return to this point later.) Concrete multi-sets
are represented in the format [e~, . . . , e,].

For notat ional convenience below we use 50,
~ , g to range over ADo, N0, ~r and ~ , N1, ~ r
respectively.

2.2. Definition (Broy 1986). Distinguish a special
symbol • called " b o t t o m " not in ~r w g. We define
the set Ns, of streams over N by N=t=
~ * vo ~ * . • w N ~

Here ~ * is the collection of finite strings over N;
elements of ~ * are called finished streams. Ele-
ments of N*._I_, finite strings over N followed by.L,
are called unfinished streams. N~' contains the infi-
nite strings or co-strings over ~ . Elements of No,
are called infinite streams. We define the collection
of finite streams ~Y by NY= ~* u ~ * . • We shall
use e for the empty stream (i.e., the empty word
in ~*), and ~_ for the prefix relation on streams.
Furthermore, we use A, B, ... to range over ~ ,
x, y to range over Ns', and X, E . . . to range
over subsets of ~*', which we shall call stream sets.
When dealing with tuples of streams we may write
2 instead of (x~ Xk).

We equip the sets of streams ~ { and ~]~ with an
ordering relation. In fact, this stream ordering
turns N~' and ~]~ into cpo's.

2.3. Definition. We define the stream ordering <=t
on N=' as follows:

(i) For all x, yeN=': x<=,y iff t x ' e ~ * 3 y ' ~
N=~\{_I_} such that x=x'J_ and y=x 'y ' .

(ii) We define < =, as the reflective closure of < =,.

Intuitively, a stream x is (stream-)less than a stream
y exactly when x is unfinished, so ending in •
and x can be extended to y by expanding the trail-
ing bottom.

2.4. Theorem (Back 1983). ~ and ~]' are complete
partial orderings.

The domains on N~{ and N]' are not sufficiently
rich to cater for all constructs in our language,
in particular the non-deterministic choice. There-
fore we change to powerdomains (cf., Plotkin 1976).
So instead of streams we shall use sets of streams.
To define these powerdomains it is convenient to
formulate a technical notion, viz. t runcat ion of
streams. Moreover, t runcations can be used for the
extension of monotonic functions on finite streams
to continuous functions on arbitrary streams.

2.5. Definition
(i) For n ~ N and x ~ =' we define

if length(x) < n
xf"l={: ' J_ if length(x)>n,

where x' e N" such that x' _< x.

(ii) For n e N and Xc=N=, we define
x~.~= {x~.~lxeX}.

Next we present a canonical way to construct con-
t inuous functions on streams from monotonic func-
tions on finite streams. This method relies on the
monotonic i ty of truncations.

2.6. Lemma. Let @ be some cpo ordered by <= ~.
(i) For all n e N the truncation 2x.x~"le~ =' ,~='

is monotonic.
(ii) (Extension lemma) Let f : (~r ,@ be mono-

tonic. Define F: (N=t)k > ~ by F(2)= lub,f(2~"l).
Then F is well-defined and continuous.

Proof
(i) Directly from the definition of x L"~.

(ii) Note that F is well-defined by monotonic i ty
of)~n.x r"l, for fixed x and monotonic i ty o f f
(Monotonicity) Suppose 2<=t3~ in (~s,)k. By
monotonic i ty of 2x .x ~"~ and of f, we have
F (2) = lub=f (~ ~"1) < ~ lub=f (y L"1) = F(y).
(Continuity property) We use the following
fact: If x=lubix i in N~' then Vn3ioVi>io:
x~"l= x~ "J. Suppose 2 = lub~ 2~ in (~s,)~. Fix n e N .
We have by the above fact f(Yt"J)=f(21"~) for
suitable i,. Hence f(~L,l) < ~ lubmf(21~l) = f (2 i .)

and f(YE"l)<__~lubif(2,). So f (Y) = l u b , f (~ ~"1)
<= ~ l u b i F(2i). []

Note that the "converse" of the extension lemma
trivially holds: suppose F: (N=,)k , N=' is continu-
ous. Define f : (N@ >~s~ by f = F l (~ @ , i.e., the
restriction of F to (N.r)k. Then f is monotonic and
F (~) = lub , f (2t<), for all 2~(~=') k.

On finite streams we have an obvious induct ion
principle, that we shall call " s t ream induct ion". We
define the norm / x / of a finite stream x by / x / = n
iff xe~"vo~".A_. Let X ~ I denote a set of finite
streams with a certain property. Suppose that (i)
1, e~X and (ii) that from V x E ~ l : Ilxll < n ~ x ~ X
we derive V x e ~ l : Ix]l <n=*,xEX. Then we have
that X = NI, i.e., all finite streams satisfy this partic-
ular property.

We may use this induct ion principle to check
the monotonic i ty of functions on finite streams.
Suppose we are to prove that f : N I >~ is mono-
tonic. We let x l , x a e ~ I such that X I ~ s , X 2 and
we proceed as follows with induct ion on (the norm

134 J.-J.C. Meyer and E.P. de Vink: Step semantics

of) x : . To prove f (x :) ~ f (x 2) . If xa = • then we
are done in case of a strict function. If xa =e, then
x2 =e, and there is no th ing to prove. If x~ =Ax'~
for some A e ~ and x ' : e N ~, then x 2 = A x ' z for some

' ' < ' We have f (x ' :)<~f (x '2) x 2 e N ~ such that xa =stX2 .
by the induct ion hypothesis and may use this to
arrive at f (xa) < ~f(x2) .

Next we define the powerdomains that we shall
use in the sequel of our paper. We do not include
all the s tream sets in our domains, but only those
that are f iat, closed and locally finite for the follow-
ing reasons: flatness is needed because of the anti-
symmetry required for partial orders; closedness
and local finiteness are needed because of a lifting
lemma, that we intend to use to go from functions
on streams to functions on stream sets.

2.7. Definition
(i) X ~ = ~ st is flat iffVx, y e X : x < ~ t y = ~ x = y .

(ii) X ~ N ~t is closed iff V x ~ ~t is closed iff
V x ~ ~ ~t " (Vn~N: x~"~ ~ Xt"~)=*. x G X.

(iii) X = ~ is locally finite iff V n ~ N : X t"~ is a finite
set, i.e., all truncations of X are finite.

(iv) The collection ~ * (~ t) of compact s tream sets
over ~st is defined by ~ * (~ t) = { X ~ I X
flat, closed and locally finite}.

The set ~ , (~ , t) of compact , i.e., flat, closed and
locally finite stream sets is turned into a cpo by
the Smyth ordering.

2.8. Definition (Smyth 1978). We define the Smyth
ordering < s on ~ * (~) as follows: for all X,
Y ~ * (~) : X <=s Yif f V y~ Y ~ x ~ X : X ~ s t Y .

In Meyer and de Vink (1987) an extensive study
is made of the domain of compac t s t ream sets (over
an arb i t rary alphabet), a Especially the complete-
ness of the partial ordering < s and a lifting lemma
were proved.

2.9. Theorem. ~ , (~ t) and ~ * (~ 1 t) are complete
partial orderings with respect to the Smyth ordering.

In these cpo's {• is the least element and for a
chain (Xi)g in ~ , (~ s t) the compact set
{lubi xi[<xi)i chain, ViGN: x ~ X i } acts as the least
upperbound.

2.10. L e m m a (Lifting lemma). I f f :

: In Meyer and de Vink (1987) we used the term "boundedness"
instead of "local finiteness". In the present paper we do not
use this term to prevent confusion with the notion of "bounded"
in Sect. 4

is continuous and F:
(~ , (~t))k , ~ , (~st)

is defined by F (X) = m i n (U { f (X) I X G ~ }) , then F is
well defined and continuous.

In L e m m a 2.10 the opera tor rain takes the minimal
elements of a s tream set, i.e., for X ~ ~st we have
min(X) = {xGX[-7 3x' GX: x' <~t x}.

The extension lemma and the lifting lemma togeth-
er give us a general me thod to construct semantical
opera tors on the powerdomains N * (~) and
~ , (M]t). First we define a funct ion from the collec-
t ion of finite streams into the collection of streams
or into the collection of compact stream sets and
check that this function is monotonic . (To this end
we may use s tream induction.) Next we apply the
extension lemma to obtain a cont inuous function
on arbitrary, i.e., finite or infinite streams. Finally
we obta in a cont inuous funct ion on compact
s t ream sets with the help of the lifting lemma.

We illustrate this me thod with the construct ion
of sequential composi t ion of compac t stream sets
over ~ o and M:.

2.11. Definition
(i) We define ." ~ s • ~ f > ~ , by the following:

e . y = y , _L . y = • Ax ' . y = A (x ' . y) .

(ii) We define the sequential composi t ion of
streams �9 �9 Mst x Mst , ~st by

x . y -- lub, x t"l . yt"~

(where in the right-side expression �9 denotes
sequential composi t ion of finite streams).

(iii) We define the sequential composi t ion of com-
pact stream sets ." ~ * (~ S ') x ~ * (~ ~t) ,
~ , (~ t) by X . Y - m i n ({ x . y [x e X , yeY}) ,
(where on the r ight-hand side �9 denotes se-
quential composi t ion of streams).

2.12. Theorem. The sequential composition �9 on
~ , (~ t) is continuous.

Proof
(i) The sequential composi t ion �9 on ~ I is mono-

tonic: this is easily verified by means of s tream
induct ion on (the norm of) Xl " Let x l , x2, y~,
y 2 ~ y such that Xl~-~stX 2 and Ya <~Y2. We
distinguish three cases: If x ~ = • then x l " y l
= l < s t X z . y 2. If x l = e , then Xz=e and
x1 "Yl =Yl ~ s t Y 2 = X 2 " Y 2 �9 If Xl =Ax'~ for some
A e ~ and x] e N f, then x2=Ax'2 for some

' < ' So x1 x ~ z ~ I such that x:=~,x2. .y~=
A (x'~. YO < ~tA (x'2. Y2) = x2 "Y2 by the induct ion
hypothesis.

J.-J.C. Meyer and E.P, de Vink: Step semantics 135

(ii) The sequential composition �9 on N~' is contin-
uous: since �9 : ~ r ~ I , ~ ' is monotonic,
we have by the extension lemma that �9 : ~ ,
x N~' , ~ ' is continuous.

(iii) The sequential composition �9 on ~ , (~ ,) is
continuous: from (ii) we derive immediately the
continuity of ,~ x y. {x. y} ~ ~ t x ~ ' ~ ~* (~t).
Hence we have the continuity of �9 : ~,(Ns,)
x ~ , (N ~) ,~ , (~s ,) by the lifting lem-

ma. []

Another example of a function of which the contin-
uity is already determined on finite streams is the
so-called fiat union +. We might define the fiat
union of compact streams sets as a lifted extended
version of 2 x y . m i n ({ x , y }) e ~ ~'x ~s, , ~ , (~ t) .
We shall not do this, since in this case we feel com-
fortable to define + directly.

2.13. Definition. We define the flat union of com-
pact stream sets + : ~* (~t) • ~ , (~t) > ~ , (~t)
by X + Y : m i n (X w I1).

We invite the reader to check that + as given in
the above definition is indeed continuous and to
compare this proof with the effort of a definition
and a proof along the lines of Def. 2.11 and Lem-
ma 2.12.

Note that {L} acts as an absorbing element
with respect to + , i.e., X + { /} = {s + X = {J_}.

W e conclude this section with some comments on
the semantics for the languages 5f 0 and 5at. We
already have interpretations for the syntactical
construct of sequential composition and nondeter-
ministic choice, viz. �9 and +. We shall work within
the context of uniform concurrency: the elementary
actions a and c remain uninterpreted in this frame-
work. We shall give meaning to variables with the
help of environments and to the recursive /,-con-
struct with the help of fixed point techniques.

If we have a semantical interpretation, say [[~e,,
for the parallel composition, we are able to use
the following scheme for the semantics of the lan-
guages 5 ~ under the condition that II ~e~ is a contin-
uous operator on ~* (~t).

2.14. Definition. We let E n v = E ,~,(N~t) with
typical element q be the collection of environments.
We define the semantics Sere: 2" ~Env
~ , (~ ,) with respect to the concurrency operator
II ~e,~ by the clauses:

Sem~e~Ol)= {[e]} for eeg
Sere ~s~ ; s2~ Ol) = Sem ~s~ (tl). Sere ~s2~ (q)
Sere - = Sere Esd + Sere

Sere ~s~ II s2~ (tl) = Sere ~s~ (q) l[sere Sere ~s2~ (tl)
S e m ~ (t l) = t l (~)
Sem ~I z ~ [s]~ (t/) = lfp(r
where ~ , , = 2X. Sere [s~ (~ {X/~}).

In the above scheme we assign to the recursive
/,-construct the least fixed point of the operator
)~X.Sem~s~(tl{X/~}), which evaluates for given
stream set X the statement s in the environment
t/where the variable ~ is set by X. This fixed point
construction is justified by the following lemma.

2.15. Lemma
(i) I f II sere : ~ * (~s t) • ~ , (~ s t) > ~ , (~ t) is contin-

uous, then we have that

2 X I , . . . , Xk. Sem ~s~ (tl { X , / { I , . . . , Xk/ {k})

is continuous, for all k e N , se2fl, t leEnv and

(ii) Under the condition of (i) it holds that for all
seS f , ~leEnv and ~ e Z)cX.Sem~s~(tl{X/~}) has
a least f ixed point and that for all se.Lr and
t 1 e Env Sere ~s~ (tl) is well-defined.

Proof
(i) (Structural induction on s) By the continuity

o f . , + and [[sem"
(ii) Follow from (i) (cf., de Bakker 1980). []

In the next sections we focus on the interpretation
of the parallel composition. We shall give several
semantical counterparts for the concurrency opera-
tor according to different models of parallelism,
but in all cases the continuity of the (interpretation
of) El will be established with the help of the Exten-
sion lemma and the Lifting lemma.

3 The basic semant ic models: synchronous
start and mult i -processor concurrency

In this section we present a number of basic se-
mantic models for " t rue" concurrency. Subse-
quently we discuss (i) a simple "synchronous start"
semantics for A~ in which the components of a
parallel statement start their execution simulta-
neously, (ii) a multi-processor semantics for ~o,
which provides a more general way of scheduling
parallel statements on a multi-processor, and (iii)
a multi-processor semantics for the language $1
with synchronization, which is an extension of the
one mentioned under (ii). We also discuss a similar
generalization to synchronization of the synchro-
nous start semantics. Unfortunately, this semantics
does not meet the intuition. In Sect. 4 we shall re-

136 J.-J.C. Meyer and E.P. de Vink: Step semantics

medy this by the incorporat ion of the notion of
maximal parallelism.

3.1 The synchronous start model for 5~ o

The first semantics for 5o0 is based on what we
shall call synchronous start concurrency: In this
model the components of a parallel construct have
to start and act synchronously; at each tick of the
clock the components perform their actions simul-
taneously. (Cf., Salwicki and Miildner 1981.) So
here both parallel operands in a parallel s tatement
progress at the same pace. (If one of the compo-
nents terminates, the other one proceeds on its
own.) This is a simple form of ' t ru ly ' concurrent
execution which will appear to be a special case
of the more sophist icated one to be given in the
next subsection.

Thus, for example, the semantics of the parallel
s tatement (a; b)II a', where a, a', b are in ~ , is given
by the singleton stream set {[a, a'] [b]} in this mod-
el, expressing that the execution of the atomic ac-
tions a and a' is started synchronously, after which
the atomic action b is executed.

The semantics of the statement

in the synchronous start model turns out to be
{[a, b, cJ~ i.e., infinitely many simultaneous exe-
cutions of three actions, viz. a, b and c: The #-
constructs # ~ [a; ~], /~ r/[b; r/] and # ~ [c; ~] yield
{[a]~ {[b] '~} and {[c]~ respectively. N o w
{[a] ~} I}** {[b] ~~ = {[a, b] ~'} according to our no-
tion of synchronous co-operat ion of [a] ~ and [b] ~,
and analogously {[a, b] ~} II s, {[c] ~} = {[a, b, c]~
(ll ~ is the parallel opera tor in the synchronous start
model.)

Since we deal with streams of multi-sets, we formal-
ize synchronous co-operat ion by the multi-set
union. For finite multi-sets A, B over ~ / (i.e., for
two functions A, B: d , N with A(a), B (a) = 0
for almost all but not all ae~r we write A wmB
for their multi-set union (i.e., A~mB: ,~' , N is
such that (Aw,,B)(a)=A(a)+B(a) for all aesd) .
Analogously for multi-sets over ~r w cg.

3.1. Definition. We define the parallel composi t ion
II~s with respect to the synchronous start model
as follows:

(i) II ~" N f x ~ o ~ , ~ is defined by
II~y= y and x IIs~e= x

• II = x N • = •
A x' IIs~B y' = (A w,~B)(x' }]ssY').

(ii) [[~" ~ t x ~ t , N~t is defined by
x [[~ y = lub, x ["] II ~s Y~"]-

(iii)]l,s" ~ * (~ ') x ~ * (~ ') , ~ . (~ t) is defined by
X IIs, Y=min{x I[,sylx~X, y~Y}).

We check with the tools developed in Sect. 2, that
]ls~ is a well-defined and cont inuous operator on
compact stream sets.

3.2. Theorem. tt~s is continuous on ~*(~So~).

Proof
(i) [1~ monoton ic on ~ { (stream induction to xl

and Y0: Let x l , xz, Yl, Y2 ~ { such that Xl
~stX2, yl<~tye. If x l=A_ or y l = • then
x, NssYa = l ~ s t X 2 Ilssfl2. If x, =e, then x2=e
and so xlll~yl=yl<=~ty2=x211ssY2. If y1=e,
then Yz=e. Hence x111s~yl=xl <,tx2=
x2 II,,Y2. If xl =Ax'a and Ya =By'I for some A,
B e N o and x'~, y ' l e ~ o I , then xz=Ax'2 and Y2
=By'2 with x~, y ~ e N { such that x'~ <s,X'2 and
Yl =stY2. We have

! t <,,(A wmB)(x 2 I[ssY2)= x2]lssY2
by the induction hypothesis.

(ii) I1~ is cont inuous on N~" By (i) and the Exten-
sion lemma 2.6(ii).

(iii) t1~ is cont inuous on ~ * (~ ') : By (ii) is
2xy.{xll~,y} continuous. Hence is IIs~ on
N * (~) by the Lifting lemma 2.10. []

We are now in the posit ion to give the first seman-
tics for 5ao . It uses the scheme given at the end
of Sect. 2. Note that by Theorem 3.2 the condit ion
of Lemma 2.15 viz. continuity of the concurrency
operator , is fulfilled, so that the least fixed point
in the clause for the recursive/L-construct exists.

3.3. Definition. (Synchronous start semantics for
50o) Let Envo=E--- -~*(~) . We define the syn-
chronous start semantics SS: ~o----+Envo
~ * (~) for Wo by the following clauses:

SS[a~(tl)={[a]} for a ~

s s ; s d s s s s

SS ~t ~ ~ [s]~ (t/) ~- l f p (~,,)
where ~b~,, = 2X. SS ~s? (t 1 {X/~}).

3.2 The multi-processor model f o r 5 f o

Next we show how we can refine the synchronous
start semantics to a so-called mult i-processor se-
mantics, where the execution of two parallel com-
ponents is less restricted. In this mult i-processor

J.-J.C. Meyer and E.P. de Vink: Step semantics 137

scheduling statements that are put in parallel can
start "on their own". (Cf., Taubner and Vogler
1987.) We imagine our programs to run on a multi-
processor, where sometimes actions can be done
simultaneously but sometimes have to be seria-
lized. In fact, the semantics to be given in this sub-
section will resemble the (uniprocessor oriented)
interleaving semantics of de Bakker et al. (1986)
with the main difference that now more processors
can be employed at one time.

The synchronous start semantics requires par-
allel statements to be started synchronously. We
relax this requirement by allowing one (but only
one) of the two parallel components to be sus-
pended for some (units of) time. So apart from syn-
chronous co-operation we also obtain the pure in-
terleavings and combinations of synchronous co-
operation and interleaving "schedulings" of a par-
allel construct.

In the example (a; b)1[c this amounts to the fol-
lowing: The two parallel components can syn-
chronously yielding [a, c] [b] as we had before, but
now we also have the pure interleavings [a] [b] [c],
[a] [c] [b], [c] [a] [b] and the outcome [a] [b, c],
due to suspension. In [a] [b] [c] the action c is
postponed until ab has finished; in [a] [c] [b] the
action c has waited one tick of the clock and is
executed after a but before b; in [a] [b, c] the action
c has again waited one unit of time but now co-
operates with the action b; in [c] [a] [b] the execu-
tion of c precedes the execution of a b.

The second example

(/z 4 [a; {3 II #~/[b; t/])II ~z[(c; []

has in the multi-processor model [a, b, c] ~' and the
"unfair" [a] ~ among its outcomes. The latter is
obtained by suspension of # t/[b; q] and # [[c; []
ad infinitum. In fact, all the infinite streams
A~ A2 A3 ... such that Ai~[a, b, c] are possible
behaviours of the statement

(~ ~ [a; ~] II ~ ~ [b; ~]) II ~ ~ [c; ~].

3.4. Definition. We define the parallel composition
[I,,p with respect to the multi-processor model as
follows:

~ s x ~ s , ~ , (~) (i) II,.p, ~mp,]mp:~'~O J~o
are defined by
X [Impy=X~mpy+y~mpX+X]mpy
8~mpY={Y}

Ax ' ~mpy=A(x' I[mpY)
elmpy= Xlmpe= ;25
• [mp y = X lmp -l- = (2~
Z Xt[m p N yt = (a k..) m B)(X' [I mp yt).

(ii) [[rap" M~ X M~ , ~* (N~) is defined by
x I1 ,,pY -- lub, x tnl II ,,vy t"l.

(iii) limp" ~ * (~) x ~ * (~) ' ~ * (~ 9
is defined by
X IlmpY=min(U{x IlmpylxeX, yeY}).

In the above definition we use the auxiliary opera-
tor ~mp in the context of process algebra known
as "left-merge", (see Bergstra and Klop 1984).

We have that limp" ~ * (~ t) x ~ * (~ t))
~* (~) is continuous, as is formulated in the lem-
ma below. The proof again uses the tools of Sect. 2.

3.5. Theorem. I[mp is continuous on ~* (~) .

Proof
(i) limp is monotonic on ~f0" let x l , X 2, Yl, YaE~o f

such that x~<~tx2, YI<~tY2. We prove by
stream induction on x~ and Yl: (#) xl |
<sxe | for | Imp}.
If x l = - k then Xl~mpy~=xlllmpY~={&} and
(#) is obviously satisfied.
If x l = e and yl=_k, then we have X l ~ m p Y l =-

{_k}, hence Xl~mpYl<sXe~mpY2 and xlll,,pYl
= {• So x~ II mpYl ~sX2 N mpY2.
If x~ =e and Yl =~, then x 2 = e and Y2=e so
(#) is trivially fulfilled.
If x l = e and y l = B y ' l for some B~Bo and
y'l~MYo, then x 2 = e and y2=By'a with Y ~ Y o
such that y~< ' =~tY2. We have

X~mpYl={Yl} ~s{Y2}=X2~mpY2

and

Xx II mpYl =Xl ~mpYl + Yl
= {yd + B(yl II
<=s{y2} + B(y'2

by monotonicity of +
hypothesis.

~mpX1 Jr- X1 [mpYl

mpXl) -~

II mpX2) -[- ~ =X2 II mpY2

and by the induction

If xl=Ax'x and yl=_l_ for some A~ N o and
x'~E~o y, then x2=Ax'2 with x~E~Yo such that
x'l <=Stx2' . We have xl~mpyl=A(x'l[[,,pyj
< = s A (x2 I[,,pY2)= x2 ~mpY2 by the induction hy-
pothesis and xl [[mpYl = {_1_} <sX2 I[mpY2"
If x l=Ax ' l and yx=g for some A e ~ o and
x ' l e~{ , then x2=Ax'2 and y2=e with x ~ o I

< ' We have x l~_,,,py~= such that X'l=s~x2.
A(x'~ [[mpYl)NsA(x'2 [[,,pY2)=Xz~mpY2 by the
induction hypothesis and

X1 11 mpYl ~- A (Xtl II mpYl)-t- {Xl} ~-

<-_sA(x'2 II mpY2)+ {X2} + ~ = X~ II m;Y~

by monotonicity of + and the induction hy-
potheses.

138 J.-J.C. Meyer and E.P. de Vink: Step semantics

If x~=Ax'~ and ya=By'I for some A, B e ~ 0
and x'~,y'~N~o, then x2=Ax'2 and y2=By'~
with x~, Y ~ Y 0 such that x'~<=stx'2 and y~
< , = stY2- We have

X1 ~mpYl = A(X i]l mpYl)
<
~- S A (x 2 tl mp Y2) = X2 ~mp Y2

by the induction hypothesis and

X1 II mpYl = A (x'~ II mpYl) "at- B(Yl II na~x~)
+ (A II na, yl)

< s A (x~ IImp Y2) at- B (y~ [[mp X2)
+ (A u na B) (x'2 IImp Yt2) = X2 I1 nap Y 2

again by the induction hypothesis.
(ii) II nap is continuous on Ng" by (i) and the Exten-

sion lemma.
(iii) II,,v is continuous on ~*(N~): by (ii) and the

Lifting lemma. []

The interpretation of II in the multi-processor mod-
el by [I na, as given in Def. 3.4 induces the second
semantics for 500 .

3.6. Definition (Multi-processor semantics for 5~
Let Envo = ~" > ~ . (~)t) as before. We define MP0
s) Envo) ~*(N~)~) by the following clauses:

MPo~a~Ol)={[a]} for a~sr
MPo ~s~ ; s2~ (q) = MPo [s~ (t/). MPo ~s2~ (~)
MPo ~sl ~ sz~ (t/) = MPo ~s~ (t/) + MPo [s2~ (t/)

MPo [s~ II s2~ (~) = MPo ~s~ (~)II nap MPo ~s2~ (q)
M P o =

MPo ~# ~ [s]~ 01) = lfp (q~,.).
where ~ . , = 2X.MPo [s~ (tl {X/~}).

As before the definition is justified by the conti-
nuity of [{ ,,p and Lemma 2.15.

3.3 The multi-processor model for

In this subsection we focus on the language 50t,
i.e., 50o augmented with synchronization actions.
CCS-like synchronization primitives enable us to
force the execution of parts of a parallel program
to take place at some particular time. We extend
the semantics of the previous subsection to incor-
porate this new feature.

In the synchronous start model and in the mul-
ti-processor model (without synchronization) syn-
chronous co-operation between action-packages
was formalized by the multi-set union. Now we
shall use a "synchronization union" (an extension
of the multi-set union) for the co-operation of mul-
ti-sets.

In the synchronization union matching pairs
of synchronizations are replaced by two dummy
actions 7, indicating that two processors are in-
volved in some synchronization. Remaining syn-
chronization primitives are preserved for possible
synchronizations with other packages in the con-
text. Afterwards, i.e., after the determination of the
meaning of an entire statement, we may remove
all streams in which still synchronization actions
are present, i.e., not replaced by the ~c-action. This
will be done by means of an abstraction operator.
The intuition behind this is that we may regard
these streams as synchronized unsuccessfully.

We next define the synchronization union for mul-
ti-sets. Let A, B~N~ be two finite bags of elementa-
ry actions. We construct the synchronization union
A ~ B of A and B as follows: we first take the
multi-set union A~naB. Next we replace an arbi-
trary number of subbags [c, g]of matching syn-
chronization actions by subbags [r,-c]. We may
repeat this until no matching synchronization pairs
are left. It is obvious that the resulting bag does
not depend on the order in which the subbags [c,
~] are chosen. Moreover, this rewriting procedure
always terminates since A unaB is finite, being the
union of two finite multi-sets, so it contains only
finitely many synchronizations and with each re-
placement the number of synchronization actions
decreases. Hence there are finitely many multi-sets
M obtained from A wmB by repeatedly replacing
matching pairs. We formalize this by introducing
a Noetherian relation ~ (i.e., for all AeN~ there
is no infinite sequence (B,}, in ~a such that Bo =A
a n d V n ~ N : B, ,~B,+I).

3.7. Definition

(i) We define the relation h on ~1 by
A hB iff 3 c s ~ : A u m [7 , 7] = B t _) m [C , c] , for
all A, Ber

(ii) We define the synchronization union us:
J) l .brx~l) ~ (~ a) by AusB={M]AunaB

For example, [a, b, c]w~Ea, 6]={[a , a, b, ~, z],
[a, a, b, c, 6]} and [a, b, cJ%~[a, b]={[a , b,
c]~na[a, b]} ={[a, a, b, b, c]}.
Note that the restriction of the synchronization
union to ~o coincides with the multi-set union.
So u~ is indeed an extension of ~na.

We use the synchronization union in the next defi-
nition to formalize synchronous co-0Peration.
Note the simularity between Def. 3.4 for 50o and
Def. 3.8 for ~ .

J.-J.C. Meyer and E.P. de Vink: Step semantics 139

3.8. Definition. We define the parallel composition
II ,.~ with respect to the multi-processor model with
synchronization as follows:

(i) II rap, ~mp, I,n,, : ~ { X ~ { , r (~ ')
are defined by
x Ilmey=X[[mey+y~mex+xl,,,py
8~,npY={Y}
-]- [~mpy : {_L}
Ax' [[_,~,,y = A(x' II ,npY)
elml, Y-- Xl,,,pe= ~
-J-lmpY-~- X[mp l = ~
A x' I,,,pBy' = (A w~B)(x' II ,,,pY').

(ii) I1,,, • ' ~* (~7)
is defined by
x II mpY = lub,, x t'~ II mpY t'~"

is defined by
X II m, Y= min(U {x II,,,,,ylxeX, ye Y}).

We have again the monotonicity anc continuity
for/I m~ with respect to ~ as stated in Theorem 3.9.
The proof of 3.9 is literally the same as the proof
of 3.5 when we substitute vo, for VOm ; SO it is omit-
ted here.

3.9. Theorem. I[,,,p is continuous on ~.(~]t) .

The first semantics MP~ for ~ l follows the route
of SS and MPo. In the semantic definition scheme
we use the semantic II m~ with respect to N~ to serve
as the counterpart of the syntactic II.

3.10. Definition (Multi-processor semantics for
~l). Let E n v l = 5 ~ * (~ ') . We define MPI"
2'1 ~ Env ~ ~ ~* (N~') by the following clauses:

MP~[e~(q)={[e]} for e e ~

MP, ~sl ; s2~ (tl) = MP1 ~$1~ (~)" MP1 ~$2~ (~1)
MP, ~S 1 k...) $2~ (~)= M P 1 ~$1~ (~1)'1- MP1 ~$2~ (~1)
M P1 ~s l II $2 ~ (11)= M P1 ~ s2 ~ (17)II m,,M P1 ~ s2 ~ (tl)
MP, ~ (tl) = t 1 (~)
MP1 ~# ~ [s]~ (t/) = lfp(q6,,,~)
where ~ , , = 2X.MP1 ~s~ (tl {X/~}).

Note again that the least fixed point in Def. 3.10
is justified by an appeal to Lemma 2.15 and Theo-
rem 3.9.

We derive the second (non-compositional) seman-
tics MP~ for s 1 by (non-compositional) applying
an abstraction operator to the semantics MP~. This
operator, called failure removal, deletes all streams
that still contain synchronization actions from the
semantics of a statement. (Cf., de Bakker et al. 1989.)

3.11. Definition
(i) The failure removal operator /~: ~(N~t)

~(N~t) is defined by ; z , (X) = X ~ N ~ , for all
X ~ * (~ ') .

(ii) (Multi-processor semantics with failure remov-
al for Aal) The semantics MP~: Y'~ ,Env 1

st , ~ (No) is defined by MP~' =/4 o MP~.

Remark. In the semantics MP~ the failure of one
of the processors is interpreted as a global failure.
One might object that this is too crude an approach
in the context of true concurrency. Perhaps one
would like to model in this case that just one pro-
cessor fails while other ones may continue. This
could be modelled in a slightly modified framework
where we take tuples instead of multisets as basis
"buckets" of actions; the elements of these tuples
then correspond exactly to the available processors
in a certain fixed order.

3.4 The synchronous s tart mode l f o r 5s i

After we have generalized successfully our multi-
processor semantics from ~o to 5r it seems an
obvious attempt to generalize the synchronous
start semantics from ~o to ~ . However, when we
try to do this by replacing in Def. 3.1 A w, ,B by
A w~B, and using our usual scheme for the defini-
tion of the semantics, we end up with a semantics
which is not correct intuitively. This can be easily
seen from the following example: the semantics of
the statement (a II c)II (b; ~) yields

({[a]} ilss{[c]})IIs~ {[b] [~]} = {[a, c]} I1~ {[b] [~]}
= {[a, b, c] [el}

which gives ~ after applying failure removal). So
no synchronization has taken place; in some sense
the synchronous start operator It ~ optimizes paral-
lel execution in a way which is too local [.

On the other hand in the multi-processor model
of Sect. 3.3 the semantics MP~ gives too many out-
comes, due to unnecessary interleavings - although
unsuccessfully synchronized streams are deleted by
the abstraction operator/e. We remedy this short-
coming by the introduction of yet another abstrac-
tion operator (~ x / ~ a , 0 that will model a notion
of maximal parallelism. This will be done in the
next section.

4 Further ref inements o f the basic
semant ic models

In this section we shall discuss a number of refine-
ments of the basic models in Sect. 3 that one may

140 J.-J.C. Meyer and E.P. de Vink: Step semantics

wish to consider. First we consider a model in
which there are a bounded (fixed) number of proces-
sors which can be used for scheduling our program
statements. We shall indicate how to modify our
semantic definitions in order to model this case.
Next we turn to a way to model atomic actions
that take longer to be executed than one tick of
the global clock. This issue has, of course, to be
taken into consideration in order to make our ap-
proach useful to more practical examples. We shall
see that it is fairly simple to accommodate for these
actions in our framework of true concurrency by
varying the definition of the concurrent operator(s),
in particular the auxiliary left-merge operator. In
the third subsection we shall pay attention to the
issue of maximal parallelism. Once again trunca-
tion of streams turns out to be a useful tool in
the domain of streams. At the end of this section
we apply the findings of the semantics for subatom-
ic actions to model some aspects of real-time pro-
gramming, viz. a treatment of a delay operator.

4.1 Bounded number of processors

Up to now we have assumed that we have a finite,
but arbitrarily great number of processors that can
be put to work at any moment. One may to drop
this assumption, since this implies that no matter
how many processors we have working, we can
always add one processor to do the next job in
parallel. In practice, this may lead to employing
more and more processors, ad infinitum. In this
subsection we restrict ourselves to the situation
that we are given a fixed amount of processors,
say N, and with these we must do the job. We
shall refer to this situation as having a bounded
number of processors.

We shall modify our definitions in order to ac-
commodate for this situation of a bounded number
of processors. As it will be expected, now the inter-
leaving part of our definitions will play a more
visible role in the outcomes of the scheduling of
a fixed number of processors: now it may happen
that not all parallel statements described in the
program can be truly in parallel at once (because
all processors are occupied already), so that some
of these must be interleaved. In our definitions it
is easy to give a straight forward implementation
by adaptation of the synchronization union:

4.1 Definition
(i) We define the N-union wN : ~ •

Aw B ~Aw~B if ~(Au~B)<N
N =] . ~ otherwise.

, ~ by

(ii) The parallel composition I[N: ~ , (~ s t) •
~ , (~s t) , ~ * (~ ') with respect to the
bounded number of processors model is de-
fined as the lifted extended version of IIN, ~N,
1~ : ~s • ~ f ,~,(~st) such that

x IINy=x~Ny+y~x+XlNY

Ax' ~NY = A(x' II NY)
eluy=- xlue=25
-I-INy=xlN I = ~ g
Ax'INBy'=(A uNB)(x' N NY').

Note that Def. 4.1 applies to the ~o-case (without
synchronization) as well as the ~l-case (with syn-
chronization), cf., the note following Def. 3.7.

On the basis of these operators we can give a
proper semantics for our language(s) with respect
to this model of true concurrency with a bounded
of processors. We leave the definition of the se-
mantic function to the reader. (Note that alterna-
tively, this semantics can be obtained from MP,
by application of a suitable abstraction operator.)

It is easy to verify that in case N = 1 the seman-
tics based on wN specializes to a purely interleav-
ing semantics such as in Meyer (1985). So this mod-
el of true concurrency is a true generalization of
the interleaving model.

For example, if N = 3 the meaning of

([a, b] II [a])II [b]

becomes the stream set

({[a, b]} IlN{[a]})Ir ~{[b]}
= {[a, b] [a], I-a] [a, b], [a, a, b]} Ilu{[b]}
= {[a, b, b] [a], [a, b] [a, b], [a] [a, b, b],

[b] [a, b] [a], [b] [a] [a,b],
[b] [a, a, b], [a, b] [b] [a],
[a] [b] [a, b], [a, a, b] [b], [a, b] [a][b] ,
[a] [a, b] [b] },

so we do not have [a, a, b, b]. Analogously

([a, b] II I-c])rl I-~]
denotes (after failure removal)

{[a, b] [~, ~], [~, ~2 [a, b]}
for N = 3, but denotes

{[a, b] [r, -c], It, z] [a, b], [z, r, a, b]}

for N = 4 .

It is clear that in the context of a bounded number
(say N) of processors, we can restrict ourselves in

J.-J.C. Meyer and E.P. de Vink: Step semantics 141

our semantic domain to multi-sets of cardinality
< N. If we also have finiteness of the alphabet o ~
then each stream set X is trivially locally finite,
since X ["] = = _ ~ " ~ " . • and the set on the right-
hand side is finite under these assumptions. In this
special case of a finite number of elementary ac-
tions on a bounded number of processes we have
immediately that the semantical o p e r a t o r s . , + ,
and l[preserve compactness (and are therefore well-
defined), provided that they preserve closedness.

4.2 A t o m i c act ions that take more than one
unit o f t ime

As we admit ted already, it is not very realistic to
assume that atomic actions take only one tick of
the global clock. We shall now see how to general-
ize our semantics in order to cater for atomic ac-
tions that may take longer to be executed.

We do this by splitting up atomic actions a
into sequences of " suba tomic" actions that take
one unit (tick) of time: the atomic action a
= a (n a(2) ... a (n) takes n units of time to be executed.
Of course this is still not sufficient to deal with
these actions properly: al though a=a(na(2) . . , a (")
is now written in terms of subatomic part(icle)s
a (~), and can thus be interpreted in the model by
the stream [a (n] [a(2)] ... [a(")], we have to be care-
ful that these atomic actions may not be inter-
rupted by interleaving with other actions. So, for
example, if we consider all b for a=a(a)a (2) and b
= b (u, we obtain in the model with subatomic ac-
tion as resulting set {[a (1), b (a)] I-a(2)], [a (1)] [a (2),
b(n], [a (a)] [a (2)] [b(1)], [b (x)] [a (a)] [a(2)]}. This set
does not include the possibility [a (1)] [b (u] [a(2)],
which expresses that the atomic action a is inter-
rupted for the execution of b !

In the multi-processor model unfortunately this
s tream is included in the semantics of a lib
--a(~)a(2)llb(U. Therefore, we have to modify our
parallel execution operator. However, we can still
deal with concurrency with subatomic actions
within the frame of Sect. 2.

4.2. Definition. Let sr > a be the collection of ac-
tions of the format a (~) with i > 1. The parallel com-
position II sa : ~* (~s9 • r (~ ') , #o* (Nst) with re-
spect to subatomic actions is defined as the lifted
extended version of lisa, [~a, I sa: ~ y x ~ y '
~ , (Mst) such that

Xllsay-- Xl~say-t- Y~saX + Xl~ay
e~saY={y}

Ax'[ay=A(x' llsay)

if y = B y ' and B c ~ d > a = ~
Ax'][say = ~ otherwise

Ax ' I~aBy '-- (A Us B)(x']1 saY').

We calculate as illustration the stream set of the
above example:

[a(1)] [a(2)] II sa [b(aq
= [a(1)] [a(2)] ~sa [b~a)] + [b(a)] ~a [a(n] [-a(2)]

+ [-a(1)] [a(z)] Isa [b (hI
= [a(1)] ([a(2)] IIsa [b")]) + [b (a)] (e II sa [a (1)] [a~2)])

-]- [-a(1), b(1)] ([a(2)] II sa~)

= [a(n] ([a(2)] ~sa [b")]) + [a (hI ([b (a)] [~a [a(2)])
+ [-a(n] (l-a(2)]] ~, [-b(n]) + [b(1)] (~ II sa [-a(n] l-a(2)])
+ [a (a), b(a)] [a (2)] = [a(1)] [a (2)] [b (hI +
+ [a (t)] [a (2), b(a)] + [b ~1)] [a (n] [a(2)])
+ [a ~u, b (1)] [a(a)].

Note that indeed the resulting set does not include
the stream [a m] [b (1)] [-a(2)] !

4.3 M a x i m a l paral le l ism

At the end of Sect. 3 it was pointed out that the
synchronous start semantics does not satisfactorily
deal with synchronizat ion primitives. In some sense
the concurrency operator el ss optimizes schedulings
in too local a manner. The multi-processor seman-
tics for 5r a does not suffer from this; both synchro-
nous co-operat ion and interleaving are modeled
with the concurrency operator limp. This however,
may be regarded as undesirable:

Consider again the s ta tement (all c)II(b; c). In
the multi-processor semantics this s tatement yields
(after failure removal) the stream set

{[a] [b] [~, T], [a, b] [~, d , [b] [a] [~, q ,
[b] [a, ~, q , [b] [z, ~] [a]}.

One might object that the semantics MP~ gives too
many outcomes, due to unnecessary interleavings.
We shall remedy this shor tcoming by the introduc-
tion of the abstract ion operator ~c~a~/~ . m a ~ c / ~
will select the fastest (successfully synchronized)
scheduling. For the above example we shall obtain
in the maximal parallelism model the stream set
{[a, b] [t, z], [b] [a, t, t]}.

The operator ~ x / / ~ is in t roduced as follows.
First we define an ordering < on streams. = maxpar
x < maxparY if X can be obtained by taking together
(multi-set union) consecutive actions in y. So there
is a many-one correspondence between actions in

142 J.-J.C. Meyer and E.P. de Vink: Step semantics

y and actions in x. For example

[a, b] [z, "c] <__ maxpar [a] [b] [z, z]

but not

[a, b] [z, z] < . , .~pa, - [b] [a, r, ~].

The relation <,,axpa, will be defined (as usual) in
two stages: first on finite streams, then on arbitrary
streams with the help of truncations. On the basis
of ~maxpar w e define the operator ~ z ~ f i a , that
takes the minimal streams from a stream set with
respect to the maximal parallelism ordering.

({Cc~l [c=l, Cc=] [c~l, [c~, czl} II mp {[-C2] [c l l})II mp
{ [e i] [~1]}
= {[Cl] [~', 17] [Cl] , ["f, T] [Cl , Cl] , ['L', "C] [e l i [Cl] ,

[~, ~, c,] [cd,. . .} II~{[e,] Eel]}
= { D , ~] [~, ~] [~, ~], [~, ~, ~, ~] D, ~],...}.
Application of/Z~ yields

{D, ~] D, ~] [~, d , [~, ~, ~, ~] D, ~]}-
Finally we arrive at {[-c, z, -c, z] [T, z]}, since

[t, ~, ~, ~] [~, ~] =<,.,,~,,o, D, t] D, ~] [t, ~].

4.3. Definition

(i) The maximal parallelism ordering < on maxpar
~Y is defined by the following clauses:
g ~ maxpar g
"J- ~ maxpar -j-

A <-_ maxparal . . . A k
if A = A1 k-) m . . . UmAk, (k ~ 1)
A x' <= m,~ p~, y if 3 y a , y x, e ~ f :
A < m.~p. . YA A X' <--__ , . .~p . , y~, A YA Y~' = Y"

(ii) The maximal parallelism ordering < on maxpar
N~* is defined by X<=maxparY iff V m 3 n > m :
x Ira] < maxpary[rt].

(iii) The abstraction operator ~ : v f i , ~

is defined by
r = { x (~ X [- l ~ x ' ~ .X" x ' <maxparX}.

Note the restriction n > m in 4.3 (ii). This condition
excludes pathological situations as

[a] _L ~ maxpar [a] [b].

([a] [b] is not a serialization of [a]_L.)

We use the maximal parallelism operator to derive
a new multi-processor semantics, as we did before
with the failure removal operator / , .
(Note however that unfortunately this abstraction
operator is too weak, in that it excludes compari-
son of, e.g., [a] [a, b] [a, b] ... and [a, b] [a, b] ...
in M P ' l ~ # ([a ; b ~] II#([b; (]~. This touches upon
fairness issues that fall outside the scope of this
paper.)

4.4. Definition (Multi-processor semantic with fail-
ure removal and maximal parallelism for Lfl). The
semantics MPI"" ~x 'Env l) ~ (~) is defined
by MP;' = ~ x f i ~ o/~o MP~.

From Koymans et al. (1985) we adopt the example
s=((CaPIC2)[l(e2; Cl))[[(cl; Cx). We calculate the
multi-processor semantics MP1 ~s~ (already antici-
pating to failure removal):

4.4 T h e d e l a y a c t i o n and r e a l - t i m e

s e m a n t i c s

The considerations of Subsect. 4.2 enable us to give
a proper treatment of an operator that is associated
with real-time programming, viz. the delay operator
(cf., Koymans et al. 1985). So now, in this subsec-
tion, we include the special atomic action d(n) in
the syntax of our language(s), denoting a delay of
n units of time. It is important to stress that this
action d(n) is an atomic one: it is not intended
to be interrupted by some interleaving of another
action. This would clearly be contradictionary with
our intuitions concerning a delay of n units of (real)
time.

In our set-up we can express the delay action
d(n) as an atomic action that takes n units of time
to execute: d (1), . . . , d ('). (The d (~ may be interpreted
as dummy or skip (sub)actions expressing waiting
one unit of time, but this is not within the scope
of our uniform semantics.) To treat delays properly
in this manner it is essential to use a model with
true concurrency as expounded in Subsect. 4.2.
Moreover, when considering e.g., the parallel state-
ment a II (d(1); b), it is not intended to include the
scheduling possibility [a][d(1)][b], because this
would again not correspond to our intuition about
a delay (of one unit of time, in this case). We have
to require that delays start execution as soon (fast)
as possible. Even under the assumption of maximal
parallelism as has been discussed in the previous
subsection this requirement is not fulfilled au-
tomatically, as can be observed from the following
example:

~ f i ~ (M P a ~a; b II d(1)~)
= ~ , ~ f i ~ ({[a] [d (1)] [b], [a] [b] [d(1)],

[a] [b, d (1)] [a, d (1)] [b], [d (1)] [a] [b]})
= {[a, d (1)] [b], [a] [b, d(1)]}.

Clearly, oinly the first outcome in the resulting set
is a correct outcome. However, it is easy to remedy

J.-J.C. Meyer and E.P. de Vink: Step semantics 143

this by imposing an extra property of ~a regarding
delays:

4.5. Definition. Let sr > 1 be the collection of ac-
tions of the format a ") with i > l and ~ be the
collection of subatomic parts of delay actions, i.e.,
actions of the format d "). The parallel composition
II ~t : ~* (~) x ~* (~t)) ~ , (~t) in the real-time
model is defined as the lifted extendeed version
of II b - : • , ~* (~ ') such that

x II,,y=xL~,y+yL,,x+xl~,y
a~tY={Y}

Ax'~ty=A(x'l l~tY) if y = B y ' , B c ~ > l = (2 5
and B n @ = ~

A x' ~tY = ~ otherwise

-1- I~,y= xl~,-l- = ~

A x' I,,By'= (A wNB)(x' II ~,Y').

The operator [l~t is continuous as can be checked
with the usual tools. On the basis of this real-time
concurrent operator one may define a semantical
function along the lines of the previous sections.

5 A branching- t ime step s e m a n t i c s
for true concurrency

In the previous sections we have occupied our-
selves with so-called "linear-time" semantics for
our language(s). It is well-known (cf., Milner 1980)
that - in the context of synchronization - if one
is interested in an analysis of deadlock behaviour,
a linear-time semantics of the kind we have pre-
sented is not adequate. One has to refine the se-
mantic model by means of such notions as ready
or failure sets (cf., Hoare 1985; Olderog and Hoare
1986; Taubner and Vogler 1987) or extend the se-
mantics to a "'branching-time" one, in which one
can suitably model the structure of nondeterminis-
tic choices (cf., de Bakker et al. 1989).

In this section we indicate how to work out
the latter possibility, although we expect no serious
problems when pursuing the former alternative.
Here we shall employ de Bakker-Zucker branch-
ing-time processes. In effect, it appears to be fairly
straightforward to extend the domains appearing
in de Bakker and Zucker (1982) and de Bakker
and Meyer (1987), such that we can model one
of our versions of true concurrency.

In this section we restrict ourselves to state-
ments of 5~ that are guarded. Informally, this
means that every call of the variable ~ in a con-

struct #4[s] must be (semantically) preceded by
(the execution of) some elementary action. So, for
example, #4[a ; ~] and #[(a; 4)II b] are guarded,
but #r #~[~; a] and #4[a114] are not.

We use a semantic reflexive domain P given by
the following domain equation

P = ~c({_l_} u ~ u (N x P))

where ~ (.) denotes the powerset of closed subsets.
Here I acts as a nil-process. P is a complete metric
space.

The definitions of the operators �9 and + are
analogous to those in de Bakker and Zucker (1982)
and de Bakker et al. (1986). We now proceed with
the definition of II bt.

5.1. Definition.
(i) The operator []bt on the subset of P with pro-

cesses of finite depth is given by:
P IIbtq=(P~btq)+(q~btP)+(P]btq)
..k ~bt q = _k
A~btq=(A, q)
(A, p') Lbtq = (A, p' II q)
P~b,q=U{x~qlx~p}
.[] b t q = p l b t l = 1

A lbtB as in the linear-time case
(A, p)Ib, B---{(AIb, B, p)}
Albt(B, q)=-{(AlbtB, q)}
(A, p)Ibt (B, q) = { (A IbtB, P II btq) }
plb, q----U{xlb, y lxsp , y~q}.

(ii) The operator II b, on the domain P with pro-
cesses of arbitrary depth is given by:
P I[btq = lim, p(~)II btq (n).

Now we may define our branching-time semantics
for our (guarded) language. We use a similar
scheme as we did for the linear-time semantics. In
the clause for the recursive #-construct we take
a unique fixed point (of a contracting operator on
a complete metric space) where we took a least
fixed point (of a continuous operator on a cpo)
before.

5.2. Definition (Branching-time semantics for the
guarded sublanguage of 5~ We take the reflexive
domain P as before. Let Env = ~) P. We define
the semantics BT: ~)Env)P with respect to
the branching time model by the clauses:

BT~e~(~)={[e]} for e~g

BT~s~ ; s2~ (tl) -- BT ~sl ~ (17). BT~s2~ (tl)
BT ~s 1 w s2] (~I) = BT [sl~ 01) + BT ~s2] (q)
BT~sx II s2~(rl)= BTEsI~(rl) HbtBT~s2~(r])

144 J.-J.C. Meyer and E.P. de Vink: Step semantics

B T ~# ~ [s]~ (t/) = ufp (~, n)
where ~ , , = 2p.BT ~s~ (it {p/~}).

In the above definition we have assigned to the
recursive #-construct the unique fixed point of
~,,=2p.BT~s~(tl{p/~}). The existence of this
unique fixed point is guaranteed by the counterpart
of Lemma 2.15: for guarded statements s the func-
tion ~ , , is contracting. We then use Banach's fixed
point theorem for complete metric spaces, to derive
that the unique fixed point of ~ , , exists. (Cf., de
Bakker and Zucker 1982.)

Concluding this section we may remark that
in effect we have indicated that de Bakker-Zucker
process theory is suited for a treatment of true con-
currency (as well as a correct analysis of deadlock
behaviour).

6 Conc lus ion

In this paper we have attempted to show that much
work done on denotational semantics in the con-
text of the interleaving model can be extended to
models of " t rue" concurrency. We have presented
several more or less sophisticated semantic models
that treat various aspects of " t rue" concurrency
in a form which is known as step semantics. The
semantical definitions are developed by means of
a general method available for the Smyth powerdo-
main. We have chosen this powerdomain, since it
is simpler than the Egli-Milner one, and still is
adequate for infinite behaviour. (Our results are
also valid if one would adopt the Egli-Milner pow-
erdomain instead.)

One might object that the role of I in the con-
text of the Smyth powerdomain is not compatible
with the intuitions regarding forms of "true ' ' con-
currency, since we have that X•{• =-s{• and
nontermination in a distributed environment
should not be that catastrophic as is suggested by
this equivalence. Our answer to this objection is
that • must be viewed as an atomic divergence
rather than an internal divergence: if one still wants
3_ to represent the meaning of a divergence by hid-
ing (such as e.g., #~[-a; ~] where a is hided), the
consequence is that one should be careful to post-
pone the hiding of internal actions to a stadium
where the context has been taken into considera-
tion. For example, consider

X=SS~#{[a; ~] II ss#rl[b; q]~ ={[a, b]~

Hiding a in X would yield {[b]~ whereas hiding
a directly in SS~#~[a; {]~ yields the uninforming
result {_1_} !

Following the presentation of our basic seman-
tic models we have investigated refinements of
these models in order to deal with a bound on
the number of available processors, actions that
take more than one unit of time and a delay con-
struct. Furthermore, we have encountered a notion
of maximal parallelism similar to that appearing
in work on real-time semantics (Koymans et al.
1985). We stress that the continuity proofs of the
various parallel operators were facilitated consider-
ably by a number of general considerations such
as the lifting of continuous functions on streams
to compact stream sets.

Although we have considered a very simple lin-
ear-time model, we believe that our results can be
generalized in a straightforward manner to more
refined models such as failure step semantics in
the sense of Taubner and Vogler (1987). Moreover,
we also expect that the technical metric results of
papers of de Bakker et al. carry over to this frame-
work of true concurrency. In particular, it seems
also possible to give an operational semantics for
our languages with true concurrency based upon
transition systems in the style of Plotkin (1980).
The transition systems needed are variants of those
of de Bakker et al. (1989) and de Bakker and Meyer
(1987), rendered suitable for streams of action
packages rather than actions on their own. More-
over, a rule is needed to express the character of
true concurrency, such as (in the notation of de
Bakker and Meyer (1987), for the language 5r 0
without synchronization):

S 1)Ast

S 2)BsH

sa II s2)A~sBs' II s""

We expect no problems to relate this operational
semantics to the denotational one along the lines
of de Bakker et al. (1989), Kok and Rutten (1988)
and de Bakker and Meyer (1987).

References
Aceto L, de Nicola R, Fantechi A (1987) Testing equivalences

for event structures, ln: Venturini Zilli M (ed) Proc Ad-
vanced School on Mathematical Models for the Semantics
of Parallelism (Lect Notes Comput Sci 280) Springer, Berlin
Heidelberg New York Tokyo, pp 1-20

Back RJ (1983) A continuous semantics for unbounded nonde-
terminism. TCS 23:187-210

de Bakker JW (1980) Mathematical theory of program correct-
ness. Prentice Hall, London

Boudol G, Castellani I (1987) On the semantics of concurrency:
partial orders and transition systems. In: Ehrig H et al. (eds)
Proc TAPSOFT/CAAP '87 (Lect Notes Comput Sci 249)
Springer, Berlin Heidelberg New York Tokyo, pp 123 137

J.-J.C. Meyer and E.P. de u Step semantics 145

Boudol G, Castellani I (1987) Concurrency and atomicity, rap-
ports de recherche 748, INRIA Sophia Antipolis

Bergstra JA, Klop JW (1984) Process algebra for synchronous
communication. Inf Control 60:109-137

de Bakker JW, Kok JN, Meyer J-JC, Olderog E-R, Zucker
JI (1986) Contrasting themes in the semantics of imperative
concurrency. In: de Bakker JW, de Roever WP, Rozenberg
G (eds) (Lect Notes Comput Sci 224) Springer, Berlin Hei-
delberg New York Tokyo, pp 51-121

de Bakker JW, Meyer J-JC (1987) Metric semantics for concur-
rency, Tech Rep IR-139, Free University, Amsterdam

de Bakker JW, Meyer J-JC, Olderog E-R, Zucker JI (1989)
Transition systems, metric spaces and ready sets in the se-
mantics of uniform concurrency. JCSS 36:158 224

Broy M (1986) A theory for nondeterminism, parallelism, com-
munication and concurrency. TCS 45 : 1-62

de Bakker JW, Zucker JI (1982) Processes and the denotational
semantics of concurrency. Inf Control 54: 70-120

de Nicola R, Hennessy M (1987) CCS without ~'s, In: Ehrig
H et al. (eds) Proc TAPSOFT/CAAP '87 (Lect Notes Com-
put Sci 249) Springer, Berlin Heidelberg New York Tokyo,
pp 138-152

Degano P, de Nicola R, Montanari U (1987) CCS is an (aug-
mented) contact free C/E system. In: Venturini Zilli M (ed)
Proc Advanced School on Mathematical Models for the
Semantics of Parallelism (Lect Notes Comput Sci 280) Sprin-
ger, Berlin Heidelberg New York Tokyo, 144 165

Francez N, Hoare CAR, Lehmann DJ, de Roever WP (1979)
Semantics of nondeterminism, concurrency and communica-
tion. JCSS 19:290-308

van Glabbeek RJ, Vaandrager FW (1987) Petri net models for
algebraic theories of concurrency. In: de Bakker et al. (eds)
Proc PARLE (Lect Notes Comput Sci 259) Springer, Berlin
Heidelberg New York Tokyo, pp 224-242

Janicki R (1987) A formal semantics for concurrent systems
with a priority relation. Acta Inf 24:33-55

Hoare CAR (1985) Communicating sequential processes. Pren-
tice-Hall Englewood Cliffs, New Jersey

Kok JN, Rutten JJMM (1988) Contractions in comparing con-
currency semantics. In: Lepist6 T, Salomaa A (eds) Proc
ICALP '88 (Lect Notes Comput Sci 317) Springer, Berlin
Heidelberg New York Tokyo, pp 317-332

Koymans R, Shyamasundar RK, de Roever WP, Gerth R,
Arun-Kumar S (1985) Compositional semantics for real-
time distributed computing. In: Parikh R (ed) Proc Logics
of Programs (Lect Notes Comput Sci 193) Springer, Berlin
Heidelberg New York, pp 167-189

Mazurkiewicz A (1978) Concurrent program schemes and their
interpretation, Rep DIAMI PB-78, Comput Sci Dept, Aar-
hus University, Aarhus, Denmark

Meyer J-JC (1985) Programming calculi based on fixed point
transformations: semantics and applications. Dissertation,
Free University, Amsterdam

Milner R (1980) A calculus for communicating systems (Lect
Notes Comput Sci 92) Springer, Berlin Heidelberg New
York Tokyo

Meyer J-JC, de Vink EP (1987) Applications of compactness
in the Smyth powerdomain of streams. In: Ehrig H et al.
(eds) Proc TAPSOFT/CAAP '87. (Lect Notes Comput Sci
249) Springer, Berlin Heidelberg New York Tokyo, 241-255

Olderog E-R, Hoare CAR (1986) Specification oriented seman-
tics for communicating processes. Acta Inf 23 : 9-66

Plotkin GD (1976) A powerdomain construction. SIAM J Com-
put 5:452~487

Plotkin GD (1980) An operational semantics for CSP. In:
Bjorner D (ed) Formal description of programming concepts
II (Lect Notes Comput Sci 86) Springer, Berlin Heidelberg
New York Tokyo, pp 527-553

Reisig W (1985) Petri nets. Springer, Berlin Heidelberg New
York Tokyo

Rozenberg G, Verraedt R (1983) Subset languages of Petri nets
I: the relationship to string languages and normal forms.
TCS 26:301-326

Salwicki A, Mfildner T (1981) On the algebraic properties of
concurrent programs. In: Engeler E (ed) Proc Logic of Pro-
grams (Lect Notes Comput Sci 125) Springer, Berlin Heidel-
berg New York, pp 169-197

Smyth MB (1978) Power domains. JCSS 16:23 36
Taubner DA, Vogler W (1987) The step failure semantics. In:

Brandenburg FJ, Vidal Naquet G (eds) Proc STACS '87
(Lect Notes Comput Sci 247) Springer, Berlin Heidelberg
New York Tokyo, pp 348-359

Winskel G (1980) Events in computation. Ph.D. Thesis, Edin-
burgh University, Edinburgh

