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Abstract. We present a variety of denotational lin- 
ear time semantics for a language with recursion 
and "true' '  concurrency in a form of synchronous 
co-operation, which in the literature is known as 
step semantics. We show that this can be done 
by a generalization of known results for interleav- 
ing semantics. A general method is presented to 
define semantical operators and denotational se- 
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mantics in the Smyth powerdomain of streams. 
With this method, first a naive and then more so- 
phisticated semantics for synchronous co-opera- 
tion are developed, which include such features as 
interleaving and synchronization. Then we refine 
the semantics to deal with a bounded number of 
processors, subatomic actions, maximal parallelism 
and a real-time operator. Finally, it is indicated 
how to apply these ideas to branching-time models, 
where it becomes possible to analyze deadlock 
behaviour as well as a form of "true" concurrency. 

Key words: Denotational semantics - True concur- 
rency - Smyth powerdomain of streams 

1 Introduction 

Much work has been done in the field of denota- 
tional semantics of languages with parallel opera- 
tors and recursion where this parallelism is mod- 
eled by means of interleaving. (See de Bakker et al. 
(1986) for an overview.) This idea of using the inter- 
leaving model is motivated by two reasons: (i) In- 
terleaving can be seen as scheduling the "parallel" 
components on o n e  processing unit. (ii) Theoreti- 
cally, interleaving reduces parallelism to nondeter- 
minism, a notion well-understood in semantic 
theory (e.g., de Nicola and Hennessy 1987). 

On the other hand, however, workers in other 
(theoretical) frameworks such as Petri nets, have 
always stressed the importance of being able to 
distinguish between non-determinism and what is 
called " t rue"  concurrency (cf., Reisig 1985). 

In this paper we present a denotational seman- 
tics in the style of e.g., de Bakker et al. (1986) for 
a language with recursion and a form of " t rue"  
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concurrency which is very close to what is called 
step semantics in Taubner and Vogler (1987). In 
fact, our proposal is a direct generalization of what 
is known for the interleaving model and can be 
viewed as a "non-standard" model of Bergstra and 
Klop's process algebras for interleaving semantics, 
(see Bergstra and Klop 1984). This generalized 
model can be thought of as containing a number 
of processors, all executing in parallel some parts 
of a program. In the program it is explicitly given 
what has to be executed in parallel. At any moment 
the number of active processors is assumed to be 
finite. (It is not very realistic to consider this other- 
wise.) However, in principle we assume that a finite 
but unbounded number of processors is available. 
(In Sect. 4 where we treat refinements of our se- 
mantics we consider how to deal with a bounded 
number of available processors.) 

The semantics of a statement gives the set of 
possible schedulings for the parallel (concurrent) 
execution of this statement. In our model we as- 
sume the following: (i) There is a global clock. (ii) 
All processors co-operate synchronously, like in a 
systolic system. (iii) All atomic actions take one 
tick of the global clock to be executed. (We shall 
show how to generalize this in Sect. 4 again.) 

Of course, these assumptions do not say any- 
thing about how to schedule the atomic actions 
of a program on the processors; we still have free- 
dom to make choices concerning this and we shall 
investigate some of the alternatives that are possi- 
ble here. 

The main point of this paper is to show that 
we can still use the same techniques and concepts 
as for interleaving - including the Smyth powerdo- 
main and techniques based on the Smyth ordering 
- once it is decided upon how to model the " t ruly"  
concurrent execution of two actions. In fact, we 
discuss several ways of modeling this behaviour, 
both using the idea of collecting concurrent actions 
in a multi-set or bag just as nondeterministic ac- 
tions are collected in sets. (Naturally, we have to 
discriminate strictly between the multisets model- 
ing concurrency and the sets representing nonde- 
terminism.) 

As in the linear time semantics for interleaving 
we use streams and sets of streams (cf., Broy 1986; 
Meyer 1985). In this setting, however, we use 
streams of multi-sets of elementary (or atomic) ac- 
tions rather than streams of just elementary ac- 
tions. The idea behind this is the following: 
streams record sequences (histories) of the actions 
that are (or have been) executed. If we allow truly 
concurrent actions we have to record sequences 
of "action packages" that are thought of as being 

executed together (simultaneously). This being 
understood we have to decide how the simul- 
taneous performance of complex (i.e., nonelemen- 
tary) actions are denoted in terms of these streams 
of action packages. For this we have two obvious 
choices: (i) a naive one, where it is assumed that 
two concurrent actions start at the same time; (ii) 
a more sophisticated one, where it is allowed 
that two concurrent actions may arbitrarily start 
in parallel: perhaps one of them starts before the 
other, and possibly suspends at some moment the 
execution of the next action for a while. 

At first sight the second choice seems slightly 
awkward to work out, while the first choice is rath- 
er easy. However, the second choice of modeling 
can be elaborated using general techniques that 
were developed in the framework of interleaving 
semantics (cf., Meyer and de Vink 1987). Further- 
more, in the second model of synchronous co-oper- 
ation it is possible to include special synchroniza- 
tion primitives in order to obtain a denotational 
semantics for a much more realistic language, in 
which one can control the way co-operation is syn- 
chronized. This appears to work just as in the case 
of interleaving. 

Next we investigate somewhat more refined 
issues, such as a multi-processor semantics for a 
bounded number of processors, a semantic model 
that deals with atomic actions that may take more 
than one tick of the clock to be executed, we discuss 
how maximal parallelism can be incorporated in 
our models and comment on real-time aspects in- 
volving a delay operator. 

Finally, we indicate how to generalize the ideas 
expounded in the Sects. 3 and 4 to branching time 
semantics in the style of de Bakker and Zucker 
(1982), where it becomes possible to analyze dead- 
lock as well as a form of " t rue"  concurrency. We 
view this as an attempt to synthesize the metric 
approach of de Bakker and Zucker (1982) with ap- 
proaches such as Taubner and Vogler (1987) and 
Aceto et al. (1987). 

We appreciate that the present proposal is only 
a first attempt to obtain the full sophistication of 
true concurrency. Our model of concurrency is an 
extension of the models of de Bakker et al. for in- 
terleaving semantics, stretched as far as possible 
towards " t rue"  concurrency. It is in between the 
interleaving model and "partial order" semantics 
for concurrency as it appears in the literature. In 
fact, since our model has an implicit notion of time 
(timing), it may be viewed as a manner of shaping 
the general partial order model into this built-in 
timing mechanism, thus rendering a more concrete 
model. Concrete in the sense that when two state- 
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ments sl and s2 are to be executed in parallel, their 
mutual independence is reflected in our model by 
means of a set of specific schedulings on a multi- 
processor of the atomic actions that constitute the 
statements s~ and s2. This seems to be in agreement 
with the results in Aceto et al. (1987), where the 
relationship between these three models of true 
concurrency is investigated in detail. 

As we said before, our model has a close rela- 
tionship with the step (failure) semantics of 
Taubner and Vogler (1987). Although we do not 
deal with failure sets we believe that this is not 
essential for our approach. We expect that our 
framework can be easily generalized to a failure 
(or ready set) model. We have chosen not to do 
this in order not to obscure the main issue of this 
paper, which is a rigorous treatment of recursion 
in the context of step semantics by means of fixed- 
point theory. Moreover, the emphasis in this paper 
is on a uniform method to prove the continuity 
of variations of parallel operators in this frame- 
work. 

It would, of course, be interesting to investigate 
more precise relationships between our approach 
and other approaches to true concurrency, such 
as Petri nets (cf. e.g., Reisig 1985), Mazurkiewicz 
trace theory (Mazurkiewicz 1978), Winskel's (la- 
beled) event structures (Winskel 1980) and subset 
and multiset languages (cf. e.g., Rozenberg and 
Verraedt 1983; Janicki 1987). We would like to 
mention van Glabbeek and Vaandrager (1987) in 
this context, where an interesting attempt is made 
to treat Petri nets by means of process algebra, 
and Degano et al. (1987), where a partially success- 
ful translation is given from CCS to a certain class 
of Petri nets. Also the recent work of Boudol and 
Castellani (Boudol and Castellani 1987a; Boudol 
and Castellani 1987b) must be mentioned here: in 
these papers an operational semantics based on 
a Plotkin-style transition system, is proposed such 
that sequentiality, non-determinism and concur- 
rency are properly distinguished, using a synthesis 
of Milner's CCS and Winskel's event structures. 
These attempts of synthesizing superficially entirely 
different frameworks are of paramount importance 
in order to understand the full complexity of"  true" 
concurrency. 

2 Mathematical preliminaries 
In this section we present some syntactial and se- 
mantical preliminaries that we shall need in the 
sequel of our paper. We start with the definition 
of our two languages. Then we introduce the do- 
main of streams ~st and the powerdomain of com- 

pact stream sets ~*  (~st). We proceed with a gener- 
al method to construct continuous functions on 
compact stream sets. We conclude this section with 
a scheme for denotational semantics for uniform 
concurrency with recursion, where the interpreta- 
tion of the concurrency operator can still be varied. 

2.1. Definition. Fix an alphabet ~r of atomic ac- 
tions, an alphabet cg of synchronization actions 
and a set 3 of program variables, with typical ele- 
ments a, c and ~, respectively. 

(i) The language 5o0 is given by BNF: 
s : :  =alsl;s2[sl  US2IS1 II s2[ ~1]/~ I s ]  �9 

(ii) The language 5Ol is given by BNF: 
S:: =alc]s1; s2ls1L)s2]s 1 Ns21~[~[s]. 

This syntax for So and 5or is widely used in papers 
such as de Bakker et al. (1986) and de Bakker and 
Meyer (1987) as a core language for (uniform) con- 
currency with recursion. In the present paper the 
sets ~r and ~ are not assumed to be finite. The 
language 5oo contains atomic actions in ~r (which 
remain uninterpreted), sequential composition, 
nondeterministic choice also known as local non- 
determinism (Francez et al. 1979), a parallel com- 
position, variables and the recursive y-construct. 
The language 5~ is an extension of ~o with syn- 
chronization actions in ~. We refer with the term 
elementary action to either an atomic action or a 
synchronization action. We distinguish ~ r  Fur- 
ther, we stipulate a bijection : ~ , ~ which for 
every ce<g yields a matching synchronization ac- 
tion g ~ ,  and such that g = c  for all cE~. (Cf., 
Milner 1980.) 

In the papers mentioned above the parallel 
composition operator is interpreted in the inter- 
leaving model. The intention of this paper is to 
vary the interpretation of this parallel operator in 
order to deal with " t rue"  concurrency. 

Next we present an overview of the basic defini- 
tions and facts regarding the domain of stream sets 
and the Smyth powerdomain that we shall employ 
in this paper. On the latter we shall base our se- 
mantic definitions. 

Let ~ o = { B :  d----- ,NIB(a)+0 for a finite and 
positive number of a e ~ }  stand for the collection 
of all finite non-empty multi-sets or bags over s~. 
Let ~ I = { B :  s~'wcg ~NIB(e)+0 for a finite and 
positive number of e e d  u W} stand for the collec- 
tion of all finite non-empty multi-sets over sJ w <g. 
One can think of elements of do  and N1 as non- 
empty "buckets" or "packages" of atomic actions 
and elementary actions, respectively. In such pack- 
ages a particular action may occur more than once; 
hence the use of multi-sets rather than (ordinary) 
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sets. We consider action buckets as a collection 
of (non-necessarily different) actions that  can be 
executed simultaneously by a bunch of processors. 
(We return to this point later.) Concrete multi-sets 
are represented in the format  [e~, . . . ,  e,]. 

For  notat ional  convenience below we use 50, 
~ ,  g to range over ADo, N0, ~r and ~ ,  N1, ~ r  
respectively. 

2.2. Definition (Broy 1986). Distinguish a special 
symbol • called " b o t t o m "  not  in ~r w g.  We define 
the set Ns, of streams over N by N=t= 
~ *  vo ~ * . •  w N ~ 

Here ~ *  is the collection of finite strings over N;  
elements of ~ *  are called finished streams. Ele- 
ments of N*._I_, finite strings over N followed by.L,  
are called unfinished streams. N~' contains the infi- 
nite strings or co-strings over ~ .  Elements of No, 
are called infinite streams. We define the collection 
of finite streams ~Y by NY= ~*  u ~ * . •  We shall 
use e for the empty stream (i.e., the empty word 
in ~*),  and ~_ for the prefix relation on streams. 
Furthermore,  we use A, B, ... to range over ~ ,  
x, y . . . .  to range over Ns', and X, E . . .  to range 
over subsets of ~*', which we shall call stream sets. 
When dealing with tuples of streams we may  write 
2 instead of (x~ . . . . .  Xk). 

We equip the sets of streams ~ {  and ~]~ with an 
ordering relation. In fact, this stream ordering 
turns N~' and ~]~ into cpo's. 

2.3. Definition. We define the stream ordering <=t 
on N=' as follows: 

(i) For  all x, yeN=': x<=,y iff t x ' e ~ * 3 y ' ~  
N=~\{_I_} such that  x=x'J_ and y=x 'y ' .  

(ii) We define < =, as the reflective closure of < =,. 

Intuitively, a stream x is (stream-)less than  a stream 
y exactly when x is unfinished, so ending in • 
and x can be extended to y by expanding the trail- 
ing bottom. 

2.4. Theorem (Back 1983). ~ and ~]' are complete 
partial orderings. 

The domains on N~{ and N]' are not  sufficiently 
rich to cater for all constructs in our language, 
in particular the non-deterministic choice. There- 
fore we change to powerdomains  (cf., Plotkin 1976). 
So instead of streams we shall use sets of streams. 
To define these powerdomains  it is convenient to 
formulate a technical notion, viz. t runcat ion of 
streams. Moreover,  t runcations can be used for the 
extension of monotonic  functions on finite streams 
to continuous functions on arbitrary streams. 

2.5. Definition 
(i) For  n ~ N  and x ~  =' we define 

if length(x) < n 
xf"l={: ' J_  if length(x)>n, 

where x' e N" such that  x' _< x. 

(ii) For  n e N  and Xc=N=, we define 
x~.~= {x~.~lxeX}. 

Next we present a canonical way to construct con- 
t inuous functions on streams from monotonic  func- 
tions on finite streams. This method  relies on the 
monotonic i ty  of truncations.  

2.6. Lemma.  Let @ be some cpo ordered by <= ~. 
(i) For all n e N  the truncation 2x.x~"le~ =' ,~=' 

is monotonic. 
(ii) (Extension lemma) Let f :  (~r ,@ be mono- 

tonic. Define F: (N=t)k > ~ by F(2)= lub,f(2~"l). 
Then F is well-defined and continuous. 

Proof 
(i) Directly from the definition of x L"~. 

(ii) Note that  F is well-defined by monotonic i ty  
of )~n.x r"l, for fixed x and monotonic i ty  o f f  
(Monotonicity) Suppose 2<=t3~ in (~s,)k. By 
monotonic i ty  of 2x .x  ~"~ and of f, we have 
F (2) = lub=f ( ~ ~"1) < ~ lub=f (y L"1) = F(y). 
(Continuity property) We use the following 
fact: If x=lubix i  in N~' then Vn3ioVi>io:  
x~"l= x~ "J. Suppose 2 =  lub~ 2~ in (~s,)~. Fix n e N .  
We have by the above fact f(Yt"J)=f(21"~ ) for 
suitable i,. Hence f(~L,l) < ~ lubmf(21~l) = f ( 2 i . )  

and f(YE"l)<__~lubif(2,). So f ( Y ) = l u b , f ( ~  ~"1) 
<= ~ l u b  i F(2i). [] 

Note that  the "converse"  of the extension lemma 
trivially holds: suppose F: (N=,)k , N=' is continu- 
ous. Define f :  (N@ >~s~ by f = F l ( ~ @ ,  i.e., the 
restriction of F to (N.r)k. Then f is monotonic  and 
F ( ~ ) =  lub , f  (2t<), for all 2~(~=') k. 

On finite streams we have an obvious induct ion 
principle, that  we shall call " s t ream induct ion".  We 
define the norm / x /  of a finite stream x by / x / =  n 
iff xe~"vo~".A_. Let X ~  I denote a set of finite 
streams with a certain property. Suppose that  (i) 
_1_, e~X  and (ii) that  from V x E ~ l :  Ilxll < n ~ x ~ X  
we derive V x e ~ l :  Ix]l <n=*,xEX. Then we have 
that  X = NI,  i.e., all finite streams satisfy this partic- 
ular property. 

We may  use this induct ion principle to check 
the monotonic i ty  of functions on finite streams. 
Suppose we are to prove that  f :  N I  >~ is mono-  
tonic. We let x l ,  x a e ~  I such that  X I ~ s , X  2 and 
we proceed as follows with induct ion on (the norm 
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of) x : .  To  prove  f ( x : ) ~ f ( x 2 ) .  If xa = •  then we 
are done in case of a strict function. If xa =e,  then 
x2 =e,  and there is no th ing  to prove. If x~ =Ax'~ 
for some A e ~  and x ' : e N  ~, then x 2 = A x ' z  for some 

' ' < ' We have f (x ' : )<~f (x '2 )  x 2 e N  ~ such that  xa =stX2 . 
by the induct ion hypothesis  and may  use this to 
arrive at f ( xa )  < ~f(x2) .  

Next  we define the powerdomains  that  we shall 
use in the sequel of our  paper. We do not  include 
all the s tream sets in our  domains,  but  only those 
that  are f iat,  closed and locally finite for the follow- 
ing reasons:  flatness is needed because of the anti- 
symmetry  required for partial  orders;  closedness 
and local finiteness are needed because of  a lifting 
lemma, that  we intend to use to go from functions 
on streams to functions on stream sets. 

2.7. Definition 
(i) X ~ = ~  st is flat iffVx, y e X :  x < ~ t y = ~ x = y .  

(ii) X ~ N  ~t is closed iff V x ~  ~t is closed iff 
V x ~ ~ ~t " (Vn~N:  x~"~ ~ Xt"~)=*. x G X.  

(iii) X = ~ is locally finite iff V n ~ N :  X t"~ is a finite 
set, i.e., all truncations of X are finite. 

(iv) The collection ~ *  ( ~ t )  of compact  s tream sets 
over  ~st is defined by ~ * ( ~ t ) =  { X ~ I X  
flat, closed and locally finite}. 

The set ~ , ( ~ , t )  of compact ,  i.e., flat, closed and 
locally finite stream sets is turned into a cpo by 
the Smyth  ordering. 

2.8. Definition (Smyth 1978). We define the Smyth 
ordering < s  on ~ * ( ~ )  as follows: for all X, 
Y ~ * ( ~ ) :  X <=s Yif f  V y~ Y ~ x ~ X  : X ~ s t Y .  

In Meyer  and de Vink (1987) an extensive study 
is made  of the domain  of compac t  s t ream sets (over 
an arb i t rary  alphabet), a Especially the complete-  
ness of the partial  ordering < s and a lifting lemma 
were proved.  

2.9. Theorem. ~ , ( ~ t )  and ~ * ( ~ 1  t) are complete 
partial orderings with respect to the Smyth ordering. 

In these cpo's {• is the least element and for a 
chain (Xi)g  in ~ , ( ~ s t )  the compact  set 
{lubi xi[ <xi)i chain, ViGN:  x ~ X i }  acts as the least 
upperbound.  

2.10. L e m m a  (Lifting lemma). I f  f :  

: In Meyer and de Vink (1987) we used the term "boundedness" 
instead of "local finiteness". In the present paper we do not 
use this term to prevent confusion with the notion of "bounded" 
in Sect. 4 

is continuous and F: 
( ~ ,  (~t))k , ~ ,  (~st) 

is defined by F ( X ) = m i n ( U { f ( X ) I X G ~ } ) ,  then F is 
well defined and continuous. 

In L e m m a  2.10 the opera tor  rain takes the minimal  
elements of a s tream set, i.e., for X ~ ~st we have 
min(X) = {xGX[-7  3x' GX: x' <~t x}. 

The extension lemma and the lifting lemma togeth- 
er give us a general me thod  to construct  semantical 
opera tors  on  the powerdomains  N * ( ~ )  and 
~ ,  (M]t). First  we define a funct ion from the collec- 
t ion of finite streams into the collection of streams 
or into the collection of compact  stream sets and 
check that  this function is monotonic .  (To this end 
we may  use s tream induction.) Next  we apply the 
extension lemma to obtain a cont inuous  function 
on arbitrary,  i.e., finite or infinite streams. Finally 
we obta in  a cont inuous  funct ion on compact  
s t ream sets with the help of the lifting lemma. 

We illustrate this me thod  with the construct ion 
of sequential composi t ion  of compac t  stream sets 
over  ~ o  and M:.  

2.11. Definition 
(i) We define ." ~ s  • ~ f  > ~ ,  by the following: 

e . y = y ,  _L . y =  • Ax '  . y = A ( x ' . y ) .  

(ii) We define the sequential composi t ion of  
streams �9 �9 Mst x Mst , ~st by 

x . y -- lub, x t"l . yt"~ 

(where in the right-side expression �9 denotes 
sequential composi t ion  of finite streams). 

(iii) We define the sequential composi t ion of com- 
pact  stream sets ." ~ * ( ~ S ' ) x ~ * ( ~  ~t) , 
~ , ( ~ t )  by X . Y - m i n ( { x . y [ x e X ,  yeY}) ,  
(where on the r ight-hand side �9 denotes se- 
quential  composi t ion  of streams). 

2.12. Theorem. The sequential composition �9 on 
~ ,  ( ~ t )  is continuous. 

Proof 
(i) The sequential composi t ion  �9 on ~ I  is mono-  

tonic:  this is easily verified by means of s tream 
induct ion on (the norm of) Xl " Let  x l ,  x2, y~, 
y 2 ~  y such that  Xl~-~stX 2 and Ya <~Y2. We 
distinguish three cases: If x ~ = •  then x l " y l  
= l < s t X z . y  2. If x l = e ,  then Xz=e  and 
x1 "Yl =Yl ~ s t Y 2 = X 2 " Y 2  �9 If Xl =Ax'~ for some 
A e ~  and x ] e N  f, then x2=Ax'2  for some 

' < ' So x1 x ~ z ~  I such that  x:=~,x2.  .y~= 
A (x'~. YO < ~tA (x'2. Y2) = x2 "Y2 by the induct ion 
hypothesis.  
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(ii) The sequential composition �9 on N~' is contin- 
uous: since �9 : ~ r  ~ I  , ~ '  is monotonic, 
we have by the extension lemma that �9 : ~ ,  
x N~' , ~ '  is continuous. 

(iii) The sequential composition �9 on ~ , ( ~ , )  is 
continuous: from (ii) we derive immediately the 
continuity of ,~ x y. {x. y} ~ ~ t  x ~ '  ~ ~*  (~t). 
Hence we have the continuity of �9 : ~,(Ns,)  
x ~ , ( N ~ )  ,~ , (~s , )  by the lifting lem- 

ma. [] 

Another example of a function of which the contin- 
uity is already determined on finite streams is the 
so-called fiat union +.  We might define the fiat 
union of compact streams sets as a lifted extended 
version of 2 x y . m i n ( { x , y } ) e ~  ~'x ~s, , ~ , ( ~ t ) .  
We shall not do this, since in this case we feel com- 
fortable to define + directly. 

2.13. Definition. We define the flat union of com- 
pact stream sets + : ~* (~t) • ~ ,  (~t) > ~ ,  (~t) 
by X +  Y : m i n ( X w  I1). 

We invite the reader to check that + as given in 
the above definition is indeed continuous and to 
compare this proof with the effort of a definition 
and a proof along the lines of Def. 2.11 and Lem- 
ma 2.12. 

Note that {L} acts as an absorbing element 
with respect to + ,  i.e., X + { /}  = {s + X =  {J_}. 

W e  conclude this section with some comments on 
the semantics for the languages 5f 0 and 5at. We 
already have interpretations for the syntactical 
construct of sequential composition and nondeter- 
ministic choice, viz. �9 and +.  We shall work within 
the context of uniform concurrency: the elementary 
actions a and c remain uninterpreted in this frame- 
work. We shall give meaning to variables with the 
help of environments and to the recursive /,-con- 
struct with the help of fixed point techniques. 

If we have a semantical interpretation, say [[ ~e,, 
for the parallel composition, we are able to use 
the following scheme for the semantics of the lan- 
guages 5 ~ under the condition that II ~e~ is a contin- 
uous operator on ~*  (~t). 

2.14. Definition. We let E n v = E  ,~,(N~t) with 
typical element q be the collection of environments. 
We define the semantics Sere: 2" ~Env 
~ ,  (~ , )  with respect to the concurrency operator 
II ~e,~ by the clauses: 

Sem~e~Ol)= {[e]} for eeg  
Sere ~s~ ; s2~ Ol) = Sem ~s~ (tl). Sere ~s2~ (q) 
Sere - = Sere Esd  + Sere 

Sere ~s~ II s2~ (tl) = Sere ~s~ (q) l[ sere Sere ~s2~ (tl) 
S e m ~ ( t l ) = t l ( ~ )  
Sem ~I z ~ [s]~ (t/) = lfp(r 
where ~ , ,  = 2X. Sere [s~ (~ {X/~}). 

In the above scheme we assign to the recursive 
/,-construct the least fixed point of the operator 
)~X.Sem~s~(tl{X/~}), which evaluates for given 
stream set X the statement s in the environment 
t/where the variable ~ is set by X. This fixed point 
construction is justified by the following lemma. 

2.15. Lemma 
(i) I f  II sere : ~ *  (~s t )  • ~ ,  (~ s t )  > ~ ,  ( ~ t )  is contin- 

uous, then we have that 

2 X  I , . . . , Xk. Sem ~s~ (tl { X , /  { I , . . . , Xk/  {k} ) 

is continuous, for all k e N ,  se2fl, t leEnv and 

(ii) Under the condition of  (i) it holds that for  all 
seS f ,  ~leEnv and ~ e Z  )cX.Sem~s~(tl{X/~}) has 
a least f ixed point and that for all se.Lr and 
t 1 e Env Sere ~s~ (tl) is well-defined. 

Proof  
(i) (Structural induction on s) By the continuity 

o f . ,  + and [[sem" 
(ii) Follow from (i) (cf., de Bakker 1980). [] 

In the next sections we focus on the interpretation 
of the parallel composition. We shall give several 
semantical counterparts for the concurrency opera- 
tor according to different models of parallelism, 
but in all cases the continuity of the (interpretation 
of) El will be established with the help of the Exten- 
sion lemma and the Lifting lemma. 

3 The basic semant ic  models:  synchronous 
start and mult i -processor concurrency 

In this section we present a number of basic se- 
mantic models for " t rue"  concurrency. Subse- 
quently we discuss (i) a simple "synchronous start" 
semantics for A~ in which the components of a 
parallel statement start their execution simulta- 
neously, (ii) a multi-processor semantics for ~o, 
which provides a more general way of scheduling 
parallel statements on a multi-processor, and (iii) 
a multi-processor semantics for the language $1 
with synchronization, which is an extension of the 
one mentioned under (ii). We also discuss a similar 
generalization to synchronization of the synchro- 
nous start semantics. Unfortunately, this semantics 
does not meet the intuition. In Sect. 4 we shall re- 
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medy this by the incorporat ion of the notion of 
maximal parallelism. 

3.1 The synchronous start model for  5~ o 

The first semantics for 5o0 is based on what  we 
shall call synchronous  start concurrency:  In this 
model  the components  of  a parallel construct  have 
to start and act synchronously;  at each tick of the 
clock the components  perform their actions simul- 
taneously. (Cf., Salwicki and Miildner 1981.) So 
here both  parallel operands in a parallel s tatement 
progress at the same pace. (If one of the compo-  
nents terminates, the other one proceeds on its 
own.) This is a simple form of ' t ru ly '  concurrent  
execution which will appear  to be a special case 
of  the more  sophist icated one to be given in the 
next subsection. 

Thus, for example, the semantics of the parallel 
s tatement (a; b)II a', where a, a', b are in ~ ,  is given 
by the singleton stream set {[a, a'] [b]} in this mod- 
el, expressing that the execution of the atomic ac- 
tions a and a' is started synchronously,  after which 
the atomic action b is executed. 

The semantics of the statement 

in the synchronous  start model turns out  to be 
{[a, b, cJ~ i.e., infinitely many simultaneous exe- 
cutions of three actions, viz. a, b and c: The #- 
constructs # ~ [a; ~], /~ r/[b; r/] and # ~ [c; ~] yield 
{[a]~ {[b] '~} and {[c]~ respectively. N o w  
{[a] ~} I}** {[b] ~~ = {[a, b] ~'} according to our no- 
tion of synchronous  co-operat ion of [a] ~ and [b] ~, 
and analogously  {[a, b] ~} II s, {[c] ~} = {[a, b, c]~ 
(ll ~ is the parallel opera tor  in the synchronous  start 
model.) 

Since we deal with streams of multi-sets, we formal- 
ize synchronous  co-operat ion by the multi-set 
union. For  finite multi-sets A, B over ~ /  (i.e., for 
two functions A, B: d , N  with A(a), B ( a ) = 0  
for almost  all but  not all ae~r  we write A wmB 
for their multi-set union (i.e., A~mB: ,~' , N  is 
such that (Aw,,B)(a)=A(a)+B(a) for all aesd) .  
Analogously  for multi-sets over ~r w cg. 

3.1. Definition. We define the parallel composi t ion  
II~s with respect to the synchronous start model  
as follows: 

(i) II ~" N f  x ~ o  ~ , ~ is defined by 
II~y= y and x IIs~e= x 

• II = x N • = • 
A x' IIs~B y' = (A w,~B)(x' }]ssY'). 

(ii) [[ ~" ~ t  x ~ t  , N~t is defined by 
x [[ ~ y  = lub, x ["] II ~s Y~"]- 

(iii) ]l,s" ~ *  ( ~ ' )  x ~ *  ( ~ ' )  , ~ .  ( ~ t )  is defined by 
X IIs, Y=min{x I[,sylx~X, y~Y}). 

We check with the tools developed in Sect. 2, that 
]ls~ is a well-defined and cont inuous  operator  on 
compact  stream sets. 

3.2. Theorem. tt~s is continuous on ~*(~So~). 

Proof 
(i) [1~ monoton ic  on ~ {  (stream induction to xl  

and Y0: Let x l ,  xz, Yl, Y2 ~ {  such that Xl 
~stX2, yl<~tye. If x l=A_ or y l = •  then 
x, NssYa = l ~ s t X 2  Ilssfl2. If x,  =e,  then x2=e 
and so xlll~yl=yl<=~ty2=x211ssY2. If y1=e, 
then Yz=e. Hence x111s~yl=xl <,tx2= 
x2 II,,Y2. If xl =Ax'a and Ya =By'I for some A, 
B e N o  and x'~, y ' l e ~ o  I ,  then xz=Ax'2 and Y2 
=By'2 with x~, y ~ e N {  such that x'~ <s,X'2 and 
Yl =stY2. We have 

! t <,,(A wmB)(x 2 I[ssY2)= x2 ]lssY2 
by the induction hypothesis. 

(ii) I1~ is cont inuous on N~" By (i) and the Exten- 
sion lemma 2.6(ii). 

(iii) t1~ is cont inuous  on ~ * ( ~ ' ) :  By (ii) is 
2xy.{xll~,y} continuous.  Hence is IIs~ on 
N * ( ~ )  by the Lifting lemma 2.10. []  

We are now in the posit ion to give the first seman- 
tics for 5ao . It uses the scheme given at the end 
of Sect. 2. Note  that by Theorem 3.2 the condit ion 
of Lemma 2.15 viz. continuity of the concurrency 
operator ,  is fulfilled, so that the least fixed point  
in the clause for the recursive/L-construct exists. 

3.3. Definition. (Synchronous start semantics for 
50o) Let Envo=E--- -~*(~) .  We define the syn- 
chronous start semantics SS: ~o----+Envo 
~ *  ( ~ )  for Wo by the following clauses: 

SS[a~(tl)={[a]} for a ~  

s s  ; s d s s  s s  

SS ~t ~ ~ [s]~ (t/) ~- l f  p ( ~,,)  
where ~b~,, = 2X. SS ~s? (t 1 {X/~}). 

3.2 The multi-processor model f o r  5 f  o 

Next  we show how we can refine the synchronous 
start semantics to a so-called mult i-processor se- 
mantics, where the execution of two parallel com- 
ponents  is less restricted. In this mult i-processor 



J.-J.C. Meyer and E.P. de Vink: Step semantics 137 

scheduling statements that are put in parallel can 
start "on  their own". (Cf., Taubner and Vogler 
1987.) We imagine our programs to run on a multi- 
processor, where sometimes actions can be done 
simultaneously but sometimes have to be seria- 
lized. In fact, the semantics to be given in this sub- 
section will resemble the (uniprocessor oriented) 
interleaving semantics of de Bakker et al. (1986) 
with the main difference that now more processors 
can be employed at one time. 

The synchronous start semantics requires par- 
allel statements to be started synchronously. We 
relax this requirement by allowing one (but only 
one) of the two parallel components to be sus- 
pended for some (units of) time. So apart from syn- 
chronous co-operation we also obtain the pure in- 
terleavings and combinations of synchronous co- 
operation and interleaving "schedulings" of a par- 
allel construct. 

In the example (a; b)1[ c this amounts to the fol- 
lowing: The two parallel components can syn- 
chronously yielding [a, c] [b] as we had before, but 
now we also have the pure interleavings [a] [b] [c], 
[a] [c] [b], [c] [a] [b] and the outcome [a] [b, c], 
due to suspension. In [a] [b] [c] the action c is 
postponed until ab has finished; in [a] [c] [b] the 
action c has waited one tick of the clock and is 
executed after a but before b; in [a] [b, c] the action 
c has again waited one unit of time but now co- 
operates with the action b; in [c] [a] [b] the execu- 
tion of c precedes the execution of a b. 

The second example 

(/z 4 [a; {3 II #~/[b; t/])II ~z[(c; [] 

has in the multi-processor model [a, b, c] ~' and the 
"unfair" [a] ~ among its outcomes. The latter is 
obtained by suspension of # t/[b; q] and # [ [c; [] 
ad infinitum. In fact, all the infinite streams 
A~ A2 A3 ... such that Ai~[a, b, c] are possible 
behaviours of the statement 

(~ ~ [a; ~] II ~ ~ [b; ~]) II ~ ~ [c; ~]. 

3.4. Definition. We define the parallel composition 
[I,,p with respect to the multi-processor model as 
follows: 

~ s  x ~ s  , ~ , ( ~ )  (i) II,.p, ~mp, ]mp:~'~O J~o 
are defined by 
X [Impy=X~mpy+y~mpX+X]mpy 
8~mpY={Y} 

Ax '  ~mpy=A(x' I[ mpY) 
elmpy= Xlmpe= ;25 
• [mp y = X lmp -l- = (2~ 
Z Xt[m p N yt = ( a  k..) m B)(X' [I mp yt). 

(ii) [[ rap" M~ X M~ , ~*  (N~) is defined by 
x I1 ,,pY -- lub, x tnl II ,,vy t"l. 

(iii) limp" ~ * ( ~ ) x ~ * ( ~ )  ' ~ * ( ~ 9  
is defined by 
X IlmpY=min(U{x IlmpylxeX, yeY}).  

In the above definition we use the auxiliary opera- 
tor ~mp in the context of process algebra known 
as "left-merge", (see Bergstra and Klop 1984). 

We have that limp" ~ * ( ~ t )  x ~ * ( ~  t) ) 
~*  ( ~ )  is continuous, as is formulated in the lem- 
ma below. The proof again uses the tools of Sect. 2. 

3.5. Theorem. I[mp is continuous on ~* ( ~ ) .  

Proof 
(i) limp is monotonic on ~f0" let x l ,  X 2, Yl, YaE~o f 

such that x~<~tx2, YI<~tY2. We prove by 
stream induction on x~ and Yl: ( # )  xl |  
<sxe |  for | Imp}. 
If x l = - k  then Xl~mpy~=xlllmpY~={&} and 
( # )  is obviously satisfied. 
If x l = e  and yl=_k,  then we have X l ~ m p Y l  =- 

{_k}, hence Xl~mpYl<sXe~mpY2 and xlll,,pYl 
= {• So x~ II mpYl ~sX2 N mpY2. 
If x~ =e  and Yl =~, then x 2 = e  and Y2=e so 
( # )  is trivially fulfilled. 
If x l = e  and y l = B y ' l  for some B~Bo and 
y'l~MYo, then x 2 = e  and y2=By'a with Y ~ Y o  
such that y~< ' =~tY2. We have 

X~mpYl={Yl} ~s{Y2}=X2~mpY2 

and 

Xx II mpYl =Xl ~mpYl + Yl 
= {yd  + B(yl II 
<=s{y2} + B(y'2 

by monotonicity of + 
hypothesis. 

~mpX1 Jr- X1 [mpYl 

mpXl) -~ 

II mpX2) -[- ~ =X2 II mpY2 

and by the induction 

If xl=Ax'x  and yl=_l_ for some A~ N o and 
x'~E~o y, then x2=Ax'2 with x~E~Yo such that 
x'l <=Stx2' . We have xl~mpyl=A(x'l[[,,pyj 
< = s A (x2 I[ ,,pY2)= x2 ~mpY2 by the induction hy- 
pothesis and xl [[ mpYl = {_1_} <sX2 I[ mpY2" 
If x l=Ax ' l  and yx=g  for some A e ~ o  and 
x ' l e~{ ,  then x2=Ax'2 and y2=e  with x ~ o  I 

< ' We have x l~_,,,py~= such that X'l=s~x2. 
A(x'~ [[mpYl)NsA(x'2 [[,,pY2)=Xz~mpY2 by the 
induction hypothesis and 

X1 11 mpYl ~- A (Xtl II mpYl)-t- {Xl} ~- 

<-_sA(x'2 II mpY2)+ {X2} + ~ = X~ II m;Y~ 

by monotonicity of + and the induction hy- 
potheses. 
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If x~=Ax'~ and ya=By'I for some A, B e ~  0 
and x'~,y'~N~o, then x2=Ax'2 and y2=By'~ 
with x~, Y ~ Y 0  such that x'~<=stx'2 and y~ 
< , = stY2- We have 

X1 ~mpYl = A(X  i]l mpYl) 
< 
~- S A (x  2 tl mp Y2) = X2 ~mp Y2 

by the induction hypothesis and 

X1 II mpYl = A (x'~ II mpYl) "at- B(Yl II na~x~) 
+ (A II na, yl) 

< s A (x~ IImp Y2) at- B (y~ [[ mp X2) 
+ (A u na B) (x'2 IImp Yt2) = X2 I1 nap Y 2  

again by the induction hypothesis. 
(ii) II nap is continuous on Ng" by (i) and the Exten- 

sion lemma. 
(iii) II,,v is continuous on ~*(N~): by (ii) and the 

Lifting lemma. [] 

The interpretation of II in the multi-processor mod- 
el by [I na, as given in Def. 3.4 induces the second 
semantics for 500 . 

3.6. Definition (Multi-processor semantics for 5~ 
Let Envo = ~" > ~ .  (~)t) as before. We define MP0  
s ) Envo ) ~*(N~)~) by the following clauses: 

MPo~a~Ol)={[a]} for a~sr  
MPo ~s~ ; s2~ (q) = MPo [ s~  (t/). MPo ~s2~ (~) 
MPo ~sl ~ sz~ (t/) = MPo ~s~ (t/) + MPo [s2~ (t/) 

MPo [s~ II s2~ (~) = MPo ~s~ (~)II nap MPo ~s2~ (q) 
M P o  = 

MPo ~# ~ [s]~ 01) = lfp (q~,.). 
where ~ . ,  = 2X.MPo [s~ (tl {X/~}). 

As before the definition is justified by the conti- 
nuity of [{ ,,p and Lemma 2.15. 

3.3 The multi-processor model for  

In this subsection we focus on the language 50t, 
i.e., 50o augmented with synchronization actions. 
CCS-like synchronization primitives enable us to 
force the execution of parts of a parallel program 
to take place at some particular time. We extend 
the semantics of the previous subsection to incor- 
porate this new feature. 

In the synchronous start model and in the mul- 
ti-processor model (without synchronization) syn- 
chronous co-operation between action-packages 
was formalized by the multi-set union. Now we 
shall use a "synchronization union" (an extension 
of the multi-set union) for the co-operation of mul- 
ti-sets. 

In the synchronization union matching pairs 
of synchronizations are replaced by two dummy 
actions 7, indicating that two processors are in- 
volved in some synchronization. Remaining syn- 
chronization primitives are preserved for possible 
synchronizations with other packages in the con- 
text. Afterwards, i.e., after the determination of the 
meaning of an entire statement, we may remove 
all streams in which still synchronization actions 
are present, i.e., not replaced by the ~c-action. This 
will be done by means of an abstraction operator. 
The intuition behind this is that we may regard 
these streams as synchronized unsuccessfully. 

We next define the synchronization union for mul- 
ti-sets. Let A, B~N~ be two finite bags of elementa- 
ry actions. We construct the synchronization union 
A ~ B  of A and B as follows: we first take the 
multi-set union A~naB. Next we replace an arbi- 
trary number of subbags [c, g]of matching syn- 
chronization actions by subbags [r,-c]. We may 
repeat this until no matching synchronization pairs 
are left. It is obvious that the resulting bag does 
not depend on the order in which the subbags [c, 
~] are chosen. Moreover, this rewriting procedure 
always terminates since A unaB is finite, being the 
union of two finite multi-sets, so it contains only 
finitely many synchronizations and with each re- 
placement the number of synchronization actions 
decreases. Hence there are finitely many multi-sets 
M obtained from A wmB by repeatedly replacing 
matching pairs. We formalize this by introducing 
a Noetherian relation ~ (i.e., for all AeN~ there 
is no infinite sequence (B,},  in ~a  such that Bo =A 
a n d V n ~ N :  B, ,~B,+I). 

3.7. Definition 

(i) We define the relation h on ~1 by 
A hB iff 3 c s ~ :  A u m [ 7  , 7 ] = B t _ ) m [ C  , c] ,  for 
all A, Ber  

(ii) We define the synchronization union us: 
J) l .brx~l  ) ~ ( ~ a )  by AusB={M]AunaB 

For example, [a, b, c]w~Ea, 6]={[a ,  a, b, ~, z], 
[a, a, b, c, 6]} and [a, b, cJ%~[a, b]={[a ,  b, 
c]~na[a, b]} ={[a,  a, b, b, c]}. 
Note that the restriction of the synchronization 
union to ~o  coincides with the multi-set union. 
So u~ is indeed an extension of ~na. 

We use the synchronization union in the next defi- 
nition to formalize synchronous co-0Peration. 
Note the simularity between Def. 3.4 for 50o and 
Def. 3.8 for ~ .  
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3.8. Definition. We define the parallel composition 
II ,.~ with respect to the multi-processor model with 
synchronization as follows: 

(i) II rap, ~mp, I,n,, : ~ {  X ~ {  , r (~ ' )  
are defined by 
x Ilmey=X[[mey+y~mex+xl,,,py 
8~,npY={Y} 
-]- [~mpy : {_L} 
Ax'  [[_,~,,y = A(x' II ,npY) 
elml, Y-- Xl,,,pe= ~ 
-J-lmpY-~- X[mp l = ~  
A x' I,,,pBy' = (A w~B)(x' II ,,,pY'). 

(ii) I1,,, • ' ~*  (~7) 
is defined by 
x II mpY = lub,, x t'~ II mpY t'~" 

is defined by 
X II m, Y= min(U {x II,,,,,ylxeX, ye Y}). 

We have again the monotonicity anc continuity 
for/I m~ with respect to ~ as stated in Theorem 3.9. 
The proof of 3.9 is literally the same as the proof 
of 3.5 when we substitute vo, for VOm ; SO it is omit- 
ted here. 

3.9. Theorem. I[ ,,,p is continuous on ~.(~]t) .  

The first semantics MP~ for ~ l  follows the route 
of SS and MPo. In the semantic definition scheme 
we use the semantic II m~ with respect to N~ to serve 
as the counterpart of the syntactic II. 

3.10. Definition (Multi-processor semantics for 
~l). Let E n v l = 5  ~ * ( ~ ' ) .  We define MPI" 
2'1 ~ Env ~ ~ ~*  (N~') by the following clauses: 

MP~[e~(q)={[e]} for e e ~  

MP, ~sl ; s2~ (tl) = MP1 ~$1~ (~)" MP1 ~$2~ (~1) 
MP, ~S 1 k...) $2~ (~)= M P  1 ~$1~ (~1)'1- MP1 ~$2~ (~1) 
M P1 ~s l II $2 ~ (11)= M P1 ~ s2 ~ (17)II m,,M P1 ~ s2 ~ (tl) 
MP, ~ (tl) = t 1 (~) 
MP1 ~# ~ [s]~ (t/) = lfp(q6,,,~) 
where ~ , ,  = 2X.MP1 ~s~ (tl {X/~}). 

Note again that the least fixed point in Def. 3.10 
is justified by an appeal to Lemma 2.15 and Theo- 
rem 3.9. 

We derive the second (non-compositional) seman- 
tics MP~ for s 1 by (non-compositional) applying 
an abstraction operator to the semantics MP~. This 
operator, called failure removal, deletes all streams 
that still contain synchronization actions from the 
semantics of a statement. (Cf., de Bakker et al. 1989.) 

3.11. Definition 
(i) The failure removal operator /~: ~(N~t) 

~(N~t) is defined by ; z , ( X ) = X ~ N ~ ,  for all 
X ~ * ( ~ ' ) .  

(ii) (Multi-processor semantics with failure remov- 
al for Aal) The semantics MP~: Y'~ ,Env 1 

st , ~ (No) is defined by MP~' =/4 o MP~. 

Remark. In the semantics MP~ the failure of one 
of the processors is interpreted as a global failure. 
One might object that this is too crude an approach 
in the context of true concurrency. Perhaps one 
would like to model in this case that just one pro- 
cessor fails while other ones may continue. This 
could be modelled in a slightly modified framework 
where we take tuples instead of multisets as basis 
"buckets"  of actions; the elements of these tuples 
then correspond exactly to the available processors 
in a certain fixed order. 

3.4 The  synchronous  s tart  mode l  f o r  5s i 

After we have generalized successfully our multi- 
processor semantics from ~o to 5r it seems an 
obvious attempt to generalize the synchronous 
start semantics from ~o to ~ .  However, when we 
try to do this by replacing in Def. 3.1 A w, ,B by 
A w~B, and using our usual scheme for the defini- 
tion of the semantics, we end up with a semantics 
which is not correct intuitively. This can be easily 
seen from the following example: the semantics of 
the statement (a II c)II (b; ~) yields 

({[a]} ilss{[c]})IIs~ {[b] [~]} = {[a, c]} I1~ {[b] [~]} 
= {[a, b, c] [el} 

which gives ~ after applying failure removal). So 
no synchronization has taken place; in some sense 
the synchronous start operator It ~ optimizes paral- 
lel execution in a way which is too local [. 

On the other hand in the multi-processor model 
of Sect. 3.3 the semantics MP~ gives too many out- 
comes, due to unnecessary interleavings - although 
unsuccessfully synchronized streams are deleted by 
the abstraction operator/e.  We remedy this short- 
coming by the introduction of yet another abstrac- 
tion operator ( ~ x / ~ a , 0  that will model a notion 
of maximal parallelism. This will be done in the 
next section. 

4 Further  ref inements  o f  the basic 
semant ic  models  

In this section we shall discuss a number of refine- 
ments of the basic models in Sect. 3 that one may 
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wish to consider. First we consider a model in 
which there are a bounded (fixed) number of proces- 
sors which can be used for scheduling our program 
statements. We shall indicate how to modify our 
semantic definitions in order to model this case. 
Next we turn to a way to model atomic actions 
that take longer to be executed than one tick of 
the global clock. This issue has, of course, to be 
taken into consideration in order to make our ap- 
proach useful to more practical examples. We shall 
see that it is fairly simple to accommodate for these 
actions in our framework of true concurrency by 
varying the definition of the concurrent operator(s), 
in particular the auxiliary left-merge operator. In 
the third subsection we shall pay attention to the 
issue of maximal parallelism. Once again trunca- 
tion of streams turns out to be a useful tool in 
the domain of streams. At the end of this section 
we apply the findings of the semantics for subatom- 
ic actions to model some aspects of real-time pro- 
gramming, viz. a treatment of a delay operator. 

4.1 Bounded number of processors 

Up to now we have assumed that we have a finite, 
but arbitrarily great number of processors that can 
be put to work at any moment. One may to drop 
this assumption, since this implies that no matter 
how many processors we have working, we can 
always add one processor to do the next job in 
parallel. In practice, this may lead to employing 
more and more processors, ad infinitum. In this 
subsection we restrict ourselves to the situation 
that we are given a fixed amount of processors, 
say N, and with these we must do the job. We 
shall refer to this situation as having a bounded 
number of processors. 

We shall modify our definitions in order to ac- 
commodate for this situation of a bounded number 
of processors. As it will be expected, now the inter- 
leaving part of our definitions will play a more 
visible role in the outcomes of the scheduling of 
a fixed number of processors: now it may happen 
that not all parallel statements described in the 
program can be truly in parallel at once (because 
all processors are occupied already), so that some 
of these must be interleaved. In our definitions it 
is easy to give a straight forward implementation 
by adaptation of the synchronization union: 

4.1 Definition 
(i) We define the N-union wN : ~ • 

Aw B ~Aw~B if ~(Au~B)<N 
N = ] . ~  otherwise. 

, ~  by 

(ii) The parallel composition I[N: ~ , ( ~ s t ) •  
~ , (~s t )  , ~ * ( ~ ' )  with respect to the 
bounded number of processors model is de- 
fined as the lifted extended version of IIN, ~N, 
1~ : ~s  • ~ f  ,~,(~st) such that 

x IINy=x~Ny+y~x+XlNY 

Ax'  ~NY = A(x' II NY) 
eluy=- xlue=25 
-I-INy=xlN I = ~ g  
Ax'INBy'=(A uNB)(x' N NY'). 

Note that Def. 4.1 applies to the ~o-case (without 
synchronization) as well as the ~l-case (with syn- 
chronization), cf., the note following Def. 3.7. 

On the basis of these operators we can give a 
proper semantics for our language(s) with respect 
to this model of true concurrency with a bounded 
of processors. We leave the definition of the se- 
mantic function to the reader. (Note that alterna- 
tively, this semantics can be obtained from MP, 
by application of a suitable abstraction operator.) 

It is easy to verify that in case N = 1 the seman- 
tics based on wN specializes to a purely interleav- 
ing semantics such as in Meyer (1985). So this mod- 
el of true concurrency is a true generalization of 
the interleaving model. 

For example, if N = 3 the meaning of 

([a, b] II [a])II [b] 

becomes the stream set 

({[a, b]} IlN{[a]})Ir ~{[b]} 
= {[a, b] [a], I-a] [a, b], [a, a, b]} Ilu{[b]} 
= {[a, b, b] [a], [a, b] [a, b], [a] [a, b, b], 

[b] [a, b] [a], [b] [a] [a,b], 
[b] [a, a, b], [a, b] [b] [a], 
[a] [b] [a, b], [a, a, b] [b], [a, b] [a][b] ,  
[a] [a, b] [b] }, 

so we do not have [a, a, b, b]. Analogously 

([a, b] II I-c])rl I-~] 
denotes (after failure removal) 

{[a, b] [~, ~], [~, ~2 [a, b]} 
for N = 3, but denotes 

{[a, b] [r, -c], It, z] [a, b], [z, r, a, b]} 

for N = 4 .  

It is clear that in the context of a bounded number 
(say N) of processors, we can restrict ourselves in 
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our semantic domain  to multi-sets of cardinality 
< N. If we also have finiteness of the alphabet  o ~ 
then each stream set X is trivially locally finite, 
since X [ " ] = = _ ~ " ~ " . •  and the set on the right- 
hand side is finite under  these assumptions. In this 
special case of a finite number  of elementary ac- 
tions on a bounded  number  of processes we have 
immediately that the semantical o p e r a t o r s . ,  + ,  
and l[ preserve compactness (and are therefore well- 
defined), provided that  they preserve closedness. 

4.2 A t o m i c  act ions that  take  more  than one 
unit  o f  t ime 

As we admit ted already, it is not  very realistic to 
assume that atomic actions take only one tick of 
the global clock. We shall now see how to general- 
ize our semantics in order to cater for atomic ac- 
tions that may take longer to be executed. 

We do this by splitting up atomic actions a 
into sequences of " suba tomic"  actions that take 
one unit (tick) of time: the atomic action a 
= a (n a(2) ... a (n) takes n units of time to be executed. 
Of course this is still not  sufficient to deal with 
these actions properly: al though a=a(na(2) . . ,  a (") 
is now written in terms of subatomic part(icle)s 
a (~), and can thus be interpreted in the model  by 
the stream [a (n] [a(2)] ... [a(")], we have to be care- 
ful that  these atomic actions may  not be inter- 
rupted by interleaving with other actions. So, for 
example, if we consider all b for a=a(a)a (2) and b 
= b (u, we obtain in the model  with subatomic ac- 
tion as resulting set {[a (1), b (a)] I-a(2)], [a (1)] [a (2), 
b(n], [a (a)] [a (2)] [b(1)], [b (x)] [a (a)] [a(2)]}. This set 
does not include the possibility [a (1)] [b (u] [a(2)], 
which expresses that  the atomic action a is inter- 
rupted for the execution of b ! 

In the multi-processor model  unfortunately this 
s tream is included in the semantics of a lib 
--a(~)a(2)llb(U. Therefore, we have to modify our 
parallel execution operator.  However,  we can still 
deal with concurrency with subatomic actions 
within the frame of Sect. 2. 

4.2. Definition. Let sr > a be the collection of ac- 
tions of the format  a (~) with i > 1. The parallel com- 
position II sa : ~*  (~s9 • r (~ ' )  , #o* (Nst) with re- 
spect to subatomic actions is defined as the lifted 
extended version of lisa, [~a, I sa: ~ y x ~ y  ' 
~ ,  (Mst) such that 

Xllsay-- Xl~say-t- Y~saX + Xl~ay 
e~saY={y} 

Ax'[ ay=A(x' llsay) 

if y = B y '  and B c ~ d > a = ~  
Ax'][say = ~ otherwise 

Ax '  I~aBy '--  (A Us B)(x' ]1 saY'). 

We calculate as illustration the stream set of the 
above example: 

[ a(1)] [ a(2)] II sa [b(aq 
= [ a(1)] [ a(2)] ~sa [ b~a)] + [ b(a)] ~a [ a(n] [ -a(2)] 

+ [ -a(1)] [ a(z)] Isa [b (hI 
= [ a(1)] ([ a(2)] IIsa [b")]) + [b (a)] (e II sa [a (1)] [a~2)]) 

-]- [ -a(1), b(1)] ([ a(2)] II sa~) 

= [ a(n] ([ a(2)] ~sa [b")]) + [a (hI ([b (a)] [~a [a(2)]) 
+ [ -a(n ] (l-a(2)] ] ~, [-b(n]) + [ b(1)] (~ II sa [ -a(n ] l-a(2)]) 
+ [a (a), b(a)] [a (2)] . . . .  = [a(1)] [a (2)] [b (hI + 
+ [a (t)] [a (2), b(a)] + [b ~1)] [a (n] [a(2)]) 
+ [a ~u, b (1)] [a(a)]. 

Note  that indeed the resulting set does not  include 
the stream [a m]  [b (1)] [-a(2)] ! 

4.3 M a x i m a l  paral le l ism 

At the end of Sect. 3 it was pointed out that  the 
synchronous start semantics does not  satisfactorily 
deal with synchronizat ion primitives. In some sense 
the concurrency operator  el ss optimizes schedulings 
in too local a manner.  The multi-processor seman- 
tics for 5r a does not  suffer from this; both  synchro- 
nous co-operat ion and interleaving are modeled  
with the concurrency operator  limp. This however,  
may  be regarded as undesirable: 

Consider again the s ta tement  (all c)II(b; c). In 
the multi-processor semantics this s tatement  yields 
(after failure removal) the stream set 

{[a] [b] [~, T], [a, b] [~, d ,  [b] [a] [~, q ,  
[b] [a, ~, q ,  [b] [z, ~] [a]}. 

One might object that  the semantics MP~ gives too 
many outcomes,  due to unnecessary interleavings. 
We shall remedy this shor tcoming by the introduc- 
tion of the abstract ion operator  ~c~a~/~ .  m a ~ c / ~  
will select the fastest (successfully synchronized) 
scheduling. For  the above example we shall obtain 
in the maximal  parallelism model  the stream set 
{[a, b] [t,  z], [b] [a, t, t]}. 

The operator  ~ x / / ~  is in t roduced as follows. 
First we define an ordering < on streams. = maxpar  
x < maxparY if X can be obtained by taking together  
(multi-set union) consecutive actions in y. So there 
is a many-one  correspondence between actions in 
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y and actions in x. For example 

[a, b] [z, "c] <__ maxpar [a] [b] [z, z] 

but not 

[a, b] [z, z] < . , .~pa, -  [b] [a, r, ~]. 

The relation <,,axpa, will be defined (as usual) in 
two stages: first on finite streams, then on arbitrary 
streams with the help of truncations. On the basis 
of ~maxpar w e  define the operator ~ z ~ f i a ,  that 
takes the minimal streams from a stream set with 
respect to the maximal parallelism ordering. 

({Cc~l [c=l, Cc=] [c~l, [c~, czl} II mp {[-C2] [c l l})II  mp 
{ [e i ]  [~1]} 
= {[Cl]  [~', 17] [Cl]  , ["f, T] [Cl ,  Cl] , ['L', "C] [ e l i  [Cl]  , 

[~, ~, c,] [cd,. . .} II~{[e,] Eel]} 
= { D ,  ~] [~, ~] [~, ~], [~, ~, ~, ~] D, ~],...}. 
Application of/Z~ yields 

{D, ~] D, ~] [~, d ,  [~, ~, ~, ~] D, ~]}- 
Finally we arrive at {[-c, z, -c, z] [T, z]}, since 

[t, ~, ~, ~] [~, ~] =<,.,,~,,o, D, t] D, ~] [t, ~]. 

4.3. Definition 

(i) The maximal parallelism ordering < on maxpar 
~Y is defined by the following clauses: 
g ~ maxpar g 
"J- ~ maxpar -j- 

A <-_ maxparal  . . .  A k 
if A = A1 k-) m . . .  UmAk, (k ~ 1) 
A x' <= m,~ p~, y if 3 y a , y x, e ~ f : 
A < m.~p. .  YA A X' <--__ , . .~p . ,  y~, A YA Y~' = Y" 

(ii) The maximal parallelism ordering < on maxpar 
N~* is defined by X<=maxparY iff V m 3 n > m :  
x Ira] < maxpary[rt]. 

(iii) The abstraction operator ~ : v f i , ~  

is defined by 
r  = { x ( ~ X [ - l  ~ x '  ~ .X"  x '  <maxparX}.  

Note the restriction n > m in 4.3 (ii). This condition 
excludes pathological situations as 

[a ]  _L ~ maxpar [a] [b]. 

([a] [b] is not a serialization of [a]_L.) 

We use the maximal parallelism operator to derive 
a new multi-processor semantics, as we did before 
with the failure removal operator / , .  
(Note however that unfortunately this abstraction 
operator is too weak, in that it excludes compari- 
son of, e.g., [a] [a, b] [a, b] ... and [a, b] [a, b] ... 
in M P ' l ~ # ( [ a ; b ~ ]  II#([b; (]~. This touches upon 
fairness issues that fall outside the scope of this 
paper.) 

4.4. Definition (Multi-processor semantic with fail- 
ure removal and maximal parallelism for Lfl). The 
semantics MPI"" ~x 'Env l  ) ~ ( ~ )  is defined 
by MP;' = ~ x f i ~  o/~o MP~. 

From Koymans et al. (1985) we adopt the example 
s=((CaPIC2)[l(e2; Cl))[[(cl; Cx). We calculate the 
multi-processor semantics MP1 ~s~ (already antici- 
pating to failure removal): 

4.4 T h e  d e l a y  a c t i o n  and  r e a l - t i m e  

s e m a n t i c s  

The considerations of Subsect. 4.2 enable us to give 
a proper treatment of an operator that is associated 
with real-time programming, viz. the delay operator 
(cf., Koymans et al. 1985). So now, in this subsec- 
tion, we include the special atomic action d(n) in 
the syntax of our language(s), denoting a delay of 
n units of time. It is important to stress that this 
action d(n) is an atomic one: it is not intended 
to be interrupted by some interleaving of another 
action. This would clearly be contradictionary with 
our intuitions concerning a delay of n units of (real) 
time. 

In our set-up we can express the delay action 
d(n) as an atomic action that takes n units of time 
to execute: d (1), . . . ,  d ('). (The d (~ may be interpreted 
as dummy or skip (sub)actions expressing waiting 
one unit of time, but this is not within the scope 
of our uniform semantics.) To treat delays properly 
in this manner it is essential to use a model with 
true concurrency as expounded in Subsect. 4.2. 
Moreover, when considering e.g., the parallel state- 
ment a II (d(1); b), it is not intended to include the 
scheduling possibility [a][d(1)][b], because this 
would again not correspond to our intuition about 
a delay (of one unit of time, in this case). We have 
to require that delays start execution as soon (fast) 
as possible. Even under the assumption of maximal 
parallelism as has been discussed in the previous 
subsection this requirement is not fulfilled au- 
tomatically, as can be observed from the following 
example: 

~ f i ~ ( M P a  ~a; b II d(1)~) 
= ~ , ~ f i ~  ({[a] [d (1)] [b], [a] [b] [d(1)], 

[a] [b, d (1)] [a, d (1)] [b], [d (1)] [a] [b]}) 
= {[a, d (1)] [b], [a] [b, d(1)]}. 

Clearly, oinly the first outcome in the resulting set 
is a correct outcome. However, it is easy to remedy 
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this by imposing an extra property of ~a regarding 
delays: 

4.5. Definition. Let sr > 1 be the collection of ac- 
tions of the format a ") with i > l  and ~ be the 
collection of subatomic parts of delay actions, i.e., 
actions of the format d "). The parallel composition 
II ~t : ~* ( ~ )  x ~*  (~t)  ) ~ ,  (~t)  in the real-time 
model is defined as the lifted extendeed version 
of II b -  : • , ~*  (~ ' )  such that 

x II,,y=xL~,y+yL,,x+xl~,y 
a~tY={Y} 

Ax'~ty=A(x'l l~tY) if y = B y ' , B c ~ > l = ( 2 5  
and B n @ = ~  

A x' ~tY = ~ otherwise 

-1- I~,y= xl~,-l- = ~ 

A x' I,,By'= (A wNB)(x' II ~,Y'). 

The operator [l~t is continuous as can be checked 
with the usual tools. On the basis of this real-time 
concurrent operator one may define a semantical 
function along the lines of the previous sections. 

5 A branching- t ime  step s e m a n t i c s  
for true concurrency  

In the previous sections we have occupied our- 
selves with so-called "linear-time" semantics for 
our language(s). It is well-known (cf., Milner 1980) 
that - in the context of synchronization - if one 
is interested in an analysis of deadlock behaviour, 
a linear-time semantics of the kind we have pre- 
sented is not adequate. One has to refine the se- 
mantic model by means of such notions as ready 
or failure sets (cf., Hoare 1985; Olderog and Hoare 
1986; Taubner and Vogler 1987) or extend the se- 
mantics to a "'branching-time" one, in which one 
can suitably model the structure of nondeterminis- 
tic choices (cf., de Bakker et al. 1989). 

In this section we indicate how to work out 
the latter possibility, although we expect no serious 
problems when pursuing the former alternative. 
Here we shall employ de Bakker-Zucker branch- 
ing-time processes. In effect, it appears to be fairly 
straightforward to extend the domains appearing 
in de Bakker and Zucker (1982) and de Bakker 
and Meyer (1987), such that we can model one 
of our versions of true concurrency. 

In this section we restrict ourselves to state- 
ments of 5~ that are guarded. Informally, this 
means that every call of the variable ~ in a con- 

struct #4[s]  must be (semantically) preceded by 
(the execution of) some elementary action. So, for 
example, #4[a ;  ~] and #[(a; 4)II b] are guarded, 
but #r #~[~; a] and #4[a114] are not. 

We use a semantic reflexive domain P given by 
the following domain equation 

P = ~c({_l_} u ~ u ( N  x P)) 

where ~ ( . )  denotes the powerset of closed subsets. 
Here I acts as a nil-process. P is a complete metric 
space. 

The definitions of the operators �9 and + are 
analogous to those in de Bakker and Zucker (1982) 
and de Bakker et al. (1986). We now proceed with 
the definition of II bt. 

5.1. Definition. 
(i) The operator []bt on the subset of P with pro- 

cesses of finite depth is given by: 
P IIbtq=(P~btq)+(q~btP)+(P]btq) 
..k ~bt q = _k 
A~btq=(A, q) 
(A, p') Lbtq = (A, p' II q) 
P~b,q=U{x~qlx~p} 
_.[_ ] b t q = p l b t  l = 1 

A lbtB as in the linear-time case 
(A, p)Ib, B---{(AIb, B, p)} 
Albt(B, q)=-{(AlbtB, q)} 
( A, p)Ibt ( B, q) = { ( A IbtB, P II btq) } 
plb, q----U{xlb, y lxsp ,  y~q}. 

(ii) The operator II b, on the domain P with pro- 
cesses of arbitrary depth is given by: 
P I[ btq = lim, p(~)II btq (n). 

Now we may define our branching-time semantics 
for our (guarded) language. We use a similar 
scheme as we did for the linear-time semantics. In 
the clause for the recursive #-construct we take 
a unique fixed point (of a contracting operator on 
a complete metric space) where we took a least 
fixed point (of a continuous operator on a cpo) 
before. 

5.2. Definition (Branching-time semantics for the 
guarded sublanguage of 5~ We take the reflexive 
domain P as before. Let Env = ~ ) P. We define 
the semantics BT: ~ )Env )P with respect to 
the branching time model by the clauses: 

BT~e~(~)={[e]} for e~g  

BT~s~ ; s2~ (tl) -- BT ~sl ~ (17). BT~s2~ (tl) 
BT ~s 1 w s2] (~I) = BT [sl~ 01) + BT ~s2] (q) 
BT~sx II s2~(rl)= BTEsI~(rl) HbtBT~s2~(r]) 
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B T ~# ~ [s]~ (t/) = ufp (~, n) 
where ~ , ,  = 2p.BT ~s~ (it {p/~}). 

In the above definition we have assigned to the 
recursive #-construct the unique fixed point of 
~,,=2p.BT~s~(tl{p/~}). The existence of this 
unique fixed point is guaranteed by the counterpart 
of Lemma 2.15: for guarded statements s the func- 
tion ~ , ,  is contracting. We then use Banach's fixed 
point theorem for complete metric spaces, to derive 
that the unique fixed point of ~ , ,  exists. (Cf., de 
Bakker and Zucker 1982.) 

Concluding this section we may remark that 
in effect we have indicated that de Bakker-Zucker 
process theory is suited for a treatment of true con- 
currency (as well as a correct analysis of deadlock 
behaviour). 

6 Conc lus ion  

In this paper we have attempted to show that much 
work done on denotational semantics in the con- 
text of the interleaving model can be extended to 
models of " t rue"  concurrency. We have presented 
several more or less sophisticated semantic models 
that treat various aspects of " t rue"  concurrency 
in a form which is known as step semantics. The 
semantical definitions are developed by means of 
a general method available for the Smyth powerdo- 
main. We have chosen this powerdomain, since it 
is simpler than the Egli-Milner one, and still is 
adequate for infinite behaviour. (Our results are 
also valid if one would adopt the Egli-Milner pow- 
erdomain instead.) 

One might object that the role of I in the con- 
text of the Smyth powerdomain is not compatible 
with the intuitions regarding forms of "true ' '  con- 
currency, since we have that X•{• =-s{• and 
nontermination in a distributed environment 
should not be that catastrophic as is suggested by 
this equivalence. Our answer to this objection is 
that • must be viewed as an atomic divergence 
rather than an internal divergence: if one still wants 
3_ to represent the meaning of a divergence by hid- 
ing (such as e.g., #~[-a; ~] where a is hided), the 
consequence is that one should be careful to post- 
pone the hiding of internal actions to a stadium 
where the context has been taken into considera- 
tion. For example, consider 

X=SS~#{[a; ~] II ss#rl[b; q]~ ={[a, b]~ 

Hiding a in X would yield {[b]~ whereas hiding 
a directly in SS~#~[a; {]~ yields the uninforming 
result {_1_} ! 

Following the presentation of our basic seman- 
tic models we have investigated refinements of 
these models in order to deal with a bound on 
the number of available processors, actions that 
take more than one unit of time and a delay con- 
struct. Furthermore, we have encountered a notion 
of maximal parallelism similar to that appearing 
in work on real-time semantics (Koymans et al. 
1985). We stress that the continuity proofs of the 
various parallel operators were facilitated consider- 
ably by a number of general considerations such 
as the lifting of continuous functions on streams 
to compact stream sets. 

Although we have considered a very simple lin- 
ear-time model, we believe that our results can be 
generalized in a straightforward manner to more 
refined models such as failure step semantics in 
the sense of Taubner and Vogler (1987). Moreover, 
we also expect that the technical metric results of 
papers of de Bakker et al. carry over to this frame- 
work of true concurrency. In particular, it seems 
also possible to give an operational semantics for 
our languages with true concurrency based upon 
transition systems in the style of Plotkin (1980). 
The transition systems needed are variants of those 
of de Bakker et al. (1989) and de Bakker and Meyer 
(1987), rendered suitable for streams of action 
packages rather than actions on their own. More- 
over, a rule is needed to express the character of 
true concurrency, such as (in the notation of de 
Bakker and Meyer (1987), for the language 5r 0 
without synchronization): 

S 1 )Ast  

S 2 )BsH 

sa II s2 )A~sBs' II s"" 

We expect no problems to relate this operational 
semantics to the denotational one along the lines 
of de Bakker et al. (1989), Kok and Rutten (1988) 
and de Bakker and Meyer (1987). 
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