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The probabil ity of occurrence of natural resources, such as petroleum 

deposits, can be assessed by a coml~ination of multivariate statistical 

and geostatistical techniques. The area of study is partit ioned into 

regions that are as homogeneous as possible internally while simui- 

taneously as distinct as possible. Fisher's discriminant criterion is used 

to select geological variables that best distinguish productive f rom 

nonproductive localities, based on a sample of  previously drilled ex- 

ploratory wells. On the basis of these geological variables, each wild- 

cat well is assigned to the production class (dry or producer in the 

two-class case) for which the Mahalanobis" distance from the obser- 

vation to the class centroid is a minimum, Universal kriging is used 

to interpolate values of the Mahalanobis' distances to all locations 

not yet drilled. The probabil i ty that an undrilled locality belongs to 

the productive class can be found, using the kriging estimation var- 

iances to assess the probabil ity of  misclassification. Finally, Bayes" 

relationship can be used to determine the probabil ity that an undrilled 

location wil l  be a discovery, regardless of the production class in 

which i t  is placed. The method is il lustrated wi th a study of oii pros- 

pects in the Lansing/Kansas City interval of western Kansas, using 

geological variables derived from well logs. 
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Introduction 
Predicting the occurrence of mineral or energy resources 

requires knowledge about the geology of the region and 

about the geological processes responsible for the for- 

mation and accumulation of these resources. Geological 

processes are not directly observable and, because of their 

extreme time scale, simulating the formation of resources 

would require an analogue of complicated physical and 

chemical conditions over millions of years. Fortunately, 

geological features that result from these processes are 

observable and measurable at different spatial scales, al- 

though in most investigations these features can be ob- 

served only at isolated points. 

Specific modeling procedures have been developed to 

help overcome the inadequacies of our geological knowl- 

edge; increasingly, these models employ mathematical 

methods implemented on computers. As a consequence, 

the amount of data and information derived by modeling 

has increased and methods for integrating geological data 

have been developed. The models permit us to interpret 

complex sets of geological information to assess the "fa- 

vorability" of a region for resources. Favorability may 

be expressed qualitatively by maps that show areas where 

resources may be found, or quantitatively by maps that 

show the probability of resource occurrence. 

Agterberg (1989) developed a model for calculating the 

regional potential of an area, based on the integration of 

geological maps. However, his methodology does not 

consider spatial interpolation, which is especially im- 

portant in petroleum geology, where most information 

comes from petrophysical logs for widely spaced explor- 

atory holes. 

Data from well logs are integrated to produce regional 

maps indicating the probability of occurrence of oil or 

gas. The method is based on a procedure (Harff and Da- 

vis, 1990) that combines the theory of classification of 

geological objects (Rodionov, 1981) with that of region- 

alized variables (Matheron, 1970; Journel and Huij- 

bregts, 1978). The interpolation aspects of regionaliza- 

tion are emphasized. A case study of regional favorability 

for oil occurrence in the Pennsylvanian Lansing and Kan- 

sas City Groups in western Kansas illustrates the tech- 

nique. 

Targets and Predictors 
Geographic locations in the area of investigation are sym- 

bolically indicated by R, denoting a set of longitude and 

latitude vectors r ~ R. The production status X e of wells 

must be related to geological variables X G measured on 

the rock sequences b, ~ B, i ~ { 1 . . . . .  N}, penetrated by 

wells at locations 5- This relationship must then be in- 

verted to predict the status of undrilled localities from 

inferred values of the geological properties. X e is the "tar- 

get" variable and X c, which commonly is multidimen- 

sional, is the "predictor" variable. In oil exploration, X ~: 

is derived from production records and may" include ini- 

tial production, cumulative production over a specified 

interval, or similar measures. X G may be any geological, 

geophysical, or petrophysical property that can be mea- 

sured at the individual boreholes. In other contexts, X ~' 

may be ore grade, tonnage, water-flow rate, or other mea- 

sures of productivity or worth. 

Solving this problem presupposes knowledge of the 

relationship X e = f (Xa) .  Unfortunately, some of the rel- 

evant geological variables may not be measurable, nor is 

the relationship between X c and X ~ necessarily consistent 

from one geological region to another. For these reasons, 

the functionfcannot be described in an explicit analytical 

form. 

One way to overcome this difficulty is to explore the 

function f b y  statistical means, using a random sample 

B' c B for which both geological variables and measures 

of productivity are available. Multivariate regression can 

be used appropriately for this purpose if both kinds of 

variables are measured quantitatively. The experimen- 

tally determined function f can be considered valid for 

the prediction of X e at those locations where only geo- 

logical variables are available. 

If the correlation between X ~ and X ~ is weak, the re- 

gression between the two may be uninformative. In this 

circumstance, A~ may be ranked and the ranks used to 

subdivide the set B' into a partition Z E consisting of 

classes or subsets: 

Z e = {Bf,  B f  . . . . .  B~}, B~ c B'. (1) 

In addition, a partition 

Z ~ = {Bf, B] . . . . .  B~},  B ] c  B', (2) 

which is described only by geological variables, must be 

determined so that each predictor class B7 c B', Vi~ L 

I = { 1 . . . . .  K}, can be allocated to one target class Bf 

c B'. Geological predictor variables must be selected so 

that the size of Bf • B], Vie  L is a maximum. The 

discriminant function criterion of Fisher (1936) can be 

used to select these n geological variables. Determining 

the function f i s  now simplified to investigating the re- 

lation Z ~ = f(ZG). We may express f as the conditional 

probabilities that a well assigned to a predictor class 
BiG is also a member of a target class B~ ~. 

In our application, geological properties are measure- 

ments derived t?om petrophysical logs run in the wells, 

and predictor classes are based on oil productivity of the 
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wells. The rank partition ZE is given by values x,E, j  E 11, 
. . . , k}, of one discrete variable X measured on wells 
b, E B', i E 11, . . . , N ) ,  for which the logs are available: 

These values may express, for example, K ranges of av- 
erage daily oil production. Each range represents a class 
Bf c ZE. In the simplest case (K = 2), P simply expresses 
the alternatives of a dry hole or a producing well. 

The division ZG given by equation 2 is determined for 
an n-dimensional geological variable representing infor- 
mation derived from well log records b,, and ordered as 
a matrix: 

These data represent a mixture 

of K n-dimensional probability distributions, p[XG I i ] .  
ZG and the evaluations of the probability distributions 

p[XG I i] can be determined from the matrix in equation 
4, either by supervised classification using discriminant 
techniques (Rodionov, 198 1) or by unsupervised clas- 
sification analyzing the structure of the point cloud given 
by the row vectors of equation 4 in n-dimensional space. 
Unsupervised classification was used by Harff and Davis 
(1990) in an application of hierarchical cluster analysis. 

The mean vectors m, and the covariance matrices Z, 

of each class can be estimated by m? and S,, using data 
fl(b,) from the supervised or unsupervised classification 
of rows in the matrix (eq. 4). Under the condition m? # 

mJC, Vi , j  E I, i z j for each class BP c ZG, the following 
classification rule is assumed to be valid: 

This classification rule uses Mahalanobis' distance 

If the p[XG / i] follow a normal distribution, the a poste- 

riori probability given by Bayes' equation (Tatsuoka, 
1971) can be used instead of equation 6 in the deter- 
mination of ZG. It is also possible to use Mahalanobis' 
distance based on discriminant scores instead ofthe orig- 
inal variables. 

The relation f between ZG and ZE is an expression of 
the conditional probability that a well belonging to pre- 
dictor class Bf is also a member of target class 3;. This 
probability can be estimated by the Bayesian relation 

where M(.) is the size of the set. 

Interpolation 
Equation 6 is assumed to be valid for extrapolation, which 
means that unclassified wells b E B\B1 can be assigned 
via the predictor classes to their appropriate target class- 
es. However, such extrapolation is of limited interest; we 
wish, rather, to assess locations where no wells have been 
drilled and, consequently, no well logs are available. For 
this purpose, extrapolation must also involve spatial in- 
terpolation. Myers (1982) has described a generalized 
cokriging method for interpolating an n-dimensional geo- 
logical variable. For practical reasons, this method may 
prove difficult to apply in many circumstances (Harff and 
Davis, 1990). In addition, classification by a discriminant 
function (eq. 6) assumes the observations are indepen- 
dent. This assumption is not valid for estimates made 
by spatial interpolation. 

As an alternative, we suggest that Mahalanobis'dis- 
tances (eq. 7) be interpolated. The random vector of dis- 
tances is regarded as a k-dimensional regionalized vari- 
able: 

Realizations of this variable are given by transformation 
of the well log data at the well locations: 

d:(b(rj)) = (fl(b(r,)) - m?)'Sil(x"(b(rj)) - mf), 
V i e r ,  j ~ { l ,  ..., NI. (9) 

The distribution of Mahalanobis' distances d:(b(r,)) is 
nonsymmetrical because, if XG has a normal distribution, 
the distances (eq. 9) follow a xz-distribution with iz de- 
grees of freedom. These distances are not directly com- 
parable because of differences among the estimated co- 
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variance matrices. For this reason the distances in 

discriminant analysis usually are corrected by an additive 

term consisting of  the logarithm of  the determinant of  

the covariance matrices (Tatsuoka, 1971). 

For our purposes (unbiased kriging and a classification 

rule based on kriging variances), the distances are stan- 

dardized to a Gaussian distribution by a normalization 

transformation 4). Equivalent methods are recommended 

by Joumel  and Huijbregts (1978), Journel (1986), and 

Hohn (1988). The normally transformed variables d~(r) 

= ee(d~(r)) are assumed to be regionatized variables with 

a deterministic drift re(r) and a stochastic component  

Y(r): 

cl~(r) = m(r) + Y(r), Vr ~ R, Vi e L 

Because a condition of  stationarity is not required, the 

drift can be modeled locally by 

E[d~(r)] = m(r)= ~ a:f(r). (10) 
je J 

The spatial structure of  the stochastic component  is de- 

scribed by a semivariogram 

%(h) = ½E [(Y(r + h) - ¥(r)):l.  (11) 

The experimental distances given by equation 9 can be 

transformed by 

dt~(b(r~)) = ¢(d~(b(©)). (12) 

The results are transformed distance vectors 

/@(b(r,))~ 

?~(b(rj))=ld~(°:(rs))],'~" j ~ { l  . . . . .  N}. 

| - l 

For a point r~ e R where no well has been drilled and, 

therefore, no well log measurements  are available, a lin- 

ear combinat ion of  the transformed distance values in 
the neighborhood Z 

/d~2*(r~)\ 

\ d r : ( r3 /  

can be determined by 

d~'(rJ = ]~ Xfi~(b(O), i ~/. (13) 
j~ J 

The Xj are determined by solving the universal kriging 

system of  equations using an appropriate model fitted to 

the experimental variogram. Under  these conditions, the 

estimates given by equation 13 are unbiased. The cor- 

responding kriging variance is denoted by ~(r), i ~ L 

The location of  a hypothetical well or drilling prospect 

at a point re where no logs are available, but where es- 

timates d2*(r.) have been interpolated, will be allocated 
to a class Z °, following the principle o f  minimal distance, 

min~z d~" (re), expressed in equation 6. By using the kriging 

variance, the probability that a distance d~*(r,) is a min- 

imum can be calculated. 

It is necessary to assume the interpolation error is nor- 

mally distributed. In a two-class situation, there is a pair 

of  estimated distances, so there are two normal error 

distributions with parameters u~ = d~'(G), ~ = cry(r_.) and 

uj = dt~*(G), a: = ~j(G). The probability that tz, = d~*(r,) is 

smaller than #~ = d~*(r~) is given by the integral of  error 

distribution i f rom - o o  to ct,.j, where ct,7 is the crossing 

point between the two distributions. This probability can 

be calculated from the equation for the standardized nor- 

mal distribution 

p[d2,*(r~) < d2*(r3] = ~ exp - -~z dz, 

with 

(14) 

4 j  = [ d y ' ( r a  - J~,*(r,)l/[,,,(re) + ~Xr~)] .  (15) 

I f  there are more than two classes, the probability that a 

distance d]*(re) is the min imum within the vector of  dis- 
tances can be expressed by 

p[d~*(G) = min d~*(re)] 

= I I  p[d~*(r3 < dy*(r~)], v i  s I. (16) 
j~l~i 

Equations t4 and 16 replace the Bayesian expression 
commonly  used in discriminant analysis. For a prospect 

at location re, where estimates 2x*(re) and the correspond- 

ing kriging variances are available, equation 17 denotes 

the probability that the well belongs to one of  the pre- 
dictor classes Z ° = {B]}, i • I: 

p[ilZx*(re)] = pId~*(r~) = n~n d2*(r~)], vi • I. (17) 

A more detailed discussion of  interpolation and classi- 
fication will follow in a future report. 
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Figure 1. Oil fields in Kansas. Unruled area indicates the part of 

Risk Assessment 
For risk assessment in petroleum exploration, we seek a 
target class B~ that is characterized by the highest pro- 
duction rate. The corresponding predictor class Bf is giv- 

en by 

B] c Z~: p[E:I G j ]  = max p[EjIGA. 
k 

For regional evaluation of exploration risk, the prob- 
ability that a point should be assigned to the predictor 
class (given by eq. 17) must be multiplied by the con- 

ditional probability that a well is a producer, given that 
it is a member of the predictor class (eq. 8). That is, 

p[G, A E:l£*(r~)] = p[ilT~*(re)]'p[Ej] Gi]. 08) 

The probability of a discovery at point G, if By is the 
target class, can be expressed as the equation 

p[E:(r~)] = ~_~ p[G, /x EjlZx*(r3]. (19) 
iE I 

Exploration risk can be calculated as 

p [ - - E : ( r e ) ]  = ] - -  p [ E , ( r , ) ] .  

Kansas covered by this study. 

City Groups of Pennsylvanian (Upper Carboniferous) age, 

consisting of interbedded marine limestones and shales 
deposited in a shallow epicontinental sea that covered 
the North American midcontinent in the late Paleozoic. 
Oil has been produced from limestone reservoirs in these 
rocks for many decades; the local petroleum industry is 
in a mature stage of development. Thousands of wells 
have been drilled in the search for oil, and hundreds of 
fields have been discovered. A general description of the 
petroleum geology of the study area is given by Watney 

(1984) and Watney and others (in press). Figure ] is an 
index map showing the locations of oil fields in Kansas 
and the extent of the study area. 

Data were collected from 1,245 exploratory drill holes 

that penetrate the Lansing/Kansas City. Of these drill 
holes, 917 were dry, 99 produced oil in the Lansing/ 
Kansas City interval, and 229 were unclassified, with 
unknown producing status. Well locations are posted on 
figure 2. Geological information, consisting of measure- 

i i  

Table 1. Experimental m e a n  vectors for six geological vari- 
ables calculated for dry (class 1) and oil-producing (class 2) 
wells in western Kansas. 

(20) Vari- Dimen- 
ables ~ ~ sion 

Case Study Heeb 
This example involves regionally classifying localities in K-BP 

I 
the western Kansas shelf area and estimating the prob- PorH 
abilities of discovering oil at these locations. The pro- Porl 

GaJ 
spective interval in the study is the Lansing and Kansas 

- 1.16862E+ 03 - 1.12877E+ 03 feet 
3.94781E+02 1.49952E+02 feet 
2.09211E+01 1.74628E+01 feet 
2.55348E+00 2.64386E+00 feet 
2.73797E+00 t .60563E+00 feet 
1.74182E+02 1.69590E+02 AP1 
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Figure 2, Locations of exploratory holes drilled in western Kansas used in this study. Symbols indicate productive status. 

merits to the top of key formations, the thickness of se- 

lected stratigraphic intervals, and petrophysical proper- 

ties averaged over selected intervals, was recorded on 

well logs from each hole. In this example, only two classes 

of productivity were used: dry (x E = 0 bbl oil/day) or oil 

producing (x E > 0 bbl oil/day). Z E was determined as 
E ic  {Bo~,B~},be Bo~, {I . . . . .  9 9 } , b i ~ B ~ , i e { 1  . . . . .  

917}. 

Sixteen geological variables originally were recorded; 

preliminar3~ studies indicated that some were either re- 

dundant or only weakly related to oil production. The 

discriminant function between the two groups was cal- 

culated, and Fisher's criterion was used to determine the 

effective discriminating variables. Six variables proved 

to have significant discriminating power (the terms "'K- 

zone," "I-zone," etc., refer to specific limestone units 

within the Lansing/Kansas City interval that contain res- 

ervoirs): 

1. Heeb--subsurface elevation of the Heebner Shale, 

Upper Pennsylvanian 

2. K-BP--thickness of the rock sequence from the base 

of the K-zone to the base of the Pennsylvanian rocks 

3. 1--thickness of the I-zone 

4. PorH--thickness of porous carbonate in the H-zone 

5. PorI--thickness of porous carbonate in the I-zone 

6. GaJ--maximum gamma-radiation response in the 

marine shales of the J-zone. 

A supervised class assignment of each drill hole to pre- 

dictor classes Z G = {B~, B~'}, bi e B~, i e {1 . . . .  ,628}, 

bi e B], i ~ {1 . . . . .  388}, was determined based on its 

discriminant score. The vectors of means and covariance 

matrices of these variables for the two classes were cal- 

culated and are given in tables 1-3. Using the Bayesian 

relationship given in equation 8, the following condi- 

tional probabilities were estimated: 

i 

Table 2, Experimental covariance matrix 51 for six geological variables calculated for dry wells in western Kansas. 

Heeb K-BP I PorH Porl GaJ 

t .47709E+05 5.02166E+04 -4.05434E+02 -2.15052E+02 -2.00492E+02 -6.36431E+02 
5.02166E+04 3.92457E+04 1.53115E+03 6.98658E+01 2.00834E+02 -9.30886E +01 

-4.05434E+02 1.53115E+03 2.001 t0E+02 1.14922E+01 3.63233E+01 1.20652E+02 
-2.15052E+02 6.98658E+01 1.14922E+01 1.13479E+01 3.84000E+00 2.71851 E+O0 
-6.36431E+02 -9.30886E+01 1.20652E+02 2.71851E+00 3.05859E+01 3.55428E+03 
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Table 3. Experimental covariance matrix 52 for six geological variables calculated for oil-producing wells in western Kansas. 

Heeb K-BP I PorH Porl GaJ 

3.10636E+04 5.88609E+03 3.14115E+02 -4.35405E+01 3.46002E+00 1.96993E+03 
5.88609E+03 1.08433E+04 7.08805E+02 8.04505E+01 1.73055E+01 3.01492E+03 
3.14115E+02 7.08805E+02 9.80999E+01 7.64700E+00 6.83206E+00 1.78872E÷02 

-435405E+01 8.04505E+01 7.64700E+00 1.06652E+01 919752E-01 2.20836E+00 
3.46002E+00 1.73055E+01 6.83206E+00 9.19752E-01 6.23529E+00 1.57350E+01 
1.96993E+03 3.01492E+03 1.78872E+02 2.20836E+00 1.57350E+01 4.93130E+03 

p[oil I 1] = 0.35, 

p[dryl 1] = 0.65, 
p[oil t 2] = 0.69, 

p[dryl2] = 0.31. 

The Mahalanobis' distances dffr) and d~(r) between 

each drill hole and the multivariate centroids of  class 1 

and class 2 were calculated by equation 9, using the mean 

vectors and covariance matrices of  tables 1-3. A stan- 

dardization method described by Journel and Huijbregts 

(1978) was used. The two standardized distances are 

treated as composite variables that characterize each well 

location. Experimental semivariograms were estimated 

for the distance to class 1 and the distance to class 2 and 

are shown in figure 3. The pronounced drift evident in 

the northeast-southwest semivariogram for the distance 

to class 2 is a response to the Central Kansas Uplift, a 

large anticlinal feature that strikes north-northwest across 

the eastern part of  the area. The Central Kansas Uplift 

was active throughout most of  Paleozoic time and influ- 

enced sedimentary deposition. Over the crest of  the Up- 

lift, most rock units are thin, relatively clean, and struc- 

turally high. The Uplift is also a preferred habitat for oil 

and gas, so its presence is strongly reflected in the geo- 
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Figure 3, Variograms of Mahalanobis' distances. Both distance variables have been normalized to have means of 0.0 and standard 
deviations of 1.0 prior to calculating variograms, a, Distance to class 1, measured in NE-SW direction, b, Distance to class 2, measured 
in NE-SW direction, c, Distance to class 1, measured in NW-SE direction, d, Distance to class 2, measured in NW-SE direction. Lines 
in c and d are nested exponential models of the variogram. Model coefficients are given on each modeled variogram. 
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Figure 4. (Above) Contour map of Mahalanobis' distances c~'(r) to class 1, estimated using universal kriging. Distance values have 
been normalized. 
Figure 5. (Below) Contour map of Mahalanobis' distances d~*(r) to class 2, estimated using universal kriging. Distance values have 
been normalized. 
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logical characteristics o f  class 2, which contains most o f  

the producing wells. 

Parallel to the Central Kansas Uplift, the distance mea- 

sures are drift free, as confirmed by the corresponding 

semivariograms. The experimental semivariograms in the 

northwest-southeast direction were modeled by nested 

exponential functions, which are shown on the plots. Be- 

cause of  the drift in the variables d~(r) and d~(r), universal 

kriging was used for interpolation and the local drift was 

modeled by a first-order polynomial. 

The map grid contains over 13,000 grid nodes, and a 

kriging estimate has been made for each node. Figure 4 

is a contour map of  d~*(r), the estimated value of  the 

standardized Mahalanobis' distance to the centroid of  

dry class 1. The estimates have been produced by uni- 

versal kriging of  the values o f  d~(b(r)) calculated for each 

well location. Figure 5 is an equivalent contour map of  

d~'(r), the estimated Mahalanobis'  distance to the cen- 

troid o f  producing class 2. 

At every node, the kriging estimation variance also has 

been calculated for class 1 and class 2, and is shown in 

figures 6 and 7. The values from these four map grids 

can be used in equation 14 to estimate the probabilities 

that each grid node location belongs to class 1 or to class 

2. Since the probability is estimated at all grid nodes, the 

results also can be displayed as a contour map, as in figure 

8. This map expresses the probability that an exploratory 

hole will be classified as belonging to B], the predictor 

class for producing wells. 

However, class B2 c does not consist entirely o f  pro- 

ducing wells, since the discriminant function is incapable 

o f  correctly classifying all of  the input wells. By consid- 

ering the misclassification ratios for dry holes classified 

in class B]  and producing wells misclassified in class 

Bf, Bayesian relationships can be used to express the 

probability that a location will be a producer, regardless 

of  its classification (eel. 19). The probability that a lo- 

cation will produce oil is given by the contour map in 

figure 9. 

Conclusions 
Risk assessment in oil and gas exploration can be based 

on the statistical theories of  classification of  geological 

objects (Rodionov, 1981) and regionatized variables 

(Journel and Huijbregts, 1978). The method predicts the 

results of  drilling a prospect at a location where no di- 

rectly measured geological data are available. The pro- 

cedure interpolates a well classification that is based on 

geological predictors and considers the uncertainty in the 

resulting classification that is a consequence of  interpo- 

lation. 

Results are expressed as probabilities of  success in ex- 

ploration. The probability of  failure (exploration risk) can 

be calculated easily. The method is not specific to explo- 

ration for oil and gas, but also may be useful for predicting 

the occurrence o f  mineral and water resources. 
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