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Let R be an associative ring with identity. The set of all nilpotent elements (resp. all 
nilpotent elements of index two) of R is denoted by N (R) (resp. Nz (R)). We use P (R) for 
the prime radical of R, i.e., the intersection of all prime ideals of R. Following Birkenmeier, 
Heatherly and Lee [3], a ring R is said to be 2-primal if P(R) = N(R). Clearly commuta- 
tive rings and reduced rings (i.e., rings without non-zero nilpotent elements) are 2-primal. 

Historically, some of the earliest results known to us about 2-primal rings (although 
not so called at the time) and prime ideals were due to Shin [12]. He showed that a ring 
R is 2-primal if and only if every minimal prime ideal of R is completely prime. Hirano 
[6] considered the 2-primal condition in the context of strongly re-regular rings. He used 
the term N-ring for what we call a 2-primal ring. The 2-primal condition was taken up 
independently by Sun [13], where in the setting of rings with identity he introduced a 
condition called weakly symmetric, which is equivalent to the 2-primal condition for rings. 
Sun [13] showed that if R is weakly symmetric, then each minimal prime ideal of R is a 
completely prime ideal, and that the ring of n-by-n upper triangular matrices over R 
inherits the weakly symmetric condition. The name 2-primal rings originally and indepen- 
dently came from the context of left near rings by Birkenmeier, Heatherly and Lee in [3]. 

For 2-primal rings, there is a question of Birkenmeier, Heatherly and Lee [3, Prob- 
lem 3, p. 373] which asks if the prime radical of a ring R contains all nilpotent elements 
of index two, is R a 2-primal ring? 

In this note we give the answer to this question in the negative. Furthermore we 
consider a certain class of rings in which the question of [3] is true. 

The following example shows that the answer to the question above is negative. 

Example 1. Let F be a field, F < X, Y> the free algebra on X, Yover F and I denote 
the ideal (X2) z of F < X, Y>,  where (X z) is the ideal of F < X, Y> generated by X 2. 
Consider the ring R = F < X, Y> /I. Then we have N(R) = x R x  + Rx2 R + F x  and 
N2(R ) = RxZR = P(R), where x = X +  I i n  R. 

Now we will prove this fact. Since (Rx2R) z = 0, we have RxZR ~ P(R). It is clear that 
R /Rx 2R  is isomorphic to the ring S = F < X ,  Y>/(X2).  For an element u in 
F < X, Y>,  we denote the residue class u + (X 2) in S by ti. It is easy to see that for any 
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two non-zero elements a, b of S, a Yb r 0. Thus S is a prime ring. Since R x Z R  ~ P(R) 
and R / R x E R  is a prime ring, we conclude that R x Z R  = P(R). 

Next we claim that if a, b are two non-zero elements of S such that ab = 0 then a e S J? 
and b e )(S. Let us set )~ o = 1. First observe that 

B = {1, )(} u {)(i Y " l X . . .  X Y"~2J[0 ~ i,j  <= l, nl, n z . . . .  , n g e N ,  k e N }  

is an F-basis of S. We define the length o f f b  ( f e  F \  {0}, b e B) as follows: 

length ( f l )  = O, length ( f  J() = 1 

and 

length ( f ) ~ i ~ , l j ~ . . .  X y , k  ff~j) = i + j  + k -  1 + nl + "'" + nk. 

Now suppose that a, b are two non-zero elements of S such that a b = 0. We write a, b 
in the form a = r Y ( + s ~ ' a n d  b = J ( t + Y u  with r , s , t ,  u e S .  Then a b = r g ' Y u +  
s Y X t  + s Y'Zu = 0. Since a r 0, we have either r r 0 or s r 0. Similarly we have either 
t r 0 or u ~ 0. Now we can easily see that the sum of terms of the highest length in 

r X r u  "~- S YXt  @ s y 2 N  

is zero if and only if s = u = 0. This proves our claim. 
Now we can easily see that N(S) = N/(S)  = X S X  + F X ,  and hence N(R) = x R x  + 

R x 2 R  + Fx.  
Finally we show that N 2 (R) = RxZR.  Let z be an element of R with z 2 = 0. Then, since 

z e N (R), we can write 

z = x a x  + Z bixZcl + f x  

with a, bl, c i e R a n d f e  E Since z 2 = 0 and (RxZR)  2 = 0, we have x a x 2 a x  + f x a x  2 -t- 
x a x ( ~  bixZ ci) + f x2 ax  + f 2 x 2  + f x ( ~ b i x Z  ci) + (Y~bix2 ci) x a x  + f (Zbixa  ci) x = O. 
T h u s f Z x  2 = 0 and so we have f =  0. Therefore z = x a x  + ~hixZcl and thus 

(,) xaxZ  ax  + x a x  (~,bix2 ci) + (Y',bix2 ci) x a x  = O. 

If x a x  ERx2R,  then z E R x 2 R  and so we are done. Thus we may assume that 
x a x  (i RxZR.  So there is a non-zero term, say aymlxym2x'" "xy  mk of a, where a e F and 
[r ml, m2, . . . ,  m k are positive integers. But it is impossible from the equation (*). Thus 
x a x  e RxZR. This proves N2(R ) = R x 2 R  = P(R). 

Let J(R) denote the Jacobson radical of a ring R. We say that idempotents lift modulo 
J(R)  in case every idempotent in R/J(R)  can be lifted to an idempotent  in R. A ring R 
is called an 1-ring if every non-ni l  right ideal of R contains a non-zero idempotent. Right 
or left Artinian rings, more generally, n-regular rings are I-rings. 

Theorem 2. Let R be a ring such that R /J  (R) is an I-ring and suppose that idempotents 
lift modulo J(R). I f  J(R) contains N 2 (R) ,  then R/J(R)  has no non-zero nilpotent elements. 



362 Y. HIRANO, D. VAN HUYNH and  J. K. PARK ARCH. MATH, 

P r o o f .  Suppose, on the contrary, that R/J(R)  contains a non-zero nilpotent ele- 
ment  a. We may assume that a 2 = 0, that is, a is of index 2. Then by [9, Theorem 1, p. 237], 
the ideal (a) of R/J(R)  generated by a contains a system {e11, e12, e21, e22 } of 22 matrix 
units. By hypothesis e l l  can be lifted to an idempotent of R, say E. Let r be an arbitrary 
element of R. Then (ErE  - Er) z = 0, and hence E r E  - E r ~  J(R), Similarly we have 
E r E - r E ~ J ( R ) .  If we put F = r + J ( R ) ~ R / J ( R ) ,  then these imply that e ~ l f =  
eH f e l l  = f e l l .  Hence e~t is a central idempotent  of R/J(R).  This is a contradiction, 
because elte~2 = e12 r 0 = e~2e~o []  

The following example shows that the assumption "idempotents lift modulo  J(R)" 
cannot be dropped from Theorem 2. 

Example 3. Let R denote the localization of the ring ;g of integers at the prime ideal 
(3). Consider the quaternions Q over R, that  is, a free R-module with basis 1, i,j, k and 
multiplication satisfying i z = jz = k2 = _ 1, ij = k = - j i .  Then Q is a noncommutat ive  
domain, and so Nz (Q) = 0. However  Q/J (Q) is an I-ring with non-zero nilpotent ele- 
ments. In fact, J(Q) = 3 Q and Q/J(Q) is isomorphic to the 2-by-2 full matrix ring over 
~g/(3). 

Corollary 4. Assume that R is a ring and J(R) contains Nz (R). I f  R satisfies any o f  the 
following conditions, then R /J  (R) has no non-zero nilpotent elements: 

(1) R is a semiperfect ring. 
(2) R is a right or left self-injective ring. 
(3) R is an I-ring. 

P r o o f. (1) By its definition (see [8, p. 73]), note that a semiperfect ring satisfies the 
hypotheses of Theorem 2. 

(2) By [8, Proposi t ion 4.4.1, p. 102], R/J(R)  is a yon Neumann  regular ring and 
idempotents lift modulo J(R). Now the assertion follows from Theorem 2. 

(3) The Jacobson radical J(R) of the I-ring R is a nil ideal and the ring R/J(R)  also is 
an I-ring. Thus it follows immediately from Theorem 2. []  

Next we deal with a ring R which is a right order in a right Artinian ring. A condition 
for a ring R to be a right order in a right Artinian ring can be found in [5, p. 172 after 
Exercise 10 HI. 

The following lemma is almost evident and its proof  may be omitted. 

Lemma 5. The following statements are equivalent for a ring R: 
(1) Nz(R ) ____ P(R).  
(2) For any a, b in R with a b = O, it holds b R a c= p (R). 

Theorem 6. Let R be a right order in a right Artinian ring Q. I f  the prime radical P(R)  
of  R contains N2(R), then P(R)  = N(R), i.e., R is 2-primal. 

P r o o f .  By [5, Exercise 10H], P ( Q ) =  P ( R ) Q  and R/P(R)  is a right order in the 
semisimple Artinian ring Q/P (Q). Hence it suffices to prove that  Q/P (Q) has no non-zero 
nilpotent elements. Suppose, on the contrary,  that  Q/P(Q) has a non-zero nilpotent 
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element. Then by [9, Theorem 2.1] Q / P ( Q )  contains a system of  22 matrix units Ni l ,  g i2 ,  
g2~, g22- Since P (Q)  is a nil ideal, g H  and g22 can be lifted to or thogonal  idempotents 
E11 and E22 of  Q, respectively. Since the image of  E l l  Q E22 in Q / P  (Q) contains gl  2, we 
have E l l Q E z 2  $ P(Q).  Since (El lQF~2)  2 = 0, we obtain an element a s  Q such that 
a 2 = 0 and a r P (Q)  ( =  J(Q)). Then again by [9, Theorem 2.1] Q contains a system of 22 
matrix units, say el~, et2, e21, e22. Let et2 = a d - l  where a, d e R with d regular. Then 
we can write d - l a = b c  -~  where b, c s R  with c regular. Then 0 = ( e ~ 2 ) 2 =  
a d - I a d  - 1  = a b c - l d  -~,  and hence a b  = 0. Therefore b R a  c= P(R)  by Lemma  5. 

Now let {Pklk ~ K} be the set of  all prime ideals o f  R. Then P(R)  = ('] Pk- Since 
k~K  

b R a ~ P k ,  we have either a SPk or b s P k .  Now let I ~ = ( - ] { P k l a e P k }  and I b =  
{Pk[b s Pk}. Then I,  c~ I~ = P(R).  By [5, Theorem 9.20 (a)], I , Q  and IbQ are ideals 

of  Q. Clearly we have P (Q) = P (R) Q ~ I~ Q c~ I~ Q. To prove the converse inclusion, let 
z s I ,  Q c~ I~ Q. Then by [5, Lemma  5.1 (c)], we can write z = g f -  ~ = h f -  ~ where g e I , ,  
h e I b a n d f  is a regular element of  R. Then 9 = ( g f - 1 )  f =  ( h f - t ) f =  h ~ I~ c~ Ib, and 
hence z ~ (I,  n Ib) Q = P(R)  Q = P (Q). This proves I,  Q c~ I~ Q = P (Q). Since a e I , ,  
e ~ 2 = a d - l s I ,  Q. S ince  b e lb a n d  lb is an  ideal  o f  R,  w e  get  e ~ z = a d - ~ = d b c - l d -  l e lb Q. 

Hence we obtain e l z ~ I a Q  c3 I~Q = P(Q),  and so e l l  = el2e21 ~ P(Q).  Since P (Q)  is a 
nil ideal, this is a contradiction. [ ]  

Finally we consider a certain class of  PI-rings in which the question in [3, Problem 3, 
p. 373] is true. We denote the center o f  a ring by Z (R). 

Theorem 7. L e t  R be a PI - r ing  with Z ( R / P ( R ) )  = (Z(R)  + P(R)) /P(R) .  I f P ( R )  con- 

tains N 2 (R), then R is 2-pr imaL 

P r o  of .  Let /~  denote R / P ( R )  and Q(i~) denote the maximal  right quotient ring of/~. 
Then Q (~) is a setf-injective von Neumann  regular ring and satisfies a polynomial  identity 
by [10, Theorem 2]. Then by [1, Theorem 3.1], Q(/~) is a direct product  of full matrix rings 
over strongly regular rings. Hence, to prove tha t /~  has no non-zero nilpotent elements, 
it suffices to show that  Q (/~) has no non-central idempotents. 

Suppose, on the contrary,  that  Q(/~) contains a non-central  idempotent  e. By the 
definition of Q (R), there exists an essential right ideal I of R such that  e I __c/~. Let C 
denote the center of/~.  By [i, Lemma  2.2], (I c~ C) /~  is an essential right ideal o f / ~  
contained in I. Let K = {k e Z(R) t k + P(R) e I c~ C}. Take an element k s K and set 
k- = k + P (R). Then e k e R. Let F be an element of R such that  F + P (R) = e k. Then 
F k  - F 2 ~ P(R).  Hence, there exists a positive integer m such that  ( F k  --  F2) m = 0. 

Now we can wri te /d '  - (k - F) m = F G  with some element G in the subring generated 
by tc and E Then, 0 = ( F k  - F2) " = F ~ ( k  - F )  m = F m ( k  ~ - F G )  = F ~ k  m - F ~ + t 6 .  

F r o m  the equation F" / c  ~ = F "  + ~ G, we obtain F ~ k ~ = F 2m G "~ - F m ( F G ) " .  By Lemma  
5, Fm(ld "~ - ( F G )  m) = 0 implies that  (k m2 - ( F G )  m) R F  m c= P(R).  Since F G  + P(R)  
=/T" -- (/7.-- e/~)" = e/~", this implies (1 - e ) R e F :  m:+m = 0 in Q(/~). Since Q(/~) is 
semiprime and since k is  in the center of  Q (/~), we obtain (1 - e )  R e k = 0. Since Z ( R / P  (R))  

= ( Z ( R ) + P ( R ) ) / P ( R ) ,  we have I c ~ C ~ { E l k s K } .  Thus we get ( l - e ) / ~ e  
{(I c~ C)/~} = 0. Since (I  c~ C) /~  is an essential right ideal of R, this implies (1 - e) R e  

= 0. Similarly we can obtain e/~(1 - e) = 0. From these, we deduce that e centralizes/~. 
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Let q be an arbi t rary  element of Q (/~) and let A be an essential right ideal o f /~  with 
q A __c R. Then, for any a e A, (e q - q e) a = e (q a ) -  (q a) e = 0, and hence (e q - q e) A = 0. 
Therefore e q - q e = 0 for all q ~ Q (/~). This is a contradict ion.  [ ]  

Let R ~ denote the opposi te  ring of R. By [2, Propos i t ion  2.3], if R is quasi-projective 
as a left module  over the ring R | ~ then R satisfies the condit ion Z(R/P(R))  = 
(Z(R)  + P(R))/P(R). In part icular ,  we have the following 

Corollary 8. Let  R be an Azumaya algebra. I f  P (R) contains N2 (R), then R is 2-primal. 

P r o o f. By [11, Proposi t ion  13.7.7], R is a PI-ring. Also, by [4, Propos i t ion  1.11], we 
have Z (RIP (R)) = (Z (R) + P (R))/P (R). Hence we can apply Theorem 7. [ ]  

An  algebra R over a commutat ive  ring C is called a module-finite C-algebra if  R is a 
finitely generated C-module.  A module  M over a commutat ive ring C is said to be 
torsion-free provided xc  = 0, with x ~ M, c ~ C, implies either x = 0 or  c is a zero divisor 

of  C. 

Proposition 9. Let R be a module-finite algebra over a commutative Noetheria n ring C 
such that RIP(R) is torsion-free over C = (C + P(R))/P(R). I f  P(R)  contains:Nz(R ), 
then R is 2-primal. 

P r o o f. L e t / ~  denote the ring R/P(R) and let S denote the set of regular elements 
of C. Since/~ is torsion-free over C, all elements of S are regular  in/~. By hypotheses, the 
ring S - ~/~ of fractions of /~ with respect to S is a semisimple Art inian ring. In a similar 
way as in the proof  of Theorem 7, we can show that  S - 1/~ has no non-central  idempo-  
tents. Therefore /~  has no non-zero ni lpotent  elements. [ ]  

We conclude this paper  with the following two questions. 

Q u e s t i o n 1. Let R be a module-finite algebra over its center. If P (R)  contains 

N2(R), is R 2-primal? 
If  the answer of  Question I is affirmative, we ask 

Q u e s t i o n 2. Let R be a PI-ring. If P (R)  contains N2(R), is R 2-primal? 

A c k n o w 1 e d g e m e n t s .  The third author  was part ial ly suppor ted  from K O S E K  
T G R C  and the Basic Science Research Insti tute Program,  Ministry of Education,  Korea, 
Project  No. BSRI-94-1402 in 1994. 
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