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C o n f e r e n c e  S t r u c t u r e s  a n d  F a i r  A l l o c a t i o n  R u l e s  1 ) 
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Abstract: To describe how the outcome of a cooperative game might depend on which groups of 
players hold cooperative planning conferences, we study allocation rules, which axe functions map- 
ping conference structures to payoff allocations. An allocation rule is fair if every conference al- 
ways gives equal benefits to all its members. Any characteristic function game without sidepay- 
ments has a unique fair allocation rule. The fair allocation rule also satisfies a balanced contribu- 
tions formula, and is closely related to Harsanyi's generalized Shapley value for games without side- 
payments. If the game is superadditive, then the fair allocation rule also satisfies a stability condi- 
tion. 

Introduction 

We expect that players in a cooperative game should meet together in a series of  
conferences to discuss possible cooperative plans and to sign jointly binding agree- 
ments. The goal of  cooperative game theory is to help us understand how these confer- 
ences determine the ultimate outcome of  the game. To accomplish this goal, one could 
try to model these conferences as dynamic processes or as noncooperative games in 
their own right; but such models are hard to construct without being ad hoc or unreal. 
istic, because negotiation conferences are in fact very complex phenomena. In this 
paper, we will try to avoid this difficulty by taking conferences as black boxes. That is, 
we will study allocation rules, which tell us how the players' payoffs ought to depend 
on which conferences occur, but we will not  try to describe the internal workings o f  
these conferences. We will only assume that the net effect of  a conference should be 
fair, in that it benefits all o f  its members equally. Our main result is that every game 
has a unique fair allocation rule satisfying a natural Pareto-efficiency property. 

The results of  this paper generalize earlier results in Myerson [ 1977a], by dropping 
the sidepayments assumption and by allowing for conferences of  more than two play- 
ers. For some other approaches to the question of  how final payoffs should depend on 
the structure of  cooperation in a game, see Luce/Raiffa [ 195 7, Chapter 10], Maschler 
[ 1963 ], Aumann/Dr~ze [ 1974], Owen [ 1977], and Shenoy [ 1979]. 

I ) This paper was written while the author was a visitor at the Zentrum ftir interdisziplinaxe 
Forschung, in the University of Bielefeld, Bielefeld, Germany. 

2) Professor Roger B. Myerson, Graduate School of Management, Northwestern University, 
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1. Basic Definitions 

Throughout this paper, we shall let V be a characteristic function game without 
sidepayments, and we let 

N = ( 1 ,  2 . . . . .  n) (1.0) 

represent the set of players in V. That is, we assume that V is a function which maps 
each set of players S C__ N onto a set V (S) such that: 

V(S) is a closed subset o fRn;  (1.1) 

0 --/: V (S )  --/: R n i fS :/: 0 (V (r = Rn); (1.2) 

i fx  E V (S ) , y  E R n, and y i <~ x i V i E S theny E V (S). (1.3) 

(Notice that this is somewhat weaker than the usual definition of a characteristic func- 
tion game without sidepayments, as in Aumann/Peleg [1960]. For example, we shall 
not need convexity of V (S) in this paper). 

The set V (S) is interpreted as the set of all payoff allocations which give the mem- 
bers o fS  a combination of payoffs which they could guarantee themselves together, 
without cooperating with the other players. Condition (1.3) asserts that free disposal 
of utility payoffs is always possible for any coalition S, so that V (S) must be a com- 
prehensive subset of R n . 

For any set S C_N, let a V (S)be the weakly Pareto-efficient frontier of V (S). That 
is: 

V (S) = (x E V (S) [ i f y  i > x i for all i E S, then y ~ V (S)). (1.4) 

To describe how the players organize their cooperation, we must specify which 
groups of players are willing and able to confer together for the purpose of planning 
cooperative actions. It may be that some players will not talk to each other directly, or 
that some players can only communicate with each other in the presence of many 
other players, as in a convention or a committee meeting. 

We shall use the term conference to refer to any set of two or more players who 
might meet together to discuss their cooperative plans. A conference structure is then 
any collection of conferences. We let CS denote the set of all possible conference 
structures, so that: 

CS ={Q I V S E Q ,  S C _ N a n d I S  It> 2). (1.5) 

Given a conference structure Q E CS, players i and ] are connected by Q if i = ] or 
there exists some sequence of conferences ($1 . . . .  , Sm)  such that: 

i E S 1 , ] E S m ,  ($1 . . . . .  Sm)  C__Q, and 

S k riSk+ 1 :/:0 foreveryk = 1 . . . .  , m - -  1. 

That is, two players are connected by Q if they can be coordinated either by meeting 
together in some permissable conference to which they both belong (m = 1), or by 
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meeting in separate conferences which have some members in common to serve as 
intermediaries (m = 2), or by some longer sequence of overlapping conferences 
(m i> 3). We letN/Q denote the partition of N defined by this connectedness relation, 
so that: 

N/Q = {{]li and] are connected by Q)I i EN) .  (1.6) 

That is, the sets inN/Q are the maximal connected coalitions which can be coordi- 
nated if players only communicate by meeting in the conferences of Q~ 

Given Q E CS, S C_N, and i EN,  we define conference structures Q - S, Q ~ *S 
and Q - *i by the following formulas: 

Q - s  = {TITEQ and T=/:S), (1.7) 

Q N *S = {TITEQ and TC__S), (1 .S) 

Q -  *i = {TIT E Q and i C= T}. (1.9) 

So Q - S is the conference structure differing from Q in that S is dropped from the 
list of  permissable conferences. Q n *'s differs from Q in that all conferences contain- 
ing players outside S are eliminated. Q - *i is the conferences structure differing from 
Q in that all conferences containing player i are eliminated. 

2. Allocation Rules 

One would expect that the outcome of game V ought to depend on how the play- 
ers meet to organize their cooperation. That is, each player's payoff should be a func- 
tion of the cooperation structure. Thus, we are interested in studying functions of the 
form X: CS ~ R n , mapping each conference structure Q onto a payoff allocation 
X (Q) = (X 1 (Q) . . . .  , X n (Q)). Our goal is to find such a function for which each 
Xi (Q) could be reasonably interpreted as how much player i could expect to get in 
game V if Q were the set of conferences held by the players. 

We formally define an allocation rule for the game V to be any function X: 
CS ~ R n such that 

X ( Q ) E 3 V ( S ) ,  VQECS,  V S E N / Q .  (2.1) 

This condition (2.1) asserts that, i fS is a maximal connected coalition for the confer- 
ence structure Q, then the members of S ought to coordinate themselves so as to 
achieve a (weakly) Pareto-efficient allocation among those allocations available to 
them. Thus, we are assuming that the players will effectively form the largest possible 
coalitions which can be coordinated with the given conference structure. 

There are infinitely many allocation rules for the game V, because any point in 
a V (S) can be chosen for X (Q), and this set is always infinite (provided Q q: 0). To 
find a narrower range of interesting allocation rules, we must consider ~ome additional 
conditions which a reasonable allocation rule might also satisfy. 
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When people cooperate with each other, it is often suggested that any two players 
should enjoy the same gains from their cooperation together, relative to what they 
would get without cooperation. This intuitive notion of fairness in cooperation is what 
we shall call the equal-gains principle.  This principle clearly involves some interperson- 
al comparison of utility, so it cannot be based purely on the concepts of individual 
Bayesian decision theory. However, it has been argued elsewhere [Kalai; Myerson ,  
1977b] that there may be strong theoretical reasons why we should expect bargaining 
to be conducted with reference to the equal-gains principle (or some version of it), 
even when utility is not linearly transferable between individuals. In any case, the 
equal-gains principle is a widely familiar common sense notion. ("You should do this 
for me because I have done more for you already.") Experimental data has confirmed 
its importance even when utility is not transferable [Nydegger/Owen].  In Section 6, 
we will relax this assumption that utility is interpersonally comparable. 

To apply the equal-gains principle to our allocation rules, we say that an allocation 
rule X: CS ~ R n is fair  if and only if: 

X i (Q) - X i (Q - S)  = 2~ (Q) - X i (Q - S) ,  (2.2) 

VQECS,  V S E Q ,  V I E S ,  V / E S .  

So X (.) is a fair allocation rule if every conference always gives equal benefits to all of 
its members. That is, if the members of S decided not to meet together, then this 
change in the conference structure (from Q to Q - S )  should affect all members of S 
equally. 

It turns out that there is a unique fair allocation rule for any game. The main task 
of this paper is to prove this fact and describe the fair allocation rule. 

3. Balanced Contributions and the Shapley Value 

We may assume that a set S can be included in the actual conference structure of a 
game only if all members of S agree that they want to meet together. So the fairness 
condition (2.2) asserts that, by refusing to participate in a conference no player can 
hurt any other member of the conference any more than he would hurt himself. But a 
player may expect to participate in many conferences, and he might also threaten to 
withdraw his support from all of them, if some of his demands are not recognized. 

If player/" withdrew his support from all conferences in Q, then the conference 
structure would have to change from Q to Q - "1. (Recall (1.9).) The allocation for 
player i would then change from X i (Q) to X i (Q - */) as a result o f j  dropping out. 
The difference, X i (Q) - X  i (Q - *]), may be called/'s contr ibut ion to i in Q. 

We say that an allocation rule X: CS -+ R n has balanced contr ibut ions  if and only 
if: 

X i (Q) - X i (Q - *]) = Xi  (Q) - X i  (Q - *i), 

VQECS,  V i C N ,  ~ j E N .  

(3.1) 
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That is, X (.) has balanced contributions if/ 's contribution to i always equals i's con- 
tribution to/ ,  in any conference structure. We shall see that fairness and balanced con- 
tributions are closely related properties. 

The Shapley value [Shapley] was orginally defined only for games with sidepay- 
ments, but it is also closely related to our fair allocation rules. To show this relation- 
ship, let us say that X: CS ~ R n satisfies the Shapley formula if and only if: 

(IS I -  1 ) ! ( n - I S  I)! 
X i (Q) -- X t. (0) = Z S~N n ! 

(i~S) 

for all Q in CS and all iinN, where: 

Z (a)  =j~N .st'/(a), v a  ~ cs .  (3.3) 

This Shapley formula asserts that each player's total gain from a conference structure 
should be a weighted average of his contributions to all players in smaller conference 
structures. 

(Z (Q (~ *S) - Z  (Q 0 * S -  *i)), 

(3.2) 

4. Existence and Uniqueness 

We can now state and prove our main result, characterizing the fair allocation rules. 

Theorem 1. There exists a unique fair allocation rule for the game V. This allocation 
rule also has balanced contributions and satisfies the Shapley formula, and no other 
allocation rule for V satisfies either of these properties. 

We prove Theorem 1 in a series of four lemmas. 

Lemma 1. There exists an allocation rule satisfying the Shapley formula. 

Proof of Lemma 1. Let X i (0) = maximum {xi[x E V({i})} and let Z (0) = ~ X/(0)- 
iEN 

Then (2.1) and (3.2) are trivially satisfied for Q = 0. (Notice N/O = {{i}1 i EN}.) 
We say that a conference structure Q is simple if there exists some T E N/Q such 

that Q r *T = Q. That is, Q is simple if all players who belong to any conferences are 
connected together. We can now proceed to construct X (Q) and Z (Q) inductively, in 
order of increasing [ Q I �9 

Suppose first that Q is simple, with T being the only nontrivial coalition in N/Q. 
Then (3.2) is equivalent to 

{ I ~ Z ( Q ) + A i ( Q ) ,  i f iET ,  
X i (a)  - X / ( 0 )  = (4.1) 

0, i f i  ~T, 

where 

A i ( Q ) _ - Z ( Q  - *0 
ITI RcT 

( i~R ) 

(JR[- 1)!(ITJ- [R[)! 
I r l !  ( Z ( Q • * R ) - - Z ( Q N * R - * i ) ) .  

(4.2) 
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The coefficients in (4.2) are derived from the combinatorial fact that: 

F_, 
So__. N 

(SnT=R) 

( t S  I - 1 )  ! ( I N I - I S  I) ! = ( I R I - - 1 ) ! ( I T I - - I R I ) !  
t N I [  I T I I  

There are two important implications of (4.2): that A i (Q) depends only on Z (.) 
evaluated at conference structures strictly smaller than Q, and that i~T Ai  (Q) = 
- Z (0). 

So we can evaluate A i (Q) assuming inductively that Z (Q') and X (Q') have already 
been constructed for all Q' c Q. Then, since V (T) is closed and comprehensive, we 
can choose Z ({2) and X (Q) so that (4.1) holds and X (Q) ~ a V (T). X (Q) E a v ((i}) 
for all~ ~ T also follows from (4.1), since X i (Q) then equals X i (0). (3.3) holds for Q 
when we construct Z (Q) and X (Q) in this way because 

Z X / ( Q ) = Z ( Q ) +  = 
iEN iZ~T Ai  (Q) + i~_NZ X.  (0) Z (Q). 

Suppose now that Q is not simple. For each T E N / Q  and each i E T, let X i (Q) = 
X i (Q c) *T) (where Q n *T will be simple). Let Z (Q) = Z X. (Q). Then for each 

iEN 
T E N/Q,  we have X (Q) E a V (T), because X (Q rq *T) E a v (T) (by the construction 
in the simple case), and because being in a V (T) depends only on the payoffs to mem- 
bers of T. 

We must now check that (3.2) holds for any Q. By construction, a player's alloca- 
tion does not depend on conferences among players with whom he is not connected. 
So, for any Q E CS, T ~ N / Q ,  i E T, ] E T, and k r T: 

X~ (Q N *S) = )~ (a  N *T A *S), )~  (Q 6~ *S - *i) = X~ (Q N *V 6~ *S - *i), 

X k (O N *S) = X k (Q N *S - *i), X k (Q A *V (~ *S) = X k (0) = X k (Q N *T 6~ *S - * i ) ,  

and thus 

Z (Q A *S) - Z (Q ~ *S - *i) = Z (Q ~ *T (~ *,7) - Z (Q o *T N *S - *i). 

Then (3.2) for Q follows from the fact that (3.2) holds for the simple conference 
structure Q (~ *T when i E T E N/Q.  

Lemma 2. If X (.) satisfies the Shapley formula, then X (.) has balanced contribu- 
tions. 

Proof  o f  Lemma 2. For any Q ~ CS, i EN ,  ] E N ,  (3.2) implies 

x~ (Q) - x~ (Q - *i) = 

X ( I S I - 1 ) ! ( n - I S I ) ~  : - " (Z (Q 5) *S) - Z (Q N *S - *i) - Z (Q (~ *S - *]) 
Sc__N n ! 
S . r  + Z ( a  (~ *S -- *i -- *j)). 
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But this expression is symmetric with respect to i and], so X~ (Q) - X~ (Q - *i) could 
also be expressed in this way. So (3.1) follows. 

Lemma 3. I f X  (.)has balanced contributions, then X (.) is a fair allocation rule. 

Proof o f  Lemma 3. Suppose that {i, 13 C__S ~ Q. Then 

( Q  - S )  - *i = Q - *i and  ( Q  - S ) -  */ = Q - *L S o  

X i (a)  - X i (a  - S) = 

= x] ( Q ) -  x] (Q - *i) + x .  (Q - * ] ) - x .  ( Q -  s)  + . 7 ( / ( Q - s - * i ) - x  i ( Q - s - * ' ] )  

= x ( Q ) -  x ,  (Q - s).  

Lemma 4. There is at most one fair allocation rule for V. 

Proof o f  Lemma 4. Suppose that there were two such fair allocation rules X: CS -+ R n 

and Y: CS -+ R n . Let Q be a minimal conference structure such that X k (Q) -'/= Yk (Q) 
for some k E N. (That is, X (Q ') = Y (Q') for all Q' c Q.) We may assume that 
Xk (Q) > Yk (Q), with no loss of generality. Suppose {i, ]} c S ~ Q. Then: 

(Q) - x / ( Q )  = (Q - s )  - x j  (Q - s )  

= Yi (Q - S) - Yj (Q - s )  = Yi (Q) - YI" (Q)" 

So x i (Q) - Yi (Q) = x j  (Q) - Y] (Q) for all i and/who belong to any common con- 
ference in Q. Then, arguing along the connecting sequence, we must have 
Xi (Q) - Yi (Q) = Xk (Q) - Yk (Q) > 0 for any player i who is connected to k in Q. 
Let S EN/Q be the connected coalition containing player k. So X i (Q) > Yi (Q) for all 
i in S. Then X (Q) E 3 V (S) implies Y (Q) ~ ~ v (s), so X and Y cannot both satisfy 
(2.1). 

Theorem 1 follows immediately from these four lemmas. 

5. StabiUty 

We have described a fair allocation rule asone in which every conference always 
gives equal benefits to its members. However, we have not actually shown that the 
effect of adding a conference need be properly beneficial for its members. We now ad- 
dress this question. 

We say that an allocation rule X: CS ~ R n is stable if and only if 

X i ( Q ) > ~ X i ( Q - S ) ,  VQECS,  V S E Q ,  WIGS. (5.I) 

That is, X (.) is stable if adding any set S to the conference structure wilt never hurt 
the members of S. (So stability obviously implies individual rationality.) 
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if: 
A characteristic function game V without sidepayments is superadditive if and only 

v(s)  n v(z)  c_c_ v ( s  u 73, (5.2) 

for all S and T such that S (~ T = ~). 

That is, V is superadditive if a merger of two disjoint coalitions can always achieve all 
allocations which were feasible for them both apart. 

Theorem 2. Let X: CS ~ R n be the fair allocation rule for V. If  V is superadditive, 
then X (.) is stable. 

Proof  o f  Theorem 2. Suppose that the theorem were false. Then we could choose 
a E CS, S E Q, and k E S so that: X k (a )  < X k ( a  - S) but 

X k ( a ' )  >~ X k ( a '  - S) for all a '  c a .  

(That is, Q is minimal among the conference structures which violate the theorem.) 
Let T E N / Q  be the connected coalition containing k. 

For any i E T, balanced contributions implies that: 

X i (Q) = X k (Q) - X k (Q - *i) + X .  (Q - *k) 

< X k (Q - S) - X k (Q - S - *i) + X i (Q - S - *k) = X i (Q - S). 

Thus X i (Q) < X i (Q - S) for all i E T. 
But X (Q) E ~ V (T), by (2.1). So X (Q - S) �9 V (T), which contradicts superaddi- 

tivity, since X (Q - S) E N V (R), and since T is a union of some coalitions in 
R EN/(Q-S) 

N/ (Q - S ) .  (N/(Q - S )  is a refinement of  N/Q.)  This contradiction proves the theorem. 

6. Harsanyi's Bargaining Solutions and Fair Allocation Rules 

Harsanyi's [ 1963] bargaining solutions for n-person cooperative games are a gener- 
alization of the Shapley value to games without sidepayments, and are closely related 
to our fair allocation rules. To show this relationship, we must first make some defini- 
tions and prove two lemmas, which may be of interest in their own right. 

Thus, far, we have assumed that the players' utility scales are interpersonally com- 
parable, so that the equal-gains condition (2.2) is appropriate as a characterization of 
fairness or equity in cooperation. However, any affine transformations of the players' 
utility scales would preserve all their decision-theoretic and game-theoretic properties 
of the utility scales (since we have not assumed transferable utility). So it may be more 
appropriate to consider a broader class of fairness conditions, equalizing weighted util- 

ity. Given any vector h = (hi . . . . .  hn), with all h i > O, we say that an allocation rule 
X: CS -+ R n is h-fair if and only if 
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h i (X  i (Q) - X i (Q - S)) = h i (X  i (Q) - X i (Q - S)), 

VQECS,  V S E Q ,  V I E S ,  V / E S .  

(6.1) 

Lemma 5. For any positive n-vector h, there exists exactly one ~-fair allocation rule 
Xh: CS --* R n for the game V. 

Proof. Given V and h, we define the game ~-x so that 

px (S) = ((hlxl  . . . . .  hnxn)  l (xl . . . . .  X n ) E  V(S)}. (6.2) 

Then X x is a h-fair allocation rule for V if and only if yX is a fair allocation rule for 

~-X, where 

yX (a)  = hiX/X (a) ,  v a @ c s ,  V i c N .  (6.3) 

Thus Lemma 5 follows from the fact that I )x has a unique fair allocation rule. 
In this paper, we have assumed that the players' payoff allocation should depend 

on the structure of conferences which the players may form. However, Harsanyi 
[ 1963] has assumed a simpler functional dependence, in which conflict payoffs depend 
only on the formation of a single coalition. Thus, let us define a coalitional allocation 
rule for V to be any function U: 2 N ~ R n , mapping each coalition S C__N to some allo- 
cation vector u (S) satisfying 

U (S) E ~ V (S) (6.4) 

where we may arbitrarily set U i (S) = 0 if i ~ S. Generalizing (3.1), we say that U has 
h-balanced contributions if and only if 

h i ( U i ( S ) - U i ( S - / ) ) = h j ( U / ( S ) - U / ( S - i ) )  , V S C N ,  V i E S ,  V i E S  

(where S -- i = (k lk  E S and k ~ i)). (6.5) 

For any coalition S C_N, we let oS  be the set of all conferences involving only play- 
ers in S. That is, 

Q. S = {TIT C_C_ S and I T I >/2). (6.6) 

Lemma 6. Given any positive n-vector k, the unique coaIitional allocation rule for V 
with X-balanced contributions is 

U/(S) = X ~  ((~s) VSC__N, V I E S ,  (6.7) 

where X x is the h-fair allocation rule for V. 

Proof. To check that (6.7) does define a coalitional allocation rule with h-balanced 
contributions, define y x  as in (6.3). Then use the fact that Y~" is a fair allocation rule 
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(for ~x) to get 

x; (v  t (s) - v i (s - j ) )  = Y~ ( U )  - r~ (0 s-j) 

= ~,~, (~s)_ ~,~ (~s ,j)= ~,, (Os)_ rj,, (0 s -  *o 

= k; (v; ( s ) -  v~ (s  - 0). 

To check uniqueness, suppose that U and U are two different coalitional allocation 
functions for V with X-balanced contributions, and let S be one of the smallest coali- 
tions with U(S) ~ ~](S). For any i and/' inS, (6.5) implies that 

x/(% (s) - uj (s)) = x; ( u  (s) - u~ (s - J ) / +  xjuj (s - 0  

- x, (~5~ (s)  - ~)i ( s  - j ) )  - xj ~ ( s  - i) 

^ 

= x; (u;  (s )  - u (s)) ,  

because U (7") = U (T) for all T smaller than S. But these equalities, together with 

U (S) E b V (S) and U (S) E ~1V (S), imply that U (S) = ~) (S). This contradiction 
proves uniqueness, so the lemma is proven. 

In Myerson [ 1977a], graphical cooperation structures were studied, where agraphi- 
cal cooperation structure is just a conference structure in which each conference has 
exactly two members (and so can be represented graphically by a link between the two 
players). For example, "complete cooperation within the coalition S"  would be re- 
presented by 

~ s  = (( i , /} l i E S , / E S ,  andi=~j} 

in the context of the graphical cooperation structures from Myerson [ 1977a], where 
we implicitly assume that only bilateral conferences among the players are allowed. In 
contrast, the more complicated conference structure 0 S from (6.6) represents "com- 
plete cooperation within the coalition S"  in the more general context of conference 
structures studied in this paper. As an easy application of Lemma 6, we cab show that 
the fair allocations for the members of S when there is "complete cooperation within 
S"  is the same for both notions of "complete cooperation". That is, for any S C_ N, 

x x (~=) = x x (0s),  

where X x (.) is the X-fair allocation rule for V. To prove this, simply observe that, as a 
function of S, X x (oS)  is a coalitional allocation rule with X-balanced contributions 
(the argument is the same as for X x ( t~ ) )  and apply Lemma 6. 

We can now characterize Harsanyi's bargaining solutions in terms of our fair alloca- 
tion rules. 

Theorem 3. Let k be any positive n-vector, and let u N = (u N . . . . .  u N) satisfy 
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u N E V (At) and ~ X~.u N = maximum Y, X i xi,. 
fEN x~ V(N) iEN 

Then u N is a bargaining solution for the game V, [in the sense of  Harsanyi] if and only 
if 

u u = x x (O.N), 

where X x is the X-fair allocation rule for V and 0 N is the complete cooperation struc- 
ture on N (see (6.6)). 

Proof. In Harsanyi,s bargaining model, each coalition S promises a dividend w S to 
each player i, where w S = 0 if i ~.S. These dividends must be constructed so that the 

allocation vector u S is in a v (s), where 

US=TZcs  WiT , V S C N ,  "VIES .  (6.8) 

rS__{i) 

If X can be chosen so that 

and 

XiwiS=xlwlS , VSC__N, V I E S ,  V / E S ,  (6.9) 

Z XiuN -- = maximum Xtx i, 
iEN x~ V(N) i 

then u N = (uN1 . . . . .  u N)  is a bargaining solution [in the sense of Harsanyi] for our 
game V, with weights X. 

Harsanyi [1963, p. 210] has pointed out that (6.8) is equivalent to 

w s =  z (-a)lS - rluf v s c i ,  V I E S .  (6.10) 
Tc_S 
rz_ (i) 

If i and/' are distinct players in S, then (6.10) can be rewritten as 

w. S = X (-- 1) ISI-ITI ( u f - - u f 4 ) .  (6.11) 
t TC__S 

TD__{i,j) 

Using (6.8) and (6.1 I), it is then straightforward to show that (6.9) holds if and only if 

X i u i S - x i u S ' / = ~ . u l . S - X j u 7  "i, VSC_N,  V I E S ,  V I E S .  (6.12) 

But by Lemma 6, (6.12) can hold if and only if 

uS = X.x (QS), VSC_C_N, V i e S .  

So u N = X/x (~N), which proves the theorem. 
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Corollary. Suppose that V is equivalent to a game v with sidepayments, in the sense 
that 

V(S)=(xERn [ E xi<~v(S)}, VSC__N. 
i~S 

Then X (O N) equals the Shapley value of v, when X is the fair allocation rule for V 
and ON is the complete cooperation structure. 

Proof. It is well known that, for games with sidepayments, Harsanyi's bargaining solu- 
tion coincides with the Shapley value, with all scale factors X i = 1. 

7. Example 

Let us consider the following three-person game suggested by Roth [1980]: 

V({i}) = {(xl,x~,x3)]xi<~O),foreachi 

V((12}) = ((xl,x2, x3) [xl <~1/2,x2 <~1/2} 

V({13}) = ((xx,x2, xa ) [x l~< l /4 ,xa~<3 /4}  

V((23}) = ((xl,x2, x3)[x2~<l /4 ,xa~<3/4} 

{ thereissome(yx,y2, ya)intheconvexhullof} 
V({I23}) = (x~, x2, x3) ~[(1/2, 1/2, 0), (1/4, 0, 3/4) (0, 1/4, 3/4)} such 

[that x i <. Yi for all i 

(This game corresponds to Roth's Vp for p -- 1/4.) The fair allocation rule for this 
game is as follows. 

Q x (Q) 

0 (0, 0, 0) 
((23}} (0, 1/4, 1/4) 
({13}} (1/4, 0, 1/4) 
({12}} (1/2, 1/2, O) 
{{12), {13}} (1/2, 1/4, O) 
{{12}, {23}} (1/4, 1/2, 0) 
{{23}, (13}} (1/4, 1/4, 1/2) 
((12}, {13), (23}} (5/12, 5/12, 2/12) 
{{123}} (1/3, 1/3, 1/3) 
((23}, (123}} (1/8, 3/8, 3/8) 
{{13}, (123}} (3/8, 1/8, 3/8) 
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{{12},{123}} 

{{12}, {13}, {123}} 

{{12), {23},{123}} 

{{23}, {13}, {123}} 

{{12), {13),{23), {123)) 

(1/2, 1/2, 0) 

(1/2, 1/4, 0) 

(1/4, 1/2, O) 

(1[4, 1/4, 1/2) 

(5[12, 5/12, 2/12) 

If we let X = (1, 1, 1), then this is also the ),-fair allocation rule, and we have 

~, X i x i ( O N ) = 5 / 1 2 + 5 / 1 2 + 2 / 1 2  = max Z Xix  r 
iEN xE V(N) iEN 

Thus, X (O N) = (5/12, 5/12, 2/12) is a Harsanyi bargaining solution for this game. 
Roth [ 1980] has argued that the outcome of this game should be (1/2, 1/2, 0) be- 

cause this is the best feasible allocation for players 1 and 2, and they can achieve it by 
themselves. However, when viewed in the context of the fair allocation rule, the solu- 
tion (5[12, 5/12, 2112) is seen to have the stability property of Theorem 2, since this 
game is superadditive. For example, player 2 would certainly prefer to get 1/2, which 
he gets from { {12)}, over 5] 12, which he gets from the complete cooperation struc- 
ture ON. However, if 2 refused to participate in conferences with player 3, while play- 
er I continued to confer with 3, then the cooperation structure would change from 
0 N to {{12}, {13}}, so that player 2 would lose 2/12 = 5/12 - 1/4. (Notice that, as 
fairness requires, player 3 also loses 2/12 from this change of conference structure.) 
Thus, player 2 would not want to be first to break off relations with player 3. If play- 
ers must make their conference participation plans noncooperatively, then both play- 
ers 1 and 2 will want to confer with 3, and so the complete conference structure 0 N 
will form, 

To check balanced contributions, for example, notice that 

)(2 (O N ) - -X2 (O N - * 3 )  = 5/12--  1 / 2 = - -  1/12 

X3 (O N ) - X 3  (O N - * 2 )  = 2 / 1 2 -  1/4 = - -  1/12 

since O N - *3 = { {12}) and O N - * 2 = { {13}}. In this case, the contribution of 3 to 
2 is negative, so we see that players may make negative contributions to each other in 
superadditive games. 

One objection to our analysis might be that, for some conference structures, the 
fair allocation is only weakly Pareto-efficient. For example, the allocation (1/4, 0, 1/4) 
for Q = {{13)) is weakly dominated by (1/4, 0, 3/4), which is feasible for the coali- 
tion {13). However, the distinction between weak Pareto-efficiency and strong Pareto- 
efficiency is not robust with respect to small changes in the game. For example, if 
V ({13 }) were enlarged to the comprehensive convex hull of 

{(1/4, 0, 3/4), (1/4 + e, 0, 0), (0, 0, 3/4 + e)}, 

then X({{13}}) would shift to (1/4 + (2e)/(3 + 4e), 0, 1/4 + (2e)/(3 + 4e)), which is 
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on the strongly Pareto-efficient frontier of the new V ((13)) set, and which converges 
to (1/4, 0, 1/4) as e goes to zero. That is, if player 3's sacrifice below 3/4 could make 
possible any infinitesimal gains for player 1 above 1/4, then the fair allocation 
X (((13})) would change infinitesimally, but would become strongly efficient for 
(13). Thus, the distinction between strong and weak efficiency is significant only if 
we can assume that there is really nothing which player 3 can offer player 1 above the 
xl = 1/4 level, no matter how much player 3 sacrifices. 
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