
Int J Adv Manuf Technol (1994) 9:343-350 
�9 1994 Springer-Verlag London Limited 

The f~rnatlomil Journal of 

Hdvanced 
manufacturing 
Technologu 

Application of Symbolic Manipulation to Inverse Dynamics and 
Kinematics of Elastic Robots 

M. H. Korayem, Dr Y. Yao* and Dr A. Basu 
Department of Mechanical Engineering, University of Wollongong, NSW, Australia; and *School of Mechanical and Manufacturing 
Engineering, The University of New South Wales, Kensington, NSW, Australia 

An inverse dynamics and kinematics of  a flexible manipulator 
is derived in symbolic form based on the recursive Lagrangian 
assumed mode method. A PC-based program has implemented 
the algorithm to automatically generate the inverse dynamics 
and kinematics for an elastic robot in a symbolic form. A case 
study is given to illustrate how to use this program for inverse 
dynamic and kinematic generation. Simulation results for a 
case study by considering different mode shape are compared 
with the rigid case. 
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1. Introduction 

The automatic equation derivation process is highly desirable 
for manipulators because the manual symbolic expansion of 
manipulator matrix equations is tedious, time-consuming, and 
error-prone. The symbolic manipulation programs provide a 
way to overcome the disadvantages of the method. Symbolic 
derivation allows one to expand the dynamic equations in a 
very short time, check the element of dynamic equations and 
manipulate them very conveniently. Although Newton-Euler 
formalism has been regarded as computationally efficient and 
that of the Lagrange as insightful in representing manipulator 
dynamics, if the vector/matrix equations were expanded 
symbolically to scalar form, the results from the Newton-Euler 
and Lagrange formalisms would be equivalent. The expanded 
scalar equations would not only provide insight into the 
system dynamics, but also result in faster computation than 
the numerical approach based on either formalism. Hence, 
there has been growing interest in the use of automatic 
symbolic generation for the production of computer code for 
the dynamic calculation. A fundamental benefit of symbolic 
generation is that this code can be "customised" to take 
advantage of the kinematic and dynamic structure of the 

Correspondence and offprint requests to: M. H. Korayem, Locked 
Bag 8844, South Coast Mail Center, NSW 2521, Australia. 

manipulator (e.g. link lengths of zero, sparse inertia matrices 
to eliminate much unnecessary computation. 

The inverse dynamics of manipulator arms have been 
studied extensively for rigid link models [1, 2]. Deformations 
of arm links, however, are not negligible as the speed of 
motion and the required accuracy increase. The design 
engineer faces having to predict dynamic responses and link 
deformations based on an appropriate model of the flexible 
arm. Among a number of modelling methods previously 
presented, Cannon and Schmitz [3] considered the end point 
feedback control of a one-link manipulator and achieved a 
fine positioning, despite the structural flexibility. Book and 
Majette [4] developed a formulation for a two-link flexible 
arm, using Lagrange's equations of motion. Other contri- 
butions have since been made [5-9]. Book [10] also developed 
an efficient formulation based on recursive Lagrangian dynam- 
ics. 

A mathematical model of elastic robot dynamics can be 
summarised in the following form: 

1. The joint equation j is given as 

 IoKl_ox ov 
dt ta//jj 7qj + ~qj = F~ (11 

2. The deflection equation ff is given as 

d Iorl _ o r _  + o v  = o ( 2 )  
dt I 0Ozr j Oqjf Oqi / 

The inverse dynamics problem involves the calculation of the 
joint torque or forces using equations (1) and (2) when the 
kinematic state of the manipulator is given. Algorithms perform 
this computation of complex but basically straightforward 
algebraic expressions. 

This paper presents a method for deriving flexible manipu- 
lator inverse dynamic equations and kinematics using a PC- 
based symbolic language MATHEMATICA| [11]. This article 
is organised as follows. Section 2 presents mathematical 
modelling of a flexible arm and Section 3 describes an inverse 
kinematics algorithm coupled with the dynamic equation. In 
Section 4 a brief description of the inverse dynamics is 
given. Section 5 contains symbolic implementation based on 
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MATHEMATICA. Finally, an example involving a two-link 
flexible arm is considered, where different mode shapes are 
compared with the rigid case. 

2. Mathematical Modelling of a Flexible 
Arm 

For a flexible arm we use the Euler-Bernoulli model, for 
which rotary inertia and shear deformation effects are ignored. 
A solution of the flexible motion of the link can be obtained 
through modal analysis, under the assumption of small 
deflection of the link, 

mj 

y(p.,t) = ~ q ,  (t) yi(p.) (3) 
i = l  

where y~ is the eigenfunction expressing the displacement of 
assumed mode i of link deflection. For a clamp-free vibrating 
beam the orthonormal model eigenfunctions in (2) are given 
by 

y,(~) = sin(~i~) - sinh(13i~)+3, (cos(13/~)-cosh(l:~ip.)) 

sin(13dx) + sinh(13ip.) 
where ~, = cos(13i~)+cosh(13il• (i=1, 2 . . . . .  m) 

and 13" = I ~  2 (4) 

For a simply supported case the general solution of Bernoulli 
beam theory is given by 

y , ~ )  = a, sin(13i~.) (5) 

where ai are arbitrary constants. 

3. Inverse Kinematics 

Inverse kinematics provides information for the joint variables 
by giving the motion of the end effector. We first compute 
the manipulator Jacobian associated with the infinitesimal 
translation and rotation of the end effector and we denote 
the infinitesimal end effector translation and rotation by 
vectors dX~ and d ~ ,  respectively. For convenience, we 
combine the two vectors and define the following vector dp 
as 

dp=[dX~d~] T (6) 

Dividing both sides by dt, we obtain the velocity and angular 
velocity of the end effector. 

l~=[Vc6~] T (7) 

On the other hand, dp can be written, owing to the differential 
change of every joint variable as well as the differential 
change of displacements at the free end of the end link. 
Therefore, 

dp=Jrdqr+Jfdqf (8) 

Dividing both sides by dt, the end effector velocity and 
angular velocity can also be obtained by using the manipulator 
Jacobian: 

l~=Jr~lr + Jt-~h (9) 

By differentiating (6), one obtains 

li=Jrqr +Jfqf + Jr/Ir +Jf/h (10) 

or 

Jrqr + J,/if = 0 - J,/Ir - J t /h  = R, (11) 

The above expression in terms of generalised coordinates is 
essential for solving the inverse dynamic equation. A problem 
in solving the equations of motion is that the joint torques 
are unknown and we cannot solve the dynamic equation by 
itself. To obtain exact solutions for generalised coordinates, 
equation (11) must be solved simultaneously with deflection 
equation (2) for a given trajectory. The equations are highly 
coupled and nonlinear and by using the symbolic derivation 
package MATHEMATICA we can solve them by neglecting 
insignificant terms such as second-order deformations. 

4. Inverse Dynamics 

This section follows generally reference [10] and is included 
for completeness of the paper. The resultant system of the 
dynamic equation of a flexible manipulator (equations (1) 
and (2)) can be organised in matrix form as 

Ji=R (12) 

where the elements of J matrices and the elements of R 
matrix are given below 

Jjh = 2Tr{(V;_~ Uj ;F'h U~ ~'hr-, ) (13) 

J/hk = 2rr(~l j_ ,  Uj/~r O,,k W T } 

( h = n ;  j = l  . . . . .  n) (14) 

Jink = 2rr{(V;_, Ui[Jrh MTk + JWh Ohk] W T) 

( h = /  . . . . .  n - l ;  j = l  . . . . .  n - l )  (15) 

Jjhk = 2rr{~l j_ ,  Uj[JFh MhTk] Wh T) 

( h = l  . . . . .  j - l ;  ] = 2  . . . .  ,n )  (16) 

/,r = 2Tr{C,,I} (h = j = n) (17) 

lj.ak = 2rr(M;/JO; M~ + CjW ) 

(h = j =  1 . . . . .  n - l )  (18) 

lji,,k = 2Tr(Wi M#dW. O,,k Wh T} 

( h = n ;  j = l  . . . . .  n - l )  (19) 

tj~k = 2rr(Wj M.{JO~M~k + JW~ D~] w~ 

( h = l  . . . . .  n - t ;  j = j + l  . . . . .  n - l )  (20) 

RI = -2Tr{U, Q1} + gTu,p1 + Fx (21) 

r ; - -  -2Tr(VVj_, UjQj) + g r * j _ ,  UjPj + F/ (22) 

R . / = - 2 T r { [ * . . D . / + 2 w .  mk~=~ ~/,,k C,,k/] W~) 
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r n  

- ~ q~k K~kf + gTW, l'l~, (23) 
k = l  

R~! = -2Tr{WiM#A~.t  Qi . ,  

+ W,,~ D~r + 2 /I/~ C~kf (24) 

Required recursive expression and matrices for J and R are 
given in Appendix A. 

5. Symbolic Implementation Based on 
Mathematica 

The matrix form of the manipulator inverse dynamic equation 
was expanded symbolically for any desired manipulator using 
symbolic manipulation programs MATHEMATICA [15]. 
Based on the formulations described in the previous section, 
inputs to the program from the user are the following: 

1. n total number of links 

2. rn/ number of modes used to describe the deflection of 
link i 

3. 1~ length of link i 

4. g gravity vector 

5. r~ link mass centre position vector 

6. ~ link density, and 

7. (EI)~ flexural rigidity of link i 

The codes for generating dynamic equations are listed in 
Appendix B. The program uses the following mathematical 
operators of MATHEMATICA for symbolic manipulation: 

1. To define a matrix one writes the elements one by one. 
For example, to generate A=[Bq]4•  write 

A = ( {Bn,B,2,B,3,B,4}, {B2,,B~E,B23,B2,}, 

{ B31,B32,B33,B34}, { B41,B42,B43,B44 } } 
2. To multiply two matrices D and C one simply writes D.C 

3. To differentiate and to integrate a matrix F by a variable 
x one writes 

D[F,x] ,Integrate[F,( x,0,x } ] 

4. To simplify the expression of a function one uses Simplify 
for algebraic simplification and TrigLinear for trigonometric 
simplification. 

5. To replace approximate real numbers in expression that 
are close to zero by the exact integer 0 one simply writes 

Chop[expr]  

6. To eliminate insignificant terms (x 2) one simply writes 

xfree[e_]:= FreeQ[e, x;~], Se lec t [expr ,  x ~] 

With users inputs, substituting iFh, i F n , ~ ,  Q/ and Pi in 
equation (12) results in the dynamic model which usually 
takes a very complicated form. By using the available 

mathematical simplification processes, the model is reduced 
to a much simpler form and the relatively less significant 
terms, such as the second-order terms of deflection are further 
neglected automatically. 

The computational procedure is summarised below: 

Step 1: Select mode shapes 

Step 2: Derive recursive expressions/Fh, ]Fh, J~h, Q~ and P/ 

Step 3: Derive J and R 

Step 4: Assemble recursive Lagrangian dynamic equation 
(12) 

Step 5: Specify dynamic trajectory 

Step 6: Compute Jacobian matrix and equation (11) 

Step 7: Solve coupled nonlinear differential equations (11) 
and (2) 

Step 8: Calculate joint torques from joint equation (1) 

The derivation of dynamic equations of motion for a two-link 
flexible manipulator is presented as an illustrative example. 
Simplified forms are compared with the rigid case and the 
simulation results are shown. 

Example. Two Link Flexible Manipulator 

6.1 Expansion of Dynamlc Equatlon 

By using the computational procedure as mentioned above 
the actuator torque can be obtained automatically. The 
equations of motion which are extremely lengthy have been 
derived successfully without any simplifications first. After 
mathematical simplification process, substituting 
rnl = m2 = m, 11 = /2 = L, m / =  1, and 
(EI)~ = (E l )2  = 2.04, the equations become much simpler as 
shown in the following 

F1 = 1.5 L g  m COS[qt ] + 0.5 L g  m cos[q~ + q2] 

- L ~ Ix sin[ q2]( q~ )'( q~)' - 0.5 L 3 Ix sin[ q2]( q2) 'z 

+3.146 L2IX sin[q2](q,)'(q.)' + 3.146 L2IX sin[q2](q2) '(q.) '  

-1.274 L2IX sinlq2](q~)'(q2~ )' - 1.274 Lzix sin[q2](q2)'(q2a)' 

+4 L IX sin[q2](qH)'(q2~)' - 0.3186 L g p.sin[q~}q~ 

+ 1.571 g m sin[q~ + q2]qtt + 3.142 L 2 p. cos[q2](q l)'(q2)'q~ 

+ 1.571 L2IX cos[q2](q2)'2qt~ + 7.578 L Ix (q~) ' (q~) 'qH 

+6.578 L p. (q2) ' (q~) '  ql~ + 4 L Ixcos[q2](q~)'(q2~)' q~  

+4L Ixcos[q2](q2)'(q21)' q~l + 6.284 Ix (q~)'(q2~)'  qH 

+(q2~)" (0.318 L2p. + 0.637 L~IX cos[q2] 

+2 L IX sin[q2]qn) - 0.318 L g p. sin[q~ + q2] q2~ 

- 1.273 L2IX cos[q2](q~)'(q2)'q2~ - 0.637 L 2 IX cos[q2](q2)'2q2 ~ 

+4 L ~ cos[qz](q~)'(qs~)' q2~ + 4 L p. cos[q:~](q2)'(qn)'q2~ 

+ L IX (q,) '(q21)' q2~ + L IX (qz) '(q2,) '  q~, 

-3.142 Ix (q~,)'(q2~)'q~, + (qH)"( -0 .729 L~p. - 1.571 L~p. cos[q~] 

+2 L IX sin[q~]q~) + (q~)"(1.665 L s IX + L ~ IX cos[q~] 
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+3.142 L 2 ~. sin[q~]qn - 1.273 L 2 i~ sin[qz]q2t) 

+(qz)"(0.333 L3Ix + 0.5 L3V. cos[q2] 

+ 1.571 L2~ sin[q2]qH - 0.637 L2V. sin[q2]q2~) 

F2 = 0.5 L3 gmcos[q l  + q2] + 0.5 L2ixsin[q2](ql) ' 

-1.047 L2IX (qH)" + 0.318 L21~ (q21)" 

+1.571 g m  sin[qt + q2]ql~ - 1.571 L2wcos[q2](qt)'2qn 

+6.58 L V. (qt) ' (qi t ) '  qll + 6.578 L V, (q2)'(qtt) '  qtt 

+6.283 O. (q~)'(q2~)'qn + (q2)" (0.333 L3V. + 3.29 L2IX qn)  

-0.318 L g I~ sin[qt + q2]q21 + 0.637 LZp. cos[qz](q~)'2q21 

+ L V, ( qa )' ( q2t )' qzl + L Ix ( q2)' ( q21)' q21 

-3.142 IX (q~)'(qn) 'q2~ + (q~)"(0.333 L3IX + 0.5 L~lx cos[q2] 

+1.571 L2IX sin[q2]qn - 0.637 L2~ sin[q2]q2~) 

If we assume that there is no deformation and both links are 
rigid, these equations will be the same as those which would 
be obtained from a manual derivation process or Asada [13] 
as follows: 

Ft = 1.5 L g m cos[ql] + 0.5 L g m cos[qt + q2] 

- L 3IX sin[ q21( q~ )' ( q2 )' - O. 5 L 3O. sin[ qz ]( q2 ) '2 

+(ql)"(1.665 L3V. + Lap. cos[q2]) 

+(qz)"(0.333 L3IX + 0.5 Lap. cos[q2]) 

F2 = 0.5 L3g m cos[q! + q2] + 0.5 Lzix sin[qz](ql)' 

(q2)"(0.333 L3IX) + (qt)"(0.333 L3IX + 0.5 L3IX cos[q2]) 

6.2 Simulation Study 

The derived inverse dynamics equation and inverse kinematics 
equation are applied to a two-link planer flexible manipulator 
(Fig. la)  and the effect of gravity was ignored in these case 
studies in order to isolate the dynamic flexibility effects. The 
desired trajectory is given by (Fig. lb) 

x a ( t ) = L - a t  2, y d ( t ) = L + b t  

where a=0.1, b=0.01, and t ranges from 0 to 3 s. By 
differentiating the desired trajectory, velocities and acceler- 
ation are obtained. Next, we couple the inverse kinematic 
and deflection equations in matrix form. 

[ [Jr] [',] ][~:]=[RR~/] (]=1,2, (25, 

To compute equation (25), parameters such as density and 
Yourtg's modulus etc. must be provided. These are listed in 
Appendix C. The bending deflection of links are approximated 
with assumed mode shapes. Mode shapes are chosen from the 
analytical solution of an Euler-Bernoulli beam eigenfunction 
analysis. For simplicity, the terms including the squares of 
deflections are neglected, since they are considerably smaller 
than the other terms. To verify the model, the results are 
compared with the simulation results of the same system with 

(a) 

yd] r / / i ject~ 

(b) 
-1.02 

-1.03 

g 
- I  04 

-1.05 

Given Trajectory 

0.0 0.2 0.4 0.6 0.8 1.0 

x (m) 
1.2 

Fig. 1. (a) Inverse dynamics of two-link arm. (b) A typical given 
trajectory. 

a rigid arm. The algorithm is shown in the flow-chart (Fig. 
2). For the case where the robot becomes more rigid, EI 
becomes larger, and the joint variable response of the system 
converges to the rigid arm. The resonses were computed by 
solving the dynamic equation. The responses of the flexible 
system for a given trajectory are shown in Fig. 3. For 
comparison, the responses derived from a rigid model are 
also shown in Fig. 3. Both clamp and simply supported mode 
shapes are shown in Fig. 4. Joint torques can be computed 
by substituting generalised coordinates into joint equations. 
Comparisons of the flexible torques of the system with rigid 
torques are shown in Fig. 5. These results are required for 
determining the dynamic load carrying capacity [14]. 

7. Applications and Discussions 

Given a trajectory (positions, velocities and accelerations), 
the dynamic load carrying capacity (DLCC) of a flexible 
manipulator is defined as the maximum load (mass and 
moment of inertia) that the manipulator can carry in executing 
the trajectory with an acceptable tracking accuracy. For 
manipulators under the rigid-body assumption, the major 
limiting factor in determining the maximum allowable load 



Kinematic Equation I 

Deflection Equation ] 

f~o(0~. 02, 0~', 02', 0~", 0f', 
Yb Y2, YI', y2', Yt", Y2")=RII 

fit(Or, O~. 0~'. Oz'. 0~". ~" .  
Y,. Y2. Yt'. Y2'. Yf'. Yz")=R2t 

Specify Dynamic 
Trajectory [ 

I fl(0t, 02,Yl,Y2)=Xc I 
~- f2(0b 02,yl,yz)=Ye 

f3(0b 02,yt,Y2)=Ze 

f4(et, 02,el', I~',yby2,yl',y2')=X e' 
fs(Bb 02,el', ~',yby2,yl',y2')=Ye' 
f6(B|, 02,01 ', I~',yl,y2,Yl'0y2')=Z e' 

1 
f-~O~, 02, 01', %', 6f ' ,  6f ' ,  
Yb Y2, Yl', Y2', Yl ", Y2")=Xe" 

fs(Ot, 02, 0~', 02'. Or", 02", 
Y[, )'2, Y[', Y2', Yz", Y2")=Ye '' 

fg(O~, %, 0~', 02', 0~", Of', 
Yb Y2, Yt', Y~', Y!", Y2")=Zc" 

"Solve differential I 
I equation f~,f~,f~0f~0,fN I 

Find 0~, 02, B~', ~' ,  I 
Yl, Y2, Yr. Y2' I 

Joint Equation ~ I 

Find "~ 1, "~2 ] 
1 

Fig. 2. Computational algorithm. 

(mass and mass moment of inertia) for a prescribed dynamic 
trajectory is the joint actuator capacity, while the flexibility 
inevitably exhibited by relatively lightweight robots or by 
robots operating at a higher speed dictates the need for an 
additional constraint to be imposed for tasks requiring precision 
tracking, that is, the allowable deformation at end effector. 
Deflection at end effector could be attributed to both static 
and dynamic factors, such as, link flexibility, joint clearance, 
manipulator and load inertia. These factors are configuration 
dependent or motion dependent, therefore, DLCC varies 
from place to place on a given trajectory. A strategy to 
determine the DLCC subject to both constraints mentioned 
above is formulated where the end effector deflection constraint 
is specified in terms of a series of spherical bounds with a 
radius equal to the allowable deformation while a typical DC 
motor speed-torque characteristics curve is used in the actuator 
constraint. 

This was achieved by subjecting the manipulator to dual 
constraints, that is, actuator capacity and end effector defor- 
mation constraints, when the maximum load is determined. 
Both constraints were imposed in determining DLCC and a 
load m~o,d=0.341 kg was found to be the maximum load that 
the given actuators can carry in executing the trajectory while 
the load moment of inertia /load was  not presented for 
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Fig. 3. Comparison of the flexible responses of the system with rigid 
link. 
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Fig. 4. Comparison of the flexible responses (clamp and simply 
supported mode shape). 

simplicity. Fig. 6 shows the time varying torques required to 
execute the trajectory against the upper and lower bounds of 
the available torques which depend on the joint velocities. It 
is seen that the load so determined uses the joint 1 to its 
maximum extent at about 1.2 s. The magnitude of the end 
effector deflection with such a load compared to the imposed 
upper and lower bounds is shown in Fig. 7. It is seen that all 
the magnitudes remain within the bounds because the load 
was determined subject to both constraints. The actual 
trajectory is further plotted in terms of  the base coordinates 
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Fig. 5. Comparison of the flexible torques of the system with rigid 
link. 
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Fig, 6. Joint torques against torque bounds. 

in Fig. 8, which again shows it is within the bounds. The 
further view of the DLCC of flexible manipulator reader is 
referred to [15]. The work also shows that in dealing with 
flexible manipulator dynamics and determining their DLCC 
in particular great benefit was obtained from using a symbolic 
derivation language. 

4 

�9 10mm ." 

I Omm 

No load 
Add end effector mass 
Full load 

-11 , ) 

Time (s) 

Fig. 7. Deflection against its bounds (mto.a = 0.341 kg under both 
constraints. 
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1 o4o , ~ "~ 

150 400 650 900 

X ( m m )  

Fig. 8. The desired and actual trajectory (m~o,d = 0.341 kg, under 
both constraints)�9 

8. Conclusion 

This paper presents a technique for deriving the scalar form 
of flexible manipulator inverse dynamic equations using a PC- 
based symbolic language MATHEMATICA.  The algebraic 
dynamic robot modelling program has been implemented to 
enable the control engineer to formulate a Lagrangian assumed 
mode method and to gain physical insight into dYnamic 
equations for the systematic design as well as for determining 
the dynamic load carrying capacity for a given trajectory. To 
validate symbolic derivation and simulation results, a flexible 
model is compared with rigid links in a case study. 
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Appendix A 

Required recursive expression and matrices for J and R are given 
below: 

"F.=G.  (h= j =n )  (A1) 

JFn = E/AI+I JF~ (j<h<-n) (A2) 

a F. = G. + h F,,+, (EIA/+I) ~ ( j = h < n )  (A3) 

iF,,-- ,, "F,,+tA,,+1T ( h = l  ..... n - l ;  j = l  ..... n) (A4)  

/Oh=At+lhFh+t(Ah+s) "r ( j = l  ..... n - l ;  h = l  ..... n ) (A5)  

Q. = G.~Ir.. + 2 ( =k~til.k V..) W~ (A6) 

mn 

QI = G/W~ + 2 (k~. I ~]tk Dik) w'r -I- F.I Ai+1QI+ t (A7) 

m n 

P. = M . r ~  + ~ q.kgl.[ (A8) 
k-- I  

P. = Mjr,i + ~ q~,~ ni,~ + EjA/+, Pj+, (A9) 
k-- t  

"t~j = VV~.~ E/+ 2 Wi I~, i (A l l )  
m n 

D:k = C;k + ~ qaC.,~ (A12) 
& - I  

Inverse Dynamics and Kinematics of Elastic Robots 349 

m n r a  n 

1 tt 
c, = i I i {  1,~,,o,ol - [ 1,~,,o,ol <in (A14) 

1 t 
C,j = ~ ~o [1,p.,,0,0] T [O,xq,yq,z,/l dm (A15) 

1 fl~ 
Cek = 2 JO [O'xt / 'Yq'zq]T [O,xq ,yq ,zq]  drn (A16) 

Appendix B. MATHEMATICA Program for Generating 
Dynamic Equations 

"/This program derives the equation of motion of a manipulator with flexible link using the 
Lagrangian formulation./" 
("**************** Specified Trajectory *************'**"; 
a=. I ;b=.01 ;TIIH B[ I }l=1.0S;gx=O;T[FIIB[ I l] =O;.T[ Fl(fi[2l ]=0; 
Xe ;Ye;Ze;n=2;nm=l; 
Derivative( l ][Xe]; Derivative[ I ][Ye]; Derivative[ I ][Zc]; 
Derivativel2l lXr ;Derivafive[2][Ye| ;Derivative[2][Ze]; 
GcCon; 
"*,* ' * ' " * * ' * " * * ' * * J a c o b i a n  ManSx*'**'*" * * ' ' " "  * ' "  * "*'";  

Fod j=l. j <=2.j += l. 
For[k=l ,  k <=2,k += 1, 

T[JR]I6[jI.BIkII =D[GeCon[Ull,TIql[B{k]litll; 
TIJFI[61.Jl,6[kll =DIGeConH.jI1.T[yl[BIklI[ql; 
TT DJ R][BIJI.13[klI=D[T[J Rll61JI.B[kll.tl; 
TIDJFII6tjI,I3[klI=DITIJFI[61j]~[kII.t] ] 1 
" . - * * " , - * * "  VelosSty & Accclez'afion " " * ' " * ' ' " ' " ' ' " ;  
Jr=- ( {T[JRIIBilI,a[I]],TIJRI[B[I],St2I]I,{T[JRI[BI21,6[III.T[JRIIt~[2I.B[2II} 1: 
Jr= I {T[JFI[I~[II,6IIll,TIJ~ISlXI,nI211},ITIJF][~t21,0[III.T[JFI[Q[21.0{211} }: 
DJr=-I I TI DJRIIB[ 11,8II II,T{DJRI{13[ 1 l.B{2111 ,{'I2DIRI{B{21.a[ H I.TIDJ Rl[fl[21,tt[21111; 
DJf=l [TIDJFI[BIILB[I]],T[DI~[t~{II.a{2]I}. {TIDIFI[6[21.a{HI,TIDJ'Flla{21.S{2111 h 
V= [ {Derivadvel l  ] [Xe l } , lDer iv~dve[ l l [Ye l l . {  Derivat ive[t l [Zel}  1; 
DTetar =1 Derivative[ l]('I'[ql[ft[ ll][tl],D~ivadve{ I ll-Uql{~12llltll h 
DTetaf ={ Derivative{ IIIT[y]{S[ I ]l[tlLDo'ivative[ l]['rI y]{8[2]IIt]l h 
DV = { Derivative[2}[Xel.Dcrivative{2l[Ye] }; 
DDTetaf= (Derivativel21[T[y]{0[ l llltll,De6vative[2l|T[yl[S[2llldll; 
R waj = DV- Dtr.DTetar-DJ f.DTctaf; 

Forlj=l. j <=nj++, 
Forlk=l,  k <=rim,k++, 

T{IIIS{JlI= 1.05;T[rI[B[xl.01JlI=TIIII01JlIa; 
T[BIIfl[ 11]=N[PiV1.0S;TIBIIBI2]]=2 NIPiV 1.05;TIM]{ fl[j}l-~vt; 
T[yl[fi[jl,Btkll=T[yl[a[j],Slk}}=Sin[T[B}lB[kllxl; 
TI 0zl[B[i],rqkll=D[T[yl[6[J},~[k]}.x} I ] 
For[j=l, j <=n,j++, 
TtyI[BtJlIttI=S um[T[yl{6Ul,~[rl ]}T[qI[BU},0[f H}[t},{ rl .I ,nrn}]; 
"[7 yl{rtti+Sll[tl=SumIT[yl[S[jl.B[fl H 

Derivadv�9 I ][T[qI[S[j],B[fl ]H[t].{ fl.l.nm}); 
T[oz]{B[jl][tl=Sum[T[r f2}]T[qI[B[jI,B[F2}IItL [I'2, I ,nm }I; 
T[0zl[6[i+5l][tl=Surn[T[r 
Derivative[ l][T[ql[B[jl,B[t-2ll]{t].[ f2. I ,rim } ];}}Derivative[ I ][T[yI[B[ lll[tll=T[yl[13[6}][t}; 
Derivadvc[ [ ][T[y] [B[2l][t ]] :T[y][B[?] ][ t];<<siml.m 

R21 = { RLSim2 t [[311.RLSim21 [[41],RtraJll H].Rtraj[12H }; 
J21 =1 {JLSim21 [[311[[I]I,JLSim2][[31]{[2]LJLSim21[[3III[311JLSim21 [131][[411}. 

{JLSim211[411[[IIIJLSim21{[41]II211JLSim21[['HIt[3}IJLSim21[[411I[41]}, 
IT[JRI{B[I].~[III,T[JRI[Q[II,B[21],T{JFI[B[II,B[I]I,TIJFI[S[I].8[2}]I, 
{T[JRI[B[21.8[I]I.TIJR]In[21,B{2]I,T[JFI[B[21.ft[ t ILT1JFIIBI2].8[2]] I 1; 

J 21 =Tliglineat[ J21 l;J21 =Chop[J21 ]; Ird21 =lnvers~lJ21 ];laJ21 ---Chop[lnJ 211; 
G ENE21 =In J21 ,R21 ;GENE21 =Chop[GENE21 ;Tf=3;nn=Tfl.0S; 

For[j=l,  j <=ld++,  
p =.405;ra= .425; m2 = 0.00; j2 = 0; 
N2NM 1 L=RungeKutta[ 

IT[ql[S[61][tl ,GENE21[[III .TIq][6lT]l[tl .GENE211{211. 
T[ql[fl[61.8161][tl .GENE21[[311 ,TIqI[B[71,S[61][tl ,GENE21[ 41 , 
{T[q l [B[ I ] ] [ t ]  ,TlqlIBl6]l[t] ,T[qllfl[2lllt] ,T[ql[B[Tllltl, 
Tlql[8[ 11.8[ lll[tl.T[qllat6].fl[611itl.T[qll{3[21.8{lllltI.T[q|{{l[71.Sl611[tl 1. 
(0.00.0.00.1.5708.0.00,0,00.0.00,0.00,0.00 }, [ t ,0,Tf,.05 } hi  

Appendix C. Numerical Values for Simulation 

Parameter Value Unit 

Young's modulus E1 = E2 = 2.06 x 1011 N/m 2 
Area moment of inertia 11 = /2 = 9.9 x 10 -t2 m 4 
Link length Is = 12 = 1.05 m 
Link linear mass density pq = ~ = 0.405 kg/m 



3 5 0  M .  1-1. K o r a y e m  et  aL 

Nomenclature 

A~ joint transformation relates system i to system i -1  
Ei link transformation relates the deflection of system i to system 

i 
F~ joint torque acting on joint i 
g gravity vector expressed at the base coordinates 

J inertia matrix = [ [J/h] [J,h,] ] 
[[J,,,k] [tj:,,]J 

K kinetic energy of the system 
l~ length of link i 
M~ a mass concentrated at the joint i 
m~ number of modes used to describe the deflection of link i 
n number of links 

qh " joint variable of the hth joint 

qhk time-varying amplitude of mode k of link h 
R vector of remaining dynamics and external forcing terms = 

[Rz,R2, . . . .  R,,, .... R~, R~t,Rt2 .... Rt~, R2~ .... Rz,,, 2 
. . . .  R~, . . . .  R ~ .  . . . .  R.m~l T 

r~ vector locating the centre of mass of link i 
Rj dynamics from the joint equation j, excluding second derivatives 

of the generalized coordinates 
Rj/ dynamics from the deflection equation if, excluding second 

derivatives of the generalized coordinates 
V potential energy 
Wj transformation from the base to the ith link 
",A'~ transformation from the base to the system 
z the vector of generalised coordinates = [ q l ,  q2, . � 9  qh . . . .  

qn,  q H ,  qt2 �9 � 9  q~,n t, q2t . . . .  qz,,, z . . . .  q m  . . . .  qhm.  . . . .  q.m.] T 

~t link density 


