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An algorithm for three-axis NC tool path generation on 
sculptured surfaces is presented. Non-constant parameter tool 
contact curves are defined on the part by intersecting parallel 
planes with the part model surface. Four essential elements of 
this algorithm are introduced: initial chordal approximation, 
true machining error calculation, direct gouge elimination, and 
non-constant parameter tool pass interval adjustment. A software 
implementation of  this algorithm produces graphical output 
depicting the tool path superimposed over the part surface, 
and it outputs cutter location (CL) data for further post- 
processing. Several applications examples are presented to 
demonstrate the capabilities of the algorithm. The results of  
this technique are compared to those generated from a 
commercially available computer-aided manufacturing pro- 
gram, and indicate that equivalent accuracy is obtained with 
many fewer CL points. 

Keywords: Computer-aided manufacturing (CAM);  NC mill- 
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1. Introduction 

Automatic NC tool path generation systems typically produce 
cutter location (CL) data directly from a mathematical model 
of a product design. The cutter location data can then be 
post-processed into machine executable controlling codes for 
actual production. This capability integrates CAM activities 
with CAD systems to shorten product lead time and reduce 
the cost of production [1,2]. 

Various NC tool path generation algorithms have been 
described in the research literature, and many commercial 
CAD/CAM systems provide such capabilities. Tool path 

Correspondence and offprint requests to: Dr James H. Oliver, 
Department of Mechanical Engineering, Iowa Center for Emerging 
Manufacturing Technology, Iowa State University, Ames, IA 50011, 
USA. 

machining direction 

generation algorithms for parts designed with sculptured 
surfaces can be broadly characterised as either constant 
parameter or non-constant parameter techniques. Much of 
the current research focuses on the constant-parameter 
approach for locating tool contact curves on the part surfaces 
[3-5]. This approach is generally efficient because the tool 
contact curves are easy to retrieve from the surface definitions 
[6]. The drawback of this approach, however, is that the 
relationship between the parametric coordinate and the 
corresponding physical (Cartesian) coordinate is not uniform 
[7]. Therefore, the accuracy and efficiency of the constant 
parameter approach for tool path generation may vary 
depending on the geometry of the part surfaces. A typical 
example of this drawback is a "fan-shaped" surface shown in 
Fig. 1. On such a surface, constant parameter curves are 
close to one another at one end but further apart at the 
other. Of course, the curves could be generated to the desired 
accuracy at the wide end of the fan, but this would result in 
an unnecessarily large number of tool motions at the narrow 
end. 

The non-constant parameter approach for NC tool path 
generation does not suffer from this problem. Typically, 
cutting curves are defined by the intersections of a group of 
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Fig. 1. Tool moves along constant parameter curves on a "fan- 
shaped" surface. 



282 Y. Huang and J. H. Oliver 

Cutting plane 
normal vector ~t 

l~ig. 2. Cutting plane and cutting curves definition. 

parallel planes (cutting planes) and the part surfaces, as shown 
in Fig. 2. Users can define any tooling direction for each part 
without being limited by the parametric coordinate. Although 
such capabilities are provided in many commercial CAD/ 
CAM systems, the actual algorithms are rarely published in 
the open literature. Furthermore, many systems with non- 
constant parameter generation capabilities are not sufficiently 
accurate for precise milling applications, or they suffer from 
heavy computational burden. 

To address these issues, this paper presents an algorithm 
of non-constant parameter NC tool path generation that 
exploits the planarity of the cutting curves for maximum 
computational efficiency. This algorithm is introduced in four 
component techniques: initial chordal approximation, true 
machining error calculation, direct gouge elimination and tool 
pass interval adjustment. First, the initial chordal approxi- 
marion method efficiently locates a good initial surface point 
to calculate the exact tool motion. Secondly, the true machining 
error calculation employs orthogonal projection to find the 
maximum actual machining error. This resulting error is then 
used to adjust the surface point in an iterative search. The 
direct gouge elimination technique works simultaneously with 
the above procedures. Finally, the tool pass interval adjustment 
technique calculates the maximum tool pass interval for a 
specified cusp-height tolerance. The details of each technique 
are discussed in later sections. 

2. Machining Error 

Normal machining error in multi-axis NC milling operation is 
due to the approximation of surface curves by linear tool 
motions [1]. Fig. 3 depicts three points that lie on a curve 

Nominal chordal deviation 

n: PJn~ 
Fig. 3. Linear curve approximation. 

of a sculptured surface. If the curve is to be approximated 
by a line segment (chord) from point P1 to P2, the chordal 
deviation is defined as the maximum distance from the curve 
to the chord. In this paper, such deviation defined by the 
curve and the chord formed by a pair of cutter contact (CC) 
points, is referred to as the nominal chordal deviation. 

A simple method to approximate the nominal deviation is 
by assuming that the furthest curve point from the chord is 
defined parametrically by half of the total parametric variation 
[5]. This technique is generally sufficient for surfaces with 
uniform parametric variation, but if the underlying surface 
definition is characterised by a non-uniform parametric vari- 
ation, the error of this approach may be significant. Loney 
and Ozsoy [3] address this problem and provide a numerical 
method to solve for the parameter value that yields the 
maximum nominal chordal deviation for a constant parameter 
surface curve. This method is more accurate than the midpoint 
approximation, though it requires more computational effort. 
Both techniques start from a guess of the endpoint of the 
chord. The desired endpoint that yields an acceptable deviation 
is generally obtained via numerical iteration. For example, 
Loney and Ozsoy [3] use a curve subdivision technique, while 
Wysocki et at. [5] apply a cast-and-correct method based on 
a binary search. 

Many tool path generation algorithms for sculptured surfaces 
assume that the nominal chordal deviation is the actual 
machining error [2,4]. This is true, however, only when the 
surface normal vectors at P1 and P2 (Fig. 3) are parallel, and 
both are perpendicular to the chord. Wysocki et al. [5] point 
out that the true machining error must be determined by 
considering the physical interference between the tool and 
the part surface, as shown in Fig. 4. Both the nominal chordal 
deviation and the distance between the tool centre trajectory 
and the corresponding chord between cutter contact points 
must be characterised to determine the true machining error. 
The calculation of both of these components is substantially 
complicated when non-constant parameter tool paths are 
considered. 

A true machining error calculation method is thus developed 
for finding the machining error for non-constant parameter 
tool contact curves. This technique employs the orthogonal 
projection method [8] to calculate the exact distance between 
a tool motion and the part surfaces. Since this machining 
error calculation method is based on the physical interference 
between tool and part surface, it is more accurate than those 
methods based on nominal chordal deviation. In addition, by 
finding the longest linear motion that yields the specified 
machining tolerance, this technique effectively minimises the 
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Fig. 4. Physical interference between tool and part surface. 



total number of tool motions, and thus produces very efficient 
NC programs. 

Since orthogonal projection is comparatively time-consuming 
in calculating machining error, the initial chordal approxi- 
marion method is implemented to accelerate the process. The 
initial chordal approximation method provides a good initial 
point for the true machining error calculation to minimise the 
number of iterations and ensure convergence. These two 
techniques are combined to provide an efficient and accurate 
method for NC milling error calculation. 

2.1 Initial Chordal Approximation 

The initial chordal approximation method takes a different 
approach to other methods for calculating deviation. Instead 
of guessing an endpoint of the chord and then checking the 
deviation, this method first searches for the location of the 
climax that yields the specified deviation, then it calculates 
the endpoint of the chord. In addition, this method takes 
advantage of the planar geometry used for the non-constant 
parameter NC tool path generation. 

To generate points on a cutting curve, the golden section 
method [9] is applied to intersect the cutting plane with the 
part surface. First, the surface boundary curves are searched 
to find the starting and ending points of the cutting curve, 
denoted by P~ and Pc, respectively. Then one of the surface 
parameters, u or v is designated as the independent variable 
(denoted by w), based on the parametric difference between 
P~ and Pc. If Iv~-v~l > lus-ucl then w = v, otherwise w = u. 
In practice, to trace the cutting curve, w is incremented by 
some amount, and the other variable (u or v) is found by 
the golden section method. 

As shown in Fig. 5, the starting point for the initial chordal 
approximation is denoted by P~, the nominal chordal deviation 
at Pr by d, and the endpoint of the chord by 1)2. The cutting 
curve, though it is not calculated explicitly, is denoted by C, 
and the cutting curve tangent vector by C t. The goal of the 
initial chordal approximation method is to find the endpoint 
of the chord that yields the specified nominal chordal deviation. 

Since the tangent at any point of the cutting curve is 
contained in the cutting plane and the tangent plane of the 
part surface, this indicates that C t is perpendicular to both 
the cutting plane normal np and the surface tangent plane 
normal n~. Thus, C t is calculated by, 

n~ x hi, (1) 
ct = Ins x npl 

Intersection curve between 
Pl cutting plane and part surface 
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the nominal chordal deviation d at Pr is obtained by, 

d = P 1 P ~ ,  n p x C  t 
lnp • Ctl (2) 

where np • CV[np • Ct[ forms the unit vector which is 
perpendicular to C t and also on the cutting plane. 

The procedure begins from the current CC point, Pt. The 
nominal chordal deviation of a neighbouring point, Pr, on the 
cutting curve can be calculated by the formulations described 
above. If the nominal deviation d at Pr is substantially different 
from the specified tolerance, T, i.e. [d - 71 > ~, where ~ is 
a small magnitude, a binary search scheme locates another 
point on the intersection curve until the nominal chordal 
deviation matches the specified tolerance within _-.~. 

The binary search calculates another neighbouring point by 
either adding Aw to or subtracting Aw from the current value 
of the independent variable w depending on the sign of 
(d - T). The step size Aw is adjusted similarly by multiplying 
or dividing by a factor of two, depending on the sign of 
(d - T). The procedure continues until the nominal deviation 
converges to the desired point where [ d -  ~ -< ~. The 
endpoint of the chord, P2, which generates the desired nominal 
deviation d, is approximated by doubling the difference in 
the independent variable between P~ and Pc, and the other 
parameter value of I)2 is found by using the golden section 
method. Since the true machining error calculation requires 
only a close estimate of the desired cutter contact point, this 
estimate of P2 is generally sufficient. The point P2 is further 
adjusted by the true machining error calculation method to 
become the next CC point. 

2.2 True Machining Error 

Typically a pair of tool centre (TC) points define consecutive 
tool positions, and the tool moves linearly from one TC point 
to the other. The true machining error, E, is defined by 
E = IR - d l ,  where R is the tool radius and the tool centre 
distance, d, is defined as the minimum distance from the tool 
trajectory line to the part surface. To find d, the orthogonal 
projection method is used [8]. This technique is originally 
proposed as a method to generate blending surfaces. Here it 
is employed to project the tool trajectory line onto the part 
surface, as illustrated in Fig. 6. Since the orthogonal projection 

Fig. 5. Initial chordal approximation method for locating a chord 
with specified tolerance. Fig. 6. Orthogonally projecting tool motion to part surface. 
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method casts a space point to a surface via the corresponding 
surface normal, the distance between the space point and the 
projection point on the surface is minimum. 

Denoting a general space curve as C(t) and the parametric 
surface derivatives at point Q as QU and QV, the orthogonal 
projection method is formulated by, 

= K -~  ( 3 )  

[u 
where 

[ - 
K =  Q,.QU + e-~.QVU Q~.Q" + p~.Q~, (4) 

This formulation characterises the relationship between a 
space curve and the corresponding projection curve on the 
surface. When the parameter of the space curve is incremented 
by dr, the corresponding projected point can be found by 
calculating the parametric variation (du, dv) from equation 
(3) evaluated at the previous projected point on the part 
surface. Since the goal is to find the minimum distance 
between the tool trajectory line and the part surface, the 
trajectory line is sampled at uniform intervals and thus the 
corresponding surface projection points are found as described 
above. The number of sampling points can be adjusted 
according to the complexity of the part surface and the 
machining accuracy required. It should be noted that smaller 
values of dt will yield more sampled projected points on the 
surface, so the distance between the tool trajectory line and 
the part surface will be more accurate. On the other hand, a 
smaller dt value will also require longer processing time. 

The true machining error calculation method first calculates 
the distance, d, between the sample points on the tool 
trajectory line and the part surface, as shown in Fig. 7. Since 
the space curve in this case is the tool trajectory line on 
which the tool centre is located, subtracting the distance from 
the tool radius yields the tool machining errors at these 
sampled points. The maximum machining error among all 
sampled points is the true machining error of this tool motion. 
This true machining error is used to adjust the tool motion 

according to a binary search similar to the one used in the 
initial chordal approximation method. Since the calculation 
of true machining error is the most computationally intensive 
part of this tool path generation system, the close CC point 
provided by the initial chordal approximation improves the 
overall efficiency of the algorithm. 

Since the true machining error is defined as an absolute 
value, the method is valid for both concave and convex 
regions of the surface. For a concave region, the maximum 
machining error occurs where the tool centre distance is a 
maximum. In such a case the tool undercuts (i.e. misses) the 
design surface. The converse is true for a convex region. 
Furthermore, if the tool trajectory line passes through the 
surface (e.g. in a sharp convex region) the tool centre 
distance, d, will be calculated with a negative value and E 
will be greater than R. 

The integrated procedure for initial chordal approximation 
and true machining error calculation is referred to as CC 
point location and is illustrated in Fig. 8. This procedure 
generates consecutive CC points that meet the specified 
machining tolerance, and minimises the number of CC points. 
However, this procedure calculates only the error that is 
created by each linear tool motion. To address gouging 
problems, a direct gouge-elimination process is presented. 
This process works simultaneously with the CC point location 
procedure to ensure that the final tool path is gouge-free. 

Define cutting plane [ 

~t 
I Find the staff point P, and end point I " 

Pc of the current culting curve 
) . .  

n~~ End of tool path generation [ 
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Au=lu,-  uII I 
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w = ~ v/fau <Av [ 
/. 
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P" I 
no no dw [ 2xAw if d - T < O 

e machinln s error calculation 
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Fig. g. Initial chordal approximation and true machining error calcu- 

Fig. 7. Calculate the machining error of a tool motion by sampling, lation for CC point generation. 



3. Direct Gouge-Elimination Process 

Throughout the CC point location procedure, surface points 
are generated by the golden section search, these points are 
checked against a list of previous TC points to detect possible 
gouging. This procedure is depicted in Fig. 9, where the 
intermediate surface points found by the golden section are 
indicated by the symbol O, the current target CC point by 
D, and previous TC points by x. If the distance between a 
TC point and any suface point (intermediate or current target) 
is less than the tool radius, gouging exists. (In actual 
implementation the square of the distance is calculated and 
compared to save computation time.) When gouging is 
detected, the TC point record is modified to avoid the gouge, 
thus all gouging tool motions can be modified or purged. 

One of the advantages of the direct gouge-elimination 
method is that it detects and eliminates gouging tool motions 
simultaneously with the CC point location procedure. Further- 
more, this method checks each tool motion against surface 
points that lie either along or beside the tool pass. This is 
more accurate than checking tool motions only with the CC 
points of a tool pass for gouging [5], yet it is more efficient 
than comparing tool positions with all CC points of the entire 
tool path [10]. Fig. 10 demonstrates the surface points that 
are checked for gouge while generating a single tool pass. It 
should be noted that more surface points are checked in the 
area that is closer to the tool pass, and a higher density of 
points is checked for gouge at areas with larger curvature. 

Fig. 11 depicts a typical gouge that occurs where the radius 
of surface curvature is smaller than the tool radius. In this 
figure, CCo, CCt and CC2 are cutter contact points that have 
been generated from the CC point location procedure. The 
points TCo, TCI and TC2 are the TC points offset from the 
corresponding CC points by the tool radius along the surface 
normal vectors. When the surface point P is tested for 
gouging, the tool motion from TC~ to TC2 is found gouging 
the part surface, i.e. the distance between TC~ and P is 
greater than the tool radius, R, and the distance between 
TC2 and P is less than R. To avoid gouging, a new cutter 
location point TC~ is generated and inserted as a substitute 
for TC2. The point TC~ is calculated so that the distance 

c u t t ~  parameter curve ~ tatlt 

temporary surface points 

TC points 

Fig. 9. Surface points generated by the golden section method are 
checked with previous TC points for gouging during CC point location 
procedure. 
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Fig. 10. Surface points checked for gouge while generating a single 
tool pass. 
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Fig. 11. Adjusting TC points to eliminate gouge. 

between it and P is equal to the tool radius. The substitute 
point is defined by the equation, 

ITC(t) - PI = R (5) 

and is solved for t. In this equation TC(t) is the parametric 
line segment representing the tool trajectory, i.e. TC(t) = 
TCt (1- t )  + TC2t. After modification, the tool motion will 
stop at TC2' without gouging the part surface at point P. 

To detect gouging in deep concave regions, each generated 
surface point is checked not only against the last successful 
TC point, but also against a list of several of the most recent 
TC points, referred to as the active TC list. Consider, for 
example, the situation shown in Fig. 12. Proceeding from left 
to right, as the CC point location and direct gouge elimination 
procedures work together, tool centre points TCo through 
TC3 are generated without gouging. However, in searching 
for CC4, surface points are found which indicate that TC3 
would gouge the surface near CC4. TCa is thus modified by 
the method described above, and the CC point location 
procedure continues from CC4 without adding a TC point 
corresponding to it. Similarly, in searching for CC5, surface 
points are found which indicate that both TC2 and the 
modified TC3 gouge the surface. Thus, TC3 is deleted and 
TC2 is modified. As new TC points are generated or deleted, 
the active TC list is updated in a last-in-first-out manner.  
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_/ ? cc3~.~ rc3 
cc4 

Fig. 12. An example of the direct gouge elimination procedure. 

The procedure continues to modify or delete all gouging tool 
locations in the tool path. 

The size of the active TC list, i.e. the number of previous 
TC points against which each generated surface point must 
be checked, affects both the accuracy and efficiency of the 
direct gouge-elimination process. It is adjusted according to 
the complexity of the part surface and the desired machining 
accuracy. 

4. Tool Pass Interval Adjustment 

The distance between two adjacent tool passes is referred to 
as the tool pass interval, as depicted in Fig. 13. The cusp is 
the remaining material between two adjacent tool passes, and 
it affects the smoothness of the machined part surface. If the 
part surface is fiat, the tool pass interval is constant for all 
tool passes. However, for sculptured surfaces, the tool pass 
interval is generally different from one pass to another, 
depending on the tool radius and the local surface curvature 
[11]. Tool pass intervals must be calculated from a specified 
cusp height tolerance to ensure surface smoothness. 

tool pass interval 

Fig. 13. Tool pass interval and cusp. 

Tool pass interval plane 

Cutting plane 

Fig. 14. Tool pass interval plane. 

The approach developed here is an adaptation of tool pass 
interval adjustment methods developed for constant parameter 
tool path generation techniques. This non-constant parametric 
tool pass interval adjustment method uses the radius of 
curvature of the intersection curve of the part surface and a 
plane perpendicular to the cutting plane, referred to as the 
tool pass interval plane, as shown in Fig. 14. The tool pass 
interval, l, on a non-flat surface, as depicted in Fig. 15, can 
be calculated by approximating the actual surface curve 
between A and B as a circular arc [10,11], and observing 
that, 

(p+R)  2 + (p+h)  2 - R 2 = 2(p+R)(p+h)cosdp (6) 

where p is the radius of curvature and, 

Solving for l yields, 

Current cutting plane Next cutting plane 

Current tool pass 

Cusp height h ~  R 

Y 

+Next tool pass 

Part surface 

Center of cul'vature 

Fig. 15. Non-constant tool pass interval calculation. 
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p ~ / { 4 ( p + R ) 2 ( p + h )  2 - [p2+2Rh+(p+h)212 } 
I = (p+R) (p+h) (8) 

When the radius of curvature of the part surface is flat the 
tool pass interval l becomes, 

l = 2X/(2Rh - h 2) (9) 

For non-constant parameter tool generation, the line on 
which the tool pass interval is measured is not generally 
parallel to the normal vector of cutting planes. So, to define 
the next cutting plane, the tool pass interval l is projected 
onto the cutting plane normal, as shown in Fig. 16. 

Note that since a circular arc approximation is used to find 
the tool pass interval l, AOCD forms an isosceles triangle. 
Thus, /_ DOC can be calculated by the property of isosceles 
triangles, 

/ D O C =  c o s - ' ( ~ )  (10) 

Denoting the angle between the cutting plane normal and 
the surface normal at the cutter contact point O as / AOB,  
the projection magnitude of the tool pass interval can be 
calculated by, 

l' = / c o s ( /  A O B  + / DOC = ~r) (11) 

where l' is the projection magnitude of l. On a flat surface, 
I lies exactly on the flat surface and L DOC is equal to Ir/2 
then, 

The tool pass interval is calculated at all CC points of a 
tool pass by using the non-constant parameter tool pass 
interval adjustment method combined with the magnitude 
projection formulation. The resulting tool pass intervals at all 
CC points are compared and the smallest one is applied to 
define the next cutting plane. 

I 
Current cutting plane I 

Next cutting plane 

l" �9 v 

C 
center of curvalure 

Fig. 16. Projecting tool pass interval onto the cutting plane normal. 

5. Implementation and Results 

Fig. 17 illustrates an overview of the software implementation 
of the non-constant parameter NC tool path generation 
system. The algorithm has been coded in the C language 
using the graphics library on a Silicon Graphics workstation. 
Two application examples are presented to demonstrate the 
capabilities of the algorithm. First, a simple wave-shaped 
surface is used to illustrate the gouge-elimination capability. 
The second example involves the tool path generation on a 
fan-shaped surface. 

Example 1. Gouge Detection and Elimination 

This example features NC tool path generation on a surface 
which contains a concave area where the radius of curvature 
is smaller than the tool radius. A bi-cubic B6zier surface 
defined by the 4 x 4 control point matrix: 

(1, 1,20) (10, 1, -50)  (25, 1,10) ( 40 ,1 , -30 )  

(1,7,20) (10 ,7 , -50 )  (25,7,10) (40 ,7 , -30 )  

(1, 25, 20) (10, 25, -50)  (25, 25, 10) (40, 25, -30)  

(1, 40, 20) (10, 40, -50)  (25, 40, 10) (40, 40, -30)  

is to be machined with the following machining parameters: 

Ball-end tool radius: 15 

Machining tolerance: 0.01 

Cusp tolerance: 15 

Cutting plane normal vector: (0,1,0) 

The computation time for this example including all graphic 
output, was 8 seconds on an SGI personal Iris. In this 
example, a very large cusp height was assigned to the tool 
path generation program (cusp height must be less than or 
equal to the tool radius). Only two tool passes were generated 
for this surface, since the intent of this example is to 
demonstrate the gouge elimination capabilities. Results are 
shown in Figs. 18 and 19. In Fig. 18 the direct gouge- 
elimination module has been disabled, and a serious gouge is 

~ Define machining parameters (cutting 
Define surface plane normal vector, tool radius. 

tolerance, cusp. etc.) 

~I Initial chordal 
approximation method 

I 
Cutter location ]~1 true machining I__1 Direct gouge 
file output ~ error calculation ~ elimination 

process 

INonconsta tparameterl 
tool puss adjustment 

1 
Fig. 17. Overview of the non-constant parameter tool path generation 
algorithm. 



288 Y. Huang and J. H. Oliver 

Fig. 18. Tool path generated without gouge elimination. 

Fig. 19. Tool path generated with direct gouge elimination. 

evident at the concave region. Fig. 19 shows the results of 
including the gouge elimination portion of the algorithm. This 
example also shows that long tool motions occur at smooth 
areas and short tool motions exist at highly curved areas. 

Example 2. Fan-shaped Surface 

This example demonstrates tool path generation on a fan- 
shaped B6zier surface which is defined by the control point 

(10, 1, 0) (15, 3, 8) (20, 5, 10) (25, 2, 0) 

(5, 8, 8) (11, 10, 16) (23, 12, 18) (35, 10,10) 

(1, 23, 10) (15, 25, 18) (25, 29, 20) (45, 25, 8) 

( - 5 ,  32, 0) (19, 38, 6) (42, 40, 4) (55, 34, - 2 )  

matrix, 

The machining parameters are specified as, 

Ball-end tool radius: 0.1875 

Maximum machining tolerance: 0.001 

Maximum cusp height: 0.004 

Cutting plane normal vector: (1, 0, 0) 

Fig. 20. Tool path generated by non-constant parameter method. 

The computation time for this example is 34 seconds on an 
SGI Personal Iris computer. 

The CL-data generated on this surface, as plotted in Fig. 
20, was post-processed into the format of a Dyna Mechtronics 
DM4400 milling machine, and the part was milled from a 
block of wax. Uniform smoothness of the part surface can be 
observed from the tool path plot (Fig. 20) and the photograph 
of the actual milled product (Fig. 21). It should be noted 
that density of tool passes is greater on the left portion of 
the part where a relatively steep surface slope exists. This 
phenomenon illustrates the subtle effect of the tool pass 
interval adjustment method. 

The same surface and machining parameters were also 
entered into a commercially available CAM software package 
for tool path generation via a typical constant parameter 
curve method. The tool path, as plotted in Fig. 22, was also 
post-processed and the milled result from this yielded the 
part shown in Fig. 23. 

The results summarised in Table 1 indicate that both 
methods generate the same number of tool passes for the 
given machining parameter setting, but the non-constant 
parameter approach yields 476 fewer CL points than the 
constant parameter method. As expected, on the milled part 
produced by the constant parameter method, the cusp heights 
vary from one end to the other; the roughest portion meets 

Fig. 21. Part milled by non-constant parameter tool path. 



Fig. 22. Tool path generated by constant parameter curve method. 
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sculptured surface machining applications. The implementation 
of this algorithm demonstrates its efficiency and flexibility 
when compared to the constant parameter curve method of a 
commercially available CAM system. However, this algorithm 
requires more computational effort in locating cutting curves 
than the constant parameter curve method does. Work is 
continuing on improving the computational efficiency of this 
technique and incorporating capabilities for multiple surfaces. 
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Fig. 23. Part milled by constant parameter curve tool path. 

Table 1. Comparison of results from non-constant parameter and 
constant parameter tool path generation methods. 

Number of tool Number of CL 
passes points 

Non-constant parameter tool 68 1496 
path generation 

Constant parameter tool path 68 1972 
generation 

the specified cusp height tolerance while the finest portion is 
unncessarily smooth. The part produced by the non-constant 
parameter approach has a uniform surface smoothness that 
meets the specified cusp height tolerance without sacrificing 
machining efficiency. 

6. Conclusion 

The non-constant parameter approach for tool path generation 
is independent of the parametric coordinate system, and 
therefore provides a high degree of flexibility in planning tool 
path direction. Thus this approach is very well suited to most 
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Notation 

C cutting curve 
C t cutting curve tangent 
CCo, CC1, ... cutter contact points 
d chordal deviation 
/_ ABC triangle 
Aw incremental step in parameter w 
(ABC angle 
�9 a small quantity 
l chord length 
a~, %, ... normal vectors 
P, P,, P~, P~, P2 . . . .  space point 
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Q parametric equation of a surface 
R radius of a ball-end milling tool 

TCo, TC1 . . . .  tool center points 

u, v, u., Ue, W, t parameters 

p 

h 

T 

angle 
curvature 

cusp height 
machining tolerance 


