Riccati Equations with Unbounded Coefficients (+).

G. DA PraTo (Pisa, Italy) - A. IcHikAwA (Hamamatsu, Japan) (%)

Summary. — We give some results on the operator Riccati equation arising in linear quadratic
optimal control problems. Our theory covers boundary control as well as pointwise control problems.

1. - Imtroduction.

In this paper we consider a controlled semigroup model which covers parabolic
equations with boundary and pointwise control. We study directly the Ricecati
equation associated with it. Then using the dynamic programming arguments we
solve quadratic control problems.

The gemi-group approach has already been employed by other authors [1], [4],
[107, [14], [16]. CURTAIN and PRITCHARD [4] covers pointwise control in one dimen-
sion and the mixed boundary control. The Dirichlet boundary control was first
studied by BALAKRISHNAN (1] and much work has been added by LASIECKA and
TRIGGIANI [14]-[17]. However the Riccati equation is not directly studied there.
Recently FLANDOLI [10] has shown the existence and uniqueness of a solution to a
general Riceati equation which covers the Dirichlet case. Similar quadratic control
problems have also been solved by SORINE [20], [21] using the variational approach.
A unified treatment of quadratic control problems for partial differential equations
and retarded functional differential equations is also reported in [19], but the
Dirichlet boundary control is not included.

Following [10] we study the Riccati equation directly. But our proof is elemen-
tary and we obtain existence and uniqueness and some improvements. Then using
dynamic programming we gsolve quadratic problems. We also characterize the do-
main of the infinitesimal generator of a closed system with constant feedback
(see [97, [17], [23] for similar results). Our model covers Dirichlet control as well
a8 pointwise control in R?, d<3. We may take unbounded cost operators such
as first derivatives and peint evaluations in some cases. This is illustrated by
examples.

(*) Entrata in Redazione il 3 maggio 1984.
(**) This work was carried out while this author was a visiting professor of C.N.R. at
the Scuola Normale Superiore.
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2. — The semigroup model and the Riceati equations.

Let H and U be real Hilbert spaces with scalar preducts ¢, and norms | |.
The set of linear bounded operators mapping U(H) into H is denoted by L(U, H)
(L(H) respectively). Consider the controlled system:

(2.1) y'= Ay + (— A)°Bu, - y(0) =4,

where A is the infinitesimal generator of an analytic semigroup of negative type
S(t) on H, Be L(U, H), u € L0, T; U), 0 < T < o0, H €[0,1] and (—.A)° are the
fractional powers of — A (see for instance [18]). We denote by D((—.4)7°) the
dual space of D((— 4%)%).

Since [(—.A)08(t)|<Cft® for t €10, T], we define the mild solution of (2.1) by

t
(2.2) y(t) = S)yo - f (— A)o8(t — r)Bu(r) dr .
0

In fact yeG([O,T];H)mLZ(O,T;D((—A))l“e) it 6<3 and yeL0,T; H)N
N 12(0, T; D((— A4))*77%) if 6>} for & >0 small.
We now associate with (2.2) the following quadratic functional:

T
(2.3) T(w) = (Poy(L), y(T)) + [[(My(e), y)) + Ju(t) 2] dt,

0

where Pye L*(D((— A)*); D((— 4)7*)), M € L*(D((— 4)");D((— 4) 7)), sy v>0, (*,)
denotes duality and L+(D((—— A)*); D((— A)‘”)) denotes the get of self-adjoint non-
negative operators in H which are bounded as application of D((—A4)*) into
D((— A)™*). Assume for the moment 4 = » =0 and P,, M e L*(H). If 6 < L, J(u)
is finite for any u € L0, T'; U). If 6>1, the first term in (2.3) in general does not
make sense. But J(u) is finite for any % e C([0, T]; U). Thus for any 0<f< 1
the minimization of J{u) over all v € L2(0, T; U) makes sense. The Riccati equa-
tion for this problem is formally given by

(2.4) P'= A*P + PA -+ M — P(— A)BB*(— A*)0P, P(0)=P,
and its mild version by
(2.8)  P(t)y = 8*(O) P81y +

t
+ f S*(t — ) [ M — P(r)(— A)0 BB*(— A*)0P(r)]8(¢ — )y dr .
0
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We shall consider three cases separately and establish a unique global solution
by showing that local solutions are uniformly bounded over all intervals of existence.
Let C,([0, T]; L(H)) be the Banach space of strongly continuous operators P
on H with norm |P|,= Sup |P(#)|.
0<i<1

Let K be a real Hilbert space and let L(0, 7'; L(H, K)) be the Banach space
of strongly measurable operators in L(H, K) with norm [P|,= ess. sup i*[P(¢)|.
. 0<i<l
REMARK 2.1. — We have assumed that 8(¢) is of negative type, but results in
this paper can be easily extended to the case of general analytic semigroups.

2.1. The case 0<b + v < §.

We set formally
(2.6) Q(t) = (— A*)°P(t)(— 4)°,

then (2.5) yields

t
(27) QY = S OPSy + 85— — Q(r)BB*QIS(t —r)y dr
0

where P, = (— A*)0Py(— A)? and M = (— A*)9 M(— A)e.
Now we study (2.7) under general conditions.

PROPOSITION 2.1. - Suppose Poe L+(D((—4)*?), D((—4)~2)), M eL+(D((—A)5),
D{(— A)"#) for some 0<a, < 3.

Then there exists a unique solution @ to (2.7) in L2(0, T'; L*(H)) N 0,10, T;
L.(H)). Moreover it Pye L*(H), then Q € 0,([0, T]; L*(H)).

ProOF. — Note that the right hand side of (2.7) (as a funection of @) maps
L2(0, Ty; Ly(H)) into itself for any T, >0, as in the classical case of bounderd
coefficients (see for example [5], [6]). Here L (H) is the set of self-adjoint operators
in L(H). If T, is small enough, the standard contraction mapping theorem assures
the existence and uniqueness of a solution @ in L2°(0, Ty; L(H)) [2].

Then from (2.7) we also have @ € C,(10, T,1; L,(H)).

Using the evolution operator generated by A — (— A4)/BB*Q(t) we can also show
(if necessary via approximations as in [2]) that @(f) € L*(H), for 0 <i<T,. To
show the global existence it is sufficient to prove @]’y <c¢ for some constant inde-
pendent of T, [2], then from (2.7) we have an a priori estimate:

¢
fS*(t — ) St —7) dr

0

o

<¢
%,Ty

independent of T, .

2.8) Q120 <|8*0) PSW)|32r, +
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If Pye L*(H), we can directly establish a unique solution in-0,([0, T}; L*(H)) as
in the classical case of bounded coefficients, see for example [1], [5].
Coming back to the original equation (2.5) we have:

COROLLARY 2.1. — Let 0<0 + pu<(0 4 »)/2<%. Then there exists a unique
solution P to (2.5) in LZ(0, T5 L+(H)) N L2°(°6+,'0(0, T; I*(D(— A)9), D((— A*)e))) N

13

N Lg‘;zy(o, T; L(H; D((— A*)e))). Moreover if Pye I(D((— A)~), D((— A*))), Pe
€ 0,(10, 11; Z*(H) 0 L¥(D((— A)~*), D((— A%)) N L(H, D((— A*)° )
2.2. The case § 4+ v = }.

In this case we assume that A is self-adjoint. Then we have ([8])

T
i aiswypa<tyl, yem.

i}
Hence we can take f = } in Proposition 2.1. In fact we have

PROPOSITION 2.2. — Suppose Pye LH(D(— 4)*2), (D((—A)‘“/z)), O<a<iand Me
eL+(1)((—— A)Y), D((— A)—%)). Then there exists a unique solution to (2.7) in L(0,
T; L¥(H)) 0 0,10, T); L*(H)). Moreover, it P,e L*(H), then Q e ,([0, T1; L*(H)).

COROLLARY 2.2. — Assume 0<0 + u<< (8 + #)/2 = }. Then the conclusion of
Corollary 2.1 still holds.

REMARK 2.2. — We can easily generalize Proposition 2.2 to the case where A is
replaced by A + A, with 4 self-adjoint and A4,e E(D((wA)’R‘, H )) see [7], [8]. In
this case (2.5) is replaced by

t ,
(2.9)  P@)y = 8(1)P,8(t)y +fs(t—7)[ﬂf + ATP(r) 4 P(r)4,—

— P(r)BB*P(r)]8(t —r)y dr,

and the control system (2.1) by
(2.10) y'=M@A+ Ay + (—A)Bu, y(0) =y,.

REMARK 2.3. — The special case: § = 0, » = } has an interesting application,
see Example 5.1.

2.3. The general case.

If 2v>1 we cannot use the transformation (2.6), since the integral

t
fs*(t — ) IS — 1)y dr
¢}
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does not make sense. So we shall directly study (2.5):
11
Pt)yy = 8*t) P, S(t)y +fS*(t —r)[M — P(r)(— A)BB*(— A*)6 P(r)]8(t — )y dr .
0

Our main assumption is the following:
i) 0<l + 2v< 1;
(2.11) i) 0<b+2u< $if 6< 3 and
Poe L (H) 0 L(H; D((— A%)¥))  for gj2 >0—} it 6>},

The following is our main result of this section and generalizes [10], giving also
a simpler proof.

PROPOSITION 2.3. — Assume (2.11). Then (2.5) has a unique solution in L{0, T';
L(H; D((— A*)f’))) N 0,([0, T; L.(A)) N 05(10, T]; L(H; D((— A*)O))) (1). Moreover,
if Pye L*(H) N L(H; D((— A4#)0)), then Pe 0([0, T; L(H; D((— A*)o))).

ProoF — Following [10] we set (— A¥)0P(t) = E(i), then:

(212)  R@)y = S*(t)(— A*) P88y +
¢
+ f (— A%)08%(t — r)[ M — R(r)BB*R(r)18(t —r)y dr .

1]

We shall consider only the case §>1, the other case being similar. Then the right
hand side of (2.12) maps L,‘,’"_;(O, T; L(H)) into itself. Again itis well known that
there exists a unique local solution to (2 12) in Lg 5(0, Ty; L(H)) for sufficiently
small 7, Then P(I) = (— A*)~R(¢) is a unique solution to (2.5). Moreover, P(i)
satisfies on [0, T\].

t
(2.13) P(t)y = S*(1) P, U(t, 0)y +fs*(t- P\ MU, r)y dr
0
where
t
(2.14)  UQ,s)y = 8t —s)y —fsw — $)(— A)SBB*(— A*)eP(r) U(t, ¥)y dr ,

0<s<icT,.

(1) Where $=0+2uif 0 <} and f=0—g if 0>4.
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From (2.13) we obtain

1]
(2.15) (— A*)PP(t)y = (— A%)°S*(1) P, U(%, 0)y +f(—— A*P8(t —r) MU, 1)y dr
0

To obtain a global solution R(#) on [0, T'] it is sufficient to show that
=A%) P() |25 p, <€
independent of 7. This will follow via (2.15) if we can show that

Uy ) z,= sup |U(t,s)|<e¢ independent of T,.

0<s<<iL T,
For this purpose we take 0 < T, < T, and consider

(2.16) (—A*)OP(r)U(}, r)y = 8¥(r)(— A*)°P,U(4, 0)y +
+f(— AX)08%(r — s) MU, 5) ds ,

0

where we have used the semigroup property
Ulr,s)U(t, r) = Ult,s) for O<s<r<i<T,.

Note that from (2.5) we have |P(#)|<b, for some b,= by(T) >0. Let b= max (b,,
|Po]). Now from (2.16) we have

(2.17) (=A% P(r) U(t, 7)|<[Cofr® F 4 Opr* ™) [U(+, )], for re]0, Th],

where ¢; and ¢, are independent of 14 (or T,).
Then from (2.14) we obtain
i t
dr — —
1O )n<Cat (J,J mwl brico 4 Opr1-0-3]| U(+,*)] 2, 5

8

where O, O, are constants independent of 7). Then for each 0 <7< 1 we can
find 7, sufficiently small such that

! U(',-)”,_,.1<03+ 7l U("')”T1 .

Now we fix 0 <<n<<1 and T,= Ti(n). Then [|U(-,")|s,<0:/(1— 7).
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Now considering equations similar to (2.13), (2.14) and (2.16) on [T, 27.] (initial
time 0 is replaced by T,) and so on, we can easily obtain after a finite number of
setps

[Ty )p,<e(y), independent of T, .

o

Thus we have shown that (2.12) has a unique global solution to (2.5) as asserted
in Proposition 2.3.

REMARK 2.4. — The result in FLANDOLI [10] is our special case » = 0, g = 0.

RuMARK 2.5. — It is not clear whether or not we can take 4 =~ 0 in Proposi-
tion 2.3, while LAsTECEA and TRIGGIANI [16] obtain a solution to (2.4) when g =
=9=0,0=%-4 ¢ ¢&>0 small

3. — The closed loop system.

In this section we consider (2.1) with feedback controls
(3.1) u(+) = K(I'—")y,

where K e L(0,T; L(H, U)) for some 0<a<1. In this case (2.3) becomes an
integral equation

t
(3.2) y(t) = S(Oyo+ [(— 4)78(— 1) BE(T —r)y(r) dr .
0

Since K(T —-) is bounded on ]0, 7' — ¢] for any ¢ > 0, there exists a unique solution
y to (3.2) in O([0, T —e]; H) N L2(0, T — &; D((— 4)")) N 0)(0, T — &l; D((— 4%))
for any 0 <f < 1 —0. It is interesting to know the behavior of y(:) as ¢ —0. The
following Proposition is easily proved.

ProrosiTioN 3.1. — Let KeLZ(0,T; L(H, U)) for some 0<ax<<1. Suppose
0 - < 1, then there exists a unique solution ¥ to (3.2) in C([0, T); H). If a4
+ B +0<1, then ye L;(0, T; D((— 4)M)) 0 (10, T1; D{(— A4)%)).

Let u,v,0 in (2.2), (2.3) (resp. #>0,6>0,0 4 2y< 1) be given. Then K e
eLy(0,T; L(H, U)) is admissible if 6 +» 4+ a<1 and 6 +p + <1 hold.

If, in particular, § = 0 and A is self-adjoint, then for u<v =%, K € L;(0, T;
L(H; U)) is admissible for any o< {.

Thus the feedback control given by the solution of the Riceati equation

(3.3) = — B¥(— A*)P(T — )y

is admissible and is in fact optimal as we shall see in Section 4.
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If V(t,s) is the evolution operator relative to A — (— A)IBB*(— A*)9P(T —1)
then U(t, s) = V(T —s, T—1t) where U is the operator in (2.14).

REMARK 3.1. — Similar conclusions hold when A is replaced by A -+ 4, with A
self-adjoint and A, bounded from D((— 4)*) into H. In this case we take (2.9),
(2.10) instead of (2.1), (2.5).

Now we consider the constant feedback controls:

w=Ky, Kef(HTU).

Consider

[

(3.4) y(t) = Sy + (— 4)9[ 8¢ — ) BEy(r) dr

0

By Proposition 3.1 there exists a unique solution y to (3.4) in C([0, T']; H) for any
0< T <oco. So we can define a strongly continuous semigroup, say Sg(f). We now
characterize the domain of its generator Ag.

PropPoSITION 3.2. — Sx(f) is an analytic semigroup and its generator is given by

Ary = (— A)[— (— 4)'""y + BK,]

(3.5)
= {ye D((—A)"°), —(—A)""% + Ky e D((— 4)?)} .

Moreover, if S(t) is compact, then Sg(f) is also compact.

Proor. — Taking the Laplace transform of (3.4) we obtain
R(A, Ag)yo= R(4, A)yo+ (— A)°R(4, A)BER(2, Azr)Yy,

Thus

(3.6) R(A, Ag) = [1— (— A)°R(%, A)BKTR(4, A)

for sufficiently large 1. Note that multiplication by exp [— af] to any semigroup
does not change the domain of ity generator. So we may assume 0 € o(4) N o(4x),
resolvent sets. Hence setting A =0 in (3. 6) we obtain

ARt =L + (— A)"0"OBE] 14

from which (3.5) follows. The analyticity and compactness also follow from (3.6).
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REMARK 3.2. — As we shall see in Section 5, there are some cases where B —=
= (—A)'""By, B, L{U, D((— 4)'=")). Then

Agy = Al — B, K]y
D(4y) ={yeH; I—B,K)ycDA)}.

In general let 8(¢) be any strongly continuous semigroup and let K be any linear
unbounded operator on H. Suppose

t
ylt) = S0y + A[S(t—r)Ey(r) dr
0

has a unique solution and defines a strongly continuous semigroup Sg(t). Then
Ag= A(I — K)

D(Ay) = {yeD(K);y — Kye D(A)} .

Sufficient conditions for A(I — K) to generate a strongly continuous semigroup are
studied in [3], [9], [17], [23].

4. — Quadratic control.

Consider the quadratic control problem (2.1), (2.3). Since we have established a
unique solution to the Riceati equation (3.3), dynamic programming gives us the
optimal control and the minimum cost. In fact we have

PROPOSITION 4.1. — Suppose one of the following conditions holds:

i) 0<b+r<i, 0+ p<(@+9)/2;
(4.1) (ii) 6 4+ v =14, p<1i, where A is self-adjoint;

(ifi) 0<f + 2v< 1 and 0< + 2u< } if 6< % Whereas Poe L*(H) N L(H;
D((— A*)#)) for af2>0—} it 6>4.

Then the optimal control is given by the feedback law
(4.2) ty(+) = — B*(— A*)0P(T—)y(*)
and the minimum cost by

(4.3) J(Uy) = {P(T)Yo5 Yo»
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where P is the unique solution of (2.5) given either in Corollaries 2.1, 2.2 or in Pro-
position 2.3.

PROOF. — As in [2] we can use bounded approximations to (2.1) and then pass
to the limit.

REMARK 4.1. — In (4.1) (ii) we may replace 4 by A + 4, as in Remark 2.2,

REMARK 4.2. — The algebraic Riccati equation is also considered by FLAN-
DOLI [11] under stabilizability and detectability conditions [22].

5. — Examples.

In this section we give some examples which are covered by our abstract model.
In the following O is an open bounded domain in R¢ with smooth boundary 20.
We will consider Laplace operator 4 in O, but everything in the sequel remains
true for a general second order elliptic operator.

ExXAMPLE 5.1. — Unbounded cost operators. Consider

ay(;; i = Ay(t, ) -+ u(t,®), x€0
(5.1) y(t,2) =0, w €00
¥(0, @) = yo()

‘where y,€ L*(0) and u e L*([0, T]x0). In this case we take H = L20), A =4
with D(4) = H*O0) N H%0),0 =0, B =1 and U = L*0). We take the following
cost ‘

T

2
(b.2)  J(u) =fdtf [m F%—@ + |ult, m)[z] dr +
o O
-+ p(,f [¥(T,®)|]2dz, m and p, being positive numbers .
o0
In this case M = — mAd and the Riccati equation is given by

P'e= AP 4 PA —mA —P?, P(0)=P,I.
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Here we can apply Proposition 2.2 with « = 0 and Proposition 4.1 with u = 0,
thus it has a unique solution in C,([0, T; L*(H)).

If d =1, then we may replace the last term in (5.2) by |y(T, &)}, é€ 0.

If d<3 we may replace the integrand |9y(t, z)/0z|3 ©) by 1y, &) € O, since C
defined by Cy = y(&) is a bounded linear functional on D((— A4)?), 6 > d/4.

EXAMPLE 5.2. — The mixed boundary control problem [10, IEEE], [20]. Consider

oy(t, x)
ot

= Ay(t, v) , re0,

{6.3) oy(t, x)
on

+ a(e)y(t, w) = w(t,z), 2€00,

(0, 2) = %o(®)

where 0/on denotes the outward normal derivative and a(z) >0 is a continuous
function on 00. We take H = 13(0), U = L*(c0). Let D(A) be the closure in
H2(0) of the subspace {y e C(0), oy/on + ay = 0}. A is the restriction of 4 to
D(4). Let B, be the map: U — H defined by y = By,u where y i3 the solution of

0
Ay =0, E—Z—{—ay:u.

Then B,e L(U, D((— 4)'?)) for any 0 > } [15], [17].

We take § = L + &, ¢ > 0 small and set B = (— A)*"°B,. Now y(¢) defined by
(2.3) is the semigroup model of (5.3) studied in [17). For each e L0, T; U) we
have y € C([0, T7; H) N L#(0, T; D(— A)**¢). As a cost functional we may take

T
(5.4) J(u) = f [mly(t, 2) 2oy + [0 @) Eaoy] @ -

t]

In this case M = mC*C with Cy = y|,, the trace operator. Since C EL(D((—— A)*),

L2(BO)) for any « > 1, we have MeL(D((—A)”), D((— A)_”)), y=1%-+¢ So we

can apply Proposition 2.3 and Proposition 4.1 (4.1 (iii)) with 0 =v = } 4+ &, u = 0.
The Riceati equation is written as

P'= A*P + PA + M — PAB,BjA*P, P(0)=0
and has a unique solution in Cy([0, T1); L*(H) N L(H, D((— 4*)***)). For (5.3),

(5.4) we may of course take § = 1 —2¢, & >0 small. Then the Riccati operator
lies in Cy([0, T7); L(H ; D((——-A)%‘zs)), giving more regularity.
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EXAMPLE 5.3. ~ The Dirichlet boundary control [16]. Consider

oy(?
y(a;w):Ay(t:w)7 reQ,
(5.5) y(t, @) =ault,z), xe00,

(0, 2) = yo(®) ,

where H and A are as in Hxample 5.1 and U = L2(09).

Here we take for B,: U — H, the Dirichlet map defined by y = Byu: Ay = 0,
y(®) = u(x), € 00. It is known [15], [16] that BOEL(U, D((——A)l“’)) for any 6 > 3.
Thus we choose § = § + ¢, ¢ >0 small and set B = (— A)'"°B, (see [16]).

We may take the cost functional

T
(5.6) J(u) = [[ly(t, ) o)+ 6(ts 2) F0y] €t -
0

Then M = I and the Riccati equation for this problem has the same form as in
Example 5.2 and has a unique solution in C([0, T1); LﬂH)mL(H,D((-— A*)"))
for any $<<0<1.

ExAMPLE 5.4. — The pointwise control. Consider

WD) _ dyt,a) + 0@ — i), @£ 0

(8.7) y(t,z) =0, T e 60'
Y(0, 1) = yo(2) ,

where ¢ is the delta function ([13]). Here we take H and 4 as in Example 5.1 and
U =R

Since (—.A) %3z — &) € H for 0 > d/4, we assume d<3. We take 0 = df4 ¢
and set B = (— A)~%(x — &). Then the following cost is well-defined:

T
(5.8)  J(u) = po|y(T, w)ﬁz(k‘))‘}‘f[m[?/(t’ z) [iz(O)+ [w(®)[*] dt,  po, m >0.
0

If d =1, we may replace the integrand |y(t, #)|3 oy by ly(t, 9)|% ne O.

RemaRK 5.1. — For a given partial differential equation, we have a choice of 6
in some interval contained in [0, 1[. If we take 6 small, we may allow for large
unboundedness in cost operators. On the other hand if the cost functional is fixed,
then choosing 0 large we get more regularity for the Riccati operator.
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