
Riccati Equations with Unbounded Coefficients (*). 
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S u m m a r y .  - We give some results on the operator l~iccati equation arising in linear quadratic 
optimal control problems. Our theory covers boundary control as well as pointwise control problems. 

1 .  - I n t r o d u c t i o n .  

In this paper we consider a controlled semigrcup model which covers parabolic 
equations with boundary and pointwise control. We study directly the Riccati 
equation associated with it. Then using the dynamic programming arguments we 
solve quadratic control problems. 

The semi-group approach has already been employed by other authors [1], [4], 
[10], [14], [163. CuR~AIrr and PI{I~C~tAI~D [4] covers pointwise control in one dimen- 
sion and the mixed boundary control. The Dirichlet boundary control was first 
studied by BA~AKI~ISI{I~A~ [1] and much work has been added by LASIEOKA and 
T~IGGIArr [14]-[17]. ]~owever the Riecati equation is not directly studied there. 
l%eeently F~A~])OLI [10] has shown the existence and uniqueness of a solution to a 
general Riceati equation which covers the Dirichlet case. Similar quadratic control 
problems have also been solved by Sonlc~E [20], [2:13 using the variational approach. 
A unified treatment of quadratic control problems for partial differential equations 
a~d retarded functional differential equations is also reported in [:19], but the 
Dirichlet boundary control is not included. 

Following [10] we study the Riecati equation directly. ;But our proof is elemen- 
ta ry  and we obtain existence and uniqueness and some improvements. Then using 
dynamic programming we solve quadratic problems. We also characterize the do- 
main of the infinitesimal generator of a closed system with constant feedback 
(see [9], [17], [23] for similar results). Our model covers Dirichlet control as well 
as pointwise control in R a, d<3.  We may take unbounded cost operators such 
as first derivatives and point evaluations in some cases. This is illustrated by 
ex~mples. 

(*) Entrata in Redazione il 3 Inaggio 1984. 
(**) This work was carried out while this auihor was a visiting professor of C.N.R. at 

$he Seuola Normale Superiore. 
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2. - The semigroup model and the Riccati equations. 

Let H and U be real t t i lbert  spaces with scalar products ( , )  and norms I I. 
The set of linear bounded operators mapping U(//) into H is denoted by Z(U, H) 
(L(H) respectively). Consider the controlled system: 

(2.1) y ' =  Ay -~ ( - -A )~  y(O) = Yo 

where A is the infmitesimM generator of an analytic semigroup of negative type 
S(t) on H, B e Z ( U , H ) , u e L ~ ( O , T ;  U ) , O ~ T ~ o o ,  Oe[O,l[  and ( ~ A )  ~ are the 
fractional powers of - - A  (see for instance [18]). We denote by D((--A)  -o) the 
dual space of D((--A*)~ 

Since I(--A)oS(t)I<~C/t s for t o ] 0 ,  T], we define the mild solution of (2.1) by 

(2.2) 
t 

y(t) = S(t)yo -~ f ( - -  A)~ --  r)Bu(r) dr.  
0 

In fact y ~ C([0, r];  n )  n ~ ( 0 ,  ~; 9((-- A)) ~-~ if 0 < �89 and y e ~ ( 0 ,  ~; It) n 
n L ~ ( O , T ; D ( ( - - A ) )  1-~ if 0>�89 for e > 0  smM1. 

We now associate with (2,2) the following quadratic functional: 

(2.3) 
T 

J(u) = (Poy(2), y(~)) +][(~y(t),  y(t)) + lu(t)?] dr, 
0 

where .o~ ~+(.((--a)~); . ( ( - -  a)-")), ~V ~ ~+(~((-- a)');D((-- a)- ')) , . ,  ~>0, (.,.) 
denotes duality and L+(D(( - A)~); D((--A)-~))  denotes the set of self-adjoint non- 
negative operators in H which are bounded as application of 2)((--A) ~) into 
D((-- A) - ' ) .  Assume for the moment # = ~ = 0 and 1)o, 2d e L+(H). If 0 < �89 J(u) 
is finite for any u e Z2(0, T; U). i f  0>�89 the first term in (2.3) in general does not 
make sense. But  J(u) is finite for ~ny ueC ( [0 ,  T]; U). Thus for any 0 < 0 <  1 
the minimization of J(u) over all u eL~(0, T; U) makes sense. The Riccati equa- 
tion for this problem is formally given by 

(2.4) P ' =  A*P  + PA  + M -  P(--A)~ - A*)~ , P(O) = Po 

and its mild version by 

(2.5) P(t)y ~ S*(t)PoS(t)y 

t 

+ fs*(t- r)[M -- P(r)(-- A)OBB*( - A*)op(r)]S(t --  r)y dr.  
0 
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We shall consider three cases separately and establish a unique global solution 
by showing that local solutions are uniformly bounded over all intervals of existence. 

Let Q([0, T]; L(H)) be the Banach space of strongly continuous operators P 
on H with norm ~Pi[z :  Sup tP(t)I. 

0 ~ < t ~ l  

Let K be a real Itilbert space and let L~(0, T; L(H, K)) be the :Banaeh sp~ce 
of strongly measurable operators in L(tt, K) with norm lIPl[,~,~ = ess. sup t~lP(t)I. 

RE~A~K 2.1. -- We have assumed that S(t) is of negative type, but  results in 
this paper can be easily extended to the case of general analytic semigroups. 

2.1. The case O <.O + v < �89 

We set formally 

(2.6) Q(t) = (-- A*)~ A) ~ , 

then (2.5) yields 
g 

(2.7) Q ( t ) y  = ~*(t)PoS(t)y + fS*(t--r)[~l--Q(r)BB*Q(r)]S(t--r)y dr 
0 

where 1~o= (--A*)~ ~ and _f/l = (--A*)~ - A) ~ 
:Now we study (2.7) under general conditions. 

2 1 -  Suppose IV 
Jo((-A)-~) for some o<~ , /~<  �89 

Then there exists a unique solution Q to (2.7) in L~(0, T; L+(H)) n Q(]0, T]; 
L+(H)). Moreover if PoeL+(H), then Q e Q([0, ! ] ;  L+(H)). 

P~ooF. - Note that  the right hand side of (2.7) (as a function of Q) maps 
L~(O~ To; L,(H)) into itself for any T o > 0 ,  as in the classical case of bounded 
coefficients (see for example [5], [6]). Here L / H )  is the set of self-adjoint operators 
in L(H). If  To is small enough, the standard contraction mapping theorem assures 
the existence and uniqueness of a solution Q in L~(0, To; L~(H))[2]. 

Then from (2.7) we also have Q e Q(]0, To]; L~(H)). 
Using the evolution operator generated by A -- (-- A)~ we can also show 

(if necessary via approximations as in [2]) that Q(t)eL+(H), for 0 <  t<To. To 
show the global existence it is sufficient to prove ]]QI[~,To<e for some constant inde- 
pendent of To [2], then from (2.7) we have an a priori estimate: 

t 

(2.8) llQl]~zo<lls*(t)PoS(t)l[~,,Zo + f dr ~,~0 ~ <c 
independent of To. 
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If /5oeL+(H),  we can direct ly establish a unique solution in C~([0, T]; L+(11)) as 
in the classical case of bounded coefficients, see for example [1], [5]. 

Coming back  to the  original equation (2.5) we have: 

C0~oLLA~u 2.1. - Let  0 < 0  + / ~ < ( 0  + v ) / 2 <  �88 Then there exists a unique 
solution ~ to (2.5) in Z~(0 ,  ~ ;  L+(H)) n Z~o+,i,(O, T;  Z+(1)( - A)-~ D((- -A*)o)~ n J\ 1] 

L~+z~(0, T; _L(H; D(( - -  A*)O))). Moreover ff / ) , e  L(D( ( - -  A)-o) , / ) ( ( - -  A*)o)), P e 

2.2. The case 0 - - [ - ~ : � 8 9  

In  this ease we assume tha t  A is self-adjoint. Then we have ([8]) 

f ] ( - -  A)~S(t)y] ~ dt<�89 , y e t l .  
0 

~ence  we can t~ke fi ~ �89 in Proposi t ion 2.1. In  fact  we have 

PI~OP0SITIO~ 2.2. - Suppose /5  0 e L+(D(--  A)~/~), (D((-- A)-~/2)), 0 < a < �89 and M 
~§ ~(r Then there exists a u~ique solution to (2.71 in ~:(0, 

/ ' ;  L+(H)) n Q(]0,  T]; L+(T/)). MEoreover, if /50~ JS+(H), then Q ~ Q([0, T]; L+(H)). 

COrOLLArY 2.2. -- Assume 0 <0  + # < (0 + ~)/2 ~ ~. Then the conclusion of 
Corollary 2.1 still holds. 

REIVIARK 2.2. - We can easily generalize Proposit ion 2.2 to the case where A is 
replaced by  A -~ A1, with A self-adjoint and Ale s H))  see [7], [8]. In 

this case (2.5) is replaced by  

(2.9) P(t)y  -~ S(t)PoS(t)y ~ - f S ( t -  r)[M -~ A*P(r)  § 2 ( r ) A 1 - -  
o 

- -  _P(r)BB*t)(r)JS(t - -  r)y dr ,  

and the control sys tem (2.1) by  

(2.1o) y'-= (A + A1)y ~- (-- A)~ , y(O) = Yo . 

Rv,~nK 2.3. - The special case: 0 ~ 0, v : �89 has an interest ing application, 
see Example  5.1. 

2.3. :The general case. 

I f  2 v > 1  we cunnot use the t ransformat ion (2.6), since the integral 
t 

f S*(t ~ r )~ lS( t  - -  r)y dr 
0 
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does not make sense. So we shM1 directly study (2.5): 

t 

.P(t)y ~- S*(t)PoS(t)y § fs*(t- r)[M --  P(r)(--  A)OBB*( - A*)Op(r)]S(t - -  r)y dr .  
0 

Our mMn assumption is the following: 

(2.~]) 

i) O < O + 2 v < l ;  

ii) O < O + 2 / ~ < � 8 9  0 < � 8 9  and 

Po~ ~+(~)~ z(~; I)((-A'V)) for P/2 > 0 - �89 if 0 > �89 

The following is our main result of this section and generalizes [10], giving also 
a simpler proof. 

P~orosITIO~ 2.3. - Assume (2.11). Then (2.5) has a unique solution in L~~ Ti 
~(:~; ~((- x,/o))) ~ c~([o, ~j; ~+(m) ~ c~(1o, ~l; L(~; v ( ( -  x*/o))) ('/. Moreover,~' 
if po~Z+(~)~ ~(~;~( (_x , )o) ) ,  then P~C(tO, r~;Z(H;D((--~;o))). 

PI~OOF - F o l l o w i n g  [10] we set ( - -A*)o .p ( t )~  R(t), then: 

(2 12) l~(t)y -= S*(t)(-- A*)~ § 
$ 

§ f (-- A *)OS*(t - -  r)[M --  R(r)BB*R(r)]S( t  --  r)y dr .  
0 

We shall consider only the case 0>�89 the other case being similar. Then the right 
hand side of (2.12) maps L0~176 T; Z(H)) into itself. Again it is well known that 
there exists a unique local solution to (2 12) in Z~~ To; Z(H)) for sufficiently 
small To Then _P(t) ---- (--A*)-oR(t) is a unique solution to (2.5). Moreover, P(t) 

satisfies on [0, :To]. 
t 

S*(t)Po U(t, O)y § ['S*(t --  r)MU(t ,  r)y dr P(t )y  
0 

(2 .]3) 

where 

(2.1~) 
t 

U(t, s)y - S(t - -  s ) y - - f  S ( r - -  s)(- A )~ - A*)~ U(t, r)y dr ,  
$ 

O < s < t < T o  . 

(1) Where /~-~ 0 + 2 # i f  0<�89 and /~=0- - / /  if 0>~. 
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From (2.13) we obta in  
t 

(2.15) (-- A*)~ = (-- A*)oS*(t)Po U(t, O)y + f ( - -  A*)os(t --  r) MU(t, r)y dr 
0 

To obta in  a global solution R(t) on [O, T] i t  is sufficient to show ~hat 

II ( -  A*)op(t)I1 ~- ;,r~ < c 

independent  of To. This will follow via (2.15) if we can show th a t  

[ iU( . , ' ) ] lz .= sup IU( t , s ) f<e  independent  of To.  

%'or this purpose we take  0 < T~ ~< To and consider 

(2.16) (-- A*)oTp(r) U(t, r)y : S*(r)(-- A*)oPo U(t, O)y 
,f 

+ t(-- A*)~ -- s)MV(t,  s) ds 
0 

where we have used the semigroup p rope r ty  

U(r,s)U(t,r) = U(t,s) for O<s<r<~t<To. 

!Cote tha t  f rom (2.5) we have IP(t)[<~bo for some bo= bo(T) > 0 .  Le t  b = m ax  (bo, 
]Po]). ~ o w  from (2.16) we have 

(2.17) ](--A*)~176 Qrl-~ for r e l 0 ,  TI], 

where el and e~ are independent  of T~ (or To). 
Then f rom (2.14) we obta in  

t 

f dr [Clbr'~-o+ C~rl-o-~]llU(.,.)ll~, l [u( . , . ) l j~ ,<c~+ c (r_s)---- ~ 
8 

where Ca, C4 are constants  independent  of T1. Then for each 0 < V < 1 we can 
find T1 sufficiently small such tha t  

I1 ~(' , ')Ilz,< v. + vii v(',')[rT,. 

Now we fix O <  ~ <  1 and T I =  TI(~). Then I1V(.,.)IITI<Ca/(1--~). 
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l % w  considering equat ions s imilar  to (2.13), (2.14) and  (2.16) on [T~, 2:T~] (initial 
t ime  0 is replaced b y  T~) and  so on, we can eas i ly  obta in  a f t e r  a finite n u m b e r  of 

setps  

IIU(.,.)]lr,<e(~]), independent  of To. 

Thus we have  shown t h a t  (2.12) has  a unique global solution to (2.5) as asse r ted  

in Propos i t ion  2.3. 

RE~AI~K 2.4. -- The resul t  in FLANDOLI [10] is our  special  case v --~ 0, fi ---- 0. 

I~E~AI~K 2.5. -- I t  is no t  clear  whe ther  or not  we can t ake  fi ~- 0 in Proposi-  
t ion 2.3, while LASIEC~A and  TnIGGIA~I [16] obta in  a solution to (2.4) when fi = 

- v = O , O - ~  ~ - ~ e , e > O  small .  

3. - The closed loop system. 

I n  this section we consider (2.1) wi th  feedback controls 

(3.1) u( . )  = K ( T - - . ) y  , 

where K ~ L ~ ~  T ; L ( H ,  U)) for some 0 < ~ <  1. i n  this case (2.3) becomes an  

in tegra l  equat ion 
t 

(3.2) y(t) = S(t)yo + f ( - -  A )~  - -  r ) B K ( T  - -  r)y(r) d r .  
0 

Since K ( T  - - .  ) is bounded  on ]O, T - -  e] for a n y  e > 0, there  exists  a unique solution 

y to (3.2)in el(0, 
for a n y  0 <f i  < 1 ~ 0. I t  is in te res t ing  to know the behavior  of y( . )  as s -~ 0. The 

following Proposi t ion  is easi ly  proved.  

P~01'0SITIO~ 3.1. - L e t  K e _ L c f ( O , T ; L ( H ,  U)) for some 0 < a < l .  Suppose 

0 + ~ <  1, then  there  exis ts  a unique solution y to (3.2) in C([0, T]; H) .  I f  ~ + 

+ + 0 <  1, then y T; n c(]o, z]; D( ( -  
Le t  tt, v, 0 in (2.2), (2.3) (resp. ~ > 0 ,  0 > 0 ,  0 ~ - 2 v <  1) be given. Then K e 

L~(0 ,  T ;  Z(H,  U)) is admiss ible  if 0 + v + ~ <  1 and  0 + # + ~ <  I hold. 
I f ,  in pa r t i cu la r ,  0 = 0 and  A is self-adjoint~ then  for /~ < v = �89 K e L~(0 ,  T;  

L ( H ;  U)) is admiss ible  for a n y  ~ <  �89 
Thus the  feedback  control  given by  the  solution of the  l~iccati equat ion  

(3.3) u = - -  B*( - -  A * ) ~  - -  �9 ) y 

is admiss ible  and  is in fac t  op t imal  as we shall  see in Section 4. 
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If  V(t, s) is the evolution operator relative to A -  (--A)~ - A*)~  
then  U(t, s) = V ( T - -  s, T - -  t) where U is the operator ill (2.14). 

R~AI~I~ 3.1. - Similar conclusions hold when A is replaced by A -[- A1 with A 
self-adjoint and  A~ bonnded from D(( - -A)  ~) into H. In  this case we take (2.9), 
(2.10) instead of (2.1), (2.5). 

Now we consider the constant  feedback controls: 

= K y  , K e ~ ( H ,  U) . 

Consider 

(3A) y(t) = ,~(t)yo + (-- A )~ f S(t --  r)BKy(r) dr.  
0 

By Proposition 3.1 there exists a unique solution y to (3.4) in C([O, T]; H)  for any  
0 < T < oo. So we can define a strongly continuous semigroup, say Sx(t). We now 
characterize the domain of its generator AK. 

PI~OPOSlTI05; 3.2. - S~c(t) is an ana ly t ic  semigroup and its generator is given by 

(3.5) 
A~y = (-- A)~ (-- A) l -~  + BKv] 

D(A,) = {y e 1)((-- ~)~-0), _ (_a)~-0y  + ~y  e D((-- a)0)}. 

Moreover, if S(t) is compact,  then SK(t) is also compact. 

Plr - Taking the Laplace t ransform of (3.4) we obtain 

R(~, Az:)yo = R(~, A)yo + (-- A)~ A)BKR(~,  A~)yo . 

Thus 

(3.6) R(~, AK) ---- [I  --  (-- A)0R(2, A)BK]-11~(~, A) 

for sufficiently large 4. Note t ha t  multiplication by exp [--at]  to any  semigroup 
does not  change the domain of its generator. So we m a y  assume 0 ~ ~(A) n ~(A~), 
resolvent sets. ]~ence sett ing )~----0 in (3.6) we obtain 

A ~ I =  [I + (--A)-(1-~ -1 

from which (3.5) follows. The ana ly t ic i ty  and compactness also follow from (3.6). 
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REd, AUK 3.2. -- AS we shall see in Section 5, there  are some cases where B = 
=  hen 

AllY = A [ I  - -  BoK]y 

D(A~) = (y e t t ;  ( I  - -  BoK)y  e 1)(A)} . 

i n  general  let  S(t) be any  s t rongly continuous semigroup and let  K be any  linear 
unbounded  operator  on H.  Suppose 

t 

y(t) = S(t)yo + A IS(t - -  r)Ky(r)  dr 
0 

has a unique solution and defines a s t rongly continuous semigroup S~(t). Then 

A~: = A ( I  - -  K) 

D(A~:) = (y e D(K);  y - -  Ky  e D(A)}  . 

Sufiicient conditions for A ( I -  K) to generate a s t rongly continuous semigroup are 

s tudied in [3], [9], [17], [23]. 

4 . -  Quadratic control. 

Consider the quadrat ic  control problem (2.1), (2.3). Since we have established a 
anique solution to the l%iccati equat ion (3.5), dynamic  programming gives us the 

opt imal  control  and the min imum cost. In  fac t  we have 

PROPOSITIOZ~ 4.1. - Suppose one of the following conditions holds: 

(i) o < 0  + ~,< �89 0 + ff<(O § ~,)/2; 

(4.1) (ii) 0 @ v = �89 # <  �89 where A is self-adjoint;  

(iii) 0 < 0  + 2 v <  1 and 0~<0 @ 2 # <  �89 if 0 <  �89 whereas PoeL+(H)  0 L (H ;  
for Z/2 > 0 - � 8 9  if 0>  1 

Then the opt imal  control  is given by  the feedback law 

(4.2) u , ( - )  = - -  B*(--  A*)ol>(Y--.)y(.) 

and the  min imum cost by  

(a.a) J ( u , )  = <P(r )y0 ,  y0> 



218 G. :DA P~ATO - A. ICttlKAWA: Riecati  equations with unbounded,  etc. 

where P is the unique solution of (2.5) given ei ther  in Corollaries 2.1, 2.2 or in Pro- 

posi t ion 2.3. 

P~OOF. -- As in [2] we can use bounded  approximat ions  to (2.1) and then  pass 
to the l imit .  

RE~ARK 4.1. -- In  (4.1) (ii) we m a y  replace A by  A + A1 as in Rem ark  2.2. 

RE~ARK 4.2. -- The algebraic Riccat i  equat ion is also considered by  FLA~- 
DOLI [11] under  stabil izabil i ty and de tec tabi l i ty  conditions [22]. 

5. - Examples .  

I n  this section we give some examples which are covered by  our abs t rac t  model.  
In  the following 0 is an open bounded domain  in R a wi th  smooth boundary  30. 
We will consider Laplace operator  A in O, but  every th ing  in the sequel remains 
t rue  for a general  second order elliptic operator.  

EXA~fPLE 5.1. - Unbounded  cost operators.  Consider 

(5.1) 

~y(t, x) 
~t - - A y ( t , x )  §  

y(t ,  x) = 0 , 

y(0, x) = y o ( x )  

x e O  

x e ~ O  

where yoeZ~(O) and  u e L ~ ( [ O ,  T ] •  In  this case we take t I = L ~ ( O ) , A  = A 

with  D ( A )  = He(O) c~ H~(O), 0 = O, B = I and U = L~(O). We take  the following 
cost 

T 

(5.2/ J ( u ) =  d [ / ax I 
o O 

+ pof 
o 

3 + lu(t, x)?] ax + 

]y(T, x)] ~ d x ,  m and Po being positive n u m b er s .  

In  this case M - = -  m A  and the Riccat i  equat ion is given by  

.P' : A P  + P A  - -  m A  - -  p 2 ,  P(O) ~ PoI  �9 
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I~Iere we can apply Proposition 2.2 with zr = 0 and Proposition 4.1 with # = 0, 
thus i t  has a unique solution in Ca(J0, T]; L+(11)). 

I f  d = 1, then we m a y  replace the last  term in (5.2) by ly(T, ~)l ~, ~ e 0. 
I f  d < 3  we m a y  replace the integrand 13y(t, x)/3xl~ (o) by  ly(t, ~)]2, $ e O, since C 

defined by Cy -~ y(~) is a bounded linear functional on D((--A)o),  0 > d/4. 

EXAXPLE 5.2. - The mixed boundary  control problem [10, IEEE] ,  [20]. Consider 

(5.3) 

~y(t, x) _ Ay( t ,  x) x ~ 0 ,  
3t 

~y(t, x) 
3n + a ( x ) y ( t , x )  = u ( t , x ) ,  x e ~0 , 

y(o, x )=yo(X) ,  

where 3/~n denotes the outward normal  derivative and a(x) > 0 is a continuous 
function on 30. We take t t  = Z2(O), U = L~(30).  Let  /)(A) be the closure in 
H~(0) of the subspace (y e C~(O), ~ y / 3 n - ~  ay = 0}. A is the restriction of A to 
D(A) .  Let  Bo be the map:  U -~11 defined by y =- Bou where y is the solution of 

3y 
zJ y : 0 ,  ~--~ -~ a y : u . 

Then B o e Z ( ~ , 9 ( ( - - A ) ~ - o ) )  for any 0 > ~ [~5], [~7]. 
We take 0 ---- ~ -~ e, s > 0 small  and set B = ( - - A ) ~ - ~  Now y(t) defined by 

(2.3) is the semigroup model of (5.3) s tudied in [17]. For  each u eL2(0, T;  U) we 
have y e C([0, T]; H)  n L~(0, T; D(--  A)t+~). As a cost funct ional  we m~y take 

(5.4) 
T 

J(u) =f[mly( t ,~  ~ Iu(t, ~ dr. 
0 

In  this case M -~ mC*C with Cy = YI~, the trace operator. Since C e L ( 1 ) ( ( - - A ) ~ ) ,  
~ ( 8 0 ) )  for any  ~ > ~, we have M ~ - L ( D ( ( - - A ) ~ ) ,  D ( ( - - A ) - ~ ) ) ,  ~ : ~ ~- s. So we 
can apply Proposition 2.3 and Proposition 4.1 (4.1 (iii)) with 0 : v ~ �88 -~ e, # = 0. 

The Riccati  equation is wri t ten  as 

P '  = A * I  ) + P A  + M - -  _PABoB*A*-P , _P(O) = 0 

and has a unique solution in C~([0, Y]);/~+(11) ~ L(11 , / ) ( ( - -A*)~+8) ) .  For (5.3), 
(5.4) we m a y  of course take  0-~  �89  s > 0 small. Then the l~iccati operator 
lies in Cz([0, T]); L (H;  D((--A)~-~8)), giving mere regularity.  
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EXA~PL~ 5.3. - The Dir ichlet  boundary  control  [16]. Consider 

(5.5) 

~y(~, x) 
~t ~ Ay(t, x ) ,  

y(t, x) = u(~, x ) ,  

y(O, x) -~ yo(X), 

x ~ O ~  

x ~ O ,  

where H and A are as in Example  5.1 and  U = Z2(~0). 
t i e r e  we take  for Be; U- ->H,  the  Dir ichlet  map  defined by  y = Bou: Xly ~ O, 

y(x) = u(x), x 6  ~0. I t  is known [15], [16] t h a t  BoeL(U,D( ( - -A)~-~  for any  0 > ~. 
Thus we choose 0 = ~ § s, s > 0 small  and set B = ( - -A) l -~  (see [16]). 

We m a y  take  the cost funct ional  

T 

(5.6) J(u) [[ty(t,x) 2 ]o.(so)] dr. 
0 

Then M = I and  the I~iccati equat ion for this problem has the same form as in 
Example  5.2 and has a unique solution in C([O, T]);  L + ( H ) n  L(H,  D((--A*)o))  
for any  ~ < 0 < 1 .  

(5.7) 

EXAZPLE 5.4. - -  The pointwise control.  Consider 

~y(t, x) 
~t --  Ay( t ,x)  § ~(x--~)u( t )  , 

y ( t ,  x )  = 0 , 

y(O, x) = yo(X), 

x e $ 0  

where 6 is the  del ta  funct ion ([13]). Here  we take  H and A as in Example  5.1 and 
U ~ R'.  

Since (--A)-O(~(x--~) e H  for 0 > d/4, we assume d~<3. We take  0 ~- d/4 -4- e 
and set B - ~  ( - - A ) - O 6 ( $ -  ~). Then the following cost is well-defined: 

T 

-~ po[y(T, x)[~(o)§ x)[~2(o) § [u(t)[ ~] dt ,  Po, m > (5.S) J(u) O. 
0 

I f  d 1, we m a y  replace the in tegrand ly(t, 2 = x) [~..(o) by  ]y(t, U)[~, V e O. 

RE~A~K 5.1. -- ~o r  a given pa r t i a l  differential  equation,  we have a choice of 0 
in some in terva l  contained in [O, 1[. I i  we take 0 small, we m a y  allow for large 
unboundedness  in cost operators.  On the other  hund if the cost funct ional  is fixed~ 
then  choosing 0 large we get more regular i ty  for the  Riecati  operator.  
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